Gaussian measures in hilbert space: construction and properties kukush - Download the full ebook now

Page 1


https://ebookmass.com/product/gaussian-measures-in-hilbertspace-construction-and-properties-kukush/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Operator Analysis: Hilbert Space Methods in Complex Analysis Jim Agler

https://ebookmass.com/product/operator-analysis-hilbert-space-methodsin-complex-analysis-jim-agler/

ebookmass.com

Space as Language: The Properties of Typographic Space Will Hill

https://ebookmass.com/product/space-as-language-the-properties-oftypographic-space-will-hill/

ebookmass.com

Nonconventional and Vernacular Construction Materials■ Characterisation, Properties and Applications Kent A. Harries & Bhavna Sharma

https://ebookmass.com/product/nonconventional-and-vernacularconstruction-materials%ef%bc%9a-characterisation-properties-andapplications-kent-a-harries-bhavna-sharma/ ebookmass.com

Reference Frame Theory : Development and Applications 1st Edition Paul C.

https://ebookmass.com/product/reference-frame-theory-development-andapplications-1st-edition-paul-c-krause/

ebookmass.com

Feline Behavioral Health and Welfare. Prevention and Treatment 1st Edition Ilona Rodan Dvm Dabvp (Feline Practice)

https://ebookmass.com/product/feline-behavioral-health-and-welfareprevention-and-treatment-1st-edition-ilona-rodan-dvm-dabvp-felinepractice/

ebookmass.com

Holiness in Jewish thought First Edition Mittleman

https://ebookmass.com/product/holiness-in-jewish-thought-firstedition-mittleman/

ebookmass.com

Literary Legacies of the South African TRC: Fictional Journeys into Trauma, Truth, and Reconciliation 1st ed.

https://ebookmass.com/product/literary-legacies-of-the-south-africantrc-fictional-journeys-into-trauma-truth-and-reconciliation-1st-ededition-francesca-mussi/

ebookmass.com

Class 8th Physics book 1st Edition Pawan Kumar

https://ebookmass.com/product/class-8th-physics-book-1st-editionpawan-kumar/

ebookmass.com

Understandable Statistics: Concepts and Methods 12th

Edition

https://ebookmass.com/product/understandable-statistics-concepts-andmethods-12th-edition/

ebookmass.com

https://ebookmass.com/product/iran-and-the-american-media-presscoverage-of-the-iran-deal-in-context-mehdi-semati/

ebookmass.com

Gaussian Measures in Hilbert Space

To the memory of my daughter Ann

Series

Gaussian Measures in Hilbert Space

Construction and Properties

First published 2019 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

John Wiley & Sons, Inc.

27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030

UK USA

www.iste.co.uk

www.wiley.com

© ISTE Ltd 2019

The rights of Alexander Kukush to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2019946454

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library ISBN 978-1-78630-267-0

