Fundamentals of 3d food printing and applications godoi - The ebook is ready for download, no waitin

Page 1


https://ebookmass.com/product/fundamentals-of-3d-food-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

3D Printing for Energy Applications Vincenzo Esposito

https://ebookmass.com/product/3d-printing-for-energy-applicationsvincenzo-esposito/

ebookmass.com

4D Printing: Fundamentals and Applications Rupinder Singh

https://ebookmass.com/product/4d-printing-fundamentals-andapplications-rupinder-singh/

ebookmass.com

3D Printing: A Revolutionary Process for Industry Applications Richard Sheng

https://ebookmass.com/product/3d-printing-a-revolutionary-process-forindustry-applications-richard-sheng/

ebookmass.com

The False Promise of Superiority: The United States and Nuclear Deterrence after the Cold War James H. Lebovic

https://ebookmass.com/product/the-false-promise-of-superiority-theunited-states-and-nuclear-deterrence-after-the-cold-war-james-hlebovic-3/

ebookmass.com

Human Anatomy & Physiology Laboratory Manual, Cat Version (13th Edition )

https://ebookmass.com/product/human-anatomy-physiology-laboratorymanual-cat-version-13th-edition/

ebookmass.com

The Sit Room: In the Theater of War and Peace David Scheffer

https://ebookmass.com/product/the-sit-room-in-the-theater-of-war-andpeace-david-scheffer/

ebookmass.com

Alive and Well at the End of the Day: The Supervisor's Guide to Managing Safety in Operations, 2nd Edition Paul

https://ebookmass.com/product/alive-and-well-at-the-end-of-the-daythe-supervisors-guide-to-managing-safety-in-operations-2nd-editionpaul-d-balmert/ ebookmass.com

Thief of Fate: Providence Falls Series, Book 3 Jude Deveraux

https://ebookmass.com/product/thief-of-fate-providence-falls-seriesbook-3-jude-deveraux/

ebookmass.com

Coronavirus Disease 2019 (Covid-19): A Clinical Guide 1st Edition Ali Gholamrezanezhad

https://ebookmass.com/product/coronavirusdisease-2019-covid-19-a-clinical-guide-1st-edition-aligholamrezanezhad/

ebookmass.com

https://ebookmass.com/product/pro-git-scott-chacon/

ebookmass.com

Fundamentalsof3DFoodPrinting andApplications

Thispageintentionallyleftblank

Fundamentalsof3D FoodPrintingand Applications

BheshR.Bhandari

SangeetaPrakash

MinZhang

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright 2019ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-814564-7

ForinformationonallAcademicPresspublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: AndreGerhardWolff

AcquisitionEditor: NinaRosadeAraujoBandeira

EditorialProjectManager: SusanIkeda

ProductionProjectManager: DivyaKrishnaKumar

CoverDesigner: MilesHitchen TypesetbyTNQTechnologies

3.3Computer-AidedDesignSystemstoCreate3DVirtual

3.4ProcessPlanningof3DFoodPrinting 60

3.4.1BasicPrinciplesoftheSlicingSoftwaretoPrepare 3DFoodPrinting62

3.4.2PrintingVariablesandTheirEffectsontheQuality of3DEdibleObjects63

3.5TheFirmwareofthe3DPrinter:BasicPrinciplesand SettingsThatAffectthePrintingQuality

3.6G-Code:TheLanguageToDrivePrintersandTo OptimisePrintingQuality

4. Cereal-BasedandInsect-EnrichedPrintableFood: FromFormulationtoPostprocessingTreatments. StatusandPerspectives 93 RossellaCaporizzi,AntonioDerossiandCarlaSeverini

4.1Introduction

4.23DPrintingTechnologiesforCereal-BasedFormulations 94

4.3FactorsAffectingthePrintabilityofaDough 97

4.3.1EffectofIngredientsandNutritionalCompounds inthe3DPrintingProcess98

4.3.2TheUseofBindingAgentstoImprovethe PrintabilityofDough100

4.4PostprocessingTechnologies

4.5TexturalPropertiesof3D-PrintedCereal-BasedProducts 104

4.6PrintingVariablesAffectingtheQualityofCereal-Based Products 107

4.7InnovativeFoodFormulationsin3DPrinting:TheCase ofCereal-BasedProductsEnrichedWithEdibleInsects 108

