FusionReactorDesign
PlasmaPhysics,FuelCycleSystem,Operationand
Maintenance
TakashiOkazaki
Author
Dr.TakashiOkazaki
2660-29Mawatari
Hitachinaka-shi 312-0012Ibaraki Japan
CoverDesign:Wiley
CoverImage:©dani3315/iStock/Getty Images
Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.
LibraryofCongressCardNo.: appliedfor
BritishLibraryCataloguing-in-PublicationData A cataloguerecordforthisbookisavailablefrom theBritishLibrary.
Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutsche Nationalbibliothekliststhispublicationinthe DeutscheNationalbibliografie;detailed bibliographicdataareavailableontheInternet at <http://dnb.d-nb.de>
©2022WILEY-VCHGmbH,Boschstr.12, 69469Weinheim,Germany
Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.
PrintISBN: 978-3-527-41403-1
ePDFISBN: 978-3-527-83292-7
ePubISBN: 978-3-527-83294-1
oBookISBN: 978-3-527-83293-4
Typesetting Straive,Chennai,India PrintingandBinding
Printedonacid-freepaper
10987654321
Contents
Preface xxv
1CharacteristicsoftheFusionReactor 1
1.1TheFusionReactorasanEnergySource 1
1.1.1TrendsinWorldEnergyConsumption 1
1.1.2EnergyClassification 1
1.1.3NuclearFusionPowerGeneration 2
1.2NuclearFusionReaction 3
1.2.1NuclearReactionUsedintheFusionReactor 3
1.2.2CrossSectionoftheFusionReaction 4
1.2.3FusionReactionRate 5
1.3PlasmaConfinementConcept 7
1.3.1MagneticConfinement 7
1.3.1.1LinearSystem(Open-EndSystem) 7
1.3.1.2ToroidalSystem 9
1.3.2InertialConfinement 13
References 15
2BasisoftheFusionReactor 17
2.1PowerFlow 17
2.2FusionReactorStructure 19
2.3PowerGenerationConditionsoftheFusionReactor 20
2.3.1PowerFlowofthePowerPlant 20
2.3.2PlantEfficiency 21
2.3.3FuelSupplyScenario 22
2.4CorePlasmaConditions 22
2.4.1Break-EvenConditionandSelf-IgnitionCondition 22
2.4.2LawsonCriterion 22
2.4.3TypicalReactorConcepts 24
2.5RequirementsofPlasmaintheFusionReactor 24
2.5.1FusionTripleProduct 25
2.5.2 β Value 25
2.5.3CurrentDriveEfficiency 25
2.6OperationScenario 26
2.6.1PulseOperation 26
2.6.2Quasi-steady-stateOperation 27
2.6.3Steady-stateOperation 28
2.7StepwiseDevelopmentResearchoftheFusionReactor 28
2.7.1ExperimentalReactor 29
2.7.2PrototypeReactor 29
2.7.3DemonstrationReactor/CommercialReactor 29 References 29
3BasicsofPlasmaAnalysis 31
3.1BoltzmannEquation 31
3.2PlasmaAnalysis 32
3.2.1VelocityInformation 33
3.2.2NonlinearEffects 33
3.2.3ExternalElectromagneticField 33
3.2.4NumericalSimulation 33
3.2.5MainPlasmaTheories 33
3.3MagnetohydrodynamicEquation 35
3.3.1MacroscopicPhysicalQuantity 35
3.3.1.1MomentumFlowTensorP(r, t) 36
3.3.1.2PressureTensorp(r, t) 36
3.3.1.3EnergyDensity ��(r, t) 36
3.3.1.4InternalEnergyDensity U (r, t) 36
3.3.1.5EnergyFluxVectorQ(r, t) 36
3.3.2ParticleNumberConservationLaw(EquationofContinuity) 37
3.3.3MomentumConservationLaw 38
3.3.4EnergyConservationLaw 39
3.4KineticEquation 39
3.5LinearizedKineticAnalysis(OneDimension) 41
3.6LinearizedKineticAnalysis(ThreeDimensions) 43
3.7Quasi-LinearTheory 46
3.8TurbulenceTheory 49
3.8.1WeakTurbulenceTheory 49
3.8.1.1Wave–ParticleInteraction 51
3.8.1.2Wave–Wave(3Waves)Interaction 52
3.8.1.3NonlinearWave–ParticleInteraction 52
3.8.1.4Wave–Wave(4Waves)Interaction 52
3.8.2StrongTurbulenceTheory 53
3.9NeutronTransportAnalysis 53
3.9.1TransportEquation 53
3.9.2InteractionBetweenNeutronsandMaterials 54 References 55
4PlasmaEquilibriumandStability 57
4.1PlasmaEquilibrium 57
4.1.1PlasmaPressure 57
4.1.2EquilibriumEquation 59
4.1.3TokamakEquilibrium 61
4.1.4PlasmaCrossSection 63
4.2MHDStability 64
4.2.1EnergyPrinciple 64
4.2.1.1MHDEquation 64
4.2.1.2LinearizedIdealMHDEquation 66
4.2.1.3EnergyPrinciple 67
4.2.2EnergyIntegral 68
4.2.3MHDInstability 69
4.2.4MHDModeandResonantSurface 69
4.3PlasmaPositionalInstability 71
4.4KinkInstability 74
4.4.1Characteristics 74
4.4.2DispersionRelation 74
4.4.3StabilizationMethod 76
4.5InterchangeInstability 77
4.6BallooningInstability 78
4.6.1Characteristics 78
4.6.2EnergyIntegral 79
4.6.3StabilizationMethod 81
4.7ResistiveInstability 82
4.7.1TearingMode 83
4.7.1.1Characteristics 83
4.7.1.2BasicEquations 84
4.7.1.3MagneticIslandWidth 85
