Get Design and analysis of centrifugal compressors van den braembussche free all chapters

Page 1


https://ebookmass.com/product/design-and-analysis-of-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Homer the Rhetorician Baukje Van Den Berg

https://ebookmass.com/product/homer-the-rhetorician-baukje-van-denberg/

ebookmass.com

Julia. (Van Den Bosch Book 5) Melanie Martins

https://ebookmass.com/product/julia-van-den-bosch-book-5-melaniemartins/

ebookmass.com

Chitin and Chitosan: Properties and Applications Lambertus A. M. Van Den Broek

https://ebookmass.com/product/chitin-and-chitosan-properties-andapplications-lambertus-a-m-van-den-broek/

ebookmass.com

The Reign of Speech: On Applied Lacanian Psychoanalysis 1st Edition Dries G. M. Dulsster

https://ebookmass.com/product/the-reign-of-speech-on-applied-lacanianpsychoanalysis-1st-edition-dries-g-m-dulsster/

ebookmass.com

Reputations at Stake Harvey

https://ebookmass.com/product/reputations-at-stake-harvey/

ebookmass.com

Miller’s Anesthesia Review 3rd Edition Edition Lorraine Sdrales

https://ebookmass.com/product/millers-anesthesia-review-3rd-editionedition-lorraine-sdrales/

ebookmass.com

Ophthalmology 5th Edition

https://ebookmass.com/product/ophthalmology-5th-edition/

ebookmass.com

The Cult of Dismembered Limbs Gideon Aran

https://ebookmass.com/product/the-cult-of-dismembered-limbs-gideonaran/

ebookmass.com

Modern Diplomacy in Practice Robert Hutchings

https://ebookmass.com/product/modern-diplomacy-in-practice-roberthutchings/

ebookmass.com

Conservation

https://ebookmass.com/product/conservation-of-tropical-coral-reefs-areview-of-financial-and-strategic-solutions-brian-joseph-mcfarland/

ebookmass.com

DesignandAnalysisofCentrifugalCompressors

WILEY-ASMEPRESSSERIESLIST

DesignandAnalysisofCentrifugalCompressorsVandenBraembusscheDecember2018

DynamicsofParticlesandRigidBodies–A Self-learningApproach

EngineeringOptimization-Applications,Methods andAnalysis

PrimeronEngineeringStandards:Expanded TextbookEdition

CompactHeatExchangers-Analysis,Designand OptimizationusingFEMandCFDApproach

RobustAdaptiveControlforFractional-Order SystemswithDisturbanceandSaturation

StressinASMEPressureVessels,Boilers,and NuclearComponents

DaqaqAugust2018

RhinehartApril2018

JawadApril2018

RanganayakuluMarch2018

ChenDecember2017

JawadOctober2017

RobotManipulatorRedundancyResolutionZhangOctober2017

CombinedCooling,Heating,andPowerSystems: Modeling,Optimization,andOperation

ApplicationsofMathematicalHeatTransferand FluidFlowModelsinEngineeringandMedicine

BioprocessingPipingandEquipmentDesign: ACompanionGuidefortheASMEBPEStandard

GeothermalHeatPumpandHeatEngineSystems: TheoryandPractice

NonlinearRegressionModelingforEngineering Applications

ShiAugust2017

DorfmanFebruary2017

HuittDecember2016

ChiassonSeptember2016

RhinehartSeptember2016

FundamentalsofMechanicalVibrationsCaiMay2016

IntroductiontoDynamicsandControlof MechanicalEngineeringSystems

ToMarch2016

DesignandAnalysisofCentrifugalCompressors

RenéVandenBraembussche

vonKarmanInstitute

Belgium

ThisWorkisaco-publicationbetweenASMEPressandJohnWiley&SonsLtd

©2019ASME

ThisWorkisaco-publicationbetweenASMEPressandJohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw. Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/ permissions.

TherightofRenéVandenBraembusschetobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsor warrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatements forthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/or potentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationor servicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwith theunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhen thisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitorany othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataappliedfor ISBN:9781119424093

CoverDesign:Wiley

CoverImages:AbstractBackground©derrrek/GettyImages;CentrifugalCompressor:CourtesyofKoenHillewaert &RenéVandenBraembussche

