Fundamentals of advanced mathematics. 3, differential calculus, tensor calculus, differential geomet

Page 1


https://ebookmass.com/product/fundamentals-of-advancedmathematics-3-differential-calculus-tensor-calculus-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Differential Calculus for JEE Main and Advanced (3rd edition) Vinay Kumar

https://ebookmass.com/product/differential-calculus-for-jee-main-andadvanced-3rd-edition-vinay-kumar/

ebookmass.com

Fundamentals of Advanced Mathematics V3 (New Mathematical Methods, Systems and Applications) Henri Bourles

https://ebookmass.com/product/fundamentals-of-advancedmathematics-v3-new-mathematical-methods-systems-and-applicationshenri-bourles/

ebookmass.com

Differential Calculus Booster with Problems and Solutions for IIT JEE Main and Advanced Rejaul Makshud McGraw Hill Rejaul Makshud

https://ebookmass.com/product/differential-calculus-booster-withproblems-and-solutions-for-iit-jee-main-and-advanced-rejaul-makshudmcgraw-hill-rejaul-makshud/

ebookmass.com

Remote sensing of the environment : an earth resource perspective 2nd ed, Pearson new international edition

Edition Jensen

https://ebookmass.com/product/remote-sensing-of-the-environment-anearth-resource-perspective-2nd-ed-pearson-new-international-editionedition-jensen/ ebookmass.com

https://ebookmass.com/product/american-cosmic-ufos-religiontechnology-d-w-pasulka/

ebookmass.com

Assessing Bilingual Children in Context: An Integrated Approach – Ebook PDF Version

https://ebookmass.com/product/assessing-bilingual-children-in-contextan-integrated-approach-ebook-pdf-version/

ebookmass.com

The Diversity of Fishes: Biology, Evolution and Ecology, 3rd Edition Douglas E. Facey

https://ebookmass.com/product/the-diversity-of-fishes-biologyevolution-and-ecology-3rd-edition-douglas-e-facey/

ebookmass.com

Nobody’s Girl Friday: The Women Who Ran Hollywood J.E. Smyth

https://ebookmass.com/product/nobodys-girl-friday-the-women-who-ranhollywood-j-e-smyth/

ebookmass.com

Analytical Methods for Food Safety by Mass Spectrometry: Volume II Veterinary Drugs Guo-Fang Pang

https://ebookmass.com/product/analytical-methods-for-food-safety-bymass-spectrometry-volume-ii-veterinary-drugs-guo-fang-pang/

ebookmass.com

https://ebookmass.com/product/determinants-of-economic-growth-inafrica-1st-ed-edition-almas-heshmati/

ebookmass.com

Fundamentals of Advanced Mathematics

This page intentionally left blank

New Mathematical Methods, Systems and Applications Set coordinated by

Fundamentals of Advanced Mathematics 3

Differential Calculus, Tensor Calculus, Differential Geometry, Global Analysis

First published 2019 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Press Ltd

27-37 St George’s Road

Elsevier Ltd

The Boulevard, Langford Lane London SW19 4EU Kidlington, Oxford, OX5 1GB UK UK

www.iste.co.uk

www.elsevier.com

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

For information on all our publications visit our website at http://store.elsevier.com/

© ISTE Press Ltd 2019

The rights of Henri Bourlès to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library Library of Congress Cataloging in Publication Data

A catalog record for this book is available from the Library of Congress ISBN 978-1-78548-250-2