4.7.1.4MagneticIslandEvolutionEquation 86
4.7.1.5StabilizationMethod 88
4.7.2NeoclassicalTearingMode 88
4.7.2.1Characteristics 88
4.7.2.2DifferenceintheLogarithmicDerivativeDuetoBootstrapCurrent 89
4.7.2.3MagneticIslandEvolutionEquation 89
4.7.2.4StabilizationMethod 89
4.8DriftInstability 90
4.8.1DensityGradient 90
4.8.2DensityGradientandTemperatureGradient 90
4.8.3ResistiveDriftMode 92
4.8.4InfluenceofDriftWaveonPlasmaTransport 95
4.9ResistiveWallInstability 96
4.9.1Characteristics 96
4.9.2StabilizationMethod 97
4.10InstabilityDuetoHighEnergyParticles 98
4.10.1AlfvénEigenmode 98
4.10.1.1Characteristics 98
4.10.1.2DispersionRelation 99
4.10.1.3InstabilityConditionandStabilizationMethod 100
4.10.2FishboneOscillation 102
4.11SawtoothOscillation 102
4.12EdgeLocalizedMode 102
4.13LockedMode 103
4.14FutureChallenges 103
Appendix4A 103
Appendix4B 107
References 111
5PlasmaTransportandConfinement 113
5.1ConfinementTime 113
5.2PlasmaTransport 114
5.2.1DiffusionbyCollision 114
5.2.2DiffusionbyTurbulence 116
5.2.2.1BohmDiffusion 116
5.2.2.2Gyro-BohmDiffusion 118
5.2.2.3EnergyConfinement 119
5.3ScalingLawofEnergyConfinement 119
5.3.1ParameterDependenceofEnergyConfinementTime 119
5.3.2ScalingLaw 120
5.3.3L–HTransitionThresholdPower 122
5.3.4ImprovedConfinementMode 122
5.4EdgeLocalizedMode 124
5.4.1TypesofEdgeLocalizedMode 124
5.4.2EnergyReleasedbyELM 125
5.4.3MeasuresAgainstELM 127
5.5 β Limit 127
5.5.1PlasmaCurrentProfile 128
5.5.2PlasmaPressureProfile 128
5.5.3ShapeofPlasmaCrossSection 129
5.5.4NeoclassicalTearingMode 129
5.6DensityLimit 129
5.7ConfinementofHigh-EnergyParticles 129
5.8Disruption 130
5.8.1PlasmaBehaviorinDisruptionandCauseoftheOccurrence 131
5.8.1.1PlasmaBehavior 131
5.8.1.2CausesofDisruption 133
5.8.2EffectonEquipment 133
5.8.2.1ThermalLoad 133
5.8.2.2ElectromagneticForce 134
5.8.3CountermeasuresAgainstDisruption 135
5.9FutureChallenges 137 References 137
6PlasmaDesign 141
6.1ParticleandEnergyBalancesofPlasma(OneDimension) 141
6.1.1ThermalConductionLossPower 143
6.1.2ConvectionLossPower 143
6.1.3 α HeatingPower 143
6.1.4AdditionalHeatingPower 144
6.1.5Joule(Ohmic)HeatingPower 144
6.1.6Electron-IonEnergyTransfer 144
6.1.7RadiationLossPower 145
6.2ParticleandEnergyBalancesofPlasma(ZeroDimension) 145
6.2.1Zero-DimensionalParticleandEnergyBalances 145
6.2.2PlasmaTemperatureandDensityinSteady-StateOperation 146
6.3Burn-UpFraction 148
6.4PlasmaCircuit 150
6.5ReactorStructure 152
6.5.1RadialBuild 152
6.5.2MagneticFluxRequiredforOperation 153
6.5.3MagneticFluxtoBeSupplied 154
6.6FutureChallenges 155 References 156
7Blanket 157
7.1FunctionsRequiredfortheBlanket 157
7.2TritiumProduction 157
7.2.1NecessityofTritiumProduction 157
7.2.2TritiumBreedingRatio 159
7.2.3TritiumDoublingTime 159
7.2.4ImprovementofTritiumBreedingRatio 160
7.2.4.1 6 Li(n,T)α ReactionCrossSection 161
7.2.4.2 7 Li(n,n′ T)α ReactionCrossSection 161
7.2.4.3TritiumBreedingMaterial 161
7.2.4.4NeutronFlux 163
7.2.4.5BlanketCoverage 164
7.2.5RecoveryofTritium 165
7.3TakingOutofThermalEnergy 165
7.3.1EnergyMultiplicationFactoroftheBlanket 165
7.3.2PowerGenerationEfficiencyandCoolantTemperature 166
7.3.2.1TemperatureofBreederandMultiplierMaterials 166
7.3.2.2TemperatureoftheBlanketStructuralMaterial 167
7.3.2.3Coolant 167
7.3.3TemperatureProfile 168
x Contents
7.3.4PowerGenerationMethod 170
7.3.4.1PowerGenerationMethodsofFissionReactorandThermalPower Plant 171
7.3.4.2CharacteristicsofFusionPowerGeneration 172
7.3.4.3CombinationofCoolants 173
7.3.4.4FusionPowerGeneration 175
7.4RadiationShieldingFunction 175
7.4.1BlanketThickness 175
7.4.2LowRadioactivation 176
7.5Maintenance 176
7.5.1ExtensionofLife 176
7.5.1.1WearAmountofLithiumbyBurningofTritiumBreedingMaterial 177
7.5.1.2WearAmountofBerylliumbyBurningofNeutronMultiplier Material 178
7.5.1.3WearAmountofFirstWall 179
7.5.1.4NuclearDamageDuetoDisplacementDamage,HydrogenandHelium Productions,Swelling,etc. 179
7.5.1.5ChangeinThermalLifeofStructuralMaterialsDuetoCycleThermal Fatigue 179
7.5.2MaintenanceMethod 179