AbbreviationsandNotation

Chapter1.GaussianMeasuresinEuclideanSpace ...........1

1.1.Thechangeofvariablesformula......................1

1.2.InvarianceofLebesguemeasure......................4

1.3.Absenceofinvariantmeasureininfinite-dimensionalHilbertspace..9

1.4.Randomvectorsandtheirdistributions..................10

1.4.1.Randomvariables............................11

1.4.2.Randomvectors.............................12

1.4.3.Distributionsofrandomvectors....................14

1.5.GaussianvectorsandGaussianmeasures.................17

1.5.1.CharacteristicfunctionsofGaussianvectors.............17

1.5.2.ExpansionofGaussianvector.....................20

1.5.3.SupportofGaussianvector.......................22

1.5.4.GaussianmeasuresinEuclideanspace................23

Chapter2.GaussianMeasurein

2.1.Space R

2.1.1.Metricon

2.1.2.Borelandcylindricalsigma-algebrascoincide............30

2.1.3.Weighted l2 space............................31

2.2.Productmeasurein R∞

2.2.1.Kolmogorovextensiontheorem....................34

2.2.2.Constructionofproductmeasureon B (R∞ ) .............36

2.2.3.Propertiesofproductmeasure.....................38

2.3.StandardGaussianmeasurein R∞ .....................42

2.3.1.Alternativeproofofthesecondpartoftheorem2.4.........45

2.4.ConstructionofGaussianmeasurein l2 ..................46

Chapter3.BorelMeasuresinHilbertSpace ................51

3.1.Classesofoperatorsin H ..........................51

3.1.1.Hilbert–Schmidtoperators.......................52

3.1.2.Polardecomposition...........................55

3.1.3.Nuclearoperators............................57

3.1.4. S-operators................................62

3.2.PettisandBochnerintegrals........................68

3.2.1.Weakintegral..............................68

3.2.2.Strongintegral..............................69

3.3.BorelmeasuresinHilbertspace......................75

3.3.1.Weakandstrongmoments.......................75

3.3.2.ExamplesofBorelmeasures......................78

3.3.3.Boundednessofmomentform.....................83

Chapter4.ConstructionofMeasurebyitsCharacteristic Functional ......................................89

4.1.Cylindricalsigma-algebrainnormedspace................89 4.2.Convolutionofmeasures..........................93

4.3.Propertiesofcharacteristicfunctionalsin H ...............96

4.4. S -topologyin H ..............................99

4.5.Minlos–Sazonovtheorem..........................102

Chapter5.GaussianMeasureofGeneralForm

5.1.CharacteristicfunctionalofGaussianmeasure..............111

5.2.DecompositionofGaussianmeasureandGaussianrandomelement..114

5.3.SupportofGaussianmeasureanditsinvariance.............117

5.4.WeakconvergenceofGaussianmeasures.................125

5.5.ExponentialmomentsofGaussianmeasureinnormedspace......129

5.5.1.Gaussianmeasuresinnormedspace..................129

5.5.2.Fernique’stheorem...........................133

Chapter6.EquivalenceandSingularityofGaussianMeasures ...143

6.1.Uniformlyintegrablesequences......................143

6.2.Kakutani’sdichotomyforproductmeasureson R∞ ...........145

6.2.1.Generalpropertiesofabsolutelycontinuousmeasures........145

6.2.2.Kakutani’stheoremforproductmeasures...............148

6.2.3.DichotomyforGaussianproductmeasures..............152

6.3.Feldman–HájekdichotomyforGaussianmeasureson H ........155

6.3.1.ThecasewhereGaussianmeasureshaveequalcorrelation operators.....................................155

6.3.2.NecessaryconditionsforequivalenceofGaussianmeasures....158

6.3.3.CriterionforequivalenceofGaussianmeasures...........165

6.4.Applicationsinstatistics..........................169

6.4.1.EstimationandhypothesistestingformeanofGaussianrandom element.....................................169

6.4.2.Estimationandhypothesistestingforcorrelationoperatorof centeredGaussianrandomelement......................173

Chapter7.Solutions

...............................179

7.1.SolutionsforChapter1...........................179

7.2.SolutionsforChapter2...........................193

7.2.1.GeneralizedKolmogorovextensiontheorem.............196

7.3.SolutionsforChapter3...........................202

7.4.SolutionsforChapter4...........................211

7.5.SolutionsforChapter5...........................217

7.6.SolutionsforChapter6...........................227

SummarizingRemarks ..............................235

Foreword

Thestudyofmoderntheoryofstochasticprocesses,infinite-dimensionalanalysis andMalliavincalculusisimpossiblewithoutasolidknowledgeofGaussian measuresoninfinite-dimensionalspaces.Inspiteoftheimportanceofthistopicand theabundanceofliteratureavailableforexperiencedresearchers,thereisnotextbook suitableforstudentsforafirstreading.

Thepresentmanualisanexcellentget-to-knowcourseinGaussianmeasureson infinite-dimensionalspaces,whichhasbeengivenbytheauthorformanyyearsat theFacultyofMechanics&MathematicsofTarasShevchenkoNationalUniversityof Kyiv,Ukraine.Thepresentationofthematerialiswellthoughtout,andthecourseis self-contained.Afterreadingthebookitmayseemthatthetopicisverysimple.But thatisnottrue!Apparentsimplicityisachievedbycarefulorganizationofthebook. ForexpertsandPhDstudentshavingexperienceininfinite-dimensionalanalysis,I prefertorecommendthemonographV.I.Bogachev, GaussianMeasures (1998).But forfirstacquaintancewiththetopic,Irecommendthisnewmanual.