Printed and bound in the UK and US

Chapter1.DifferentialCalculus ........................1

1.1.Introduction.................................1

1.2.Fréchetdifferentialcalculus........................2

1.2.1.Generalconventions...........................2

1.2.2.Fréchetdifferential...........................5

1.2.3.Mappingsofclass C p ..........................9

1.2.4.Taylor’sformulas............................12

1.2.5.Analyticfunctions............................16

1.2.6.Theimplicitfunctiontheoremanditsconsequences.........19

1.3.Otherapproachestodifferentialcalculus.................27

1.3.1.LagrangevariationsandGateauxdifferentials............27

1.3.2.Calculusofvariations:elementaryconcepts.............29

1.3.3.“Convenient”differentials.......................32

1.4.Smoothpartitionsofunity.........................35

1.4.1. C ∞ -paracompactnessofBanachspaces...............35

1.4.2. c∞ -paracompactness..........................36

1.5.Ordinarydifferentialequations.......................37

1.5.1.Existenceanduniquenesstheorems..................37

1.5.2.Lineardifferentialequations......................43

1.5.3.Parameterdependenceofsolutions..................45

Chapter2.DifferentialandAnalyticManifolds ..............49

2.1.Introduction.................................49

2.2.Manifolds:tangentspaceofamanifoldatapoint............50

2.2.1.Notionofamanifold..........................50

2.2.2.Morphismsofmanifolds........................56

2.2.3.Tangentmappings............................58

2.2.4.Tangentvectors.............................58

2.3.Tangentlinearmappings;submanifolds..................65

2.3.1.Tangentlinearmapping;rank.....................65

2.3.2.Differential................................66

2.3.3.Submanifolds..............................67

2.3.4.Immersionsandembeddings......................68

2.3.5.Submersions,subimmersionsand étale mappings..........71

2.3.6.Submanifoldsof Kn ...........................74

2.3.7.Productsofmanifolds..........................75

2.3.8.Transversalmorphismsandmanifolds................76

2.3.9.Fiberproductofmanifolds.......................78

2.3.10.Covectorsandcotangentspaces...................79

2.3.11.Cotangentlinearmapping.......................80

2.4.Liegroupsandtheiractions........................81

2.4.1.Liegroups................................81

2.4.2.Manifoldsoforbitsandhomogeneousmanifolds..........88

Chapter3.FiberBundles ............................93

3.1.Introduction.................................93

3.2.Tangentbundleandcotangentbundle...................94

3.2.1.Tangentbundle..............................94

3.2.2.Cotangentbundle............................96

3.2.3.Tangentbundleandcotangentbundlefunctors............98

3.3.Fibrations...................................98

3.3.1.Notionofafibration...........................99

3.3.2.Fiberproductandpreimageoffibrations...............101

3.3.3.Coverings.................................103

3.3.4.Sections..................................107

3.4.Vectorbundles................................108

3.4.1.Vectorbundles..............................108

3.4.2.Dualofavectorbundle.........................112

3.4.3.Subbundlesandquotientbundles...................113

3.4.4.Whitneysumandtensorproduct....................114

3.4.5.Thecategoryofvectorbundles....................115

3.4.6.Preimageofafiberbundle.......................120

3.5.Principalbundles...............................121

3.5.1.Notionofaprincipalbundle......................121

3.5.2.Verticaltangentvectors.........................123

3.5.3.Morphismsofprincipalbundles....................124

3.5.4.Principalbundlesdefinedbycocycles.................124

3.5.5.Fiberbundleassociatedwithaprincipalbundle...........125

3.5.6.Extension,restriction,quotientizationofthe structuralgroup.................................126

3.5.7.Examplesoftrivialprincipalbundles.................128

Chapter4.TensorCalculusonManifolds

4.1.Introduction.................................131

4.2.Tensorcalculus................................132

4.2.1.Tensors..................................132

4.2.2.Symmetrictensorsandantisymmetrictensors............135

4.2.3.Exterioralgebra.............................138

4.2.4.Dualityintheexterioralgebra.....................139

4.2.5.Interiorproducts.............................141

4.2.6.TensorsonBanachspaces.......................143

4.3.Tensorfields.................................145

4.3.1.Vectorfields...............................145

4.3.2.Covectorfield..............................146

4.3.3.Tensorfieldsandscalarfields.....................146

4.4.Differentialforms..............................148

4.4.1.Differentialformsofdegree p .....................148

4.4.2.Preimageofadifferential p-form...................149

4.4.3.Differentialformstakingvaluesinafiberbundle. Listofformulas.................................151

