Get Enumerative combinatorics: volume 2: second edition richard p. stanley free all chapters

Page 1


https://ebookmass.com/product/enumerative-combinatorics-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Enumerative Combinatorics: Volume 2: Second Edition

Richard P. Stanley

https://ebookmass.com/product/enumerative-combinatoricsvolume-2-second-edition-richard-p-stanley-3/

ebookmass.com

Enumerative Combinatorics: Volume 2: Second Edition

Richard P. Stanley

https://ebookmass.com/product/enumerative-combinatoricsvolume-2-second-edition-richard-p-stanley-2/

ebookmass.com

Fetal and Neonatal Physiology, 2-Volume Set 6th Edition

Richard A. Polin

https://ebookmass.com/product/fetal-and-neonatal-physiology-2-volumeset-6th-edition-richard-a-polin/

ebookmass.com

Draw Like an Artist: 100 Birds, Butterflies, and Other Insects: Step-by-Step Realistic Line Drawing - A Sourcebook for Aspiring Artists and Designers Washburn

https://ebookmass.com/product/draw-like-an-artist-100-birdsbutterflies-and-other-insects-step-by-step-realistic-line-drawing-asourcebook-for-aspiring-artists-and-designers-washburn/ ebookmass.com

https://ebookmass.com/product/sedra-smith-microelectroniccircuits-8th-edition-by-adel-s-sedra-author/

ebookmass.com

The ADA Practical Guide to Dental Implants 1st Edition

Luigi O. Massa

https://ebookmass.com/product/the-ada-practical-guide-to-dentalimplants-1st-edition-luigi-o-massa/

ebookmass.com

A Comprehensive Guide to Sports Physiology and Injury Management: an Interdisciplinary Approach Stuart Porter

https://ebookmass.com/product/a-comprehensive-guide-to-sportsphysiology-and-injury-management-an-interdisciplinary-approach-stuartporter/

ebookmass.com

CISSP Passport Bobby E. Rogers

https://ebookmass.com/product/cissp-passport-bobby-e-rogers/

ebookmass.com

Betrayed: Lords of Chaos MC (Road to Carnage 6) MM

Bella

https://ebookmass.com/product/betrayed-lords-of-chaos-mc-road-tocarnage-6-mm-nicholas-bella/

ebookmass.com

Stepwise Culture of Human Adult Stem Cells 1st Edition

https://ebookmass.com/product/stepwise-culture-of-human-adult-stemcells-1st-edition-pranela-rameshwar/

ebookmass.com

CAMBRIDGESTUDIESINADVANCEDMATHEMATICS208

EditorialBoard

ENUMERATIVECOMBINATORICS

Volume2

RichardStanley’stwo-volumebasicintroductiontoenumerativecombinatoricshas becomethestandardguidetothetopicforstudentsandexpertsalike.Thisthoroughly revisedsecondeditionofvolumetwocoversthecompositionofgeneratingfunctions, inparticulartheexponentialformulaandtheLagrangeinversionformula,labelledand unlabelledtrees,algebraic,D-finite,andnoncommutativegeneratingfunctions,and symmetricfunctions.Thechapteronsymmetricfunctionsprovidestheonlyavailabletreatmentofthissubjectsuitableforanintroductorygraduatecourseandfocusing oncombinatorics,especiallytheRobinson–Schensted–Knuthalgorithm.Anappendix bySergeyFomincoverssomedeeperaspectsofsymmetricfunctions,includingjeude taquinandtheLittlewood–Richardsonrule.Theexercisesinthebookplayavitalrolein developingthematerial,andthissecondeditionfeaturesover400exercises,including 159newexercisesonsymmetricfunctions,allwithsolutionsorreferencestosolutions.

RichardP.Stanley isEmeritusProfessorofMathematicsattheMassachusettsInstitute ofTechnologyandanArtsandSciencesDistinguishedProfessorattheUniversityof Miami.Hehaswrittenover180researcharticlesandsixbooks.AmongStanley’smany distinctionsaremembershipintheNationalAcademyofSciences(electedin1995)and the2001LeroyP.SteelePrizeforMathematicalExposition.

EditorialBoard

J.BERTOIN,B.BOLLOB ´ AS,W.FULTON,B.KRA,I.MOERDIJK, C.PRAEGER,P.SARNAK,B.SIMON,B.TOTARO

AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversity Press.Foracompleteserieslisting,visit www.cambridge.org/mathematics.