Prerequisitesforthebookareonlyabasicknowledgeofprobabilitytheory,linear algebra,measuretheoryandfunctionalanalysis.Theexpositionissupplementedwith abulkofexamplesandexerciseswithsolutions,whichareveryusefulforunassisted workandcontrolofstudiedmaterial.

Inthisbook,manydelicateandimportanttopicsofinfinite-dimensionalanalysis areanalyzedindetail,e.g.Borelandcylindricalsigma-algebrasin infinite-dimensionalspaces,BochnerandPettisintegrals,nuclearoperatorsandthe topologyofnuclearconvergence,etc.Wepresentthecontentsofthebook, emphasizingplaceswherefinite-dimensionalresultsneedreconsideration (everywhereexceptChapter1).

–Chapter1. Gaussiandistributionsonafinite-dimensionalspace. Thechapteris preparatorybutnecessary.Lateron,manyanalogieswithfinite-dimensionalspacewill begiven,andtheplaceswillbevisiblewhereanewtechniqueisneeded.

–Chapter2. Space R∞ ,Kolmogorovtheoremabouttheexistenceofprobability measure,productmeasures,Gaussianproductmeasures,Gaussianproductmeasures in l2 space. Afterreadingthechapter,thestudentwillstarttounderstandthaton infinite-dimensionalspacethereareseveralwaystodefineasigma-algebra(luckily, inourcaseBorelandcylindricalsigma-algebrascoincide).Moreover,itwillbecome clearthatinfinite-dimensionalLebesguemeasuredoesnotexist,henceconstruction ofmeasurebymeansofdensityneedsreconsideration.

–Chapter3. BochnerandPettisintegrals,Hilbert–Schmidtoperatorsandnuclear operators,strongandweakmoments. Thechapterisapreparationforthedefinition oftheexpectationandcorrelationoperatorofGaussian(orevenarbitrary)random element.Weseethatitisnotsoeasytointroduceexpectationofarandomelement distributedinHilbertorBanachspace.Asopposedtofinite-dimensionalspace,itis notenoughjusttointegrateoverbasisvectorsandthenaugmenttheresultsinasingle vector.

–Chapter4. Characteristicfunctionals,Minlos–Sazonovtheorem. Oneofthemost importantmethodstoinvestigateprobabilitymeasuresonfinite-dimensionalspaceis themethodofcharacteristicfunctions.Aswell-knownfromthecourseofprobability theory,thesewillbeallcontinuouspositivedefinitefunctionsequaltooneatzero,and onlythem.Oninfinite-dimensionalspacethisisnottrue.Forthestatement“theyand onlythem”,continuityinthetopologyofnuclearconvergenceisrequired,andthis topologyisexplainedindetail.

–Chapter5. GeneralGaussianmeasures. Basedonresultsofpreviouschapters, weseethenecessaryandsufficientconditionsthathavetobesatisfiedbythe characteristicfunctionalofaGaussianmeasureinHilbertspace.Werealizethatwe haveusedalltheknowledgefromChapters2–4(concerningintegrationofrandom elements,aboutHilbert–Schmidtandnuclearoperators,Minlos–Sazonovtheorem, etc.).Wenoticethatfortheeigenbasisofthecorrelationoperator,aGaussian measureisjustaproductmeasurewhichweconstructedinChapter2.Thisseems natural;butonourwayitwasimpossibletodiscardanysinglestepwithoutlossof mathematicalrigor.Inthischapter,Fernique’stheoremaboutfinitenessofan exponentialmomentofthenormofaGaussianrandomelementisprovedandthe criterionfortheweakconvergenceofGaussianmeasuresisstated.