Setin10/12ptWarnockProbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

toLeen

Contents

Preface xi

Acknowledgements xiii

ListofSymbols xv

1Introduction 1

1.1ApplicationofCentrifugalCompressors 2

1.2AchievableEfficiency 5

1.3DiabaticFlows 14

1.4TransformationofEnergyinRadialCompressors 19

1.5PerformanceMap 25

1.5.1TheoreticalPerformanceCurve 25

1.5.2FiniteNumberofBlades 26

1.5.3RealPerformanceCurve 28

1.6DegreeofReaction 29

1.7OperatingConditions 32

2CompressorInlets 37

2.1InletGuideVanes 37

2.1.1InfluenceofPrerotationonPressureRatio 40

2.1.2DesignofIGVs 41

2.2TheInducer 49

2.2.1CalculationoftheInlet 50

2.2.1.1DeterminationoftheInducerShroudRadius 51

2.2.2OptimumIncidenceAngle 53

2.2.3InducerChokingMassFlow 56

3RadialImpellerFlowCalculation 61

3.1InviscidImpellerFlowCalculation 63

3.1.1MeridionalVelocityCalculation 63

3.1.2BladetoBladeVelocityCalculation 66

3.1.3OptimalVelocityDistribution 68

3.23DImpellerFlow 73

3.2.13DInviscidFlow 73

3.2.2BoundaryLayers 76

3.2.3SecondaryFlows 78

3.2.3.1Shrouded–unshrouded 82

3.2.4Full3DGeometries 84

3.3PerformancePredictions 88

3.3.1FlowinDivergentChannels 88

3.3.2ImpellerDiffusionModel 90

3.3.3Two-zoneFlowModel 94

3.3.4CalculationofAverageFlowConditions 101

3.3.5InfluenceoftheWake/JetVelocityRatio �� onImpellerPerformance 102

3.4SlipFactor 104

3.5DiskFriction 108

4TheDiffuser 113

4.1VanelessDiffusers 116

4.1.1One-dimensionalCalculation 117

4.1.2CircumferentialDistortion 122

4.1.3Three-dimensionalFlowCalculation 125

4.2VanedDiffusers 131

4.2.1CurvedVaneDiffusers 131

4.2.2ChannelDiffusers 135

4.2.3TheVanelessandSemi-vanelessSpace 136

4.2.4TheDiffuserChannel 143

5DetailedGeometryDesign 147

5.1InverseDesignMethods 147

5.1.1AnalyticalInverseDesignMethods 148

5.1.2InverseDesignbyCFD 152

5.2OptimizationSystems 156

5.2.1ParameterizedDefinitionoftheImpellerGeometry 157

5.2.2SearchMechanisms 159

5.2.2.1GradientMethods 160

5.2.2.2Zero-orderSearchMechanisms 161

5.2.2.3EvolutionaryMethods 161

5.2.3MetamodelAssistedOptimization 164

5.2.4MultiobjectiveandConstraintOptimization 170

5.2.4.1MultiobjectiveRanking 170

5.2.4.2Constraints 172

5.2.4.3MultiobjectiveDesignofCentrifugalImpellers 173

5.2.5MultipointOptimization 175

5.2.5.1DesignofaLowSolidityDiffuser 175

5.2.5.2MultipointImpellerDesign 177

5.2.6RobustOptimization 181

6Volutes 185

6.1InletVolutes 185

6.1.1InletBends 186

6.1.2InletVolutes 190

6.1.3VanedInletVolutes 193

6.1.4TangentialInletVolute 194

6.2OutletVolutes 196

6.2.1VoluteFlowModel 196

6.2.2MainGeometricalParameters 197

6.2.3Detailed3DFlowStructureinVolutes 200

6.2.3.1DesignMassFlowOperation 201

6.2.3.2LowerthanDesignMassFlow 204

6.2.3.3HigherthanDesignMassFlow 205

6.2.4CentralEllipticVolutes 208

6.2.4.1HighMassFlowMeasurements 210

6.2.4.2MediumandLowMassFlowMeasurements 215

6.2.4.3VoluteOutletMeasurements 215

6.2.5InternalRectangularVolutes 215

6.2.5.1HighMassFlowMeasurements 216

6.2.5.2MediumMassFlowMeasurements 218

6.2.5.3LowMassFlowMeasurements 219

6.2.6VoluteCrossSectionalShape 221

6.2.7VolutePerformance 222

6.2.7.1ExperimentalResults 224

6.2.7.2PerformancePredictions 225

6.2.7.3DetailedEvaluationofVoluteLossModel 228

6.2.83DanalysisofVoluteFlow 230

6.3Volute-diffuserOptimization 231

6.3.1Non-axisymmetricDiffuser 233

6.3.2IncreasedDiffuserExitWidth 234

7ImpellerResponsetoOutletDistortion 237

7.1ExperimentalObservations 238

7.2TheoreticalPredictions 242

7.2.11DModel 244

7.2.2CFD:MixingPlaneApproach 245

7.2.33DUnsteadyFlowCalculations 247

7.2.3.1Impellerwith20FullBlades 248

7.2.3.2ImpellerwithSplitterVanes 249

7.2.4InletandOutletFlowDistortion 249

7.2.4.1ParametricStudy 253

7.2.5FrozenRotorApproach 254

7.3RadialForces 258

7.3.1ExperimentalObservations 258

7.3.2ComputationofRadialForces 263

7.4Off-designPerformancePrediction 267

7.4.1ImpellerResponseModel 268

7.4.2DiffuserResponseModel 269

7.4.3VoluteFlowCalculation 269

7.4.4ImpellerOutletPressureDistribution 272

