Fusion reactor design: plasma physics, fuel cycle system, operation and maintenance 1st edition taka

Page 1


https://ebookmass.com/product/fusion-reactor-design-plasma-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Introduction to Plasma Physics 1st Edition Gerard Belmont

https://ebookmass.com/product/introduction-to-plasma-physics-1stedition-gerard-belmont/

ebookmass.com

Nuclear reactor physics and engineering Lee

https://ebookmass.com/product/nuclear-reactor-physics-and-engineeringlee/

ebookmass.com

Nuclear Reactor Physics and Engineering John C. Lee

https://ebookmass.com/product/nuclear-reactor-physics-and-engineeringjohn-c-lee/

ebookmass.com

E-book Bersama Nabi Di Bulan Suci (seri 1) Syahrul Fatwa

https://ebookmass.com/product/e-book-bersama-nabi-di-bulan-suciseri-1-syahrul-fatwa/

ebookmass.com

’Moral Power’ of the European Union in the South Caucasus Syuzanna Vasilyan

https://ebookmass.com/product/moral-power-of-the-european-union-inthe-south-caucasus-syuzanna-vasilyan/

ebookmass.com

Shifting Gears (Reynolds Restorations Book 3) Melanie Moreland

https://ebookmass.com/product/shifting-gears-reynolds-restorationsbook-3-melanie-moreland/

ebookmass.com

Epidemic of Cardiovascular Disease and Diabetes: Explaining the Phenomenon in South Asians Worldwide Raj S Bhopal

https://ebookmass.com/product/epidemic-of-cardiovascular-disease-anddiabetes-explaining-the-phenomenon-in-south-asians-worldwide-raj-sbhopal/

ebookmass.com

Reaching Net Zero: What It Takes to Solve the Global Climate Crisis 1st Edition

https://ebookmass.com/product/reaching-net-zero-what-it-takes-tosolve-the-global-climate-crisis-1st-edition-william-d-fletcher/

ebookmass.com

Authoritarian Regionalism in the World of International Organizations: Global Perspectives and the Eurasian Enigma Anastassia V. Obydenkova

https://ebookmass.com/product/authoritarian-regionalism-in-the-worldof-international-organizations-global-perspectives-and-the-eurasianenigma-anastassia-v-obydenkova/

ebookmass.com

Regulators: Book 1 C. Miller

https://ebookmass.com/product/regulators-book-1-c-miller/

ebookmass.com

FusionReactorDesign

FusionReactorDesign

PlasmaPhysics,FuelCycleSystem,Operationand

Maintenance

TakashiOkazaki

Author

Dr.TakashiOkazaki

2660-29Mawatari

Hitachinaka-shi 312-0012Ibaraki Japan

CoverDesign:Wiley

CoverImage:©dani3315/iStock/Getty Images

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData A cataloguerecordforthisbookisavailablefrom theBritishLibrary.

Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutsche Nationalbibliothekliststhispublicationinthe DeutscheNationalbibliografie;detailed bibliographicdataareavailableontheInternet at <http://dnb.d-nb.de>