–Chapter6. Equivalenceandmutualsingularityofmeasures. Here,Kakutani’s theoremisprovenabouttheequivalenceoftheinfiniteproductofmeasures.Aswe sawinthepreviouschapter,GaussianmeasuresonHilbertspacesareproduct measures,inaway.Therefore,asaconsequenceofgeneraltheory,wegetacriterion fortheequivalenceofGaussianmeasures(Feldman–Hájektheorem).Theobtained resultsareappliedtoproblemsofinfinite-dimensionalstatistics.Oneshouldbe

carefulhere,asduetotheabsenceoftheinfinite-dimensionalLebesguemeasure,the Radon–Nikodymdensityshouldbewrittenw.r.t.oneoftheGaussianmeasures.

Theauthorofthisbook,ProfessorA.G.Kukush,hasbeenworkingattheFaculty ofMechanics&MathematicsofTarasShevchenkoNationalUniversityfor40years. Heisanexcellentteacherandafamousexpertinstatisticsandprobabilitytheory.In particular,heusedtogivelecturestostudentsofmathematicsandstatisticson MeasureTheory,FunctionalAnalysis,StatisticsandEconometrics.Asastudent,I wasluckytoattendhisfascinatingcourseoninfinite-dimensionalanalysis.

ILIPENKO LeadingResearcherattheInstituteofMathematics ofUkrainianNationalAcademyofSciences, ProfessorofMathematicsattheNationalTechnicalUniversity ofUkraine,“IgorSikorskyKyivPolytechnicInstitute” August2019

Preface

Thisbookiswrittenforgraduatestudentsofmathematicsandmathematical statisticswhoknowalgebra,measuretheoryandfunctionalanalysis(generalized functionsarenotusedhere);theknowledgeofmathematicalstatisticsisdesirable onlytounderstandsection6.4.Thetopicofthisbookcanbeconsideredas supplementarychaptersofmeasuretheoryandliesbetweenmeasuretheoryandthe theoryofstochasticprocesses;possibleapplicationsareinfunctionalanalysisand statisticsofstochasticprocesses.For20years,theauthorhasbeengivingaspecial course“GaussianMeasures”atTarasShevchenkoNationalUniversityofKyiv, Ukraine,andin2018–2019,preliminaryversionsofthisbookhavebeenusedasa textbookforthiscourse.

Thereareexcellenttextbooksandmonographsonrelatedtopics,suchas Gaussian MeasuresinBanachSpaces [KUO75], GaussianMeasures [BOG98]and Probability DistributionsonBanachSpaces [VAK87].WhydidIwritemyowntextbook?

Inthe1970s,IstudiedattheFacultyofMechanicsandMathematicsofTaras ShevchenkoNationalUniversityofKyiv,atthattimecalledKievStateUniversity. ThereIattendedunforgettablelecturesgivenbyProfessorsAnatoliyYa. Dorogovtsev(calculusandmeasuretheory),LevA.Kaluzhnin(algebra),MykhailoI. Yadrenko(probabilitytheory),MyroslavL.Gorbachuk(functionalanalysis)and YuriyM.Berezansky(spectraltheoryoflinearoperators).MyPhDthesiswas supervisedbyfamousstatisticianA.Ya.Dorogovtsevanddealtwiththeweak convergenceofmeasuresoninfinite-dimensionalspaces.Forlongtime,Iwasa memberoftheresearchseminar“Stochasticprocessesanddistributionsinfunctional spaces”headedbyclassicsofprobabilitytheoryAnatoliyV.SkorokhodandYuriyL. Daletskii.Myseconddoctoralthesiswasaboutasymptoticpropertiesofestimators forparametersofstochasticprocesses.Thus,Iamsomewhattiedupwithmeasures oninfinite-dimensionalspaces.

In1979,Kuo’sfascinatingtextbookwastranslatedintoRussian.Inspiredbythis book,IstartedtogivemylecturesonGaussianmeasuresforgraduatestudents.The subjectseemedhighlytechnicalandextremelydifficult.Idecidedtocreate somethinglikeacomicbookonthistopic,inparticulartodividelengthyproofsinto smallunderstandablestepsandexplaintheideasbehindcomputations.

Itisimpossibletostudymathematicalcourseswithoutsolvingproblems.Each sectionendswithseveralproblems,someofwhichareoriginalandsomearetaken fromdifferentsources.Aseparatechaptercontainsdetailedsolutionstoallthe problems.