7.4.5EvaluationandConclusion 273

8StabilityandRange 275

8.1DistinctionBetweenDifferentTypesofRotatingStall 276

8.2VanelessDiffuserRotatingStall 280

8.2.1TheoreticalStabilityCalculation 284

8.2.2ComparisonwithExperiments 287

8.2.3InfluenceoftheDiffuserInletShapeandPinching 289

x Contents

8.3AbruptImpellerRotatingStall 296

8.3.1TheoreticalPredictionModels 297

8.3.2ComparisonwithExperimentalResults 300

8.4ProgressiveImpellerRotatingStall 301

8.4.1ExperimentalObservations 301

8.5VanedDiffuserRotatingStall 307

8.5.1ReturnChannelRotatingStall 314

8.6Surge 314

8.6.1LumpedParameterSurgeModel 316

8.6.2MildVersusDeepSurge 321

8.6.3AnAlternativeSurgePredictionModel 325

9OperatingRange 329

9.1ActiveSurgeControl 330

9.1.1ThrottleValveControl 331

9.1.2VariablePlenumControl 333

9.1.3ActiveMagneticBearings 335

9.1.4Close-coupledResistance 336

9.2BypassValves 337

9.3IncreasedImpellerStability 340

9.3.1DualEntryCompressors 342

9.3.2CasingTreatment 344

9.4EnhancedVanedDiffuserStability 347

9.5Impeller–diffuserMatching 351

9.6EnhancedVanelessDiffuserStability 354

9.6.1LowSolidityVanedDiffusers 356

9.6.2Half-heightVanes 359

9.6.3RotatingVanelessDiffusers 359

Bibliography 363 Index 385

Preface

Thegrowingawarenessoftheneedforenergysavingsandtheincreaseofefficiencyofcentrifugalcompressorsoverthelastdecadeshasresultedinanincreasingfieldofapplications. Thecompactness,smallweightandsimplicityofthecomponentsallowanefficientreplacementofmultistageaxialcompressorsbyasinglestageradialone.Theabsenceofmechanical friction,lowerlifetimecostandhighreliabilitymakescentrifugalcompressorsalsosuperiorto reciprocalones.Allthishasleadtoarevivalofcentrifugalcompressorresearch.

Centrifugalcompressorsareverydifferentfromaxialonesandrequireaspecificapproach. Thisbookintendstorespondtothat.Extensivereferenceismadetotheexperimentalresults andanalyticalflowmodelsthathavebeendevelopedduringthelast(pre-computer)century andpublishedintheopenliterature.Thisiscomplementedbytheresearchconductedinthe contextofthePhD.thesisofDrs.PaulFrigne,GeorgeVerdonk,MariosSideris,AntoniosFatsis, ErkanAyder,KoenHillewaert,AlainDemeulenaere,OlivierLéonard,StephanePierret,Tom Verstraete,AlbertoDiSanteandtheresearchprojectsofthemanyMasterstudentsthatIhad thepleasuretosupervise.

Thebookdoesnotprovidetherecipetodesign“theoptimalcompressor”butratherinsight intotheflowstructure.Thepurposeistohelpremediatingproblems,findingacompromise betweenthedifferentdesigntargetsandrestrictionsandhelpforabetterreadingandhencea moreefficientuseofNavier-Stokesresults.

Numericaltechniquesarenotdescribedindetailbutattentionisgiventotheirapplication, inparticulartothecorrectoperatingconditionsandrestrictionsofthedifferentapproaches andtotheiruseinthemoderncomputationaldesignandoptimizationtechniquesdeveloped duringthelasttwodecades.

Thebookisbasedonthe“AdvancedCourseCentrifugalCompressors”thatistaughtbythe authorinthe“ResearchMasterProgram”atthevonKarmanInstitute.Itintendstobeareferenceforengineersinvolvedinthedesignandanalysisofcentrifugalcompressorsaswellas teachersandstudentsspecializinginthisfield.

IamindebtedtomyformercolleaguesatthevonKarmanInstitute,Profs.FransBreugelmans, ClausSieverding,TonyArtsandmysuccessorTomVerstraete.Workingwiththemhasbeena veryenrichingandmotivatingexperience.ThanksalsotoDr.Z.Alsalihiandir.J.Prinsierfor themanyyearsoffruitfullcollaborationandCFDsupportincludingthepreparationoffigures, andtotheVKIlibrariansChristelleDeBeerandEvelyneCrochardfortheirlogistichelpin preparingthisbook.

Thisbookwouldnothavebeenrealizedwithouttheunderstanding,encouragementand unlimitedsupportofLeen,mywifeandsoul-mateformorethanfiftyyears.Specialthanks forthat.

Alsemberg,February25,2018

RenéVandenBraembussche, Hon.ProfessorvonKarmanInstitute

Acknowledgements

TheauthorwishestothanktheForschungsvereinigungVerbrennungskraftmaschinen(FVV) forpermissiontoincluderesultsinthisbookandinparticularthemembersoftheworking groupVorleitschaufelnforthemanyfruitfuldiscussions.