©2022WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-41403-1

ePDFISBN: 978-3-527-83292-7

ePubISBN: 978-3-527-83294-1

oBookISBN: 978-3-527-83293-4

Typesetting Straive,Chennai,India PrintingandBinding

Printedonacid-freepaper

10987654321

Contents

Preface xxv

1CharacteristicsoftheFusionReactor 1

1.1TheFusionReactorasanEnergySource 1

1.1.1TrendsinWorldEnergyConsumption 1

1.1.2EnergyClassification 1

1.1.3NuclearFusionPowerGeneration 2

1.2NuclearFusionReaction 3

1.2.1NuclearReactionUsedintheFusionReactor 3

1.2.2CrossSectionoftheFusionReaction 4

1.2.3FusionReactionRate 5

1.3PlasmaConfinementConcept 7

1.3.1MagneticConfinement 7

1.3.1.1LinearSystem(Open-EndSystem) 7

1.3.1.2ToroidalSystem 9

1.3.2InertialConfinement 13

References 15

2BasisoftheFusionReactor 17

2.1PowerFlow 17

2.2FusionReactorStructure 19

2.3PowerGenerationConditionsoftheFusionReactor 20

2.3.1PowerFlowofthePowerPlant 20

2.3.2PlantEfficiency 21

2.3.3FuelSupplyScenario 22

2.4CorePlasmaConditions 22

2.4.1Break-EvenConditionandSelf-IgnitionCondition 22

2.4.2LawsonCriterion 22

2.4.3TypicalReactorConcepts 24

2.5RequirementsofPlasmaintheFusionReactor 24

2.5.1FusionTripleProduct 25

2.5.2 β Value 25

2.5.3CurrentDriveEfficiency 25

2.6OperationScenario 26

2.6.1PulseOperation 26

2.6.2Quasi-steady-stateOperation 27

2.6.3Steady-stateOperation 28

2.7StepwiseDevelopmentResearchoftheFusionReactor 28

2.7.1ExperimentalReactor 29

2.7.2PrototypeReactor 29

2.7.3DemonstrationReactor/CommercialReactor 29 References 29

3BasicsofPlasmaAnalysis 31

3.1BoltzmannEquation 31

3.2PlasmaAnalysis 32

3.2.1VelocityInformation 33

3.2.2NonlinearEffects 33

3.2.3ExternalElectromagneticField 33

3.2.4NumericalSimulation 33

3.2.5MainPlasmaTheories 33

3.3MagnetohydrodynamicEquation 35

3.3.1MacroscopicPhysicalQuantity 35

3.3.1.1MomentumFlowTensorP(r, t) 36

3.3.1.2PressureTensorp(r, t) 36

3.3.1.3EnergyDensity ��(r, t) 36

3.3.1.4InternalEnergyDensity U (r, t) 36

3.3.1.5EnergyFluxVectorQ(r, t) 36

3.3.2ParticleNumberConservationLaw(EquationofContinuity) 37

3.3.3MomentumConservationLaw 38

3.3.4EnergyConservationLaw 39

3.4KineticEquation 39

3.5LinearizedKineticAnalysis(OneDimension) 41

3.6LinearizedKineticAnalysis(ThreeDimensions) 43

3.7Quasi-LinearTheory 46

3.8TurbulenceTheory 49

3.8.1WeakTurbulenceTheory 49

3.8.1.1Wave–ParticleInteraction 51

3.8.1.2Wave–Wave(3Waves)Interaction 52

3.8.1.3NonlinearWave–ParticleInteraction 52

3.8.1.4Wave–Wave(4Waves)Interaction 52

3.8.2StrongTurbulenceTheory 53

3.9NeutronTransportAnalysis 53

3.9.1TransportEquation 53

3.9.2InteractionBetweenNeutronsandMaterials 54 References 55

4PlasmaEquilibriumandStability 57

4.1PlasmaEquilibrium 57

4.1.1PlasmaPressure 57

4.1.2EquilibriumEquation 59

4.1.3TokamakEquilibrium 61

4.1.4PlasmaCrossSection 63

4.2MHDStability 64

4.2.1EnergyPrinciple 64

4.2.1.1MHDEquation 64

4.2.1.2LinearizedIdealMHDEquation 66

4.2.1.3EnergyPrinciple 67

4.2.2EnergyIntegral 68

4.2.3MHDInstability 69

4.2.4MHDModeandResonantSurface 69

4.3PlasmaPositionalInstability 71

4.4KinkInstability 74

4.4.1Characteristics 74

4.4.2DispersionRelation 74

4.4.3StabilizationMethod 76

4.5InterchangeInstability 77

4.6BallooningInstability 78

4.6.1Characteristics 78

4.6.2EnergyIntegral 79

4.6.3StabilizationMethod 81

4.7ResistiveInstability 82

4.7.1TearingMode 83

4.7.1.1Characteristics 83

4.7.1.2BasicEquations 84

4.7.1.3MagneticIslandWidth 85

4.7.1.4MagneticIslandEvolutionEquation 86

4.7.1.5StabilizationMethod 88

4.7.2NeoclassicalTearingMode 88

4.7.2.1Characteristics 88

4.7.2.2DifferenceintheLogarithmicDerivativeDuetoBootstrapCurrent 89

4.7.2.3MagneticIslandEvolutionEquation 89

4.7.2.4StabilizationMethod 89