4.4.4.Orientation................................154

4.4.5.Integralofadifferentialformofmaximaldegree..........157

4.4.6.Differentialformsofoddtype.....................163

4.4.7.Integrationofadifferentialformoverachain............166

4.5.Pseudo-Riemannianmanifolds.......................170

4.5.1.Metric...................................170

4.5.2.Pseudo-Riemannianvolumeelement.................171

Chapter5.DifferentialandIntegralCalculusonManifolds ......173

5.1.Introduction.................................173

5.2.Currentsanddifferentialoperators.....................174

5.2.1.Currentsanddistributions........................174

5.2.2.Differentialoperatorsandpointdistributions............181

5.3.Manifoldsofmappings...........................183

5.3.1.TheBanachframework.........................183

5.3.2.The“convenient”framework......................186

5.4.Liederivatives................................187

5.4.1.Liealgebras...............................187

5.4.2.Liederivativeofafunction.......................190

5.4.3.Liebrackets...............................192

5.4.4.Liederivativeofvector,covectorandtensorfields..........193

5.4.5.Liederivativeofa p-form........................194

5.5.Exteriordifferential.............................195

5.5.1.É.Cartan’stheorem...........................195

5.5.2.Applicationtovectorcalculus.....................198

5.6.Stokes’formulaandapplications......................200

5.6.1.Stokes’formulaonachain.......................200

5.6.2.OstrogradskyandGreenformulas...................203

5.6.3.Hodgedualityandcodifferentials...................206

5.6.4.Gauss’theoremandPoisson’sformula................213

5.6.5.Homology,cohomologyandduality..................215

5.7.Integralcurvesandmanifolds.......................224

5.7.1.First-orderdifferentialequations....................224

5.7.2.Second-orderdifferentialequations..................228

5.7.3.Sprays...................................229

5.7.4.Straighteningofvectorfieldsandframes...............231

5.7.5.Integralmanifolds,foliations......................233

Chapter6.AnalysisonLieGroups

6.1.Introduction.................................245

6.2.Convolution.................................246

6.2.1.Convolutionofdistributions......................246

6.2.2.Haarmeasureandconvolutionoffunctions..............250

6.3.ClassificationofLiealgebras........................256

6.3.1.Additionalnotionsfromalgebra....................256

6.3.2.ClassicalLiealgebras..........................259

6.3.3.GeneralnotionsaboutLiealgebras..................260

6.3.4.NilpotentLiealgebras..........................263

6.3.5.SolvableLiealgebras..........................265

6.3.6.Simpleandsemi-simpleLiealgebras.................267

6.3.7.ReductiveLiealgebras.........................271

6.3.8.RealcompactLiealgebras.......................272

6.4.RelationbetweenLiegroupsandLiealgebras..............273

6.4.1.LiealgebraofaLiegroup.......................273

6.4.2.PassingfromaLiealgebratoaLiegroup...............278

6.4.3.Dictionary................................281

6.5.Harmonicanalysis..............................284

6.5.1.Introduction...............................284

6.5.2.Harmonicanalysison Rn ........................286

6.5.3.FourierseriesandFouriertransformsonthetorus..........296

6.5.4.Fouriertransformonalocallycompactcommutative group.......................................302

6.5.5.Overviewofnon-commutativeharmonicanalysis..........310

Chapter7.Connections .............................315

7.1.Introduction.................................315

7.2.Linearconnections..............................317

7.2.1.Curvilinearcoordinates.........................317

7.2.2.Linearconnectiononavectorbundle.................323

7.2.3.Linearconnectiononamanifold....................325

7.2.4.Paralleltransportandgeodesics....................327

7.2.5.Covariantexteriordifferential.....................330

7.2.6.Curvatureandtorsionofalinearconnection.............331

7.3.Methodofmovingframes.........................333

7.3.1.Movingframeandgaugepotential..................334

7.3.2.Curvature,torsionandcovariantexteriordifferentialofa G-connection..................................337

7.3.3.Quasi-parallelogrammethod......................340

7.3.4.Fundamentalequalities.........................344

7.3.5.Connectionformonthebundleof G-frames............345

7.3.6.Principalconnectionsandparalleltransport.............347

7.3.7.Covariantexteriordifferentiationonaprincipalbundle.......350

7.3.8.Characterizationofa G-connection..................351

7.3.9.Curvatureandtorsionformsofaprincipalconnection.......352

7.3.10.Cartanconnections...........................355

7.4.Riemanniangeometry............................358

7.4.1.Levi-Civitàconnection.........................358

7.4.2.Geodesics.................................360

7.4.3.Flatpseudo-Riemannianmanifolds..................361

7.4.4.RiccitensorandEinsteintensor....................363 References

This page intentionally left blank

Thisthirdvolumeof FundamentalsofAdvancedMathematics (thefirsttwo volumesarereferencedby[P1]and[P2]below)isdedicatedtodifferentialand integralcalculus,examinedfromboththelocalandglobalperspectives.Thisbookis intendedforanyonewhousesmathematics(mathematicians,butalsophysicistsand engineers,andinparticularanyonewhoneedstounderstandthecontrolofnonlinear systems).Somelocalquestionsofintegralcalculuswerealreadypartiallyaddressed in[P2],Chapter4,andthenaturalframeworkofdifferentialcalculus,Banachspaces, ispresentedinChapter1ofthisthirdvolume.Nonetheless,wewillneedtoconsider afewgeneralizationstosketchtheso-called“convenient”contextformorerecent developmentsinglobalanalysis;moreonthislater.Wewillalsopresentthe “Carathédoryconditions”,whicharefinerthantheclassicalCauchy–Lipschitz existenceanduniquenessconditionsforsolutionsoffinite-dimensionalordinary differentialequations.

Globalquestionsdemandanotherperspective.Seenthroughourwindow,theEarth appearsentirelyflat,yeteventheGreeksintheageofPlatoknewbetter,astestified byanexcerptfromhis Phaedo (108,e).KnowledgeoftheEarth’sshapeundoubtedly extendedbacktothePythagoreansinthe6thCenturyBC.Thus,Euclid,whowas anavidstudentofPlato’swork(consider,forexample,hisconstructionofthefive PlatonicsolidsinBookXIIIofthe Elements),certainlyalsoknewthattheEarthis round.Yethisgeometryisquitedifferentfromthegeometryofasphere.Euclidean geometryoffersagoodlocalapproximationofsphericalgeometrybutwasofcourse uselessforthelengthyvoyagesoftheRenaissance.Globalanalysismusttherefore beexpressedintheframeworkof manifolds,aconceptwhichgeneralizescurvesand surfacessinceRiemann.