Acknowledgments

IwouldliketothankmycolleaguesatTarasShevchenkoNationalUniversityof Kyivwhosupportedmyproject,especiallyYuliyaMishura,OleksiyNesterenkoand IvanFeshchenko.AlsoIwishtothankmystudentsofdifferentgenerationswho followedupontheideasofthematerialandhelpedmetoimprovethepresentation.I amgratefultoFedorNazarov(KentStateUniversity,USA)whocommunicatedthe proofoftheorem3.9.Inparticular,IamgratefultoOksanaChernovaandAndrey Frolkinforpreparingthemanuscriptforpublication.IthankSergiyShklyarforhis valuablecomments.

MywifeMariyadeservesthemostthanksforherencouragementandpatience.

AlexanderK UKUSH Kyiv,Ukraine September2019

ThetheoryofGaussianmeasuresliesonthejunctionoftheoryofstochastic processes,functionalanalysisandmathematicalphysics.Possibleapplicationsarein quantummechanics,statisticalphysics,financialmathematicsandotherbranchesof science.Inthisfield,theideasandmethodsofprobabilitytheory,nonlinearanalysis, geometryandtheoryoflinearoperatorsinteractinanelegantandintriguingway.

TheaimofthisbookistoexplaintheconstructionofGaussianmeasureinHilbert space,presentitsmainpropertiesandalsooutlinepossibleapplicationsinstatistics.

Chapter1dealswithEuclideanspace,wheretheinvarianceofLebesguemeasure isexplainedandGaussianvectorsandGaussianmeasuresareintroduced.Their propertiesarestatedinsuchaformthat(lateron)theycanbeextendedtothe infinite-dimensionalcase.Furthermore,itisshownthatonaninfinite-dimensional Hilbertspacethereisnonon-trivialmeasure,whichisinvariantunderalltranslations (thesameconcerninginvarianceunderallunitaryoperators);henceonsuchaspace thereisnomeasureanalogoustotheLebesgueone.

InChapter2,aproductmeasureisconstructedonthesequencespace R∞ based onKolmogorovextensiontheorem.ForstandardGaussianmeasure μ on R∞ , Kolmogorov–Khinchincriterionisestablished.Inparticular,itisshownthat μ is concentratedoncertainweightedsequencespaces l2,a ,andbasedonisometry between l2,a and l2 ,aGaussianproductmeasureisconstructedonthelattersequence space.

Chapter3introducesimportantclassesofoperatorsinaseparable infinite-dimensionalHilbertspace H ,inparticular S -operators,i.e.self-adjoint, positiveandnuclearones.Theorem3.9showsthattheconvergenceof S -operatorsis equivalenttocertainconvergenceofcorrespondingquadraticforms.Alsotheweak (Pettis)andstrong(Bochner)integralsaredefinedforafunctionvaluedinaBanach space.

Borelprobabilitymeasureson H andanormedspace X arestudiedwithexamples. Theboundednessofmomentformsofsuchmeasuresisshown,withsimpleproof basedontheclassicalBanach–Steinhaustheorem.Corollary3.3andremark3.8give mildconditionsfortheexistenceofmeanvalueofaprobabilitymeasure μ asPettis integral,andiftheunderlyingspaceisaseparableBanachspace B and μ hasastrong firstmoment,thenitsmeanvalueexistsasBochnerintegral.

InChapter4,propertiesofcharacteristicfunctionalsofBorelprobabilitymeasures on H arestudied.Aspeciallineartopology, S -topology,isintroducedin H witha neighborhoodsystemconsistingofellipsoids.ClassicalMinlos–Sazonovtheoremis provenandproperlyextendsBochner’stheoremfrom Rn to H .AccordingtoMinlos–Sazonovtheorem,thecharacteristicfunctionalofaBorelprobabilitymeasureson H shouldbecontinuousin S -topology.Apartofproofofthistheorem(seelemma4.9) suggeststhewaytoconstructaprobabilitymeasurebyitscharacteristicfunctional.