4.8DriftInstability 90

4.8.1DensityGradient 90

4.8.2DensityGradientandTemperatureGradient 90

4.8.3ResistiveDriftMode 92

4.8.4InfluenceofDriftWaveonPlasmaTransport 95

4.9ResistiveWallInstability 96

4.9.1Characteristics 96

4.9.2StabilizationMethod 97

4.10InstabilityDuetoHighEnergyParticles 98

4.10.1AlfvénEigenmode 98

4.10.1.1Characteristics 98

4.10.1.2DispersionRelation 99

4.10.1.3InstabilityConditionandStabilizationMethod 100

4.10.2FishboneOscillation 102

4.11SawtoothOscillation 102

4.12EdgeLocalizedMode 102

4.13LockedMode 103

4.14FutureChallenges 103

Appendix4A 103

Appendix4B 107

References 111

5PlasmaTransportandConfinement 113

5.1ConfinementTime 113

5.2PlasmaTransport 114

5.2.1DiffusionbyCollision 114

5.2.2DiffusionbyTurbulence 116

5.2.2.1BohmDiffusion 116

5.2.2.2Gyro-BohmDiffusion 118

5.2.2.3EnergyConfinement 119

5.3ScalingLawofEnergyConfinement 119

5.3.1ParameterDependenceofEnergyConfinementTime 119

5.3.2ScalingLaw 120

5.3.3L–HTransitionThresholdPower 122

5.3.4ImprovedConfinementMode 122

5.4EdgeLocalizedMode 124

5.4.1TypesofEdgeLocalizedMode 124

5.4.2EnergyReleasedbyELM 125

5.4.3MeasuresAgainstELM 127

5.5 β Limit 127

5.5.1PlasmaCurrentProfile 128

5.5.2PlasmaPressureProfile 128

5.5.3ShapeofPlasmaCrossSection 129

5.5.4NeoclassicalTearingMode 129

5.6DensityLimit 129

5.7ConfinementofHigh-EnergyParticles 129

5.8Disruption 130

5.8.1PlasmaBehaviorinDisruptionandCauseoftheOccurrence 131

5.8.1.1PlasmaBehavior 131

5.8.1.2CausesofDisruption 133

5.8.2EffectonEquipment 133

5.8.2.1ThermalLoad 133

5.8.2.2ElectromagneticForce 134

5.8.3CountermeasuresAgainstDisruption 135

5.9FutureChallenges 137 References 137

6PlasmaDesign 141

6.1ParticleandEnergyBalancesofPlasma(OneDimension) 141

6.1.1ThermalConductionLossPower 143

6.1.2ConvectionLossPower 143

6.1.3 α HeatingPower 143

6.1.4AdditionalHeatingPower 144

6.1.5Joule(Ohmic)HeatingPower 144

6.1.6Electron-IonEnergyTransfer 144

6.1.7RadiationLossPower 145

6.2ParticleandEnergyBalancesofPlasma(ZeroDimension) 145

6.2.1Zero-DimensionalParticleandEnergyBalances 145

6.2.2PlasmaTemperatureandDensityinSteady-StateOperation 146

6.3Burn-UpFraction 148

6.4PlasmaCircuit 150

6.5ReactorStructure 152

6.5.1RadialBuild 152

6.5.2MagneticFluxRequiredforOperation 153

6.5.3MagneticFluxtoBeSupplied 154

6.6FutureChallenges 155 References 156

7Blanket 157

7.1FunctionsRequiredfortheBlanket 157

7.2TritiumProduction 157

7.2.1NecessityofTritiumProduction 157

7.2.2TritiumBreedingRatio 159

7.2.3TritiumDoublingTime 159

7.2.4ImprovementofTritiumBreedingRatio 160

7.2.4.1 6 Li(n,T)α ReactionCrossSection 161

7.2.4.2 7 Li(n,n′ T)α ReactionCrossSection 161

7.2.4.3TritiumBreedingMaterial 161

7.2.4.4NeutronFlux 163

7.2.4.5BlanketCoverage 164

7.2.5RecoveryofTritium 165

7.3TakingOutofThermalEnergy 165

7.3.1EnergyMultiplicationFactoroftheBlanket 165

7.3.2PowerGenerationEfficiencyandCoolantTemperature 166

7.3.2.1TemperatureofBreederandMultiplierMaterials 166

7.3.2.2TemperatureoftheBlanketStructuralMaterial 167

7.3.2.3Coolant 167

7.3.3TemperatureProfile 168

x Contents

7.3.4PowerGenerationMethod 170

7.3.4.1PowerGenerationMethodsofFissionReactorandThermalPower Plant 171

7.3.4.2CharacteristicsofFusionPowerGeneration 172

7.3.4.3CombinationofCoolants 173

7.3.4.4FusionPowerGeneration 175

7.4RadiationShieldingFunction 175

7.4.1BlanketThickness 175

7.4.2LowRadioactivation 176

7.5Maintenance 176

7.5.1ExtensionofLife 176

7.5.1.1WearAmountofLithiumbyBurningofTritiumBreedingMaterial 177

7.5.1.2WearAmountofBerylliumbyBurningofNeutronMultiplier Material 178

7.5.1.3WearAmountofFirstWall 179

7.5.1.4NuclearDamageDuetoDisplacementDamage,HydrogenandHelium Productions,Swelling,etc. 179