Permissionsfromthefollowingtoreproducecopyrightedmaterialisgratefullyrecognized:

TheAmericanSocietyofMechanicalEngineersfor:figs.5and6fromAbdelhamid(1980)as fig.8.33,fig.3fromAbdelhamid(1982)asfig.9.39,figs.2and5fromAbdelhamid(1987)as fig.9.40,fig.9bfromAbdelwahab(2010)asfig.7.8,figs.4and6fromAgostinellietal.(1960) asfigs.7.25and7.26,figs.8and9fromAmannetal.(1975)asfig.9.27,figs.15and16from Arigaetal.(1987)asfig.8.43,fig.16fromArnulfietal.(1999b)asfig.9.7,figs.1and9from Baljé(1970)asfig.3.15,fig.3fromBhinderandIngham(1974)asfig.3.12,fig.6bfromBonaiuti etal.(2002)asfig.4.27,fig.11bfromBowermannandAcosta(1957)asfig.6.22,fig.1from Casey(1985)asfig.1.20,figs.2and13fromChenandLei(2013)asfig.9.23,figs.7and14from Chenetal.(1993)asfig.9.39,figs.1and2fromChildsandNoronha(1999)asfig.1.17,fig.8d fromConradetal.(1980)asfig.4.36,fig.6fromDavisandDussourd(1970)asfig.3.2,fig.7from DeanandSenoo(1960)asfig.4.13,fig.6fromDeanandYoung(1977)asfig.8.55,fig.3from Dickmannetal.(2005)asfig.9.22,fig.3fromDussourdandPutman(1960)asfig.9.20,figs.5, 11,and12fromDussourdetal.(1977)asfigs.9.10and9.9,figs.7to11fromEckardt(1976)as figs.3.34and8.60,fig.9fromElderandGill(1984)asfig.8.47,figs.10,11,13,15,and17from Ellis(1964)asfigs.3.16,4.20,and4.21,figs.7and96fromEverittandSpakovszky(2013)asfigs. 7.11and8.45,fig.8fromFinketal.(1992)asfig.8.64,figs.4,10,and11fromFlathersetal.(1996) asfigs.6.10and6.14,figs.16and17fromFlynnWeber(1979)asfig.9.16,fig.4fromFowler (1966)asfig.1.10,fig.7bfromGreitzer(1976)asfig.8.67,fig.16fromGyarmathy(1996)asfigs. 8.50and8.51,fig.3fromHayamietal.(1990)asfig.9.42,fig.11fromHunzikerandGyarmathy (1994)asfig.8.44,figs.12and13fromIshidaetal.(2000)asfig.9.38,figs.8and14fromJansen (1964b)asfig.8.11,fig.2fromKammerandRautenberg(1986)asfig.8.61,figs.4and6from KangJeong-seeketal.(2000)asfig.4.32,fig.9fromKinoshitaandSenoo(1985)asfig.8.14,figs. 5and10fromKochetal.(1995)asfigs.6.12and6.13,fig.1fromKrain(1981)asfig.4.2,fig.12 fromKrameretal.(1960)asfig.3.11,figs.4and6fromLennemannandHoward(1970)asfigs. 8.1and8.37,figs.7.1and7.2fromLüdtke(1983)asfig.9.37,figs.16and26fromLüdtke(1985) asfigs.6.16,6.8,and6.9,figs.15and16fromMishinaandGyobu(1978)asfigs.6.20and6.21, figs.6aand9fromMizukietal.(1978)asfigs.8.34and8.38,fig.5fromMorrisetal.(1972) asfig.2.3,figs.1b,2c,and3cfromMukkavillietal.(2002)asfigs.9.43,9.44,and9.45,fig.3 fromNeceandDaily(1960)asfig.3.53,fig.4fromPampreen(1989)asfig.4.25,figs.4band4d fromReneauetal.(1967)asfig.4.41,fig.10fromRodgers(1968)asfig.9.33,figs.2band5from Rodgers(1977)asfigs.2.10and9.15,figs.5and6fromRodgers(1978)asfig.8.40,fig.3from Rodgers(1962)asfig.2.23,fig.4fromRodgers(1998)asfig.2.31,fig.7fromRodgers(1991)as fig.1.15,fig.2fromRodgers(1980),asfig.1.14,figs.4,14,and17fromSapiro(1983)asfigs.