7.5.2.1WearAmountandReplacementFrequency 179
7.5.2.2RemoteMaintenanceMethod 180
7.6BlanketDesign 181
7.6.1BlanketClassification 181
7.6.2DesignConditions 181
7.6.3BlanketConcept 181
7.6.3.1BlanketConfiguration 181
7.6.3.2SizeofaBlanket 183
7.6.4DesignExample 185
7.7FutureChallenges 187 References 189
8Plasma-FacingComponents 191
8.1FunctionsRequiredforPlasma-FacingComponents 191
8.1.1RequiredFunctions 191
8.1.1.1ImpurityControl 191
8.1.1.2PlasmaParticleControl 191
8.1.1.3ThermalTreatmentofPlasmaThermalEnergy 192
8.1.2LimiterandDivertor 192
8.2DivertorCharacteristics(inSteadyState) 193
8.2.1BasicCharacteristicsofDivertorPlasma 193
8.2.2Two-PointModel 194
8.2.3AttachedStateandDetachedState 196
8.2.4Two-DimensionalDivertorAnalysisModel 197
8.2.5MeasuresforReducingParticleandThermalLoads 200
8.2.5.1ImpurityControl 200
8.2.5.2ParticleControl 200
8.2.5.3AverageHeatFluxtotheDivertorPlate 200
8.3DivertorCharacteristics(inNon-steadyState) 201
8.3.1ELM 201
8.3.2Disruption 202
8.3.2.1ThermalLoad 202
8.3.2.2ElectromagneticForce 203
8.4StructuresofLimiterandDivertor 203
8.4.1ShapeandTypeofLimiterandDivertor 203
8.4.1.1TrendsinImpurityControlResearch 203
8.4.1.2LimiterandPumpedLimiter 204
8.4.1.3Divertor 204
8.4.1.4ComparisonofPumpedLimiterandDivertor 205
8.4.2ComparisonofSingleNullDivertorandDoubleNullDivertor 206
8.4.3ShapeofDivertor 206
8.5DivertorDesign 208
8.5.1DesignConditionsandDesignItems 208
8.5.2MaterialSelection 210
8.5.3StructuralConcept 212
8.5.3.1HeatReceivingPlateStructure 212
8.5.3.2EddyCurrentSuppressionStructure 213
8.5.3.3ReductionofStressandStrain 213
8.5.3.4CoolingTube 213
8.5.4DesignExample 214
8.6FirstWall 217
8.6.1ParticleLoadandThermalLoad 217
8.6.2First-WallStructure 218
8.6.2.1OverallStructure 218
8.6.2.2ProtectionStructure 218
8.6.2.3FlowPathCrossSection 218
8.6.2.4AmountofWear 220
8.6.3DesignExample 220
8.7FutureChallenges 222 References 222
9CoilSystem 227
9.1FusionReactorCoils 227
9.1.1TypesofCoils 227
9.1.2NecessityofSuperconductingCoil 227
9.2BasicsofSuperconductingCoils 228
9.2.1CharacteristicsofSuperconductivity 228
9.2.2SuperconductingMaterials 228
9.2.3ManufacturingMethodsforSuperconductingWires 229
9.2.3.1NbTi 229
9.2.3.2Nb3 Sn 230
9.2.3.3Nb3 Al 230
9.2.3.4MgB2 231
9.2.3.5Bismuth-BasedOxide 231
9.2.3.6Yttrium-BasedOxide 231
9.2.4SuperconductingWires 231
9.2.4.1HysteresisLoss 231
9.2.4.2StabilizingMaterials(Stabilizers) 232
9.2.4.3Twist 232
9.2.4.4CoolingPerformance 232
9.2.5ThermalLoadandCoolingMethods 232
9.2.5.1ThermalLoad 232
9.2.5.2CoolingMethods 233
9.2.6ConductorStructure 234
9.2.6.1CriticalCurrent 235
9.2.6.2LimitedCurrent 236
9.2.6.3StabilityMargin 236
9.2.6.4CoilAverageCurrentDensity 237
9.2.6.5ConductorDesign 237
9.2.7CoilStructure 237
9.2.7.1Structure 237
9.2.7.2StructuralMaterial 238
9.3BasicsofToroidalMagneticFieldCoil 238
9.3.1FunctionsforToroidalMagneticFieldCoil 239
9.3.2CoilCurrentandNumberofCoils 239
9.3.2.1CoilCurrent 239
9.3.2.2NumberofCoils 239
9.3.2.3StoredEnergy 241
9.3.3ElectromagneticForceGeneratedinCoil 241
9.3.3.1ExtensionalForce 241
9.3.3.2CenteringForce 242
9.3.3.3OverturningForce 242
9.3.4CoilShape 242
9.3.4.1Shape 242
9.3.4.2Three-ArcApproximation 243
9.3.5MaximumMagneticField 245
9.4DesignofToroidalMagneticFieldCoil 245
9.4.1ConductorDesign 246
9.4.1.1SelectionofSuperconductingMaterial 246
9.4.1.2CoolingMethod 246
9.4.2DesignofCoilStructure 246
9.4.2.1CoilStructure 246
9.4.2.2SelectionofStructuralMaterials 246
9.4.3SupportStructure 247
9.4.3.1SupportStructurefortheCenteringForce 247
9.4.3.2SupportStructurefortheOverturningForce 249
9.4.3.3SupportStructureofOwnWeight 249
9.4.4DesignExample 249
9.5BasicsofPoloidalMagneticFieldCoil 254
9.5.1FunctionsofPoloidalMagneticFieldCoil 254
9.5.2WaveformPatternofCoilCurrentforControlofPlasmaPositionand Shape 255
9.5.3PositionofPoloidalMagneticFieldCoil 256
9.6CurrentControlofPoloidalMagneticFieldCoil 256
9.6.1MagneticFieldConfigurationtoDeterminethePlasmaShape 256
9.6.2ControlofPlasmaPositionandShape 257
9.6.3GenerationTypesofPoloidalMagneticField 258
9.6.4Function-SpecificCoilSystem 259