4.7.1NutritionalPropertiesofEdibleInsects108

4.7.2CurrentResearchin3DPrintingforObtaining Insect-EnrichedProducts110

4.8Conclusions 113

5. 3DPrintedFoodFromFruitsandVegetables 117 IldeRicci,AntonioDerossiandCarlaSeverini

5.1Introduction 117

5.2PotentialApplicationof3DPrintingTechnologyfor Vegetable-BasedProducts 118

5.2.1PotentialNutritionalandHealthyPropertiesof3D PrintedFruitandVegetablesUsedfor3DPrinting119

5.3ProcessingStepsforFruitandVegetablePrinting 123

5.3.1SelectionofRawFruitsandVegetablesand DesigningofPersonalisedFoodFormulas126

5.3.2ProcessingStepsforPreparingFruitsand Vegetablesfor3DPrinting129

5.4SettingsofConditionsforFruitandVegetable 3DPrinting 134

5.5MethodstoImprovetheShelf-LifeofVegetable 3DPrintedFoods 139

5.6TheUseofFruitandVegetableWastefor3DFood PrintingasFuturePerspectives

6. 3DPrintingChocolate:PropertiesofFormulations forExtrusion,Sintering,BindingandInkJetting 151 MatthewLanaro,MathildeR.DesselleandMariaA.Woodruff

6.1Introduction

6.2PropertiesofChocolate

6.2.1ChocolateStructure155 6.2.2ChocolateRheology157

6.3ChocolateFormulations

6.3.1CommonChocolateProducts158 6.3.2SpecialtyChocolateProducts160

6.43DPrintingPlatform

6.53DPrintingChocolate:Extrusion

6.5.1ProcessOptimisation166

6.63DPrintingChocolate:SinteringandBinding

6.73DPrintingChocolate:Inkjet

6.8FutureTrends

7. PotentialApplicationsofDairyProducts, IngredientsandFormulationsin3DPrinting 175 MeganM.Ross,AlanL.KellyandShaneV.Crowley

7.1Introduction

7.2OverviewofRelevant3DPrintingTechnologies

7.3Structure-FormingMechanismsInvolving MilkComponents 181

7.3.1MilkProteins181

7.3.2MilkFat184

7.3.3Lactose185

7.4StudiesofPrintableDairyStructures 186

7.5AnalyticalToolsfor3D-PrintedDairyApplications 188

Contents

7.6CaseStudy:3DPrintingofProcessedCheese 193

7.7ResearchNeeds,ChallengesandOpportunities 197

7.7.1SafetyandAcceptance197

7.7.2ResearchChallenges197

7.7.3IndustrialAdvantagesandDisadvantages199 References 200 FurtherReading 206

8. Material,ProcessandBusinessDevelopmentfor 3DChocolatePrinting 207

LiangHao,YanLi,PingGongandWeilXiong

8.1Introduction

8.2CommercialFeasibilityStudy 210

8.2.1ChocolateBackground210

8.2.2ChocolateStatusQuo210

8.2.3Researchonthe3DChocolatePrinting BusinessModel211

8.3DevelopmentofChocolate3DPrintingTechnology 216

8.3.1ChocolateFeatures216

8.3.2ChocolateAdditiveLayerManufacturing219

8.3.3Experimental221

8.3.4ResultsandDiscussion223

8.3.5Conclusions229

8.4OptimisationofChocolate3DPrintingTechnology 230

8.4.1AdaptiveExtrusionLayerThicknessOptimisation BasedonAreaChangeRate230

8.4.2LayerScanningSpeedOptimisationBasedon PerimeterChangeRate233

8.4.3Conclusions236

8.5ExtensionofChocolate3DPrintingApplication Technology 237

8.5.1HealthcareProductsandChocolate3DPrinting238

8.5.2FeasibilityExperimentofAddingHealthcare Products240

8.6SummaryandOutlook

9. CreationofFoodStructuresThrough BinderJetting

9.1IntroductiontoBinderJetting

9.5FormulatingaFunctionalPrintingInk

9.5.1InkJettingTheory267

9.5.2ViscosityConsiderationsforInkJetting269

9.5.3TheEffectsofAdditivestoEnhanceViscosity271

9.5.4SurfaceTensionandDensity273

9.6ControlsandConsiderationsDuringandPostprinting

9.6.1PrinterSettings274

9.6.2CombiningPowderandInkDuringPrint276

9.7Postprocessing

` niaHurtado

10.2.1HowDoes3DFoodPrintingWork?291 10.2.23DFoodPrinters292

10.3FoodPreparationsforExtruder-Based3DFoodPrinting

10.3.1FoodPreparationExamplesRelatedtoPrintPurpose301 10.3.2RheologicalLimitationsandTechnicalConsiderations302