7.5.1.5ChangeinThermalLifeofStructuralMaterialsDuetoCycleThermal Fatigue 179

7.5.2MaintenanceMethod 179

7.5.2.1WearAmountandReplacementFrequency 179

7.5.2.2RemoteMaintenanceMethod 180

7.6BlanketDesign 181

7.6.1BlanketClassification 181

7.6.2DesignConditions 181

7.6.3BlanketConcept 181

7.6.3.1BlanketConfiguration 181

7.6.3.2SizeofaBlanket 183

7.6.4DesignExample 185

7.7FutureChallenges 187 References 189

8Plasma-FacingComponents 191

8.1FunctionsRequiredforPlasma-FacingComponents 191

8.1.1RequiredFunctions 191

8.1.1.1ImpurityControl 191

8.1.1.2PlasmaParticleControl 191

8.1.1.3ThermalTreatmentofPlasmaThermalEnergy 192

8.1.2LimiterandDivertor 192

8.2DivertorCharacteristics(inSteadyState) 193

8.2.1BasicCharacteristicsofDivertorPlasma 193

8.2.2Two-PointModel 194

8.2.3AttachedStateandDetachedState 196

8.2.4Two-DimensionalDivertorAnalysisModel 197

8.2.5MeasuresforReducingParticleandThermalLoads 200

8.2.5.1ImpurityControl 200

8.2.5.2ParticleControl 200

8.2.5.3AverageHeatFluxtotheDivertorPlate 200

8.3DivertorCharacteristics(inNon-steadyState) 201

8.3.1ELM 201

8.3.2Disruption 202

8.3.2.1ThermalLoad 202

8.3.2.2ElectromagneticForce 203

8.4StructuresofLimiterandDivertor 203

8.4.1ShapeandTypeofLimiterandDivertor 203

8.4.1.1TrendsinImpurityControlResearch 203

8.4.1.2LimiterandPumpedLimiter 204

8.4.1.3Divertor 204

8.4.1.4ComparisonofPumpedLimiterandDivertor 205

8.4.2ComparisonofSingleNullDivertorandDoubleNullDivertor 206

8.4.3ShapeofDivertor 206

8.5DivertorDesign 208

8.5.1DesignConditionsandDesignItems 208

8.5.2MaterialSelection 210

8.5.3StructuralConcept 212

8.5.3.1HeatReceivingPlateStructure 212

8.5.3.2EddyCurrentSuppressionStructure 213

8.5.3.3ReductionofStressandStrain 213

8.5.3.4CoolingTube 213

8.5.4DesignExample 214

8.6FirstWall 217

8.6.1ParticleLoadandThermalLoad 217

8.6.2First-WallStructure 218

8.6.2.1OverallStructure 218

8.6.2.2ProtectionStructure 218

8.6.2.3FlowPathCrossSection 218

8.6.2.4AmountofWear 220

8.6.3DesignExample 220

8.7FutureChallenges 222 References 222

9CoilSystem 227

9.1FusionReactorCoils 227

9.1.1TypesofCoils 227

9.1.2NecessityofSuperconductingCoil 227

9.2BasicsofSuperconductingCoils 228

9.2.1CharacteristicsofSuperconductivity 228

9.2.2SuperconductingMaterials 228

9.2.3ManufacturingMethodsforSuperconductingWires 229

9.2.3.1NbTi 229

9.2.3.2Nb3 Sn 230

9.2.3.3Nb3 Al 230

9.2.3.4MgB2 231

9.2.3.5Bismuth-BasedOxide 231

9.2.3.6Yttrium-BasedOxide 231

9.2.4SuperconductingWires 231

9.2.4.1HysteresisLoss 231

9.2.4.2StabilizingMaterials(Stabilizers) 232

9.2.4.3Twist 232

9.2.4.4CoolingPerformance 232

9.2.5ThermalLoadandCoolingMethods 232

9.2.5.1ThermalLoad 232

9.2.5.2CoolingMethods 233

9.2.6ConductorStructure 234

9.2.6.1CriticalCurrent 235

9.2.6.2LimitedCurrent 236

9.2.6.3StabilityMargin 236

9.2.6.4CoilAverageCurrentDensity 237

9.2.6.5ConductorDesign 237

9.2.7CoilStructure 237

9.2.7.1Structure 237

9.2.7.2StructuralMaterial 238

9.3BasicsofToroidalMagneticFieldCoil 238

9.3.1FunctionsforToroidalMagneticFieldCoil 239

9.3.2CoilCurrentandNumberofCoils 239

9.3.2.1CoilCurrent 239

9.3.2.2NumberofCoils 239

9.3.2.3StoredEnergy 241

9.3.3ElectromagneticForceGeneratedinCoil 241

9.3.3.1ExtensionalForce 241

9.3.3.2CenteringForce 242

9.3.3.3OverturningForce 242

9.3.4CoilShape 242

9.3.4.1Shape 242

9.3.4.2Three-ArcApproximation 243

9.3.5MaximumMagneticField 245

9.4DesignofToroidalMagneticFieldCoil 245

9.4.1ConductorDesign 246

9.4.1.1SelectionofSuperconductingMaterial 246

9.4.1.2CoolingMethod 246

9.4.2DesignofCoilStructure 246

9.4.2.1CoilStructure 246

9.4.2.2SelectionofStructuralMaterials 246

9.4.3SupportStructure 247

9.4.3.1SupportStructurefortheCenteringForce 247

9.4.3.2SupportStructurefortheOverturningForce 249

9.4.3.3SupportStructureofOwnWeight 249

9.4.4DesignExample 249

9.5BasicsofPoloidalMagneticFieldCoil 254

9.5.1FunctionsofPoloidalMagneticFieldCoil 254

9.5.2WaveformPatternofCoilCurrentforControlofPlasmaPositionand Shape 255

9.5.3PositionofPoloidalMagneticFieldCoil 256

9.6CurrentControlofPoloidalMagneticFieldCoil 256

9.6.1MagneticFieldConfigurationtoDeterminethePlasmaShape 256

9.6.2ControlofPlasmaPositionandShape 257

9.6.3GenerationTypesofPoloidalMagneticField 258

9.6.4Function-SpecificCoilSystem 259

9.6.5HybridCoilSystem 260

9.6.5.1NumberofPFCoils 260

9.6.5.2DeterminingthePFCoilPosition 260

9.6.5.3DeterminingthePFCoilCurrent 260

9.7DesignofPoloidalMagneticFieldCoil 263

9.7.1ConductorDesign 263

9.7.1.1SelectionofSuperconductingMaterial 263

9.7.1.2CoolingMethod 263

9.7.2DesignofCoilStructure 263

9.7.2.1CoilStructure 263

9.7.2.2SelectionofStructuralMaterials 263

9.7.2.3SupportStructure 264

9.7.3DesignExample 264

9.8BasicsofCentralSolenoidCoil 265

9.8.1FunctionsofCentralSolenoidCoil 265

9.8.2MagneticFieldofCentralSolenoidCoil 266

9.8.3SuppliedMagneticFlux 266

9.9DesignofCentralSolenoidCoil 267

9.9.1ConductorDesign 267

9.9.1.1SelectionofSuperconductingMaterial 267

9.9.1.2CoolingMethod 268

9.9.2DesignofCoilStructure 268

9.9.2.1CoilStructure 268

9.9.2.2SelectionofStructuralMaterials 268

9.9.2.3SupportStructure 268

9.9.3DesignExample 268

9.10FutureChallenges 270 References 271

10PlasmaHeatingandCurrentDrive 273

10.1NecessityofPlasmaHeatingandCurrentDrive 273

10.1.1PlasmaHeating 273

10.1.2CurrentDrive 274

10.2BasicsofNBIHeating 275

10.2.1IonizationofNeutralParticleBeam 275

10.2.2TrajectoryofIonBeam 276

10.2.2.1DirectionofInjection 276