AlreadyPublished

171J.Gough&J.Kupsch QuantumFieldsandProcesses

172T.Ceccherini-Silberstein,F.Scarabotti&F.Tolli DiscreteHarmonicAnalysis

173P.Garrett ModernAnalysisofAutomorphicFormsbyExample,I

174P.Garrett ModernAnalysisofAutomorphicFormsbyExample,II

175G.Navarro CharacterTheoryandtheMcKayConjecture

176P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.Persson EisensteinSeriesand AutomorphicRepresentations

177E.Peterson FormalGeometryandBordismOperators

178A.Ogus LecturesonLogarithmicAlgebraicGeometry

179N.Nikolski HardySpaces

180D.-C.Cisinski HigherCategoriesandHomotopicalAlgebra

181A.Agrachev,D.Barilari&U.Boscain AComprehensiveIntroductiontoSub-Riemannian Geometry

182N.Nikolski ToeplitzMatricesandOperators

183A.Yekutieli DerivedCategories

184C.Demeter FourierRestriction,DecouplingandApplications

185D.Barnes&C.Roitzheim FoundationsofStableHomotopyTheory

186V.Vasyunin&A.Volberg TheBellmanFunctionTechniqueinHarmonicAnalysis

187M.Geck&G.Malle TheCharacterTheoryofFiniteGroupsofLieType

188B.Richter CategoryTheoryforHomotopyTheory

189R.Willett&G.Yu HigherIndexTheory

190A.Bobrowski GeneratorsofMarkovChains

191D.Cao,S.Peng&S.Yan SingularlyPerturbedMethodsforNonlinearEllipticProblems

192E.Kowalski AnIntroductiontoProbabilisticNumberTheory

193V.Gorin LecturesonRandomLozengeTilings

194E.Riehl&D.Verity Elementsof ∞-CategoryTheory

195H.Krause HomologicalTheoryofRepresentations

196F.Durand&D.Perrin DimensionGroupsandDynamicalSystems

197A.Sheffer PolynomialMethodsandIncidenceTheory

198T.Dobson,A.Malniˇc&D.Maruˇsiˇc SymmetryinGraphs

199K.S.Kedlaya p-adicDifferentialEquations

200R.L.Frank,A.Laptev&T.Weidl Schr¨odingerOperators:EigenvaluesandLieb–Thirring Inequalities

201J.vanNeerven FunctionalAnalysis

202A.Schmeding AnIntroductiontoInfinite-DimensionalDifferentialGeometry

203F.CabelloS´anchez&J.M.F.Castillo HomologicalMethodsinBanachSpaceTheory

204G.P.Paternain,M.Salo&G.Uhlmann GeometricInverseProblems

205V.Platonov,A.Rapinchuk&I.Rapinchuk AlgebraicGroupsandNumberTheory,I(2nd Edition)

206D.Huybrechts TheGeometryofCubicHypersurfaces

207F.Maggi OptimalMassTransportonEuclideanSpaces

208R.P.Stanley EnumerativeCombinatorics,II(2ndedition)

209M.Kawakita ComplexAlgebraicThreefolds

210D.Anderson&W.Fulton EquivariantCohomologyinAlgebraicGeometry

“Thisisoneofthegreatbooks;readable,deepandfullofgems.Itbrings algebraiccombinatoricstolife.IteachoutofitandfeelthatifIcangetmy studentsto‘touchStanley’Ihavegiventhemagiftforlife.”

–PersiDiaconis,StanfordUniversity

“ItiswonderfultocelebratethecompletionofthesecondeditionofRichard Stanley’s EnumerativeCombinatorics,oneofthefinestmathematicalworks ofalltime.Hehasaddednearly200exercises,togetherwiththeiranswers,to whatwasalreadyauniquelymasterfulsummaryofavastandbeautifultheory. WhenpairedwiththesecondeditionofVolume1,histwoclassicvolumeswill surelybeatimelesstreasureforgenerationstocome.”

“Anupdatedclassicwithamesmerizingarrayofinterconnectedexamples. ThroughStanley’smasterfulexposition,thecurrentandfuturegenerationsof mathematicianswilllearntheinherentbeautyandpleasuresofenumeration.”