10.3.33DPrinterDevice-RelatedTechnicalConsiderations307 10.43DFoodPrintingatHome

10.4.1A3DFoodPrinterConceivedasa‘MiniFoodFactory’308 10.4.2Versatility:EverydayCookingandFineCuisine, atHomeandHospitality310

10.4.3TraditionalRecipesandAdaptedFormulations311 10.4.4Reduce,Reuse,Recycle.EnvironmentFriendly andaPotentialContributortoCircularEconomy314 10.4.5DomesticApplicationswithDieteticPurposes315 10.5Limitations,GeneralConsiderationsandConclusions

11. Prosumer-Driven3DFoodPrinting:RoleofDigital PlatformsinFuture3DFoodPrintingSystems

JouniPartanen

11.4.1MarketSegmentation335

11.4.23DFoodPrintingEcosystemandAssociated ValueChains337

11.5FoodProsumptionWith3DFoodPrinting

11.5.1ChangeDrivers342

11.5.2FutureofFood343

11.5.3DigitalPlatformfor3DFoodPrinting345

11.5.4FuturisticApplicationAreas345 11.5.5ExampleUseCases348 11.5.6TheImpact350

13. FutureOutlookof3DFoodPrinting

SangeetaPrakash,BheshR.Bhandari,FernandaC.Godoi andMinZhang

13.2.1ConstructswithVaryingMicrostructureLeading toNovelFoodTextures375

13.2.2ImprovedTexture-ModifiedFoodforPeople withSwallowingandChewingDifficulties375

13.2.3IncreasedFruitandVegetableIntakeAmongChildren377

13.2.4HealthyFoodsWithReducedFat,SugarandSalt378

13.2.5PreventingWastageofPerishablesandSustainability379 13.3WhattoExpectintheNext5Years?

ListofContributors

BheshR.Bhandari,SchoolofAgricultureandFoodSciences,TheUniversityof Queensland,Brisbane,QLD,Australia

RossellaCaporizzi,DepartmentofScienceofAgriculture,FoodandEnvironment (SAFE) UniversityofFoggia,Foggia,Italy

ShaneV.Crowley,SchoolofFoodandNutritionalSciences,UniversityCollegeCork, Cork,Ireland

AntonioDerossi,DepartmentofScienceofAgriculture,FoodandEnvironment (SAFE) UniversityofFoggia,Foggia,Italy

MathildeR.Desselle,QueenslandUniversityofTechnology(QUT),Scienceand EngineeringFaculty,Brisbane,QLD,Australia

TimFoster,DivisionofFoodScience,SuttonBoningtonCampus,Universityof Nottingham,Loughborough,UnitedKingdom

FernandaC.Godoi,TessenderloInnovationCenter TessenderloGroup,Tessenderlo, Belgium

PingGong,AdvancedManufacturingResearchCentreforJewellery,Gemmological Institute,ChinaUniversityofGeosciences,Wuhan,China

LiangHao,AdvancedManufacturingResearchCentreforJewellery,Gemmological Institute,ChinaUniversityofGeosciences,Wuhan,China

SoniaHolland,DivisionofFoodScience,SuttonBoningtonCampus,University ofNottingham,Loughborough,UnitedKingdom;3DPrintingandAdditive ManufacturingResearchGroup,UniversityPark,UniversityofNottingham, Nottingham,UnitedKingdom

So ` niaHurtado,FormerLeadFoodTechnologistatNaturalMachinesSL

In ˜ igoFloresItuarte,DepartmentofMechanicalEngineering,AaltoUniversity,Espoo, Finland

SiddharthJayaprakash,DepartmentofMechanicalEngineering,AaltoUniversity, Espoo,Finland

AlanL.Kelly,SchoolofFoodandNutritionalSciences,UniversityCollegeCork, Cork,Ireland

MatthewLanaro,QueenslandUniversityofTechnology(QUT),ScienceandEngineeringFaculty,Brisbane,QLD,Australia