InChapter5,theorem5.1usestheMinlos–Sazonovtheoremtodescribea Gaussianmeasureon H ofgeneralform.Itturnsoutthatthecorrelationoperatorof suchameasureisalwaysan S -operator.ItisshownthateachGaussianmeasureon H isjustaproductofone-dimensionalGaussianmeasuresw.r.t.theeigenbasisofthe correlationoperator.Thus,everyGaussianmeasureon H canbeconstructedalong theway,asdemonstratedinChapter2.

ThesupportofGaussianmeasureisstudied.ItisshownthatacenteredGaussian measureisinvariantunderquitearichgroupoflineartransforms(seetheorem5.5). Hence,aGaussianmeasureinHilbertspacecanbeconsideredasanaturalinfinitedimensionalanalogueof(invariant)Lebesguemeasure.

AcriterionfortheweakconvergenceofGaussianmeasuresisstated,where(dueto theorem3.9)werecognizetheconvergenceofcorrelationoperatorsinnuclearnorm.

Insection5.5,westudyGaussianmeasuresonaseparablenormedspace X Importantexample5.3showsthataGaussianstochasticprocessgeneratesameasure onthepathspace Lp [0,T ],henceincase p =2,weobtainaGaussianmeasureon Hilbertspace.Lemma5.9presentsacharacterizationofGaussianrandomelementin X

ThefamoustheoremofFerniqueisproven,whichstatesthatcertainexponential momentsofaGaussianmeasureon X arefinite.Inparticular,everyGaussianmeasure onaseparableBanachspace B hasmeanvalueasBochnerintegralanditscorrelation operatoriswell-defined.Theorem5.10derivestheconvergenceofmomentsofweakly convergentGaussianmeasures.

InChapter6,Kakutani’sremarkabledichotomyforproductmeasureson R∞ is proven.Inparticular,twosuchproductmeasureswithabsolutelycontinuous

componentsareeitherabsolutelycontinuousormutuallysingular.Thisimpliesthe dichotomyforGaussianmeasureson R∞ :twosuchmeasuresareeitherequivalentor mutuallysingular.Section6.3provesthefamousFeldman–Hájekdichotomyfor Gaussianmeasureson H ,andincaseofequivalentmeasures,expressionsfor Radon–Nikodymderivativesareprovided.

Insection6.4,theresultsofChapter6areappliedinstatistics.Basedonasingle observationofGaussianrandomelementin H ,weconstructunbiasedestimatorsfor itsmeanandforparametersofitscorrelationoperator;alsowecheckahypothesis aboutthemeanandthecorrelationoperator(thelatterhypothesisisinthecasewhere theGaussianelementiscentered).Inviewofexample5.3with p =2,thesestatistical procedurescanbeusedforasingleobservationofaGaussianprocessonfinitetime interval.

Thebookisaimedforadvancedundergraduatestudentsandgraduatestudentsin mathematicsandstatistics,andalsofortheoreticallyinterestedstudentsfromother disciplines,sayphysics.

Prerequisites forthebookarecalculus,algebra,measuretheory,basicprobability theoryandfunctionalanalysis(wedonotusegeneralizedfunctions).Insection6.4, theknowledgeofbasicmathematicalstatisticsisrequired.

Somewordsabout thestructureofthebook :wepresenttheresultsinlemmas, theorems,corollariesandremarks.Allstatementsareproven.Importantand illustrativeexamplesaregiven.Furthermore,eachsectionendswithalistof problems.DetailedsolutionstotheproblemsareprovidedinChapter7.

Theabbreviationsandnotationusedinthebookaredefinedinthecorresponding chapters;anoverviewofthemisgiveninthefollowinglist.