Eversincetheinventionofvariationalcalculusinthelate17thCentury,ithas becomecommoninmathematicstoargueaboutsetsoffunctions.Ifcertain conditionsaresatisfied,thesesetscanbeendowedwiththestructureofamanifold,

inwhichcasetheyarecalled“functionalmanifolds”andimaginedasdeformed versionsoftheusualfunctionspaces(inthesamewaythattheEarthmightbe imaginedasadeformedversionoftheplane).“Banach”manifoldswerethefirst candidatestobeconsideredasaframeworkforglobalanalysisinthelate1950sand the1960s[EEL66,PAL68](thesemanifoldsaredeformedversionsofaBanach space).However,asbecameclearin[P2],section4.3,manyofthefunctionspaces encounteredinpracticearenotBanachspaces.Forexample,thespace E ofinfinitely differentiablefunctionsonanon-emptyopensubsetof Rn isanuclearFréchetspace. Sincethe1980s,thishasinspiredresearchintomanifoldsthataredeformedversions ofspacesofthistype;thisisthe“convenient”contextforglobalanalysismentioned above(whichmaturedaroundthelate1990s[KRI97]).Althoughwewillnotbeable topresentitexhaustivelyinthisbook,ourdiscussionofmanifoldsofmappingsin section5.3willdemonstratetheconsiderablevalueofthisapproach.

Chapters2to4developtherequiredformalism,withabriefdetourinChapter3to introduceanotionthathasplayedafundamentalroleeversinceÉ.Cartan,theconcept offiberbundles,andinparticularprincipalbundles.Accordingtogeneralrelativity, weliveinapseudo-Riemannianspacethatisthe“base”ofaprincipalbundle;the latterisnamelythemanifoldoforthonormalframe,andits“structuralgroup”(which performschangesofreferenceframe)isa“Liegroup”,namelytheLorentz–Poincaré orthogonalgroupofmatricesleavinginvariantthequadraticform (ds)2 = c2 (dt)2 (dx)2 (dy )2 (dz )2 .Tensorcalculus,astapleofphysicstextbookssincetheearly 20thCentury,ispresentedinChapter4,alongsidethetheoryofdifferential p-forms.

OurformalismfirstbeginstotrulybearfruitinChapter5.Distributions,andthe generalizednotionofcurrents,maynowbedefinedonmanifoldsinsteadofopen subsetsof Rn . Theideaofexteriorderivativesofadifferential p-form(introducedby É.Cartan)allowsustogivehighlycondensedexpressionsfortheclassicalformulas of“vectorcalculus”involvinggradients,divergences,Laplacians,etc.Thefirst fundamentalresultofthischapterisageneralformulationofStokes’theorem encompassingtheOstrogradsky,Gauss,Green–RiemannandGreentheoremswidely usedinphysics,aswellasthe“classical”Stokes’theorem.OnaRiemannian manifold,Stokes’theoremenablesustoformulateHodgeduality,whichsimplifies manyofourcalculationsinvolvingvectors.Fromtheperspectiveofalgebraic topology,Stokes’theoremalsogivesrisetotwoothertypesofduality:Poincaré dualityforhomologiesandDeRhamdualityforcohomologies.On R3 , forinstance, weknowthatthecurlofanyvectorfield −→ E thatderivesfromapotentialiszeroand thedivergenceofanyvectorfield → B thatcanbeexpressedasacurlisalsozero. Stokes’theoremallowsustoprovetheconverseofeachclaim.Thesecond fundamentalresultofChapter5istheFrobeniustheorem,whichgivesnecessaryand sufficientconditionsfortheintegrabilityofa“contactdistribution”.Thisallowsusto

establishtheconceptoffoliation.TheFrobeniustheoremalsoimpliesaresultby RiemanninChapter7thatisessentialforgeneralrelativity,namelythata Riemannianmanifoldisflatifandonlyifitscurvaturetensoriszero(section7.4.3, Theorem7.56).