9.46and9.47,fig.1fromStrubetal.(1987)asfig.1.16,fig.1fromRotheandRunstadler(1978) asfig.8.63,figs.5,23,25,26,and27fromRunstadlerDean(1969)asfigs.4.1and4.42,figs.4 and2fromSalvage(1998)asfigs.4.39and9.35,fig.12fromSenooIshida(1975)asfig.4.12, fig.1fromSenooetal.(1977)asfig.4.16,figs.7,4a,5a,and6fromSenooandKinoshita(1977) asfigs.8.15to8.19,fig.6fromSenooandKinoshita(1978)asfig.8.18,fig.3fromSenooetal. (1983a)asfig.4.26,figs.7and13fromSimonetal.(1986)asfigs.2.6and9.34,fig.1fromSimon etal.(1993)asfig.9.5,fig.15fromSugimuraetal.(2008)asfig.5.30,fig.19fromTamakietal. (2012)asfig.9.25,figs.6and7fromToyamaetal.(1977)asfigs.8.65and8.66,fig.11from Trébinjacetal.(2008)asfig.4.31,fig.8and5bfromTsujimotoetal.1994asfigs.8.35and8.9, fig.126fromWiesner(1967)asfig.3.49,figs.3and15fromYoonetal.(2012)asfig.9.8,fig.4 fromYoshidaetal.(1991)asfig.9.29,figs.7and8fromYoshinagaetal.(1985)asfig.9.45,figs. 5band8aandcfromTsujimotoetal.(1994)asfigs.8.9and8.35,fig.7fromKosugeetal.(1982) asfig.8.41,fig.14fromMarsanetal.(2012)asfig.9.30.

ConceptsNRECfor:fig.1.7fromJapikseandBaines(1994)asfig.1.13,fig.6.9fromJapikse (1996)asfig.8.42.

Dr.Heinrichforfig.11fromHeinrichandSchwarze(2017)asfig.6.59.

GasTurbineSocietyofJapanfor:figs.2and4fromKrainatal.(2007)asfig.4.29.

InstitutionofMechanicalEngineeringfor:figs.14and15fromJapikse(1982)asfig.6.62,fig. 1fromSiderisetal.(1986)asfig.4.2.

InternationalAssociationofHydraulicResearchfor:figs.2,3,4,5,6,and7fromMatthias (1966)asfig.6.4,fig.1fromRebernik(1972)asfig.4.19.

JapanSocietyofMechanicalEngineeringfor:fig.11fromHasegawaetal.(1990)asfig.7.23, fig.13fromAokietal.(1984)asfig.7.27,figs.13,6,and7fromNishidaetal.(1991)asfigs.8.27 and9.41,figs.2and8fromNishidaetal.(1988)asfigs.8.21and8.23,figs.2,4,5,6,7,11,and 13fromKobayashietal.(1990)asfigs.8.22,8.23,8.24,8.25,and8.28.

J.WileyandSonsfor:figs.6.66and5.133fromBaljé(1981)asfigs.9.35and2.24,figs.2.12 and2.15fromNeumann(1991)asfigs.6.11and6.15.

NATOScienceandTechnologyOrganizationfor:fig.6afromBenvenutietal.(1980)asfig. 2.27,fig.7fromWalitt(1980)asfig.3.1,fig.3c2fromPoulainandJanssens(1980)asfig.3.33b, figs.14and15fromVavra(1970)asfigs.3.37and3.54,figs.3b,10,4,and112fromJansenetal. (1980)asfigs.9.21and9.26,fig.1afromJapikse(1980)asfig.8.48,fig.13fromVinauetal. (1987)asfig.9.31,figs.25and37fromKenny(1970)asfigs.4.33and8.46.

Prof.M.Rautenbergfor:figs.8,9,10,and11fromRautenbergetal.(1983)asfigs.1.24aand 1.24b.

SagePublicationsfor:fig.8fromCaseyandRobinson(2011)asfig.1.18,fig.22fromPeck (1951)asfig.6.57.

SolarTurbinesIncorporatedfor:figs.7,15,and16fromWhiteandKurz(2006)asfigs.9.13 and9.14.

SpringerVerlagforfig.6.16.6fromTraupel(1966)asfig.3.50,fig.381fromEckertandSchnell (1961)asfig.3.51,figs.12,15,and17fromPfau(1967)asfig.7.2.

TheAcademicComputercenterinGdanskTASCfor:fig.9fromDicketal.(2001)asfig.7.21. ToyotaCentralLaboratoryfor:fig.4fromUchidaetal.(1987)asfig.7.3. TsukasaYoshinakafor:figs.3,4,5,and9fromYoshinaka(1977)asfigs.8.68,8.69,8.70,and 8.71.

vonKarmanInstitutefor:figs.3,15,and17fromBenvenuti(1977)asfigs.1.3and1.4,fig.4 fromBreugelmans(1972)asfig.2.4,figs.2,3b,4,7,and25fromDean(1972)asfigs.1.1,2.1, 3.41,3.42,and4.43,fig.11fromSenoo(1984)asfig.4.17,figs.20and22fromStiefel(1972)as fig.6.19,fig.26fromSchmallfuss(1972)asfig.9.17.