AbbreviationsandNotation

a.e.almosteverywherew.r.t.Lebesguemeasure a.s.almostsurely cdfcumulativedistributionfunction pdfprobabilitydensityfunction i.i.d.independentandidenticallydistributed(randomvariablesor vectors)

r.v.randomvariable

LHSleft-handside

RHSright-handside

MLEmaximumlikelihoodestimator

|A| numberofpointsinset A

Ac complementofset A

A closureofset A

TB imageofset B undertransformation T

T 1 A preimageofset A undertransformation T

x , A transposedvectorandtransposedmatrix,respectively R extendedrealline,i.e. R = R ∪{−∞, +∞}

Rn×m spaceofreal n × m matrices

B (x,r ), B (x,r ) openandclosedball,respectively,centeredat x withradius r> 0 inametricspace

f+ positivepartoffunction f , f+ =max(f, 0) f negativepartoffunction f , f = min(f, 0)

δij Kroneckerdelta, δij =1 if i = j ,and δij =0, otherwise

an ∼ bn {an } isequivalentto {bn } as n →∞,i.e. an /bn → 1 as n →∞

C (X ) spaceofallrealcontinuousfunctionson X

R∞ spaceofallrealsequences

B (X ) Borelsigma-algebraonmetric(ortopological)space X

λm Lebesguemeasureon Rm

Sm sigma-algebraofLebesguemeasurablesetson Rm

IA indicatorfunction,i.e. IA (x)=1 if x ∈ A,else IA (x)=0 μT 1 measureinducedbymeasurabletransformation T basedon measure μ,i.e. (μT 1 )(A)= μ(T 1 A),foreachmeasurable set A

L(X,μ) spaceofLebesgueintegrablefunctionson X w.r.t.measure μ f = g (mod μ)functions f and g areequalalmosteverywherew.r.t.measure μ

δx Diracmeasureatpoint x, δx (B )= IB (x)

ν μ signedmeasure ν isabsolutelycontinuousw.r.t.measure μ dν dμ theRadon–Nikodymderivativeof ν w.r.t. μ

ν ∼ μ measures ν and μ areequivalent

ν ⊥ μ signedmeasure ν andmeasure μ aremutuallysingular (x,y ) innerproductofvectors x and y inEuclideanorHilbertspace x Euclideannormofvector x A Euclideannormofmatrix A, A =sup x=0 Ax x Im theidentitymatrixofsize m rk (S ) rankofmatrix S Pn projectiveoperator, Pn x =(x1 ,...,xn ) , x ∈ R∞ √A squarerootofpositivesemidefinitematrix A,itispositive semidefiniteaswellwith (√A)2 = A

x,x∗ or x∗ ,x valueoffunctional x∗ atvector x I theidentityoperator

L(X ) spaceoflinearboundedoperatorsonnormedspace X R(A) rangeofoperator A, R(A)= {y : ∃x,y = Ax}

L⊥ orthogonalcomplementtoset L

L2 [a,b] Hilbertspaceofsquareintegrablerealfunctionswithinner product (x,y )= b a x(t)y (t)dt,thelatterisLebesgueintegral lp spaceofrealsequences x =(xn )∞ 1 withnorm x p = ( ∞ n=1 |xn |p )1/p if 1 ≤ p< ∞,and x ∞ =supn≥1 |xn | if p = ∞.For p =2, l2 isHilbertspacewithinner product (x,y )= ∞ 1 xn yn

l2,a weighted l2 space span(M ) spanofset M, i.e.,setofallfinitelinearcombinationsofvectors from M

ˆ An cylinderin R∞ withbase An ∈B (Rn )