–JuneHuh,PrincetonUniversity

“IhaveusedRichardStanley’sbooksonEnumerativeCombinatoricsnumerous timesforthecombinatoricsclassesIhavetaught.Thisneweditioncontains manynewexercises,whichwillnodoubtbeextremelyusefulforthenext generationofcombinatorialists.”

–AnneSchilling,UniversityofCalifornia,Davis

“RichardStanley’sEnumerativeCombinatorics,intwovolumes,isanessentialreferenceforresearchersandgraduatestudentsinthefieldofenumeration. Volume2,newlyrevised,includescomprehensivecoverageofcomposition andinversionofgeneratingfunctions,exponentialandalgebraicgenerating functions,andsymmetricfunctions.Thetreatmentofsymmetricfunctionsis especiallynoteworthyforitsthoroughnessandaccessibility.Engagingproblemsandsolutions,anddetailedhistoricalnotes,addtothevalueofthisbook. Itprovidesanexcellentintroductiontothesubjectforbeginnerswhilealso offeringadvancedresearchersnewinsightsandperspectives.”

–IraGessel,BrandeisUniversity

EnumerativeCombinatorics

Volume2

SecondEdition

RICHARDP.STANLEY

MassachusettsInstituteofTechnology

WithanAppendixby

SERGEYFOMIN

UniversityofMichigan

ShaftesburyRoad,CambridgeCB28EA,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA

477WilliamstownRoad,PortMelbourne,VIC3207,Australia

314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India

103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467

CambridgeUniversityPressispartofCambridgeUniversityPress&Assessment, adepartmentoftheUniversityofCambridge.

WesharetheUniversity’smissiontocontributetosocietythroughthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence.

www.cambridge.org

Informationonthistitle: www.cambridge.org/9781009262491

DOI: 10.1017/9781009262538

©CambridgeUniversityPress1997,2012

©RichardP.Stanley2024

Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress&Assessment.

FirsteditionpublishedbyWadsworth1986

FirstCambridgeedition1997

Secondedition(Volume1)published2012

PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary.

ACataloging-in-PublicationdatarecordforthisbookisavailablefromtheLibraryof Congress.

ISBN978-1-009-26249-1Hardback

ISBN978-1-009-26248-4Paperback

CambridgeUniversityPress&Assessmenthasnoresponsibilityforthepersistence oraccuracyofURLsforexternalorthird-partyinternetwebsitesreferredtointhis publicationanddoesnotguaranteethatanycontentonsuchwebsitesis,orwill remain,accurateorappropriate.

toAtsuko,Kenneth,Sharon,Beth,Bennett,andCole

7.7Powersumsymmetricfunctions

7.8Specializations

7.9Ascalarproduct

7.10ThecombinatorialdefinitionofSchurfunctions

7.18Thecharactersofthesymmetricgroup

7.19Quasisymmetricfunctions

PrefacetoSecondEdition

Theprimarydifferencebetweenthissecondeditionandthefirstistheadditionof159newproblemsforChapter 7 (symmetricfunctions),almostall withsolutions.TheyappearintheChapter 7 sectionsentitled“Supplementary Exercises”and“SupplementarySolutions.”Thesenewproblemsarefurther evidenceoftheamazingfecundityofthetheoryofsymmetricfunctions.Philip Hallwaswellawareofthefuturepotentialofsymmetricfunctionswhenhe wroteina1955letter:∗

wheneverinmathematicsyoumeetwithpartitions,youhaveonlytoturnoverthe stoneorliftupthebark,andyouwill,almostinfallibly,findsymmetricfunctionsunderneath.Moreprecisely,ifwehaveaclassofmathematicalobjectswhichinanaturaland significantwaycanbeplacedinone-to-onecorrespondencewiththepartitions,wemust expecttheinternalstructureoftheseobjectsandtheirrelationstooneanothertoinvolve soonerorlater ... thealgebraofsymmetricfunctions.

Withahandfulofexceptions,allthenewproblemsonsymmetricfunctions canbesolved(inprinciple,atanyrate)directlyfromthematerialofChapter 7. WedonotventureintoimportantextensionsoftheChapter 7 materialsuchas Macdonaldpolynomials, k-Schurfunctions,LLTpolynomials,cylindricSchur functions,etc.