ListofSymbols

A crosssectionarea

A(U ( ⃗ X ), ⃗ X ) performanceconstraintfunction

AIRSabruptimpellerrotatingstall

AR arearatio

AS aspectratio(b∕Oth ) a speedofsound

⃗ a acceleration

A�� realpartofgrowthrateS

b impelleroutletordiffuserwidth

B2 Greitzer B2 factor(Equation8.43)

Bf distortionfactor

bl relativeblockage

c chordlength

C impelleroutletjetflowareaatzerowakevelocity

Cd dissipationcoefficient

Cf Darcyfrictioncoefficient

CDFcumulativedensityfunction

CFDcomputationalfluiddynamics

CFLCourant-Friedrichs-Lewy

Cm momentumortorquecoefficient

CM jet-wakefrictioncoefficient

CP staticpressurerisecoefficient

Cp specificheatcoefficient

D diameter

DH hydraulicdiameter

DOEdesignofexperiment

DR diffusionratio(W1 ∕WSEP )

dS controlsurface

EL equivalentchannellength

ESDemergencyshutdown

EMemergencyshut-offvalve

f frequencyofunsteadiness

F force

FEAfiniteelementstressanalysis

g gravityacceleration

G controllergain

Gk ( ⃗ X ) geometricconstraintfunction

xvi ListofSymbols

GPMgallonsperminute

h staticenthalpy

hb bladetobladedistance

H totalenthalpy manometricheight

i incidence

J momentofinertia

ks equivalentsandgrainsizeofroughness

K radialforcecoefficient(eqn.7.14)

kb bladeblockage

L lengthofchannel

LH hydrauliclength

LSDlowsoliditydiffuser

LWRlengthoverwidthratio

m meridionaldistance

̇

m massflow

M Machnumber

Mo momentumortorque

MR radialmomentum

Mu tangentialmomentum

Mx axialmomentum

NACANationalAdvisoryCommitteeforAerodynamics

NS specificspeed

NUEL numberofcircumferentialpositions

n distanceperpendiculartoaxisymmetricstreamsurface

nD numberofdesignparameters

N numberofrotations(RPM) numberofindividualsinapopulation

NPSHRnetpositivesuctionheadrequired

O openingorthroatwidth

OF (U ( ⃗ X ), ⃗ X ) objectivefunction

P pressure amplitudeofpowerspectrum penalty

PDFprobabilitydensityfunction

PIRSprogressiveimpellerrotatingstall

Pw power(W)

Q volumetricflow

qheatfluxperunitmass

Q heatflux(W) dynamicpressure (P o P )

R radiusmeasuredfromimpelleraxis

R(U ( ⃗ X ), ⃗ X ) performanceevaluator

r radiusmeasuredfromthevolutecrosssectioncenter degreeofreaction

ℜ curvatureradius

diffuserinletround-offradius

Re Reynoldsnumber

Rf relaxationfactor

RG gasconstant

RHSrigthhandside

Ro rothalpy

RPMrotationsperminute

RV hub/shroudradiusratio(R1H ∕R1S )

s distancealongstreamline

S surface exponentialgrowthrateofperturbation entropy

Sr acousticStrouhalnumber

Sx axialgapbetweenimpellerbackplateandcasing

t time pitch

T temperature

u non-dimensionalizedmeridionallength

U peripheralvelocity

U ( ⃗ X ) outputofperformanceevaluator

v absolutevelocityintheboundarylayer

V freestreamabsolutevelocity

VDRSvanelessdiffuserrotatingstall

compressorvolume

plenumvolume

w relativevelocityintheboundarylayer

W freestreamrelativevelocity

x axialorlongitudinaldistance

X geometry

y distanceinpitchwisedirection directionperpendiculartoxandz

Z numberofbladesorvanes controllertransferfunction

Zp ,Zu parametersdefiningdiffuserinletconditions(Equations8.9and8.10)

z directionperpendiculartoxandy

�� absoluteflowanglemeasuredfrommeridionalplane

�� relativeflowanglemeasuredfrommeridionalplane

���� phaseshiftofcontroller

�� anglebetweenmeridionalstreamsurfaceandaxialdirection

�� boundarylayerthickness ratioofinletpressures(Equation1.106)

��cl impeller-shroudclearancegap

��bl bladethicknessperpendiculartocamber

�� skewnessanglebetweenwallstreamlineandmainflowdirection

�� relativewakewidth

��kb relativebladeblockage

�� isentropicefficiency

��W wheeldiffusionefficiency(Equation3.40)

�� angularcoordinate(measuredfromthetongue) halfdiffuseropeningangle ratioofinlettotaltemperatures(Equation1.103)

�� isentropicexponent

�� numberofstallcellsorrotatingwaves ratioofwakemassflow/totalmassflow

�� workreductionfactor dynamicviscosity

�� wake/jetvelocityratio kinematicviscosity �� ∕��

�� totalpressurelosscoefficient

Ω impellerrotationalspeed(rad/sec)

ΩR reducedfrequency(Equation7.1)

��m mth modalfrequencyoftheimpeller

��s streamwisevorticity

���� rotationalspeedofstallcell imaginarypartofS

�� pressureratio

�� flowcoefficient(Vm ∕U )

�� nondimensionalpressurerisecoefficient

Ψ streamfunction

�� density

�� slipfactor solidity(chord/pitch) stress(MPa)