9.6.5HybridCoilSystem 260
9.6.5.1NumberofPFCoils 260
9.6.5.2DeterminingthePFCoilPosition 260
9.6.5.3DeterminingthePFCoilCurrent 260
9.7DesignofPoloidalMagneticFieldCoil 263
9.7.1ConductorDesign 263
9.7.1.1SelectionofSuperconductingMaterial 263
9.7.1.2CoolingMethod 263
9.7.2DesignofCoilStructure 263
9.7.2.1CoilStructure 263
9.7.2.2SelectionofStructuralMaterials 263
9.7.2.3SupportStructure 264
9.7.3DesignExample 264
9.8BasicsofCentralSolenoidCoil 265
9.8.1FunctionsofCentralSolenoidCoil 265
9.8.2MagneticFieldofCentralSolenoidCoil 266
9.8.3SuppliedMagneticFlux 266
9.9DesignofCentralSolenoidCoil 267
9.9.1ConductorDesign 267
9.9.1.1SelectionofSuperconductingMaterial 267
9.9.1.2CoolingMethod 268
9.9.2DesignofCoilStructure 268
9.9.2.1CoilStructure 268
9.9.2.2SelectionofStructuralMaterials 268
9.9.2.3SupportStructure 268
9.9.3DesignExample 268
9.10FutureChallenges 270 References 271
10PlasmaHeatingandCurrentDrive 273
10.1NecessityofPlasmaHeatingandCurrentDrive 273
10.1.1PlasmaHeating 273
10.1.2CurrentDrive 274
10.2BasicsofNBIHeating 275
10.2.1IonizationofNeutralParticleBeam 275
10.2.2TrajectoryofIonBeam 276
10.2.2.1DirectionofInjection 276
10.2.2.2TrappedCondition 277
10.2.2.3TrajectoryofBeamIon 278
10.2.3PlasmaHeatingbyEnergyRelaxation 279
10.3BasicsofNBICurrentDrive 281
10.3.1DrivenCurrent 281
10.3.2CurrentDriveEfficiency 282
10.3.3ShineThroughRate 284
10.3.4CurrentDriveEfficiencyObtainedbyExperiments 284
10.4BootstrapCurrent 285
10.4.1TrappedElectronOrbitandBootstrapCurrent 285
10.4.2RatiooftheBootstrapCurrent 286
10.5BasicsofRadioFrequencyHeating 287
10.5.1DispersionRelation 287
10.5.2DispersionRelationofColdPlasma 288
10.5.3DispersionRelationofHotPlasma 289
10.5.4DispersionRelationofPlasmawithMaxwellDistribution 290
10.5.5CharacteristicsofRFWaves 291
10.5.5.1PhaseVelocityandGroupVelocity 291
10.5.5.2CutoffandResonance 292
10.5.5.3Polarization 292
10.5.6PropagationCharacteristicsofRFWaves 293
10.5.6.1WhentheWaveNumberVectorisParalleltotheMagneticField 294
10.5.6.2WhentheWaveNumberVectorisPerpendiculartotheMagnetic Field 296
10.5.7PrinciplesofPlasmaHeating 297
10.5.7.1LandauDamping 298
10.5.7.2TransitTimeDamping 298
10.5.7.3CyclotronDamping 299
10.5.7.4AbsorptionPower 299
10.5.8PropagationinNonuniformPlasma 300
10.6VariousRFWaves 301
10.6.1AlfvénWave 301
10.6.2IonCyclotronWave 303
10.6.2.1Right-handedCutOffandLeft-handedCutOff 304
10.6.2.2DensityatWhichtheWavecanPropagate 305
10.6.2.3CharacteristicsoftheSlowWave 305
10.6.2.4CharacteristicsoftheFastWave 305
10.6.3LowerHybridWave 307
10.6.3.1ResonanceandCutOff 307
10.6.3.2AccessibilityCondition 309
10.6.4ElectronCyclotronWave 310
10.6.4.1AbsorptionPower 311
10.6.4.2ResonanceandCutOff 311
10.6.4.3PropagationPath 311
10.7BasicsofRFCurrentDrive 313
10.7.1GeneralTheoryofRFCurrentDrive 313
10.7.1.1VariousNoninductiveCurrentDriveMethods 313
10.7.1.2NormalizedCurrentDriveEfficiency 314
10.7.1.3CurrentDriveUsingMomentumoftheWave 315
10.7.1.4CurrentDriveUsingAnisotropyoftheVelocitySpace 316
10.7.1.5CurrentDriveEfficiency 316
10.7.2CurrentDriveUsingMomentumoftheWave 316
10.7.2.1Fokker–PlanckEquationinOneandTwoDimensions 316
10.7.2.2DrivenCurrentDensityandCurrentDrivePowerDensity 318
10.7.2.3LHCD(One-DimensionalAnalysis) 318
10.7.2.4DCElectricField 318
10.7.2.5LHCD(Two-DimensionalAnalysis) 320
10.7.3CurrentDrivewithAnisotropyoftheVelocitySpace 321
10.7.3.1Two-DimensionalFokker–PlanckEquation 321
10.7.3.2RelativisticEffect 323
10.7.3.3TrappedEffect 324
10.7.4CurrentDriveEfficiencyObtainedbyExperiments 327
10.7.4.1FastWaveCurrentDrive(FWCD) 327
10.7.4.2LHCD 328
10.7.4.3ECCD 329
10.8NBISystemDesign 330
10.8.1DesignRequirements 330
10.8.1.1RequiredFunctions 330
10.8.1.2DesignRequirements 330
10.8.1.3SystemEfficiency 330
10.8.2SystemConfiguration 331
10.8.2.1Positive-ionNBI 331
10.8.2.2Negative-ionNBI 332
10.8.3Negative-ionSource 332
10.8.3.1Negative-ionGenerator 332
10.8.3.2Accelerator 334
10.8.4BeamTransportSystem 334
10.8.4.1BeamProfileControlUnit 334
10.8.4.2NeutralizationCell(Neutralizer) 334