YanLi,AdvancedManufacturingResearchCentreforJewellery,Gemmological Institute,ChinaUniversityofGeosciences,Wuhan,China

ZhenbinLiu,StateKeyLaboratoryofFoodScienceandTechnology,Jiangnan University,Wuxi,China

JouniPartanen,DepartmentofMechanicalEngineering,AaltoUniversity,Espoo, Finland

SangeetaPrakash,SchoolofAgricultureandFoodSciences,TheUniversityof Queensland,Brisbane,QLD,Australia

IldeRicci,DepartmentofScienceofAgriculture,FoodandEnvironment(SAFE) UniversityofFoggia,Foggia,Italy

MeganM.Ross,SchoolofFoodandNutritionalSciences,UniversityCollegeCork, Cork,Ireland

Estefanı´aRubio,FormerResearcherinFoodScienceandTechnologyatNatural MachinesSL

CarlaSeverini,DepartmentofScienceofAgriculture,FoodandEnvironment (SAFE) UniversityofFoggia,Foggia,Italy

JasperL.Tran,UniversityofMinnesota,SanFrancisco,UnitedStates

ChrisTuck,3DPrintingandAdditiveManufacturingResearchGroup,University Park,UniversityofNottingham,Nottingham,UnitedKingdom

MariaA.Woodruff,QueenslandUniversityofTechnology(QUT),Scienceand EngineeringFaculty,Brisbane,QLD,Australia

WeilXiong,AdvancedManufacturingResearchCentreforJewellery,Gemmological Institute,ChinaUniversityofGeosciences,Wuhan,China

MinZhang,StateKeyLaboratoryofFoodScienceandTechnology,Jiangnan University,Wuxi,China

Preface

Theincreasingdemandforpersonalisedfoodhasencouragedaperiodofinnovationandexperimentationwithemergingtechniquestocustomisetexture, flavourandnutritionalcontentsoffoods.Inthisscenario,three-dimensional(3D) printingtechnologyisanemergingtechnologythatoccupiesahighrankbecause ofitsabilitytocreatecomplexedibleshapesand,atthesametime,enable alterationoffoodtextureandnutritionalcontentrequiredbyspecificdiets.

Althoughthefirstreportsabout3Dfoodprintingarecompletingnearlya decade,mosttheexistingliteratureiscomposedofresearcharticles,patents, reviewpapersandinterviewsinnonscientificmagazines.Thisbookprovidesa broadpictureof3Dfoodprintingtechnologies,includingtheirworkingmechanismswithinabroadspectrumofapplicationareas,includingbutnotlimitedto thedevelopmentofsoftfoodsandconfectionarydesigns.Effortshavebeen devotedtoprovideauniqueandcontemporaryguidetoassistthecorrelation betweenthesupplymaterials(edibleformulations)andtechnologies(e.g., extrusionandinkjetintoapowderbed)usedduringtheconstructionof computer-aided3Dshapes.

Thebookpresentsseveralchapterscontributedbyleadingscientistsworking on3Dfoodprintingtechnology.Chapter1presentsanintroductiontothe principlesof3Dfoodprinting,emphasisingthecorrelationwithinrheology behaviourand3Dprintingtechniques(inkjetandextrusionbased).Chapter2 highlightstheimportanceofself-supportingmechanisms,processparameters, materials’propertiesandpretreatmentandpostprocessingmethodsinachieving anaccurateandpreciseprintingintheprintingprocess.Averyinteresting approachispresentedinChapter3,whichcorrelateseachphaseofthedevelopmentofa3Dprintedfoodwiththealgorithmsusedbyacomputer-aided design(CAD)andprintabilityfeaturesoffood-relatedproducts.Theauthors ofChapter3aimedtogivethebasicinformationtocontrolprintingmovements, makingpossiblethematchbetween3Dfoodandvirtualmodelsasmuchas possible.

TheprintabilityofseveralmaterialsisdescribedfromChapters4to8. Chapters4and5present,respectively,informationontheprintingbehaviourof cereal-based/insect-enrichedandfruit/vegetableprintedfoods.ThreedimensionalprintingofchocolateisexploredinChapters6and8.Chapter6 reviewsthestructuralandrheologicalpropertiesofchocolateformulationsused tocreatethese3Dprintedproducts.Chapter8introducesabackgroundofthe

developmentofthe3Dchocolateprintingandinvestigatesthecommercial feasibilityofthechocolatesupplychain-centricbusinessmodelsbycomputer modellingandsimulation.Chapter7focussesonthestructure-formingpotential ofdairy-sourcedmaterialsandgivesanoverviewofthelatestresearchin printabledairystructures.