10.2.2.2TrappedCondition 277

10.2.2.3TrajectoryofBeamIon 278

10.2.3PlasmaHeatingbyEnergyRelaxation 279

10.3BasicsofNBICurrentDrive 281

10.3.1DrivenCurrent 281

10.3.2CurrentDriveEfficiency 282

10.3.3ShineThroughRate 284

10.3.4CurrentDriveEfficiencyObtainedbyExperiments 284

10.4BootstrapCurrent 285

10.4.1TrappedElectronOrbitandBootstrapCurrent 285

10.4.2RatiooftheBootstrapCurrent 286

10.5BasicsofRadioFrequencyHeating 287

10.5.1DispersionRelation 287

10.5.2DispersionRelationofColdPlasma 288

10.5.3DispersionRelationofHotPlasma 289

10.5.4DispersionRelationofPlasmawithMaxwellDistribution 290

10.5.5CharacteristicsofRFWaves 291

10.5.5.1PhaseVelocityandGroupVelocity 291

10.5.5.2CutoffandResonance 292

10.5.5.3Polarization 292

10.5.6PropagationCharacteristicsofRFWaves 293

10.5.6.1WhentheWaveNumberVectorisParalleltotheMagneticField 294

10.5.6.2WhentheWaveNumberVectorisPerpendiculartotheMagnetic Field 296

10.5.7PrinciplesofPlasmaHeating 297

10.5.7.1LandauDamping 298

10.5.7.2TransitTimeDamping 298

10.5.7.3CyclotronDamping 299

10.5.7.4AbsorptionPower 299

10.5.8PropagationinNonuniformPlasma 300

10.6VariousRFWaves 301

10.6.1AlfvénWave 301

10.6.2IonCyclotronWave 303

10.6.2.1Right-handedCutOffandLeft-handedCutOff 304

10.6.2.2DensityatWhichtheWavecanPropagate 305

10.6.2.3CharacteristicsoftheSlowWave 305

10.6.2.4CharacteristicsoftheFastWave 305

10.6.3LowerHybridWave 307

10.6.3.1ResonanceandCutOff 307

10.6.3.2AccessibilityCondition 309

10.6.4ElectronCyclotronWave 310

10.6.4.1AbsorptionPower 311

10.6.4.2ResonanceandCutOff 311

10.6.4.3PropagationPath 311

10.7BasicsofRFCurrentDrive 313

10.7.1GeneralTheoryofRFCurrentDrive 313

10.7.1.1VariousNoninductiveCurrentDriveMethods 313

10.7.1.2NormalizedCurrentDriveEfficiency 314

10.7.1.3CurrentDriveUsingMomentumoftheWave 315

10.7.1.4CurrentDriveUsingAnisotropyoftheVelocitySpace 316

10.7.1.5CurrentDriveEfficiency 316

10.7.2CurrentDriveUsingMomentumoftheWave 316

10.7.2.1Fokker–PlanckEquationinOneandTwoDimensions 316

10.7.2.2DrivenCurrentDensityandCurrentDrivePowerDensity 318

10.7.2.3LHCD(One-DimensionalAnalysis) 318

10.7.2.4DCElectricField 318

10.7.2.5LHCD(Two-DimensionalAnalysis) 320

10.7.3CurrentDrivewithAnisotropyoftheVelocitySpace 321

10.7.3.1Two-DimensionalFokker–PlanckEquation 321

10.7.3.2RelativisticEffect 323

10.7.3.3TrappedEffect 324

10.7.4CurrentDriveEfficiencyObtainedbyExperiments 327

10.7.4.1FastWaveCurrentDrive(FWCD) 327

10.7.4.2LHCD 328

10.7.4.3ECCD 329

10.8NBISystemDesign 330

10.8.1DesignRequirements 330

10.8.1.1RequiredFunctions 330

10.8.1.2DesignRequirements 330

10.8.1.3SystemEfficiency 330

10.8.2SystemConfiguration 331

10.8.2.1Positive-ionNBI 331

10.8.2.2Negative-ionNBI 332

10.8.3Negative-ionSource 332

10.8.3.1Negative-ionGenerator 332

10.8.3.2Accelerator 334

10.8.4BeamTransportSystem 334

10.8.4.1BeamProfileControlUnit 334

10.8.4.2NeutralizationCell(Neutralizer) 334

10.8.4.3ResidualIonBendingMagnetandResidualIonDump 335

10.8.4.4VacuumExhaustSystem 335

10.8.5DesignExample 335

10.8.6FutureChallenges 336

10.9SystemDesignoftheIonCyclotronWave 337

10.9.1DesignRequirements 337

10.9.1.1RequiredFunctions 337

10.9.1.2ICRFExcitationMethod 338

10.9.1.3SystemEfficiency 338

10.9.2SystemConfiguration 339

10.9.2.1RFSource 339

10.9.2.2TransmissionSystem 339

10.9.2.3InjectionSystem 340

10.9.3DesignExample 340

10.9.4FutureChallenges 342

10.10SystemDesignoftheLowerHybridWave 342

10.10.1DesignRequirements 342

10.10.1.1RequiredFunctions 342

10.10.1.2LHWExcitationMethod 343

10.10.1.3PlasmaDensityinFrontoftheLauncher 344

10.10.1.4SystemEfficiency 344

10.10.2SystemConfiguration 344

10.10.2.1RFSource 345

10.10.2.2TransmissionSystem 345

10.10.2.3InjectionSystem(Launcher) 346

10.10.2.4PhaseShifter 347

10.10.3DesignExample 348

10.10.4FutureChallenges 350

10.11SystemDesignoftheElectronCyclotronWave 350

10.11.1DesignRequirements 350

10.11.1.1RequiredFunctions 350

10.11.1.2ECWExcitationMethod 351

10.11.1.3SystemEfficiency 352

10.11.2SystemConfiguration 353

10.11.2.1VariousSystemConfigurations 353

10.11.2.2RFSource 354

10.11.2.3TransmissionSystem 355

10.11.2.4InjectionSystem(Launcher) 355

10.11.3DesignExample 356

10.11.4FutureChallenges 357

Appendix10A 358

Appendix10B 363

Appendix10C 369

Appendix10D 373

Appendix10E 377 References 380

11VacuumVessel 385

11.1FunctionsRequiredforVacuumVessel 385

11.2HoldingUltra-HighVacuumandHigh-TemperatureBaking 385

11.2.1DegreeofVacuumintheVacuumVessel 385

11.2.2HoldingtheUltra-highVacuum 386

11.2.3High-TemperatureBaking 387

11.3EnsuringElectricalResistance,PlasmaPositionControl,andToroidal FieldRipple 387

11.3.1ElectricalResistanceoftheVacuumVessel 387

11.3.2EnsuringElectricalResistance 390

11.3.3PlasmaPositionControl 391

11.3.4ToroidalFieldRipple 391

11.4SupportingtheElectromagneticForceandIn-VesselEquipment 392

11.4.1SupportingtheElectromagneticForce 392

11.4.2SupportingtheVacuumVessel 392

11.5CoolingPerformance,RadiationShielding,Confinement,Assembly,and Maintenance 394

11.5.1CoolingPerformance 394

11.5.2RadiationShielding 394

11.5.3ConfinementofRadioactiveMaterial 394

11.5.4AssemblyandMaintenance 395

11.5.4.1Assembly 395

11.5.4.2Maintenance 395

11.6DesignofVacuumVessel 396

11.6.1StructuralStandard 396

11.6.2DesignItems 396

11.6.3DesignExample 398

11.6.3.1HoldingUltra-highVacuum 398

11.6.3.2SurfaceCleaningSystem 399

11.6.3.3EnsuringElectricalResistance,PlasmaPositionControl,andToroidal FieldRipple 400