Wehavealsocorrectedallknownerrorsinthefirsteditionandchangedall referencestomaterialinVolume1sothattheyconformtothesecondedition ofVolume1.AfewnewproblemshavebeenaddedoutsideChapter 7,asparts ofotherproblems(soasnottoupsettheproblemnumbering),andreferences havebeenupdatedandslightlyexpanded.Theseparatelistofreferencesin eachchapterhavebeenmergedintoasinglelistappearingjustbeforetheindex. Thenumberingoftheorems,definitions,exercises,etc.,hasremainedthesame

∗ See mathshistory.st-andrews.ac.uk/Biographies/Hall.

asinthefirstedition.However,someequationnumbersandfigurenumbers,as wellasalmostallthecitationnumbers,havebeenchanged.Theindexhasbeen upgraded;inparticular,everyreferencetoapersonisaseparatesubentry.

InnumerablepersonshavecontributedtothenewChapter 7 problems.They areacknowledgedintheproblemsolutions.IwouldalsoliketothankKaitlin LeachatCambridgeUniversityPressforherexcellenteditorialassistanceand toSureshKumarforhisTEXsupport.

Preface

Thisisthesecond(andfinal)volumeofagraduate-levelintroductiontoenumerativecombinatorics.Tothosewhohavebeenpatientlywaitingtwelveyears sincethepublicationofVolume1,Icanonlysaythatnooneismorepleased toseeVolume2finallycompletedthanmyself.IhavetriedtocoverwhatIfeel arethefundamentaltopicsinenumerativecombinatotics,andtheonesthat arethemostusefulinapplicationsoutsideofcombinatorics.Thoughthebook isprimarilyintendedtobeatextbookforgraduatestudentsandaresource forprofessionalmathematicians,Ihopethatundergraduatesandevenbright highschoolstudentswillfindsomethingofinterest.Forinstance,manyof the66combinatorialinterpretationsofCatalannumbersprovidedbyExercise 6.19 shouldbeaccessibletoundergraduateswithalittleknowledgeof combinatorics.

Muchofthematerialinthisbookhasneverappearedbeforeintextbook form.ThisisespeciallytrueofthetreatmentofsymmetricfunctionsinChapter 7.Althoughthetheoryofsymmetricfunctionsanditsconnectionswith combinatoricsisinmyopiniononeofthemostbeautifultopicsinallofmathematics,itisadifficultsubjectforbeginnerstolearn.Thesuperbbookby Macdonaldonsymmetricfunctionsishighlyalgebraicandeschewsthefundamentalcombinatorialtoolinthissubject,viz.,theRobinson-Schensted-Knuth algorithm.IhopethatChapter 7 adequatelyfillsthisgapinthemathematical literature.Chapter 7 shouldberegardedasonlyanintroductiontothetheory ofsymmetricfunctions,andnotasacomprehensivetreatment.

AsinVolume1theexercisesplayavitalroleindevelopingthesubject.Ifin readingthetextthereaderisleftwiththefeelingof“what’sitgoodfor?”andis notsatisfiedwiththeapplicationspresentedthere,then(s)heshouldturntothe exerciseshopefullytodispelsuchdoubts.Thankstothewondersofelectronic word-processingIfounditmucheasierthanforVolume1toassembleawide varietyofexercisesandsolutions.

Iamgratefultothemanypersonswhohavecontributedinanumberof waystotheimprovementofthisbook.SpecialthanksgoestoSergeyFomin forhismanysuggestionsrelatedtoChapter 7,andespeciallyforhismasterfulexpositionofthedifficultmaterialofAppendix 1.Otherpersonswhohave carefullyreadportionsofearlierversionsofthebookandwhohaveoffered valuablesuggestionsareChristineBessenrodt,FrancescoBrenti,PersiDiaconis,WungkumFong,PhilHanlon,andMichelleWachs.RobertBeckertyped mostofChapter 5,andTomRobyandBonnieFriedmanprovidedinvaluable TEXassistance.Thefollowingadditionalpersonshavemadeatleastonesignificantcontributionthatisnotexplicitlymentionedinthetext,andIregret ifIhaveinadvertentlyomittedanyoneelsewhobelongsonthislist:ChristosAthanasiadis,AndersBj¨orner,MireilleBousquet-M´elou,BradleyBrock, DavidBuchsbaum,EmericDeutsch,KimmoEriksson,DominiqueFoata,Ira Gessel,CurtisGreene,PatriciaHersh,MartinIsaacs,BenjaminJoseph,Martin Klazar,DonaldKnuth,DarlaKremer,PeterLittelmann,ValeryLiskovets,Ian Macdonald,AlexanderMednykh,ThomasM¨uller,AndrewOdlyzko,AlexanderPostnikov,RobertProctor,DouglasRogers,LouShapiro,RodicaSimion, MarkSkandera,LouisSolomon,DennisStanton,RobertSulanke,Sheila Sundaram,Jean-YvesThibon,andAndreiZelevinsky.