Chapter9describesthemechanismsinvolvedinthecreationof3Dprinted foodbymeansofbinderjettingtechnology.Chapter9takesintoconsideration bothpowderandinkdevelopment,interactionsduringandafterprintingaswell asthecurrentstatusandoutlookofbinderjettingtechnology.InChapter10,the conceptof3Dfoodprintingtechnologybeingusedasa mini-foodmanufacturing plant athomeisintroduced.Toemphasisethistrend,Chapter11createsan understandingonhowdigitalplatformscouldworktogetherwithfuture3Dfood printingsystemstofosterfoodprosumption.Chapter12coverstheissuesof safetyandlabellingin3Dprintedfoodbyutilisinghypotheticalscenarios.

Tofinalise,afutureoutlookof3DfoodprintingispresentedinChapter13. Webelievethatthecompilationofdataaboutthe3Dprintingbehaviourof variousedibleformulationsandknowledgeonconsumptiontrends(alignedto safetyconcerns)willhelpstudents,researchersandprofessionalsinthefood sectorbyguidingthemtomakearationalchoiceaboutthe3Dprintingtechnologyforagivenmaterialthatcanbepresentedinliquidorpowderform.We wouldliketothankallthecontributorstothebook,thescientificcommunity,our publisherandfamilyandfriendswhoencouragedustobringforwardthefirst bookon3Dfoodprinting.

FernandaC.Godoi

SangeetaPrakash MinZhang Editors

AnIntroductiontothe Principlesof3DFoodPrinting

FernandaC.Godoi1,BheshR.Bhandari2,SangeetaPrakash2, MinZhang3

1TessenderloInnovationCenter TessenderloGroup,Tessenderlo,Belgium; 2Schoolof AgricultureandFoodSciences,TheUniversityofQueensland,Brisbane,QLD,Australia;

3StateKeyLaboratoryofFoodScienceandTechnology,JiangnanUniversity,Wuxi,China

1.1INTRODUCTION

Foodproductsarerapidlyevolving;therefore,allprofessionalsinthefood manufacturingfieldneedtofollowupthelatesttrends,bestpracticesand toolstoworkeffectively.Personalis ationhasbeenpointedasthedriving forcetodisrupttraditionalwaystoproduceanddeliverfood.Threedimensionalfoodprinting(3DFP)isc onstantlyassociatedasapotential alternativetoachievepersonalisatio nandenchantavarietyofcustomers.It shouldbeminded,however,whatisthetypeofpersonalisationrequiredby eachpopulation.And,mostimportantly,theresearchin3DFPisnotmeantto changethewayfoodisconsumed.Inextrusion-based3DFP,forexample,the printablefoodshouldpresentpaste-likeconsistency,anditisrecommended

forprintingdoughs,vegetableormeatpureesandconfectionary.Inpowderbased3DFP,powderedfoodsuchassugarandchocolatecanbeused. Therefore,thedrivenforcetodevelopexpertisein3DFPreliesonfindingthe idealapplicationwhich,inturn,isdependentonthepropertiesoffood materials.Considering,forexample ,fuseddepositionmodelling(FDM;the mostcommon3DFPtechnique)whichisconstantlyusedasanalternativeto replacemouldingprocessesofpastematerials.Theeffectivesubstitutionof castingmethodsbyFDMwillonlyhappeninapplications wherethesetof fluidand/orsemisolidfoodsintoamoulddoesnotattendtheessentialneeds oftheconsumers,suchas:

l thedesignofinternalstructures:thisfeaturecannotbeachievedbyconventionalcastingmethodsusedtoshapefood.By3DFP,however,the internalstructureofthefoodobjectcanbetailoredbymeansofinfill percentages(insingle-nozzleextrusion)andvariationsofthenutritional profileinthecorestructure(morethanonenozzleisnecessary);

l encapsulationofprobiotics,vitaminsandnutrientsbymeansofcoextrusion3DF;and

l freshlymixingofingredientstoensuretheidealtexture.