11.6.3.4SupportingElectromagneticForceandIn-vesselEquipment 400

11.6.3.5CoolingofVacuumVessel,RadiationShielding,andConfinement 400

11.6.3.6Assembly 401

11.6.3.7Maintenance 401

11.7FutureChallenges 402 References 402

12FuelCycleSystem 405

12.1FunctionsRequiredfortheFuelCycleSystem 405

12.2ConfigurationoftheFuelCycleSystem 405

12.3FuelingSystem 407

12.3.1FuelingMethod 407

12.3.2FuelingAmount 407

12.4GasExhaustSystem 408

12.4.1ExhaustGasesbySource 408

12.4.2PlasmaVacuumExhaustSystem 408

12.4.2.1TypesofVacuumExhaustPump 408

12.4.2.2Configuration 409

12.4.2.3InitialUltimatePressure 409

12.4.2.4HeliumPumpingSpeed 411

12.4.2.5CryopanelArea 412

12.4.2.6HeliumAccumulationontheCryopanel 412

12.4.2.7ExhaustTime 413

12.5FuelClean-upSystem 414

12.5.1KindsofRecoveredGasandAmountofExhaustGas 414

12.5.2ConfigurationoftheFuelClean-UpSystem 414

12.6HydrogenIsotopeSeparationSystem 416

12.7AtmosphereDetritiationSystem 418

12.8WaterDetritiationSystem 418

12.9FuelStorageSystem 419

12.10MaterialAccountancyofTritium 420

12.11DesignExample 420

12.11.1FuelCycleSystem 420

12.11.2FuelingSystem 421

12.11.3TokamakExhaustProcessingSystem 422

12.11.4HydrogenIsotopeSeparationSystem 422

12.11.5AtmosphereDetritiationSystem 422

12.11.6WaterDetritiationSystem 423

12.11.7FuelStorageSystem 423

12.12FutureChallenges 423 References 424

13Cryostat 425

13.1FunctionsofCryostat 425

13.2CryostatStructure 425

13.3ThermalShield 425

13.3.1DesignRequirements 427

13.3.2Structure 428

13.4DesignExample 429

13.5FutureChallenges 432 References 433

14NuclearDesign 435

14.1ItemsRequiredforNuclearDesign 435

14.2RadiationShielding 437

14.2.1MainShield 437

14.2.1.1EquipmentShieldingandBiologicalShielding 437

14.2.1.2InstallationPositionofShields 438

14.2.1.3ActivationofAirandCoolingWater 439

14.2.2EvaluationMethodofRadiationShielding 440

14.2.2.1IntensityofNeutronSource 440

14.2.2.2NuclearData 440

14.2.2.3AnalysisCode 440

14.2.2.4AnalysisProcedure 440

14.3DoseRate 441

14.4NuclearHeating 441

14.5RadiationDamage 442

14.5.1SurfaceDamage 442

14.5.1.1Sputtering 442

14.5.1.2Blistering 444

14.5.2BulkDamage 444

14.5.2.1DisplacementDamage 444

14.5.2.2DamageDuetoNuclearTransmutation 445

14.6RadioactiveWaste 447

14.7DesignExample 448

14.7.1NeutronFlux 449

14.7.2dpaDistribution 449

14.7.3HeliumProduction 450

14.7.4DoseRate 450

14.7.5DoseRatebySkyshine 452

14.7.6NuclearHeatingandSoon 452

14.8FutureChallenges 453

References 453

15OperationandMaintenance 457

15.1FunctionsRequiredforOperationandMaintenance 457

15.1.1HighPlantAvailability 457

15.1.2MaintenanceMethodConsistentwiththeReactorStructure 457

15.1.3RemoteMaintenancewithHighEfficiencyandHighReliability 458

15.2OperationPeriod 458

15.3EquipmenttobeInspectedandMaintained 459

15.4FrequencyofMaintenance 461

15.5RemoteMaintenanceMethods 461

15.6ProcessofRemoteMaintenance 463

15.7In-VesselTransportSystem 465

15.8DesignExample 466

15.8.1FrequencyofMaintenanceandMaintenancePeriod 466

15.8.2In-VesselTransportSystem 466

15.8.2.1MaintenanceofBlanketModule 466

15.8.2.2MaintenanceofDivertor 467

15.8.3Ex-VesselTransportSystem 468

15.8.4PipingCutting/WeldingTool 469

15.8.5FailureofMaintenanceDevice 469

15.8.6HotCellBuilding 469

15.9FutureChallenges 470

References 471

16CoolingSystem 473

16.1FunctionsofCoolingSystem 473

16.2ConfigurationofCoolingSystem 473

16.2.1OperationMode 473

16.2.2CoolingMethod 474

16.2.3HeatReservoir 474

16.3CoolingPerformance 476

16.4DesignExample 478

16.4.1ConfigurationofCoolingSystem 478

16.4.1.1TokamakCoolingWaterSystem 478

16.4.1.2ComponentCoolingWaterSystem 479

16.4.1.3ChilledWaterSystem 480

16.4.1.4HeatRejectionSystem 480

16.4.2DecayHeatRemovalinEmergency 480

16.4.2.1EmergencyPowerSupply 480

16.4.2.2NaturalCirculationMode 480

16.5FutureChallenges 480 References 481

17PowerSupplySystem 483

17.1FunctionsRequiredforthePowerSupplySystem 483

17.2CharacteristicsofthePowerSupplySystem 483

17.2.1PowerSupplyCapacity 483

17.2.2EquipmentandFacilitiestoWhichPowerIsSupplied 484

17.2.3TechnologiestoReduceCoilPowerSupplyCapacity 485

17.2.3.1HybridCoilSystem 485

17.2.3.2Superconductivity 485

17.2.3.3Steady-stateOperation 486

17.2.4ConfigurationofPowerSupply 488

17.3PowerSupplyforToroidalMagneticFieldCoil 489

17.3.1Self-inductance 489

17.3.2PowerSupplyVoltage 490

17.3.3StoredEnergyandCoilProtection 491

17.3.4ProtectionResistor 491

17.4PowerSupplyforPoloidalMagneticFieldCoil 492

17.4.1Inductance 492

17.4.1.1MutualInductance 492

17.4.1.2Self-inductanceofPFCoil 492

17.4.1.3Self-inductanceofCSCoil 493

17.4.2PowerSupplyVoltage 494

17.4.3PowerSupplyCapacity 494

17.4.4StoredEnergy 495

17.4.5CoilProtection 495

17.4.5.1AttheTimeofQuench 495

17.4.5.2AttheTimeofPlasmaDisruption 495

17.5DesignExample 495

17.5.1CoilPowerSupply 496

17.5.2PowerSupplyofPlasmaHeatingandCurrentDriveSystem (H&CD) 497

17.6FutureChallenges 498 References 498

18OperationControlandDiagnosticSystems 501

18.1FunctionsofOperationControlandDiagnosticSystems 501

18.2BasicsofControl 502

18.2.1ControlMethod 502

18.2.2TransferFunction 503

18.2.3TransientResponseofaSystem 504

18.2.4FeedbackControl 504

18.2.5PIDController 505

18.2.5.1IdealPIDController 505

18.2.5.2PracticalNoninterference-TypePIDController 505

18.3OperationControlSystem 507

18.3.1CentralControlSystem 507

18.3.2PlasmaControl 507

18.3.2.1ControlofFusionPower 508

18.3.2.2MHDControl 509

18.3.2.3DisruptionControl 509

18.4DiagnosticSystems 511

18.4.1PassiveandActiveMeasurements 511

18.4.2ProbeMeasurement 512

18.4.2.1ElectrostaticProbe 512

18.4.2.2MagneticProbe,MagneticLoop,andRogowskiCoil 513

18.4.2.3DiamagneticCoil 513

18.4.3ElectromagneticWaveMeasurement 514

18.4.3.1PassiveElectromagneticWaveMeasurement 514

18.4.3.2ActiveElectromagneticWaveMeasurement 518

18.4.4ParticleMeasurement 522

18.4.4.1PassiveParticleMeasurement 522

18.4.4.2ActiveParticleMeasurement 528

18.5DesignExample 529

18.5.1OperationControlSystem 529