5 TreesandtheCompositionofGenerating Functions

5.1TheExponentialFormula

If F(x)and G(x)areformalpowerserieswith G(0) = 0,thenwehaveseen (afterProposition1.1.9)thatthecomposition F(G(x))isawell-definedformal powerseries.Inthischapterwewillinvestigatethecombinatorialramifications ofpowerseriescomposition.Inthissectionwewillbeconcernedwiththecase where F(x)and G(x)areexponentialgeneratingfunctions,andespeciallythe case F(x) = ex .

Letusfirstconsiderthecombinatorialsignificanceoftheproduct F(x)G(x) oftwoexponentialgeneratingfunctions

Throughoutthischapter K denotesafieldofcharacteristic0(suchas C withsomeindeterminatesadjoined).Wealsodenoteby Ef (x)theexponential generatingfunctionofthefunction f : N → K,thatis,

5.1.1Proposition. Givenfunctionsf , g : N → K,defineanewfunctionh : N → Kbytherule

whereXisafiniteset,andwhere(S,T)rangesoverallweakorderedpartitions ofXintotwoblocks,thatis,S ∩ T =∅ andS ∪ T = X . Then

Proof. Let#X = n.Thereare(n k )pairs(S, T )with#S = k and#T = n k,so

).

Fromthisequation(5.2)follows.

OnecouldalsoproveProposition 5.1.1 byusingTheorem3.18.41 appliedto thebinomialposet B ofExample3.18.3.

WehavestatedProposition 5.1.1 intermsofacertainrelationship(5.1) amongfunctions f , g and h,butitisimportanttounderstanditscombinatorialsignificance.Supposewehavetwotypesofstructures,say α and β,which canbeputonafiniteset X .Weassumethattheallowedstructuresdependonly onthecardinalityof X .Anew“combined”typeofstructure,denoted α ∪ β, canbeputon X byplacingstructuresoftype α and β onsubsets S and T , respectively,of X suchthat S ∪ T = X , S ∩ T =∅.If f (k)(respectively g(k)) arethenumberofpossiblestructuresona k-setoftype α (respectively, β), thentheright-handsideof(5.1)countsthenumberofstructuresoftype α ∪ β on X .Moregenerally,wecanassignaweight w( )toanystructure oftype α or β.Acombinedstructureoftype α ∪ β isdefinedtohaveweightequal totheproductoftheweightsofeachpart.If f (k)and g(k)denotethesumof theweightsofallstructuresona k-setoftypes α and β,respectively,thenthe right-handsideof(5.1)countsthesumoftheweightsofallstructuresoftype α ∪ β on X .

5.1.2Example. Givenan n-elementset X ,let h(n)bethenumberofwaysto split X intotwosubsets S and T with S ∪T = X , S ∩T =∅;andthentolinearly ordertheelementsof S andtochooseasubsetof T .Thereare f (k) = k! ways tolinearlyordera k-elementset,and g(k) = 2k waystochooseasubsetofa k-elementset.Hence n≥0

Proposition 5.1.1 canbeiteratedtoyieldthefollowingresult.

5.1.3Proposition. Fixk ∈ P andfunctionsf1, f2, ... , fk : N → K. Definea newfunctionh : N → Kby h(#S) = f1(#T1)f2(#T2) ···

where (T1, ... , Tk ) rangesoverallweakorderedpartitionsofSintokblocks, thatis,T1, ... , Tk aresubsetsofSsatisfying:(i)Ti ∩ Tj =∅ ifi = j,and(ii) T1 ∪···∪ Tk = S.Then

Eh(x) = k i=1 Efi (x).

Wearenowabletogivethemainresultofthissection,whichexplains thecombinatorialsignificanceofthecompositionofexponentialgenerating functions.