Liegroupsaremanifoldsbutalsogroups;inChapter6,thegroupstructure enablesustoperformoperationsthatwouldnotmakesenseonanordinarymanifold, specificallyconvolutionoffunctionsordistributions.Furthermore,a“taxonomy”of LiegroupscanbeestablishedfromtheLiealgebrasassociatedwitheachgroup, whicharevectorspacesandthereforeeasiertostudy:asaset,theLiealgebra g = Lie (G) oftheLiegroup G isthetangentspace Te (G) of G atthepoint e, where e istheneutralelementof G.However,thethree“fundamentaltheorems”of S.Lieimplythatthereexistsa“dictionary”thatallowsustocharacterizeLiegroups bythepropertiesoftheirLiealgebras,atleastlocally(andgloballyif G issimply connected).TheclassificationestablishedbyLieiscompleteinthecaseofsimpleor semi-simpleLiegroups(oralgebras).Thisisthemostimportantcase,sincetheseare thegroupsfrequentlyencounteredinparticlephysics,wheretheyplayanessential role(includingtheso-called“exceptional”simpleLiealgebras).Simpleand semi-simpleLiealgebrashavebeenstudiedsinceCartanintermsoftheir“root systems”;theabilitytorepresenttheserootsystemsgraphically(asproposedby CoxeterandDynkin,amongothers)isextremelyuseful,butcannotbepresentedin detailinthisbook1.

OnareductiveLiegroup G,wecanalsofullydevelopthetheoryofharmonic analysis(Fouriertransformsoffunctionsortempereddistributions).Theabeliancase willbepresentedindetail:when G = Rn ,werecovertheusualnotionofFourier transform;when G isthetorus Tn ,werecovertheFourierseriesexpansionof periodicfunctionsordistributions.Thenon-abeliancasewouldfillanotherentire volumeandthuswillonlybebrieflymentioned(eventhoughengineering applicationshaverecentlybeenfound[CHI01]).Readersarewelcometorefertothe bibliographyforthenon-abeliancase[VAR77,VAR89].

Definingageometryonamanifoldisequivalenttoequippingthismanifoldwith aconnection(Chapter7).Liegroupsareimplicitlyequippedwithaconnection. Riemannianorpseudo-Riemannianmanifoldsareoftenimplicitlyequippedwiththe simplestpossibleconnection:theLevi-Civitàconnection.Thisisaspecialcaseofa “G-structure”thatisfrequentlyusedingeneralrelativity.É.Cartanclarifiedthe notionofconnection;hestudiedaffine,projectiveandconformalconnections, summarizinghisideasbyproposingtheconceptof“generalizedspace”[CAR26];

1SeetheWikipediaarticleon Coxeter–Dynkindiagrams

thesespacesareequippedwithconnectionscalled Cartanconnections since Ehresmann(whorephrasedtheseideaswithinthecontextofprincipalconnections). Connectionscanbeequippedwithcurvature(anideathatshouldbefamiliarto relativisticphysicists)andinsomecasestorsion,whichattractedconsiderable interestfromEinstein([EIN54],AppendixII),whohopedtofindawaytounifythe theoriesofgravitationandelectromagnetism.

June2019

HenriB OURLÈS

Volume1(Cont’d)

1)Onp.12,thefifthlineof (V) shouldread R insteadof R.

2)Onp.22,ontheright-handsideof[1.6],itshouldread lim ←− insteadof lim −→

3)Onp.41,line10shouldread“thecardinalof G/H (equaltothecardinalof G\H )”insteadof“thiscardinal”.

4)Onp.45,thefirstlineafter[2.12]shouldread M3 insteadof G

5)Onp.190,inDefinition3.177,itshouldread Δn insteadof Δn .

6)Onp.191,inthefirstlineafter[3.70],add“alsodenotedas dp ”after“operator”.

7)Onp.193,line17shouldread Sp insteadof Sn

8)Onp.220,line7shouldread“π = j ∈J πj wheretheelementarydivisors πj arepairwisenon-associatedandmaximalpowers(amongallelementarydivisors)of irreduciblepolynomials”insteadof“π = n i=1 πi ”.

Volume2

1)Onp.12,line6shouldread“K (α )”insteadof“K (α )”.

2)Onp.17,line19shouldread“=”insteadof“=”;line21shouldread“doesnot exist”insteadof“exists”.

3)Onp.20,line11shouldread“0 ≤ i ≤ r ”insteadof“1 ≤ i ≤ r ”.

4)Onp.24,line28shouldread“x ∈ K”insteadof“x ∈ K”.

5)Onp.27,line10shouldread“K”insteadof“K”.

6)Onp.32,line3shouldread“a isnotoftheform bn ,b ∈ K”insteadof“an / ∈ K”;line5shouldread“ζ ”insteadof“ς ”.

7)Onp.43,inline10,after“yields”,add“with j =0,...,n 2”;thelastsumof line11shouldread“u(j ) i ”insteadof“u(j +1) i ”.

8)Onp.51,replacethesentencebeginningline23by:“Thecoefficients c and d arefreeparameters,theformerin C, thesecondin C× ; indeed,putting M = C t,e t2 /2 wehavethatGalD (N, M)= C, GalD (M, K)= C× , which yieldstheshortexactsequenceofAbeliangroups 0 −→ C −→ G −→ C× −→ 0, in otherwords G isanextensionof C× by C ([P1],section2.2.2(II)).”.