18.5.1.1PlantControlSystem 530

18.5.1.2InterlockLevel 530

18.5.1.3PlasmaOperation 531

18.5.2DiagnosticSystem 533

18.6FutureChallenges 535 References 536

19Safety 539

19.1RequirementsforSafety 539

19.2RadioactiveMaterials 540

19.2.1Radioactivity 540

19.2.2ExposureDose 541

19.2.3AbsorbedDose 541

19.2.4DoseEquivalent/EffectiveDoseEquivalent 541

19.2.5EquivalentDose/EffectiveDose 542

19.2.6CommittedEffectiveDose 543

19.2.7TritiumConcentrationLimit 544

19.2.8BiologicalHazardPotential 544

19.3HowtoEnsureSafety 545

19.3.1SafetyFeatures 545

19.3.2GoaloftheSafety 546

19.3.2.1InNormalTime 546

19.3.2.2InEmergency 547

19.3.3BasicConceptofEnsuringtheSafety 547

19.3.3.1BasicConcept 547

19.3.3.2ImplementationofEnsuringSafety 548

19.3.4BasicConceptoftheSafetyDesign 548

19.3.5EvaluationoftheSafetyDesign 550

19.3.6WasteDisposal 550

19.4DesignExample 551

19.4.1DoseLimit 551

19.4.2BasicConceptofEnsuringtheSafety 552

19.4.3ImplementationofEnsuringtheSafety 552

19.4.3.1ReductionofRadioactiveMaterials 552

19.4.3.2ConfinementBarrierofRadioactiveMaterials 552

19.4.3.3EnergyThatDamagestheConfinementBarriers 553

19.4.3.4ZoningManagement 555

19.4.4SafetyDesign 555

19.4.5EventAnalysis 556

19.4.5.1EventsforAnalysis 556

19.4.5.2SafetyAnalysisCode 558

19.5FutureChallenges 558 References 560

20AnalysisCode 563

20.1HowtoDesign 563

20.1.1DesignFlow 563

20.1.2FlowofReactorDesign 563

20.1.2.1RequirementsasPowerReactor 564

20.1.2.2ConstructionofReactorConcept 564

20.1.2.3ClarificationofConstraints 565

20.1.2.4PlasmaDesign 565

20.1.2.5DesignofReactorStructure 566

20.1.2.6PlantDesign,Safety,andEconomicEvaluations 566

20.2VariousTypesofAnalysisCodes 566

20.2.1PlasmaAnalysisCode 566

20.2.2EquipmentAnalysis/DesignCode 567

20.2.3SafetyAnalysisCode 567

20.2.4DetailedAnalysisCode 567

20.3ReactorDesignSystemCode 567

20.3.1RoleoftheCode 567

20.3.2VariousSystemCodes 568

20.4SystemCodeforReactorConceptualDesign 570

20.4.1PowerBalance(EnergyBalanceperUnitTime) 570

20.4.2RadialBuild 571

20.4.3Volt-Second 572

20.4.4ShapeofTFCoil 573

20.4.5ElectromagneticForceActingontheTFCoil 573

20.4.5.1TensileStressDuetoVerticalForce 574

20.4.5.2BendingStressDuetoCenteringForce 575

20.4.5.3BendingStressDuetoOverturningForce 575

20.4.6BuckingCylinder 575

20.4.7RadiationShield 577

20.4.8VerticalBuild 577

20.4.9PowerSupplyCapacity 578

20.4.9.1TFCoil 578

20.4.9.2PFCoil 578

20.5SystemCodesforEconomicEvaluation 579

20.5.1CostofElectricity 579

20.5.2InitialCapitalizedInvestment 580

20.5.3DirectCostofConstruction 580

20.5.4AnnualCostofComponentReplacementatSpecificIntervals 581

20.5.5AnnualCostofOperationandMaintenance 581

20.5.6AnnualFuelCostandAnnualCostofWasteDisposaland Decommissioning 581

20.6SystemCodesforPlasmaDynamicsEvaluation 582

20.6.1ParticleBalanceandEnergyBalance 582

20.6.1.1ParticleBalanceEquation 582

20.6.1.2EnergyBalanceEquations 583

20.6.2 β Limit 584

20.6.3DensityLimit 584

20.6.4ThermalLoadonPlasma-FacingWall 585

20.6.5DistributionofNuclearHeatingRate 586

20.6.6ImpurityContaminationModelinPlasma 586

20.6.7HeatTransferModelofReactorStructure 587

20.6.8AnalysisExample 588

20.7FutureChallenges 590 References 590

Index 593

Preface

Manybooksonplasmaphysicsandfusionreactorengineeringhavebeen published–manypopularbooksrangingfrombasictospecializedonesforgraduate studentsandresearchers.Fusionresearchiscurrentlyintheconstructionstageof theexperimentalreactorandhasenteredanewstageofstudyingaprototype reactor.Reactordesignresearchisbecomingmoreimportant.However,there seemstobefewbooksonfusionreactordesign.Ithoughtthatasystematicand easy-to-understandintroductorybookonthedesignoffusionreactorsisneeded. Therefore,Idecidedtoputtogethermyexperienceindevelopmentresearch includingplasmaheatingandcurrentdrive,blanket,divertor,andsafetyintoan introductorybookonfusionreactordesign.

Afusionreactorconsistsofmanyinterrelatedequipmentpieces,soitisimportant toproceedwiththedevelopmentbasedontheunderstandingoftherelationships betweenthosepieces. FusionReactorDesign,whichexplainstheunderlyingrelations,hasbeenwrittenforuniversityandgraduatestudentswhoaregoingtostudy plasmaphysicsandfusionreactor.Forresearchersandengineersinthisfield,I wouldbegreatlyhappyifthisbookwouldserveasacatalysttoproceedtofurther researchanddevelopmentofadvancedtechnologiesinthisfield.Thisbookiscenteredaroundatokamakfusionreactor.Butitwouldbeanunexpectedjoyifitcould serveasareferenceforotherconfinementfusionreactordesigns.

Inapaper,todescribethedevelopmentofmathematicalformulasconcisely, ittakestimetoreaditandderivetheformulas.Inthisbook,Ihavetriedtoshowthe derivationofformulasinasmuchdetailaspossiblesothatthedevelopmentofthe formulascanbefollowedsmoothly.Also,tomakephysicalandstructuralimages easiertounderstand,Ihavetriedtouseasmanyfiguresaspossible.Andnumerical calculationsareshownasexamplestogetconcreteimages.

AnoverviewoffusionreactorsisgiveninChapters1and2.Chapters3–5outline theplasmaphysicsnecessaryforfusionreactors:Chapter3describesthebasics ofplasmaanalysis,Chapter4describesplasmaequilibriumandstability,and Chapter5describesplasmatransportandconfinement.Chapter6describesthe plasmadesign.InChapters7–18,eachequipmentpieceofthefusionreactorhas beenexplained,whichincludesblanket,divertor,superconductingcoil,plasma heatingandcurrentdrivesystem,vacuumvessel,fuelcyclesystem,operationand

maintenance,etc.Eachchapterdescribesthefunctionsrequiredforequipment,the factorstobeconsideredforachievingthosefunctions,theanalysismethodforevaluatingthefactors,requiredtechnology,designexamples,etc.Chapter19describes safetyandChapter20describesanalysiscodesnecessaryforreactordesign.

Thebookdiscussesthedevelopmentsthathavebeenevolvinginthefield,andalso therearesomecasesthatrequirephysicalclarificationandtechnologydevelopment. FromChapter4onward,suchcasesarelistedasfuturechallenges.Astheplasma analysisdiscussedinChapter3isappliedinthesechapters,futurechallengesof plasmaanalysisareshownthere.