10.8.4.3ResidualIonBendingMagnetandResidualIonDump 335
10.8.4.4VacuumExhaustSystem 335
10.8.5DesignExample 335
10.8.6FutureChallenges 336
10.9SystemDesignoftheIonCyclotronWave 337
10.9.1DesignRequirements 337
10.9.1.1RequiredFunctions 337
10.9.1.2ICRFExcitationMethod 338
10.9.1.3SystemEfficiency 338
10.9.2SystemConfiguration 339
10.9.2.1RFSource 339
10.9.2.2TransmissionSystem 339
10.9.2.3InjectionSystem 340
10.9.3DesignExample 340
10.9.4FutureChallenges 342
10.10SystemDesignoftheLowerHybridWave 342
10.10.1DesignRequirements 342
10.10.1.1RequiredFunctions 342
10.10.1.2LHWExcitationMethod 343
10.10.1.3PlasmaDensityinFrontoftheLauncher 344
10.10.1.4SystemEfficiency 344
10.10.2SystemConfiguration 344
10.10.2.1RFSource 345
10.10.2.2TransmissionSystem 345
10.10.2.3InjectionSystem(Launcher) 346
10.10.2.4PhaseShifter 347
10.10.3DesignExample 348
10.10.4FutureChallenges 350
10.11SystemDesignoftheElectronCyclotronWave 350
10.11.1DesignRequirements 350
10.11.1.1RequiredFunctions 350
10.11.1.2ECWExcitationMethod 351
10.11.1.3SystemEfficiency 352
10.11.2SystemConfiguration 353
10.11.2.1VariousSystemConfigurations 353
10.11.2.2RFSource 354
10.11.2.3TransmissionSystem 355
10.11.2.4InjectionSystem(Launcher) 355
10.11.3DesignExample 356
10.11.4FutureChallenges 357
Appendix10A 358
Appendix10B 363
Appendix10C 369
Appendix10D 373
Appendix10E 377 References 380
11VacuumVessel 385
11.1FunctionsRequiredforVacuumVessel 385
11.2HoldingUltra-HighVacuumandHigh-TemperatureBaking 385
11.2.1DegreeofVacuumintheVacuumVessel 385
11.2.2HoldingtheUltra-highVacuum 386
11.2.3High-TemperatureBaking 387
11.3EnsuringElectricalResistance,PlasmaPositionControl,andToroidal FieldRipple 387
11.3.1ElectricalResistanceoftheVacuumVessel 387
11.3.2EnsuringElectricalResistance 390
11.3.3PlasmaPositionControl 391
11.3.4ToroidalFieldRipple 391
11.4SupportingtheElectromagneticForceandIn-VesselEquipment 392
11.4.1SupportingtheElectromagneticForce 392
11.4.2SupportingtheVacuumVessel 392
11.5CoolingPerformance,RadiationShielding,Confinement,Assembly,and Maintenance 394
11.5.1CoolingPerformance 394
11.5.2RadiationShielding 394
11.5.3ConfinementofRadioactiveMaterial 394
11.5.4AssemblyandMaintenance 395
11.5.4.1Assembly 395
11.5.4.2Maintenance 395
11.6DesignofVacuumVessel 396
11.6.1StructuralStandard 396
11.6.2DesignItems 396
11.6.3DesignExample 398
11.6.3.1HoldingUltra-highVacuum 398
11.6.3.2SurfaceCleaningSystem 399
11.6.3.3EnsuringElectricalResistance,PlasmaPositionControl,andToroidal FieldRipple 400
11.6.3.4SupportingElectromagneticForceandIn-vesselEquipment 400
11.6.3.5CoolingofVacuumVessel,RadiationShielding,andConfinement 400
11.6.3.6Assembly 401
11.6.3.7Maintenance 401
11.7FutureChallenges 402 References 402
12FuelCycleSystem 405
12.1FunctionsRequiredfortheFuelCycleSystem 405
12.2ConfigurationoftheFuelCycleSystem 405
12.3FuelingSystem 407
12.3.1FuelingMethod 407
12.3.2FuelingAmount 407
12.4GasExhaustSystem 408
12.4.1ExhaustGasesbySource 408
12.4.2PlasmaVacuumExhaustSystem 408
12.4.2.1TypesofVacuumExhaustPump 408
12.4.2.2Configuration 409
12.4.2.3InitialUltimatePressure 409
12.4.2.4HeliumPumpingSpeed 411
12.4.2.5CryopanelArea 412
12.4.2.6HeliumAccumulationontheCryopanel 412
12.4.2.7ExhaustTime 413
12.5FuelClean-upSystem 414
12.5.1KindsofRecoveredGasandAmountofExhaustGas 414
12.5.2ConfigurationoftheFuelClean-UpSystem 414
12.6HydrogenIsotopeSeparationSystem 416
12.7AtmosphereDetritiationSystem 418
12.8WaterDetritiationSystem 418
12.9FuelStorageSystem 419
12.10MaterialAccountancyofTritium 420
12.11DesignExample 420
12.11.1FuelCycleSystem 420
12.11.2FuelingSystem 421
12.11.3TokamakExhaustProcessingSystem 422
12.11.4HydrogenIsotopeSeparationSystem 422
12.11.5AtmosphereDetritiationSystem 422
12.11.6WaterDetritiationSystem 423
12.11.7FuelStorageSystem 423
12.12FutureChallenges 423 References 424
13Cryostat 425
13.1FunctionsofCryostat 425
13.2CryostatStructure 425
13.3ThermalShield 425
13.3.1DesignRequirements 427
13.3.2Structure 428
13.4DesignExample 429
13.5FutureChallenges 432 References 433
14NuclearDesign 435