9)Onp.57,line2shouldread“nonemptyset”insteadof“set”.

10)Onp.62,lines27,29;onp.63,lines3,8;onp.64,lines7,9:itshouldread “ xj j ∈J ”insteadof“ xj i∈J ”.

11)Onp.83,line22shouldread“smallest”insteadof“largest”and“=”instead of“=”.

12)Onp.91,line28shouldread“j i0 ”insteadof“j ≥ i0 ”.

13)Onp.92,inline19,addafterthelastsentence:“Thisextensionisthenunique.”.

14)Onp.95,line8shouldread“∀ (x ,x )”insteadof“∀ (x ; x )”.

15)Onp.105,line25shouldread“∀i i0 ”insteadof“∀i i0 ”.

16)Onp.119,line17shouldread“K”insteadof“K”.

17)Onp.128,lines1,2shouldread“(iv)”insteadofthesecond“(iii)”and“(v)” insteadof“(iv)”.

18)Onp.132,line20shouldread“ξx0 → ξ ”insteadof“ξ → ξx0 ”.

19)Onp.133,inline14,delete“in Lcsh”.

20)Onp.135,lines19–21shouldread“reduced ifforall i ∈ I, theprojection pri (E ) , wherepri isthecanonicalprojection i Ei Ei , isdensein Ei ”insteadof “decreasing [ ] Tj )”;inlines27–31,replaceStatement2)ofRemark3.33by:“Every projectivelimitcanbeputintotheformofareducedprojectivelimit:if Fi = pri (E ) and ψ j i istherestrictionof ψ j i to i Fi , then E isthesubspace i j ker ψ j i of i Fi .”.

21)Onp.137,thelastlineshouldread“ p n i=1 xi p ”insteadof “ p n i=1 xi P ”.

22)Onp.141,inlines24,26,delete“decreasing”.

23)Onp.142,inlines10,11,delete“issurjective(ibid.)and”.

24)Onp.144,line11shouldread“boundedin F ”insteadof“boundedin M ”.

25)Onp.168,line13shouldread“x ∈ A”insteadof“x ∈ R”.

26)Onp.150,inline6,delete“decreasing”;line8shouldread“mapping”instead of“surjection”and“→”insteadof“ ”.

27)Onp.172,inline25,itshouldread“exact”insteadof“quasi-exact”;delete “andfrom FSop to Sil”andNote17.

28)Onp.173,inline2,delete“strict”;line5shouldread“an”insteadof“a strict”;inline7,delete“strict”andread“Silva”insteadof“(FS )-”;line8should read“−→”insteadof“ →”and“mapping”insteadof“injection”;inline8,itshould read“mapping”insteadof“surjection”,“−→”insteadof“ →”anddelete“strict”;in line10,itshouldread“(FS )-”insteadof“Silva”;replacelines13–27by:“(1)Since thespaces (Ei )b areFréchet,theyarebornological,andtheirinductivelimitsaswell. ThustheyareMackeyspacesandtheresultfollowsfrom([SCF99],ChapterIV, Section4.4).(2)The Ei arereflexive (DF ) spaces,andtheresultfollowsfrom([SCF 99],Exercise24(f),p.197).”.

29)Onp.174,inline2,delete“increasing”;inline3,itshouldread“mapping” insteadof“injection”and“−→”insteadof“ →”.

30)Onp.175,line14shouldread“L (R; S )”insteadof“L (R,S )”.

31)Onp.177,lines8,9shouldread“ u∈H,x1 ∈A1 u (x1 ,A2 )”insteadof “ u∈H,x1 ∈A1 ”.

32)Onp.185,line5shouldread“such”insteadof“any”;lines15,23shouldread “≥”insteadof“≤”.

33)Onp.186,line11shouldread“| ei |x |2 ”insteadof“ ei |x 2 ”.

34)Onp.188,inline27,add“salient”after“closed”.

35)Onp.193,inline12,add“,v = r i=1 xi ⊗ yi ”attheendoftheline.

36)Onp.200,inline4,change δa (a) to δa (A.)

37)Onp.204,inline5,suppressthesign .

38)Onp.204,line21shouldread“ p |f |p .dμ”insteadof“ p |f | .dμ”.

39)Onp.218,thethirdlineoftheproofshouldread “ 1 h (f (x + h) f (x)) g (c) ”insteadof“ 1 h |f (x + h) f (x)|”.

40)Onp.230,inline16,add“nonzero”after“many”.

41)Onp.253,inlines1,3,delete“strict”;inline26,add“denotedby Cr (0)”after “plane”.

42)Onp.299,line18shouldread“isan A-module”insteadof“isthe Amodule W ”.

43)Onp.204,line13shouldread“equation”insteadof“solution”.