A = A L(X ) operatornormoflinearboundedoperator A, A =sup x=0 Ax x

A∗ adjointoperator

√B = B 1/2 squarerootofself-adjointpositiveoperator B

|A| modulusofcompactoperator A, |A| =(A∗ A)1/2

AbbreviationsandNotationxxi

A 1 nuclearnormofoperator A

A 2 Hilbert–Schmidtnormofoperator A

An ⇒ A operators An uniformlyconvergetooperator A

S0 (H ) classoffinite-dimensionaloperatorson H

S1 (H ) classofnuclearoperatorson H

S2 (H ) classofHilbert–Schmidtoperatorson H

S∞ (H ) classofcompactoperatorson H

LS (H ) classof S -operatorson H

A ≥ 0 operator A ispositive,i.e. (Ax,x) ≥ 0 forall x

A ≥ B comparisoninLoewnerorderofself-adjointoperators: A B is positiveoperator

n k =1 Ak Cartesianproductofsets A1 ,...,An

n

k =1 μk productofmeasures μ1 ,...,μn

k =1 μk productmeasureon R∞ oronHilbertspace

mμ meanvalueofmeasure μ

Cov (μ) variance-covariancematrixofmeasure μ on Rn

ϕμ or ˆ μ characteristicfunction(orfunctional)ofmeasure μ

Aμ operatorofsecondmomentofmeasure μ

Sμ correlationoperatorofmeasure μ

σn (z1 ,...,zn ) weakmomentsoforder n ofBorelprobabilitymeasureon H

μX distributionofrandomvector X orrandomelement X , μX (B )= P(X ∈ B ) forallBorelsets B

ϕX characteristicfunction(functional)ofrandomvector (element) X

E X expectationofrandomvector(element) X

D X varianceofrandomvariable X

Cov (X ) variance-covariancematrixofrandomvector X

X d = Y randomvectors(elements) X and Y areidenticallydistributed

N (m,σ 2 ) Gaussiandistributionwithmean m andvariance σ 2 , σ ≥ 0

N (m,S ) Gaussiandistributionon Rn (oron H )withmeanvalue m and variance-covariancematrix(orcorrelationoperator) S d −→ convergenceindistributionofrandomelements

1

GaussianMeasuresinEuclideanSpace

1.1.Thechangeofvariablesformula

Let (X,S,μ) beameasurespace,i.e. X isanon-emptyset, S isasigma-algebraon X and μ isameasureon S .Consideralsoameasurablespace (Y,F ),i.e. Y isanother non-emptysetand F isasigma-algebraon Y. Let T : X → Y beameasurable transformation,whichmeansthat

Hereafter

ispreimageof A under T .(Tosimplifythenotation,wewrite T 1 A and Tx rather than T 1 (A) and T (x),respectively,ifitdoesnotcauseconfusion.)

Introduceasetfunction

T HEOREM 1.1.–(Aboutinducedmeasure)Thesetoffunction ν givenin[1.3]isa measureon F .

P ROOF.–Thefunction ν iswelldefineddueto[1.1].Wehavetoshowthatitisnot identicaltoinfinity,butitisnon-negativeandsigma-additive.

Indeed, ν (∅)= μ(T 1 ∅)= μ(∅)=0,andtherefore, ν isnotidenticaltoinfinity. Foreach A ∈ F , ν (A) ≥ 0,because μ isanon-negativesetfunction.

Gaussian Measures in Hilbert Space: Construction and Properties, First Edition Alexander Kukush © ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc.

Finally, {An ,n ≥ 1} aredisjointsetsfrom F .Thenthepreimages {T 1 An , n ≥ 1} aredisjointaswell,and

Here,weusedthesigma-additivityof μ.Thus, ν isanon-negativeandsigmaadditivesetfunctiononthesigma-algebra F ,i.e. ν isameasureon F .

D EFINITION 1.1.– Thesetfunction ν givenin [1.3] iscalledameasureinducedby transformation T andisdenotedas μT 1 .

Thenotationpromptshowtoevaluate ν (A): (μT 1 )(A)= μ(T 1 A),A ∈ F.

Foranymeasurablespace (Y,F,ν ),denote L(F,ν ) thespaceofLebesgue integrablefunctionson Y w.r.t.measure ν .

Let f : Y → R bean F -measurablefunction,i.e.foreachBorelsubset B of extendedrealline R,itholds f 1 B ∈ F .

T HEOREM 1.2.–(Thechangeofvariablesformula)Assumethateither f ≥ 0 or f ∈ L(Y,μT 1 ).Thenitholds X

P ROOF.–Equality[1.4]isshowninastandardway:firstforindicators,thenforsimple non-negativefunctions,thenfor f ≥ 0,andfinally,for f ∈ L(Y,μT 1 )

a)Let A ∈ F , f (y )= IA (y )= 1, if y ∈ A 0, otherwise.

Then

IA (Tx)= 1, if Tx ∈ A 0, otherwise,

IA (Tx)= 1, if x ∈ T 1 A 0, otherwise,

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.