5.1.4Theorem (theCompositionalFormula). Givenfunctionsf : P → K andg : N → Kwithg(0) = 1,defineanewfunctionh : N → Kby

h(#S) =

(#Bk )g(k),#S > 0, h(0) = 1,

wherethesumrangesoverallpartitions(asdefinedinSection1.9) π = {B1, ... , Bk } ofthefinitesetS.Then

Eh(x) = Eg (Ef (x)).

(HereEf (x) = n≥1 f (n) xn n! ,sincefisonlydefinedonpositiveintegers.)

Proof. Suppose#S = n,andlet hk (n)denotetheright-handsideof(5.3)for fixedk.Since B1, ... , Bk arenonemptytheyarealldistinct,sothereare k! ways oflinearlyorderingthem.ThusbyProposition 5.1.3,

Summing(5.3)overall k ≥ 1yieldsthedesiredresult.

Theorem 5.1.4 hasthefollowingcombinatorialsignificance.Manystructuresonaset,suchasgraphsorposets,mayberegardedasdisjointunions oftheirconnectedcomponents.Inaddition,someadditionalstructuremaybe placedonthecomponentsthemselves,forexample,thecomponentscouldbe linearlyordered.Ifthereare f ( j)connectedstructuresona j-setand g(k)ways

Figure5.1Acirculararrangementoflines toplaceanadditionalstructureon k components,then h(n)isthetotalnumberofstructuresonan n-set.Thereisanobviousgeneralizationtoweighted structures,suchaswasdiscussedafterProposition 5.1.1.

Thefollowingexampleshouldhelptoelucidatethecombinatorialmeaning ofTheorem 5.1.4;moresubstantialapplicationsaregiveninSection 5.2.

5.1.5Example. Let h(n)bethenumberofwaysfor n personstoforminto nonemptylines,andthentoarrangetheselinesinacircularorder.Figure 5.1 showsonesucharrangementofninepersons.Thereare f ( j) = j! waysto linearlyorder j persons,and g(k) = (k 1)! waystocircularlyorder k ≥ 1 lines.Thus

whence h(n) = (2n 1)(n 1)!.Naturallysuchasimpleanswerdemandsa simplecombinatorialproof.Namely,arrangethe n personsinacirclein(n 1)!

Figure5.2AnequivalentformofFigure 5.1 ways.Ineachofthe n spacesbetweentwopersons,eitherdoordonotdrawa bar,exceptthatatleastonebarmustbedrawn.Therearethus2n 1choices forthebars.Betweentwoconsecutivebars(orabaranditselfifthereisonly onebar)readthepersonsinclockwiseordertoobtaintheirorderinline.See Figure 5.2 forthismethodofrepresentingFigure 5.1.

ThemostcommonuseofTheorem 5.1.4 isthecasewhere g(k) = 1 forall k.Incombinatorialterms,astructureisputtogetherfrom“connected”components,butnoadditionalstructureisplacedonthecomponents themselves.

5.1.6Corollary (theExponentialFormula). Givenafunctionf : P → K, defineanewfunctionh : N → Kby

(0) = 1.

Then

Letussayabriefwordaboutthecomputationalaspectsofequation(5.5). Ifthefunction f (n)isgiven,thenonecanuse(5.4)tocompute h(n).However, thereisamuchmoreefficientwaytocompute h(n)from f (n)(andconversely).

5.1.7Proposition. Letf : P → Kandh : N → KberelatedbyEh(x) = exp Ef (x) (soinparticularh(0) = 1).Thenwehaveforn ≥ 0 therecurrences

Proof. Differentiate Eh(x) = exp E

(x)toobtain

Nowequatecoefficientsof xn/n! onbothsidesof(5.8)toobtain(5.6).(It isalsoeasytogiveacombinatorialproofof(5.6).)Equation(5.7)isjusta rearrangementof(5.6).

Thecompositionalandexponentialformulasareconcernedwithstructures onaset S obtainedbychoosingapartitionof S andthenimposingsome“connected”structureoneachblock.Insomesituationsitismorenaturaltochoose a permutation of S andthenimposea“connected”structureoneachcycle. Thesetwosituationsareclearlyequivalent,sinceapermutationisnothingmore thanapartitionwithacyclicorderingofeachblock.However,permutations ariseoftenenoughtowarrantaseparatestatement.Recallthat S(S)denotes theset(orgroup)ofallpermutationsoftheset S.