44)Onp.247,changelines1,2to“givenbythefunctionswithabsolutevalue upperboundedbytheabsolutevalueofapolynomial,andtheirpartialderivativesof allordersaswell”.

ListofNotations

Chapter1:DifferentialCalculus

∞,ω, NK , N× K ,p.2

O (f ) ,o (f ):Landaunotation,p.2

E∨ :dualof E,p.2

|.|γ , . γ ,p.2

Ln,s (E ; F ):spaceofsymmetricelementsof Ln (E; F),p.2

u.hn ,p.2

D f (a), df (a), f (a):(Fréchet)differentialof f atthepoint a,p.6

˙ f (a):derivativeof f atthepoint a,p.6

Da (A; F ),p.6

rka (f ),p.6

grada (f ) , ∇a f :gradientof f atthepoint a,p.6

Di f (a) ,∂i f (a) , ∂f ∂xi (a):partialdifferential,partialderivative,p.8

∂ (f 1 ,...,f n )

∂ (x1 ,...,xn ) (a):Jacobian,p.8

C p (A; F ),p.10

Hf (a):Hessianmatrix,p.11

N :Nemitskyoperator,p.11

ev:evaluationoperator,p.11,186

N = N ∪{+∞},p.26

FB ,p.12

b a f (t) dt,p.13

D α :partialdifferentialoforder α,p.16

S (E; F):spaceofformalseries,p.16

S (E; F):spaceofconvergentseries,p.17

ρ (S):radiusofconvergence,p.17

C ω (A; F ),p.17

fa ,p.17

δ f (a) ,δ 2 f (a):first,secondLagrangevariation,p.28

D G f (a):Gateauxdifferential,p.28

c∞ E,p.32

c∞ , cω ,p.33

ϕ (.; t0 ,x0 ),p.41

Φ(t2 ,t1 ):resolvent,p.44

ϕλ = ϕ (.,t0 (λ) ,x0 (λ)),p.46

Chapter2:DifferentialandAnalyticManifolds

(U,ϕ, E) , (U,ϕ,m):chart,p.51,52

dim(M ) , dimx (M ):dimension,p.52

Ta (M ):tangentspace,p.59

θ

c : Ta (M ) → E,ϑc = θ 1 c ,p.59

S r a (M ):spaceofgermsofstationaryfunctionsatthepoint a,p.61

∂ξ j a ,p.61

LXa :Liederivative,p.62

γi∗0 ,∂i (a) ,∂i |a ,p.64

Xa .f ,p.64

Ta (f ) ,f∗a ,f∗ (a):tangentlinearmapping,p.65

rka (f ):rankofamorphism,p.66

da f :differential,p.66

T i (a1 ,a2 ) (f ),p.75

M1 ×Z M2 , f1 ×Z f2 :fiberproduct,p.79

t fa :cotangentlinearmapping,p.80

LieGrp:categoryofLiegroups,p.81

G◦ :neutralcomponentof G,p.83

Tn : n-dimensionaltorus,p.82

H K = K H = H ×τ K:semi-directproductofsubgroups(H normal)

V ∞ ,p.84

λ (s) , ρ (s):left,righttranslation,p.88

GL (E):automorphismgroupof E,p.82

Un (C) , On (R) , SLn (K) , SOn (R), SUn (C):unitary,orthogonal,speciallinear, specialorthogonal,specialunitarygroup,p.86

Z (G):centerof G,p.87

PGLn (K) , PSLn (R) , POn (K) , PSOn (K) , PUn (C):projectivegenerallinear, projectivespeciallinear,projectiveorthogonal,projectivespecialorthogonal, projectiveunitarygroup,p.87

Sp2n (K) , USpn , An , En , SEn :symplectic,unitarysymplectic,generalaffine, affineorthogonal,specialaffineorthogonalgroup,p.87

Dn (K) , Tn (K) , STn (K) , Nn (K),p.87

Ad:adjointmapping,p.88

M/G, G\M :manifoldoforbits,p.89

g:tangentspace Te (G),p.90

Affn (K) , Eucn :affine,affineEuclideanspaces,p.91

Chapter3:FiberBundles

T (B ):tangentfiberbundle,p.94

T ∨ (B ):cotangentfiberbundle,p.96

λ =(M,B,π ):fibration,p.99

Sn : n-dimensionalsphereofradius1,p.98

λ ×B λ ,M ×B M :fiberproductoffibrations,p.101

λ × λ :productoffibrations,p.102

f 0∗ (λ):preimageofafibration,p.102

˜

G:universalcoveringoftheLiegroup G,p.106

Spinn (K):spinorgroup,p.106

Γ(k ) (U,M ) , Γ(U,M ):setofsectionsofclass C k of U in M ,ofmorphismsof class C k from U into M ,p.108