Onceoneormoreoftheexampleslistedabovefulfilstheneedofapopulation,theimplementationof3DPtechnologyforfoodmaterialsrelyonthe followingpoints:

l Material:Materialchoiceanddeepunderstandingofitsphysical chemicalandrheologicalproperties.

l 3DPtechnique:Thechoiceofthe3DPtechniqueisbasedonthematerial properties,applicabilityandpostprocessingrequirements.

l 3Ddesignandpathplanning:3Dcontentisnecessarytobegeneratedas afirststepofimplementing3DP.Awidevarietyofsoftwareisavailable, frombeginnerstoadvanced,todesigntheconstructtobeprinted(e.g., SketchUp,TinkercadandOnShape).Thedesignisthenconvertedtoan.stl fileand‘sliced’byaslicingsoftware(e.g.,Cura,RepetierandSimplify3D).AG-codeisgeneratedwiththecommandsnecessarytoguidethe printheadatpredeterminedconditionsofspeed,flowandtemperature,for example.Thisisanimportantsteponcesuccessfulprintingisclosely relatedtothepath-planningchoiceforthedesign.

l Assessmentofprintingparametersandprintedobjectquality:Printing parametersandprintedmaterialqualitycanbeassessedregardingshape fidelity(incomparisonwiththeoriginaldesign)andmechanical properties.

Thischapterfocusesonreportingthedifferenttypesof3Dprintingtechniquesandassessmentofprintingquality.Anentirechapterofthisbook (Chapter3)isdedicatedtothepracticableaspectsofpathplanningthatcan enhanceprintabilityofvariousfoodmaterials.

1.23DPRINTINGTECHNIQUES

Inthischapter,wedescribethecurrent3Dprintingtechniquesappliedto designfoodmaterials.Theyareclassifiedaccordingtothedrivingmechanisms ofprinting:inkjet,extrusionandheatsource(powderlayerbinding).The depositionofliquid-basedmaterialscanbeperformedviaextrusionandinkjet processes.Powder-basedstructuresareprintedbydepositionfollowedby applicationofaheatingmode(laserorhotair)orbinderjetting(inkjet technology).Ourdiscussions,however,areespeciallydevotedonhowthefood constituentswouldbehaveduring3DPprocesses. Fig.1.1 illustratesthe schematicclassificationof3DFPtechnologiesasperthetypeofdriven mechanism.

1.2.1InkjetPrinting

Inkjetprinting(IJP)canbeappliedtotheformationof2Dand3Dpatterns upondepositionofliquiddropletontoasubstrateguidedbycomputer-aided designsystems.UsuallyaprintheadofIJP,theinkisjettedthroughchannelsoftypically20 50 mm.A1-pL(picolitre)inkdropletistypically13 mm across(Xaar,2012).Inkjetprinting(IJP)canbecarriedoutcontinuously (C-IJP)orthroughdrop-on-demand(DoD-IJP).Bothmethodsoccurbyforcingafluidthroughanorifice,whichsubsequentlybreaksupintoastreamof dropletswiththesamevolumebutlesssurfaceareainstability(Rayleigh Plateauinstabilityphenomenon).

InC-IJP,ahigh-pressurepumpdirectstheliquidinkthroughanorifice between50and80 mmindiameter,creatingacontinuousinkflow.C-IJP

FIGURE1.1 Schematicdiagramofvarious3Dfoodprintingtechniques.

operatesatfasterdropletgenerationratesthanDoD-IJP;however,itrequires theuseanelectricallyconductingfluidwhichlimitstheapplicationinfood customisation.TheDoD-IJPpresentsmultipleheads(100 1000)andgenerallyoperatesusingthermalorpiezoelectricheads.Inathermalinkjetprinter, theprintheadiselectricallyheatedtogeneratepulsesofpressurethatpush dropletsfromthenozzle.Piezoelectricinkjetprinterscontainapiezoelectric crystalinsidetheprintheadwhichcreatesanacousticwavetoseparatethe liquidintodropletsatevenintervals.Employingavoltagetoapiezoelectric materialarousesapromptchangeinshape,whichinsuccessionproducesthe pressurenecessarytoejectdropletsfromthenozzle.