Needlesstosay,itisimportanttomakeequipmentassimpleaspossibleandto designreactorsmostcost-efficientlyaspossiblefromtheoutsetofdevelopment.A fusionreactorisahugeandcomplicateddevice,anditisalsoacombinationofparts ofvarioussizes,soitisimportanttoconstructeachpartcarefully.Ihope Fusion ReactorDesign willhelpacceleratethefusionreactordesign.

Inwritingthisbook,Ireferredtomanybooksandliterature.Thisbookisbased onabookpublishedinJapaneseinJanuary2019withmodifications.Thebook is“KakuyugoRosekkeiNyumon”,MaruzenPlanet,MaruzenPublishingCo., Ltd.(Englishtranslation:“Introductiontofusionreactordesign”).Therefore, someJapanesearticlesarereferredtointhebook,soIhavetoapologizeforthe inconvenience.Ifthereareinadequateexplanations,errors,misunderstandings, etc.inthebook,Iwouldgreatlyappreciatereaders’feedback.

Booksandliteraturearelistedinthereferencesection.Booksandliteraturethat werereferredtowhendrawingthefiguresarecitedinthetext.Figuresreprinted frombooksandliteraturearepublishedwiththepermissionofauthorsand/or publishers.Throughthisbook,Ihavebeenabletointroducethoseexcellent achievementssofarinthefield.Iwouldliketoexpressmygratitudetothe concernedpeopleandrelatedorganizations.

ThepublicationhasbeengreatlysupportedbyDr.MartinPreuss,Ms.Daniela Bez,Ms.AneettaAntony,Mr.RanjithKumarNatarajan,Ms.ClaudiaNussbeck, Ms.BhavaniGaneshKumarandDr.GudrunWalteratWiley-VCH.Iwouldliketo expressmydeepestappreciationfortheirsupport.

July2021

TakashiOkazaki

CharacteristicsoftheFusionReactor

Manykindsofnuclearfusionreactionsandplasmaconfinementconceptscanbe consideredinfusionreactors.Thischaptershowsthecharacteristicsofthefusion reactor.

1.1TheFusionReactorasanEnergySource

1.1.1TrendsinWorldEnergyConsumption

Energyisnecessaryforhumankindtoliveandwork.Humanbeingshaveestablishedacivilizedsocietybydevelopingandutilizingenergysources.Figure1.1-1 showsthetransitionofworldenergyconsumptionbyfuel.Theworldenergy consumptionincreasesasthepopulationincreasesandtheeconomygrows;these areexpectedtofurtherincreaseinthefuture.Meanwhile,withtheincreaseinthe useoffossilfuelssuchascoal,oil,andnaturalgas,carbondioxideemissionshave greatlyincreased,causingenvironmentalproblemssuchasairpollutionandglobal warming.Forthefuturesurvivalandgrowthofhumanbeings,itisimportant thattheincreaseinenergyconsumptionandcountermeasurestoenvironmental problemsarecompatible.

1.1.2EnergyClassification

Energytakenfromnatureiscalledprimaryenergy,andenergyconvertedintoaform thatmakesprimaryenergyeasytouseiscalledsecondaryenergy.Table1.1-1shows theclassificationofenergy.

Primaryenergyincludesfossilenergyfromfossilfuels(coal,oil,naturalgas,shale oil,shalegas,methanehydrate,etc.),nuclearfissionenergyfromnon-fossilfuels, hydroelectricpowerenergy,andrenewableenergy(hydroelectricpower,solarlight, windpower,geothermalpower,solarheat,heatexistinginnaturesuchasatmosphericheat,biomass,etc.).Hydroelectricpower,aformofrenewableenergy,is particularlytargetedatthesmallandmediumscale.Secondaryenergyincludeselectricitygenerated,oilproducts,gasproducts,heat,etc.Secondaryenergyisdelivered andconsumedasfinalenergy.Finalenergycanbecategorizedaselectricpowerand fuel.Electricpower,asfinalenergy,isdiscussedhere.

FusionReactorDesign:PlasmaPhysics,FuelCycleSystem,OperationandMaintenance, FirstEdition.TakashiOkazaki.

©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

Figure1.1-1 Transitionofworld energyconsumptionbyfuel (Gtoe:gigatoe;toe:tonneofoil equivalent).Source:Ref.[1]. ©2015BPp.l.c.

Althoughthermalpowerthatcombustsfossilfuelscanbestablysuppliedona largescale,alargeamountofcarbondioxideisgeneratedduringthepowergenerationprocess.Thedevelopmentofprocessestocontrolthiscarbondioxideemission isongoing.Continuousconsumptionoffossilfuelswillresultindepletionofthe resourceinthefuture.Furthereffortsareneededtoextendminableyears.

Nuclearfissionpowercanbegeneratedandsuppliedstablyonalargescale.The fuelsupplycapacityiscomparabletothatoffossilfuels,andcarbondioxideemissionisminimal.Inaddition,socialacceptabilityofissuessuchassafety,disposalof radioactivewaste,managementofplutonium,etc.isimportant.

Hydroelectricpowergeneration(largescale)haslowcarbondioxideemission, butthereisageographicalrestrictionandlessroomfordevelopment.Renewable energyalsohaslowcarbondioxideemission,butitisimportanttomitigatethe effectsofclimateandsunshinehours.Therefore,consideringthecharacteristics oftheseenergies,itisimportanttomakeaproperlycombinedpowersupply configuration(energymix).

1.1.3NuclearFusionPowerGeneration

Thenuclearfusionreactorisroughlycategorizedbythetypeoffusionreactionto beused,namely,thefirst-generationDTreactor,thesecond-generationDDreactor,andthethird-generationp11 B(proton-boron)reactorandD3 Hereactor.Inthe first-generationreactor,deuterium(D)andtritium(T)areusedasfuels.Deuterium isanabundantandalmostinexhaustibleresourceavailableinseawater.Tritium israreinnature,andtherefore,itneedstobegeneratedbythereactionbetween lithiumandneutronsgeneratedfromthefusionreaction.Lithiumcanberecovered fromseawaterbesidelithiummines.Therefore,itcanbesaidthatthenuclearfusion reactorhasabundantresourcesasafundamentalalternativeenergysource.

Also,nuclearfusionpowergenerationhasnocarbondioxideemissions.Inthe caseofaDTreactor,tritium,whichisaradioactivematerial,isused.Sinceneutrons aregeneratedinthereaction,thereactorstructuralmaterialisactivatedandradioactivewasteisrequiredtobedisposed.Theradioactivewastegeneratedisalllowlevel.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.