(M,B,π ):vectorbundle M withbase B andprojection π ,p.108

rkb (M ):rankofthevectorbundle M ,p.108

EB :trivialbundle,p.109

M ∨ ,M ∗ :dualbundleof M ,p.112

s∗i = dξ i :dualoftheframe (si )= ∂ ∂ξ i ,p.112

M/M :quotientbundle,p.113

M ⊗ M ,M ⊕ M :tensorproduct,Whitneysumoftwofiberbundles,p.114

M(C) :complexificationoftherealfiberbundle M ,p.115

VB:categoryofvectorbundles,p.117

ker(u) , im (u) , coker (u):kernel,image,cokernelofthelocallydirectmorphism u,p.118

f 0∗ (M ):preimageofthevectorbundle M under f 0 ,p.120

(P,B, G,π ):principalbundle P ofbase B ,structuralgroup G andprojection π , p.121

(B × G,B,pr1 ):trivialprincipalbundle,p.122

Vq (P ):spaceofverticaltangentvectors,p.123

P ×G F, G\ (P × F ) , P ×G F,B,πF ,p.126

Chapter4:TensorCalculusonManifolds

Tp q (E):spaceof p-timescontravariantand q -timescovarianttensors(alsocalled tensorsoftype (p,q )),p.133

T (E):tensoralgebraof E,p.133

ci j : Tp q (E) → Tp 1 q 1 (E):indexcontractionmapping,p.134

( ),p.134

σ.t:imageofthetensor t underthepermutation σ ,p.135

s.t, a.t:symmetrization,antisymmetrizationofthetensor t,p.135

alt,p.136

TSn (E):spaceofsymmetriccontravarianttensorsoforder n,p.135

An (E):spaceofantisymmetriccontravarianttensorsoforder n,p.135

zp ∧ zq :exterior(orwedge)productof zp ∈ Ap (E) and zq ∈ Aq (E),p.138

n E = An (E): n-thexteriorpowerof E,p.138

det(E)= m E,p.138

E = 0≤p≤m p E:exterioralgebraof E,p.139

An (E; F):vectorspaceofalternating n-linearmappingsfrom E n into F,p.140

Sh (p,q ),p.140 ,iv ,i (s):interiorproduct,p.141,153

Altq (E ; E):spaceofcontinuousantisymmetric q -linearmappingsfrom E q into E,p.143,151

λ:vectorfunctor,p.144

∧Φ ,p.145,152

T 1 0 (U ):spaceofvectorfieldsofclass C r ,p.145

T 0 1 (U ) , Ω1 (U ):spaceofcovectorfieldsofclass C r (Pfaffforms),p.146

T p q (U ):tensorfieldoftype (p,q ),p.147

Ωp (U ; N ) , Ωp (U ; F):spaceof p-forms,p.148,151

f ∗ (ω ):preimage,p.149,154,164

Ω(U ; A):deRhamalgebra,p.149,153

OrT (B ) = B :orientationcovering,p.155

B :orientedmanifold,p.157

B ω ,p.160

[ω ]:volumeform,p.161

f :orientationofthemorphism f ,p.162

˜

O :canonicalorientationof ˜ B ,p.163

˜

R:fiberbundleofscalarsofoddtype,p.163

ω, ω,ω ,p.163,165

∂ps τ,∂τ :pseudoboundary,(regular)boundaryofthechain τ ,p.170

g ,gij :metricofapseudo-Riemannianmanifold,p.171

Chapter5:DifferentialandIntegralCalculusonManifolds

Ωp c (B ):spaceofcompactlysupported p-formsofclass C ∞ ,p.174

Ωp , Ωp c :spaceofodd p-forms,p.175

Ωp∨ c , Ωp c ∨ :spaceof(even) p-currents,p.175

T ,ϕ ,p.175

δzb :Dirac p-current,p.176

T ∧ β :exteriorproductofaneven p-currentandanodd q -form,p.176

D (B ) , E (B ):spaceofdistributions,ofcompactlysupporteddistributionson B , p.178

S ⊗ T :tensorproductofcurrentsordistributions,p.178

u (T ) ,D α ξ T , π ∗ (T ),p.178

Diff (B ; M,N ) , Diff (B ): E (B )-moduleofdifferentialoperators,p.181

T ∞ b (B ):spaceofpointdistributionsat b,p.182

T ∞ (B ):spaceoffinitelysupporteddistributionson B ,p.182

C k (B ; Y ) , C p,q (X × Y ; Z ) , c∞ (X ; Y ):manifoldsofmappings,p.183,186, 186

[X,Y ]:Liebracket,p.187,192

LieAl:categoryofLiealgebras,p.188

gl (E),p.188

a1 ⊕ a2 , h ⊕σ k:directsum,semi-directsumofLiealgebras,p.190

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.