14.1ItemsRequiredforNuclearDesign 435
14.2RadiationShielding 437
14.2.1MainShield 437
14.2.1.1EquipmentShieldingandBiologicalShielding 437
14.2.1.2InstallationPositionofShields 438
14.2.1.3ActivationofAirandCoolingWater 439
14.2.2EvaluationMethodofRadiationShielding 440
14.2.2.1IntensityofNeutronSource 440
14.2.2.2NuclearData 440
14.2.2.3AnalysisCode 440
14.2.2.4AnalysisProcedure 440
14.3DoseRate 441
14.4NuclearHeating 441
14.5RadiationDamage 442
14.5.1SurfaceDamage 442
14.5.1.1Sputtering 442
14.5.1.2Blistering 444
14.5.2BulkDamage 444
14.5.2.1DisplacementDamage 444
14.5.2.2DamageDuetoNuclearTransmutation 445
14.6RadioactiveWaste 447
14.7DesignExample 448
14.7.1NeutronFlux 449
14.7.2dpaDistribution 449
14.7.3HeliumProduction 450
14.7.4DoseRate 450
14.7.5DoseRatebySkyshine 452
14.7.6NuclearHeatingandSoon 452
14.8FutureChallenges 453
References 453
15OperationandMaintenance 457
15.1FunctionsRequiredforOperationandMaintenance 457
15.1.1HighPlantAvailability 457
15.1.2MaintenanceMethodConsistentwiththeReactorStructure 457
15.1.3RemoteMaintenancewithHighEfficiencyandHighReliability 458
15.2OperationPeriod 458
15.3EquipmenttobeInspectedandMaintained 459
15.4FrequencyofMaintenance 461
15.5RemoteMaintenanceMethods 461
15.6ProcessofRemoteMaintenance 463
15.7In-VesselTransportSystem 465
15.8DesignExample 466
15.8.1FrequencyofMaintenanceandMaintenancePeriod 466
15.8.2In-VesselTransportSystem 466
15.8.2.1MaintenanceofBlanketModule 466
15.8.2.2MaintenanceofDivertor 467
15.8.3Ex-VesselTransportSystem 468
15.8.4PipingCutting/WeldingTool 469
15.8.5FailureofMaintenanceDevice 469
15.8.6HotCellBuilding 469
15.9FutureChallenges 470
References 471
16CoolingSystem 473
16.1FunctionsofCoolingSystem 473
16.2ConfigurationofCoolingSystem 473
16.2.1OperationMode 473
16.2.2CoolingMethod 474
16.2.3HeatReservoir 474
16.3CoolingPerformance 476
16.4DesignExample 478
16.4.1ConfigurationofCoolingSystem 478
16.4.1.1TokamakCoolingWaterSystem 478
16.4.1.2ComponentCoolingWaterSystem 479
16.4.1.3ChilledWaterSystem 480
16.4.1.4HeatRejectionSystem 480
16.4.2DecayHeatRemovalinEmergency 480
16.4.2.1EmergencyPowerSupply 480
16.4.2.2NaturalCirculationMode 480
16.5FutureChallenges 480 References 481
17PowerSupplySystem 483
17.1FunctionsRequiredforthePowerSupplySystem 483
17.2CharacteristicsofthePowerSupplySystem 483
17.2.1PowerSupplyCapacity 483
17.2.2EquipmentandFacilitiestoWhichPowerIsSupplied 484
17.2.3TechnologiestoReduceCoilPowerSupplyCapacity 485
17.2.3.1HybridCoilSystem 485
17.2.3.2Superconductivity 485
17.2.3.3Steady-stateOperation 486
17.2.4ConfigurationofPowerSupply 488
17.3PowerSupplyforToroidalMagneticFieldCoil 489
17.3.1Self-inductance 489
17.3.2PowerSupplyVoltage 490
17.3.3StoredEnergyandCoilProtection 491
17.3.4ProtectionResistor 491
17.4PowerSupplyforPoloidalMagneticFieldCoil 492
17.4.1Inductance 492
17.4.1.1MutualInductance 492
17.4.1.2Self-inductanceofPFCoil 492
17.4.1.3Self-inductanceofCSCoil 493
17.4.2PowerSupplyVoltage 494
17.4.3PowerSupplyCapacity 494
17.4.4StoredEnergy 495
17.4.5CoilProtection 495
17.4.5.1AttheTimeofQuench 495
17.4.5.2AttheTimeofPlasmaDisruption 495
17.5DesignExample 495
17.5.1CoilPowerSupply 496
17.5.2PowerSupplyofPlasmaHeatingandCurrentDriveSystem (H&CD) 497
17.6FutureChallenges 498 References 498
18OperationControlandDiagnosticSystems 501
18.1FunctionsofOperationControlandDiagnosticSystems 501
18.2BasicsofControl 502
18.2.1ControlMethod 502
18.2.2TransferFunction 503
18.2.3TransientResponseofaSystem 504
18.2.4FeedbackControl 504
18.2.5PIDController 505
18.2.5.1IdealPIDController 505
18.2.5.2PracticalNoninterference-TypePIDController 505
18.3OperationControlSystem 507
18.3.1CentralControlSystem 507
18.3.2PlasmaControl 507
18.3.2.1ControlofFusionPower 508
18.3.2.2MHDControl 509
18.3.2.3DisruptionControl 509
18.4DiagnosticSystems 511
18.4.1PassiveandActiveMeasurements 511
18.4.2ProbeMeasurement 512
18.4.2.1ElectrostaticProbe 512
18.4.2.2MagneticProbe,MagneticLoop,andRogowskiCoil 513
18.4.2.3DiamagneticCoil 513
18.4.3ElectromagneticWaveMeasurement 514