Thefluiddynamicsbehaviourofthedropletejectedfromasmallopening waspreviouslyobtainedfromanapproximatesolutiontotheNavier Stokes equation.Threemainparametersareadoptedtopredictthedropletjetting behaviour(Seerdenetal.,2001):

l Re/We:RatiobetweentheReynoldsnumber(Re)andtheWebernumber (We)whichisrepresentativeoftrendsobservedontheviscous,inertialand surfacetensionforcesonfluidflow.In Eq.1.1, a, r, g and h standforthe characteristiclength,density,surfacetension,andviscosityofthefluid, respectively.

l Dropletspreadinginabsenceofsolidification(ε): Eq.1.2,derivedby BholaandChandra,where rmax and r arethemaximumsplatradiusand initialdropradius,respectively,and q istheequilibriumcontactanglethat thedropletmakeswiththesubstrate.

l Splashingofliquiddrops(K):splashingofthedropletuponjettingresults indimensionalinstabilityandlackofuniformity.Splashingoccurswhen theparameter K exceedsacriticalvalue, Kc (Eq.1.3).

1.2.1.1ApplicabilityofInkjetPrinting

Inkjetprintersgenerallyhandlelow-viscositymaterials;therefore,IJPdoesnot findapplicationontheconstructionofcomplexfoodstructure.Thetechnologyis normallyusedingraphicaldecoration,fillings,microencapsulationand,atmuch lowerextension,nanoprinted3Dconstructs(usuallybioprintingapplications).

l Graphicaldecoration,fillings:Thetechnologydevelopedby Groodand Grood(2011) fordispensingaliquidontolayerscanbeclassifiedasDoD deposition(US8556392B2,2013).Thistechnologywascommercialisedby thenameofFoodJetprintingandusesanarrayofpneumaticmembrane nozzlejetswhichlayerstinydropsontoamovingobject.Severalpatents reportthedevelopmentofinksonediblesubstrates(US7029112B2,2002) (US20160021907A1,2013).ThepatentdepositedbyMarsInc.,for example,reportstheuseofpiezoelectricprintheadtoprinthighresolutions ofimagesthatmightbecomposedoffatoredible.Thesubstrate,inthiscase, canincludeconfectionarypieceswithnonplanarandhydrophobicsurfaces. Theimagereachesresolutiongreaterthan100dpi,preferablygreaterthan 300dpi(US7597752B2,2012).Theinkjettechnologycanalsobeusedfor flavourapplicationonediblesubstrates,asdescribedinUS20080075830A1, assignedbyProcterandGambleCo(US20080075830A1,n.d.).

l Microencapsulation:InkjettechnologyfindsapplicationonmicroencapsulationprocessessuchastheonedevelopedbyNetherlandsOrganisation forAppliedScientificResearch(TNO).Theirinventionreportsaprinthead thatproduceshighlymonodispersedropletsconvertedintohighlymonodispersepowdersafterdrying.Theprintheadhas500nozzleswithcapacity of100L/h. Fig.1.2 illustratesexamplesofcore shellparticlesmadewith

FIGURE1.2 NetherlandsOrganisationforAppliedScientificResearch(TNO)’sencapsulation printerandexamplesofcore shellstructures:mintsyrup waxandlinseedoil carrageenan (TNO,2017).

TNO’sencapsulationprinter,mintsyrupcorewithwaxshell(left,bottom) andlinseedoilwithcarrageenanshell(right,bottom)(TNO,2017).

l 3Dconstructs:In3DFPapplications,theinkjettechnologyclassifiedas drop-on-powderhasbeenusedtoejectbindersolutionontoathinlayerof powderfollowingasliced2Dprofilegeneratedbyacomputer3Dmodel. Thetechniqueisgenerallynamedbinderjettingandwillbedetailedin Chapter9.Thebinderplaysanimportantroleofjoiningadjacentparticles together,creating,therefore,a3Dconstruct.Thiscanoccurduetothe dissolution fusionorcross-linkingoftheparticlesurfaces(Peltolaetal., 2008).Anexampleofthistechnologyappliedforfooddesignisthe3D System’sChefJetprinterwhichusestheZ-Corpinkjetprocesstoproducea broadrangeofconfectionaryrecipesincludingsugar,fondantandsweet andsourcandyinavarietyofshapesandflavours.TNOresearchers describedaliquidbinding-basedmethodcalledpowderbedprinting.In thismethod,edible3Dobjectsareproducedbyspatialjettingoffoodfluid (binder)ontoapowderbedcontainingformulatedfoodpowdercomposed ofawater-solubleproteinand/orahydrocolloid(Diazetal.,2014).Inkjet printingtechnologyhasbeenalsousedtobuild3Dconstructsina nanoscale,suchasprintingofconductiveinkswithmetalnanoparticlesfor electronics(Vaithilingametal.,2018)orcell-ladenhydrogelsforbioprintingapplications(Gudapatietal.,2016).