5.1.8Corollary (theCompositionalFormula,permutationversion). Given functionsf : P → Kandg : N → Kwithg(0) = 1,defineanewfunction h : P → Kby h(#S) = π ∈S(S)

),#S > 0,(5.9) h(0) = 1, whereC1, C2, , Ck arethecyclesinthedisjointcycledecompositionof π Then

Proof. Sincethereare(j 1)! waystocyclicallyordera j-set,equation(5.9) maybewritten

h(#S) = π ={B1,...,Bk }∈ (S)

sobyTheorem 5.1.4, Eh(x) = Eg

n≥1 (n 1)!f (n) xn n!

.

= Eg

5.1.9Corollary (theExponentialFormula,permutationversion). Givena functionf : P → K,defineanewfunctionh : N → Kby h(#S) = π ∈S(S) f (#C1)f (#C2) f (#Ck ),#S > 0, h(0) = 1, wherethenotationisthesameasinCorollary 5.1.8.Then

Eh(x) = exp n≥1 f (n) xn n .

InChapter3.18(seeExample3.18.3(b))werelatedadditionandmultiplicationofexponentialgeneratingfunctionstotheincidencealgebraofthelattice offinitesubsetsof N.Thereisasimilarrelationbetween composition ofexponentialgeneratingfunctionsandtheincidencealgebraofthelattice n of partitionsof[n](orany n-set).Moreprecisely,weneedtoconsidersimultaneouslyall n for n ∈ P.RecallfromSection3.10thatif σ ≤ π in n,then wehaveanaturaldecomposition

σ , π

where |σ |= iai and |π |= ai.Let = ( 1, 2, ).Foreach n ∈ P, let fn ∈ I( n, K),theincidencealgebraof n.Supposethatthesequence f = ( f1, f2, ... )satisfiesthefollowingproperty:Thereisafunction(alsodenoted f ) f : P → K suchthatif σ ≤ π in n and[σ , π ]satisfies(5.10),then

Wethencall f a multiplicativefunction on

Forinstance,if ζn isthezetafunctionof n,then ζ = (ζ1, ζ2, )ismultiplicativewith ζ (n) = 1forall n ∈ P.If µn istheM¨obiusfunctionof n, thenbyProposition3.8.2andequation(3.37)weseethat µ = (µ1, µ2, ... )is multiplicativewith µ(n) = ( 1)n 1(n 1)!.

Let f = ( f1, f2, )and g = (g1, g2, ),where fn, gn ∈ I( n, K).Wecan

definethe convolutionfg = (( fg)1,( fg)2, ... )by ( fg)n = fngn (convolutionin I( n, K)).(5.12)

5.1.10Lemma. Iffandgaremultiplicativeon ,thensoisfg.

Proof. Let P and Q belocallyfiniteposets,andlet u ∈ I(P, K), v ∈ I(Q, K).

Define u × v ∈ I(P × Q, K)by u × v((x, x ),(y, y )) = u(x, y)v(x , y ).

ThenastraightforwardargumentasintheproofofProposition3.8.2shows that(u × v)(u × v ) = uu × vv .Thusfrom(5.10)wehave ( fg)n(σ , π ) = f1g1( ˆ 0, ˆ 1)a1 ··· fngn

ItfollowsfromLemma 5.1.10 thattheset M ( ) = M ( , K)ofmultiplicativefunctionson formsasemigroupunderconvolution.Infact, M ( ) isevenamonoid(=semigroupwithidentity),sincetheidentityfunction δ = (δ1, δ2, ... )ismultiplicativewith δ(n) = δ1n.(CAVEAT: M ( )is not closedunderaddition!)

5.1.11Theorem. Defineamap φ : M ( ) → xK[[x]] (themonoidofpower serieswithzeroconstanttermundercomposition)by φ( f ) = Ef (x) = n≥1 f (n) xn n! .

Then φ isananti-isomorphismofmonoids,thatis, φ isabijectionand φ( fg) = Eg (Ef (x)).

Proof. Clearly φ isabijection.Since fg ismultiplicativebyLemma 5.1.10,it sufficestoshowthat n≥1 fg(n) xn n! = Eg (Ef (x)).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.