18.4.3.1PassiveElectromagneticWaveMeasurement 514
18.4.3.2ActiveElectromagneticWaveMeasurement 518
18.4.4ParticleMeasurement 522
18.4.4.1PassiveParticleMeasurement 522
18.4.4.2ActiveParticleMeasurement 528
18.5DesignExample 529
18.5.1OperationControlSystem 529
18.5.1.1PlantControlSystem 530
18.5.1.2InterlockLevel 530
18.5.1.3PlasmaOperation 531
18.5.2DiagnosticSystem 533
18.6FutureChallenges 535 References 536
19Safety 539
19.1RequirementsforSafety 539
19.2RadioactiveMaterials 540
19.2.1Radioactivity 540
19.2.2ExposureDose 541
19.2.3AbsorbedDose 541
19.2.4DoseEquivalent/EffectiveDoseEquivalent 541
19.2.5EquivalentDose/EffectiveDose 542
19.2.6CommittedEffectiveDose 543
19.2.7TritiumConcentrationLimit 544
19.2.8BiologicalHazardPotential 544
19.3HowtoEnsureSafety 545
19.3.1SafetyFeatures 545
19.3.2GoaloftheSafety 546
19.3.2.1InNormalTime 546
19.3.2.2InEmergency 547
19.3.3BasicConceptofEnsuringtheSafety 547
19.3.3.1BasicConcept 547
19.3.3.2ImplementationofEnsuringSafety 548
19.3.4BasicConceptoftheSafetyDesign 548
19.3.5EvaluationoftheSafetyDesign 550
19.3.6WasteDisposal 550
19.4DesignExample 551
19.4.1DoseLimit 551
19.4.2BasicConceptofEnsuringtheSafety 552
19.4.3ImplementationofEnsuringtheSafety 552
19.4.3.1ReductionofRadioactiveMaterials 552
19.4.3.2ConfinementBarrierofRadioactiveMaterials 552
19.4.3.3EnergyThatDamagestheConfinementBarriers 553
19.4.3.4ZoningManagement 555
19.4.4SafetyDesign 555
19.4.5EventAnalysis 556
19.4.5.1EventsforAnalysis 556
19.4.5.2SafetyAnalysisCode 558
19.5FutureChallenges 558 References 560
20AnalysisCode 563
20.1HowtoDesign 563
20.1.1DesignFlow 563
20.1.2FlowofReactorDesign 563
20.1.2.1RequirementsasPowerReactor 564
20.1.2.2ConstructionofReactorConcept 564
20.1.2.3ClarificationofConstraints 565
20.1.2.4PlasmaDesign 565
20.1.2.5DesignofReactorStructure 566
20.1.2.6PlantDesign,Safety,andEconomicEvaluations 566
20.2VariousTypesofAnalysisCodes 566
20.2.1PlasmaAnalysisCode 566
20.2.2EquipmentAnalysis/DesignCode 567
20.2.3SafetyAnalysisCode 567
20.2.4DetailedAnalysisCode 567
20.3ReactorDesignSystemCode 567
20.3.1RoleoftheCode 567
20.3.2VariousSystemCodes 568
20.4SystemCodeforReactorConceptualDesign 570
20.4.1PowerBalance(EnergyBalanceperUnitTime) 570
20.4.2RadialBuild 571
20.4.3Volt-Second 572
20.4.4ShapeofTFCoil 573
20.4.5ElectromagneticForceActingontheTFCoil 573
20.4.5.1TensileStressDuetoVerticalForce 574
20.4.5.2BendingStressDuetoCenteringForce 575
20.4.5.3BendingStressDuetoOverturningForce 575
20.4.6BuckingCylinder 575
20.4.7RadiationShield 577
20.4.8VerticalBuild 577
20.4.9PowerSupplyCapacity 578
20.4.9.1TFCoil 578
20.4.9.2PFCoil 578
20.5SystemCodesforEconomicEvaluation 579
20.5.1CostofElectricity 579
20.5.2InitialCapitalizedInvestment 580
20.5.3DirectCostofConstruction 580
20.5.4AnnualCostofComponentReplacementatSpecificIntervals 581
20.5.5AnnualCostofOperationandMaintenance 581
20.5.6AnnualFuelCostandAnnualCostofWasteDisposaland Decommissioning 581
20.6SystemCodesforPlasmaDynamicsEvaluation 582
20.6.1ParticleBalanceandEnergyBalance 582
20.6.1.1ParticleBalanceEquation 582
20.6.1.2EnergyBalanceEquations 583
20.6.2 β Limit 584
20.6.3DensityLimit 584
20.6.4ThermalLoadonPlasma-FacingWall 585
20.6.5DistributionofNuclearHeatingRate 586
20.6.6ImpurityContaminationModelinPlasma 586
20.6.7HeatTransferModelofReactorStructure 587
20.6.8AnalysisExample 588
20.7FutureChallenges 590 References 590
Index 593
Preface
Manybooksonplasmaphysicsandfusionreactorengineeringhavebeen published–manypopularbooksrangingfrombasictospecializedonesforgraduate studentsandresearchers.Fusionresearchiscurrentlyintheconstructionstageof theexperimentalreactorandhasenteredanewstageofstudyingaprototype reactor.Reactordesignresearchisbecomingmoreimportant.However,there seemstobefewbooksonfusionreactordesign.Ithoughtthatasystematicand easy-to-understandintroductorybookonthedesignoffusionreactorsisneeded. Therefore,Idecidedtoputtogethermyexperienceindevelopmentresearch includingplasmaheatingandcurrentdrive,blanket,divertor,andsafetyintoan introductorybookonfusionreactordesign.