�� timeforoneimpellerrotation periodofperturbation shearstress

vectorproduct ∇2 Laplaceoperator

Subscripts

0upstreamofIGVorinletvolute

01downstreamIGV

1impellerinlet

2impelleroutlet

3vaneddiffuserleadingedge

4diffuseroutlet

5voluteexit

6compressoroutlet-returnchannelexit

11attheinnerradiusoftheimpellerbackplate

a absoluteframeofreference ad adiabatic

b inbladetobladedirection

bl oftheblade

b2basedontheimpelleroutletwidth

C ofthecompressor

c criticalvalue

atcenterofvolutecrosssection

ce duetocentrifugalforces

ch atchoking

cl duetoclearance

Cor duetoCoriolisforces

curv duetocurvature

D ofthediffuser deterministicsolution

d downstream des designvalue

dia diabatic

EC oftheexitcone

F oftheforce

fl oftheflow

fr duetofriction

H atthehub

i, j, k indicesinmeridional,tangentialandnormaldirection

IGV inletguidevanesettingangle

inc incompressible duetoincidence

inl attheinlet

iw attheinnerwall

j inthejet

indexofcircumferentialposition

kb duetobladeblockage

LE leadingedgevalue

m meridionalcomponent

max maximumvalue

mech mechanical

min minimumvalue

MC correspondingtoremainingswirl

MVDLduetomeridionalvelocitydumplosses

n normalcomponent

N nominalvalue

o attheoutlet

opt optimumvalue

ow attheouterwall

p ofthepipe polytropic

P duetopressure oftheplenum

PS onthepressureside

r oftherotor(relativeframe)

R radialcomponent atresonance robustsolution

ref referencevalue,referencegas

ret atreturnflow

Ro correspondingtorothalpy/correctedforrotation

s streamwisecomponent

S attheshroud swirlcomponent

SS onthesuctionside

S S statictostatic

SEP atseparationpoint

T troughflowortangentialcomponent ofthethrottledevice

TE trailingedgevalue

th atthethroatsection

T S totaltostatic

T T totaltototal

TVDL duetotangentialvelocitydumplosses

u peripheralcomponent upstream

un uncontrolled

V basedonabsolutevelocity

w inthewake onthewall

W basedonrelativevelocity

x axialcomponent

∞ freestreamvalue athighReynoldsnumber

Superscripts

i isentropic

k numberofthetimestep

nr nonrotating

o stagnationconditions

t atnexttimesteporgeneration

perturbationcomponent ∼ average

vector

∞ assuminganinfinitenumberofblades

targetvalue

Introduction

Aradialcompressorcanbedividedintodifferentparts,asshowninFigure1.1.Theflowis aspiratedfromthe inletplenum andafterbeingdeflectedbythe inletguidevanes (IGV), itentersthe inducer.Fromthereontheflowisdeceleratedandturnedintotheaxialand radialdirectionsbeforeleavingtheimpellerinthe exducer.Thepresenceofaradialvelocity componentisresponsibleforCoriolisforces,which,togetherwiththebladecurvatureeffect, tendstostabilizetheboundarylayerattheshroudandsuctionsideoftheinducer(Johnston 1974;Koyamaetal.1978).Theboundarylayerbecomeslessturbulentandwillmoreeasily separateundertheinfluenceofanadversepressuregradient.

Twodifferentflowzonescanbeobservedinsidetheimpellerresultingfromflowseparation andsecondaryflows(Carrad1923;Dean1972):

• AhighlyenergeticzonewithahighrelativeMachnumber,commonlycalledthe jet.Theflow inthiszoneisconsideredquasiisentropic.

• AlowerenergeticzonewithalowrelativeMachnumberwheretheflowishighlyinfluenced bylosses.Thiszone,commonlycalledthe wake,isfedbytheboundarylayersandinfluenced bysecondaryflows.

Afterleavingtheimpeller,rapidmixingtakesplacebetweenthetwozonesduetothedifferenceinangularmomentum(mixingregion).Thisintensiveenergyexchangeresultsinafast uniformizationoftheflow.

Theflowisfurtherdeceleratedbyanareaincreasecorrespondingtotheradiusincreaseof the vanelessdiffuser andinfluencedbyfrictiononthelateralwalls.

Incaseofa vaneddiffuser,theflow,afterashortvanelessspace,entersthe semi-vaneless space,i.e.thediffuserentryregionbetweentheleadingedgeandthethroatsectionwherea rapidadjustmentrearrangestheisobarpatternfromnearlycircumferentialtoperpendicularto themainflowdirection.IftheMachnumberishigherthanone,ashocksystemmaydecelerate theflowsuchthatthe throatsection becomessubsonic.

Afurtherdecreaseinthevelocityinthedivergent diffuserchannel downstreamofthe throatrealizesanadditionalincreaseinthestaticpressure.Dependingonthethroatflow conditions,theboundarylayersinthischannelwillthickenorevenseparate,whichlimitsthe staticpressurerise.

Theflowmayexitthecompressorbya volute orplenum,orcanbeguidedintothenextstage bya returnchannel.

Thefollowingchaptersdescribetheflowinthedifferentparts(IGV,impeller,diffuser,etc.) togetherwiththeequationsgoverningtheflowinthesecomponents.Afirstobjectiveis toprovideinsightintotheflowstructuretoallowabetterunderstandingofnumericaland experimentalresults.Asecondobjectiveisthecharacterizationofthecompressorcomponents basedonalimitednumberofgeometricalparameters,experimentalcorrelations,andflow DesignandAnalysisofCentrifugalCompressors, FirstEdition.RenéVandenBraembussche. ©2019,TheAmericanSocietyofMechanicalEngineers(ASME),2ParkAvenue,NewYork,NY,10016,USA(www.asme.org). Published2019byJohnWiley&SonsLtd.

MIXING REGION

CHANNEL DIFFUSER

DIFFUSER THROAT

SEMI VANELESS SPACE

IMPELLER EXIT

Figure1.1 Schematicviewoftheradialcompressorcomponentsandflow(fromDean1972).

parameterssuchasthediffusionratio(DR),thejetwakemassflowratio(��)fortheimpeller flow,thepressurerecovery(CP )forthediffuser,etc.

Theultimatepurposeistoprovideinputforthedesignofcompressorsthatbettersatisfythe designrequirementsintermsofpressureratio,efficiency,massflow,andstableoperatingrange.

1.1ApplicationofCentrifugalCompressors

Experiencehasshownthatthespecificspeed NS isavaluableparameterintheselectionofthe typeofcompressor(axial,centrifugalorvolumetric)thatisbestsuitedforagivenapplication. Thespecificspeedisdefinedby

Thisisanon-dimensionalparameteronlyifcoherentunitsareused(m3 /sforthevolumeflow ̇ Q,m2 /s2 fortheenthalpyrise ΔH ).However,acommonlyuseddefinitionofspecificspeedfor compressors

doesnotuseSIunitsandisnotnon-dimensional. Acommondefinitionforpumpsis NSP =

whereGPM = USgallon/minandthemanometricheadisinft. ThefollowingdefinitionsinSIunitsarenon-dimensional:

Previousdefinitionsarelinkedby:

Radialcompressorscanachievehighpressureratiosandtheinletvolumeflowcanbevery differentfromtheoneattheoutlet.Weshouldthereforeverifywhichoneofthetwohasbeen usedinthedefinitionof NS .Rodgers(1980)proposesusinganaveragevalueoftheinletand outletvolumetricflow:

Thevariationofefficiencyasafunctionofspecificspeedforaxial,centrifugal,andvolumetric compressorsisshowninFigure1.2.Testresultsfornumerouscompressorsliewithintheshaded areasandthefulllinesenvelopthedatacorrespondingtothedifferenttypes.Themeridional crosssectionofthecorrespondingtypeofcompressorgeometryisshownontop.Thelimiting curvesonthefigureintendonlytoshowthetrendincompressorefficiencyasafunctionof specificspeed.Theyshouldnotbeusedforpredictionpurposesbecausetheinformationdates fromaperiodwhentheflowinradialimpellerswasnotyetfullyunderstood(Baljé1961).Great improvementshavebeenmadesincethen,thankstotheinformationobtainedbyCFDand opticalmeasurementtechniques.MorerecentresultsareshowninFigure1.14.

Centrifugalcompressorscanalsobedesignedforspecificspeedvaluesawayfromthe optimumindicatedonFigure1.2butthisdoesnotfacilitatethejob.Positivedisplacement (volumetric)compressorsareoftenreplacedbylessefficientverylowspecificspeedcentrifugal compressorsforoperationalandmaintenancereasons.

Figure1.2 Variationofefficiencyandgeometrywithspecificspeed.

Figure1.3 Industrialcentrifugalimpellers(fromBenvenuti 1977).

Centrifugalcompressorsareusedatlower NS thanaxialcompressors.Thelow NS mayresult from:

• operationatlowRPM:thisisoftenthecasewithindustrialcompressors(Figure1.3)forreasonsofmaximizinglifetime

• smallvolumeflowasoccurringinlaststages(Figure1.4a)ofmulticorpsindustrialcompressors(Figure1.4b)

• ahighpressureratioperstageincombinationwithasmallvolumeflow(Figure1.5)oreven largevolumeflowincombinationwithverylargepressureratios(Figure1.6)asoccursin turbochargers

• ahighpressureratioandsmallvolumeflowasinsmallgasturbinesforautomotiveapplications(Figure1.7),inthelastcompressorstagesofsmallgasturbines,turboproporjetengines (Figure1.8),andinmicrogasturbines(Figure1.9).

Figure1.4 (a)Lastcorpsofahighpressureindustrialcentrifugalcompressorwith(b)verylowspecificspeed impeller(fromBenvenuti1977).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.