Afusionreactorconsistsofmanyinterrelatedequipmentpieces,soitisimportant toproceedwiththedevelopmentbasedontheunderstandingoftherelationships betweenthosepieces. FusionReactorDesign,whichexplainstheunderlyingrelations,hasbeenwrittenforuniversityandgraduatestudentswhoaregoingtostudy plasmaphysicsandfusionreactor.Forresearchersandengineersinthisfield,I wouldbegreatlyhappyifthisbookwouldserveasacatalysttoproceedtofurther researchanddevelopmentofadvancedtechnologiesinthisfield.Thisbookiscenteredaroundatokamakfusionreactor.Butitwouldbeanunexpectedjoyifitcould serveasareferenceforotherconfinementfusionreactordesigns.
Inapaper,todescribethedevelopmentofmathematicalformulasconcisely, ittakestimetoreaditandderivetheformulas.Inthisbook,Ihavetriedtoshowthe derivationofformulasinasmuchdetailaspossiblesothatthedevelopmentofthe formulascanbefollowedsmoothly.Also,tomakephysicalandstructuralimages easiertounderstand,Ihavetriedtouseasmanyfiguresaspossible.Andnumerical calculationsareshownasexamplestogetconcreteimages.
AnoverviewoffusionreactorsisgiveninChapters1and2.Chapters3–5outline theplasmaphysicsnecessaryforfusionreactors:Chapter3describesthebasics ofplasmaanalysis,Chapter4describesplasmaequilibriumandstability,and Chapter5describesplasmatransportandconfinement.Chapter6describesthe plasmadesign.InChapters7–18,eachequipmentpieceofthefusionreactorhas beenexplained,whichincludesblanket,divertor,superconductingcoil,plasma heatingandcurrentdrivesystem,vacuumvessel,fuelcyclesystem,operationand
maintenance,etc.Eachchapterdescribesthefunctionsrequiredforequipment,the factorstobeconsideredforachievingthosefunctions,theanalysismethodforevaluatingthefactors,requiredtechnology,designexamples,etc.Chapter19describes safetyandChapter20describesanalysiscodesnecessaryforreactordesign.
Thebookdiscussesthedevelopmentsthathavebeenevolvinginthefield,andalso therearesomecasesthatrequirephysicalclarificationandtechnologydevelopment. FromChapter4onward,suchcasesarelistedasfuturechallenges.Astheplasma analysisdiscussedinChapter3isappliedinthesechapters,futurechallengesof plasmaanalysisareshownthere.
Needlesstosay,itisimportanttomakeequipmentassimpleaspossibleandto designreactorsmostcost-efficientlyaspossiblefromtheoutsetofdevelopment.A fusionreactorisahugeandcomplicateddevice,anditisalsoacombinationofparts ofvarioussizes,soitisimportanttoconstructeachpartcarefully.Ihope Fusion ReactorDesign willhelpacceleratethefusionreactordesign.
Inwritingthisbook,Ireferredtomanybooksandliterature.Thisbookisbased onabookpublishedinJapaneseinJanuary2019withmodifications.Thebook is“KakuyugoRosekkeiNyumon”,MaruzenPlanet,MaruzenPublishingCo., Ltd.(Englishtranslation:“Introductiontofusionreactordesign”).Therefore, someJapanesearticlesarereferredtointhebook,soIhavetoapologizeforthe inconvenience.Ifthereareinadequateexplanations,errors,misunderstandings, etc.inthebook,Iwouldgreatlyappreciatereaders’feedback.
Booksandliteraturearelistedinthereferencesection.Booksandliteraturethat werereferredtowhendrawingthefiguresarecitedinthetext.Figuresreprinted frombooksandliteraturearepublishedwiththepermissionofauthorsand/or publishers.Throughthisbook,Ihavebeenabletointroducethoseexcellent achievementssofarinthefield.Iwouldliketoexpressmygratitudetothe concernedpeopleandrelatedorganizations.
ThepublicationhasbeengreatlysupportedbyDr.MartinPreuss,Ms.Daniela Bez,Ms.AneettaAntony,Mr.RanjithKumarNatarajan,Ms.ClaudiaNussbeck, Ms.BhavaniGaneshKumarandDr.GudrunWalteratWiley-VCH.Iwouldliketo expressmydeepestappreciationfortheirsupport.
July2021
TakashiOkazaki