1.2.2Extrusion-Based3DPrinting

UnlikeDoD-IJPmethods,extrusion-basedtechniquesrelyontheflowofa continuousinkinalayer-by-layerfashion,generallyhighlyconcentrated colloidalinks.Theconcentrationintotalsolidscanrangefrom5%to50%, dependingonthecapabilityofthematerialonforminggelorachievingpaste consistency.Theinkflowsthroughthenozzleupontheapplicationofa pressuregradient DP alongwiththelength(l).Therefore,aradiallyvarying shearstress(zr)developsasper Eq.1.4,where r istheradialpositionwithin thenozzle.Atthenozzlewallcentre(r ¼ R),thereiszerovelocity,andinthe centre(r ¼ 0),thevelocityisatamaximum(Lewis,2002).

Ideally,theextrudingmaterialshouldshowfast,solid-likeresponse throughoutthedepositionprocess.Thisfeaturecanbeevaluatedregardingthe yieldstress(YS)which,inturn,isclassifiedintwotypesforsomefluids:(1) staticYS:stressrequiredtoflowfromareststate;and(2)dynamicYS:stress requiredforafluidinmotiontocontinueflowing.BothYSsareimportantto ensureprintabilitybecausethematerialmustflowthroughthenozzle,overcomingthestaticYS.However,sufficientdynamicYSisrequiredtoresist

highshearratesandstillformobjectswithminimumdeformationafter printing(Lewis,2002;Smayetal.,2002).

Pneumaticandmechanical(pistonorscrew)methodsareusuallyusedto extrudefoodmaterialsfor3DFPapplications.Thepiston-drivenconfiguration generallyprovidesmoredirectcontrolovertheflowofviscousmaterials throughthenozzle,whilethescrew-drivensystemmightfavourthespatial controlandcanbebeneficialfordispensingandmixingmaterialswithhigher viscosities.Asanexample,thescrew-drivensystemusedby Mantihaletal. (2017) helpedtoensurethehomogeneityismeltedgratedchocolatewhile printing(Mantihaletal.,2017).Pneumaticconfigurationscansometimesbe disadvantageousduetodelaysofthecompressedgasvolumeinpneumatic systems,althoughpneumaticsystemscanalsobesuitedtodispensehighviscositymaterialsandhavetheadvantageofbeingdrivenbysimplercomponents,withtheforcelimitedonlybytheairpressurecapabilitiesofthe system(MurphyandAtala,2014).

Dependingonthematerialsusedinextrusionprocesses,thebinding mechanismsmayhappenbytheaccommodationoflayerscontrolledbythe rheologicalpropertiesofthematerials(nonphasechangeextrusion),solidificationuponcooling(meltingextrusion)orgel-formingextrusion.

Nonphasechange3DPextrusionisusuallyperformedwithouttemperature controlandhasbeenappliedtoprint3Dconstructsmadeofmaterialssuchas dough(Yangetal.,2018b)andmeatpaste.Theviscosityofthematerialis criticaltobebothlowenoughtoallowextrusionthroughafinenozzleand highenoughtosupportthestructurepostdeposition.Thickeneragents,or additives,canbeusedtoachievethedesiredrheologicalpropertiesbutmust complywithfoodsafetystandards.Inamulticomponentfoodsystem,the synergismwithiningredientsimparthomogeneousdistributionoftheprinting pasteontheprinterreservoir,uniformflowthroughoutthenozzleopeningand instantrecoveryafterextrusion.Rheologicalpropertiesarealsorelevantin meltingextrusionandgel-formingextrusion;however,thephasetransitions takingplaceduringextrusionwilldeterminethequalityofthefinalprinted construct.Thefollowingtopicsdescribethekeycharacteristicofmelting extrusionandgel-formingextrusiontypesof3DFPtechnologies.

1.2.2.1MeltingExtrusion

Materialssuitableformeltingextrusioncanbepresentedinthreeforms:pastelike,powder(orsolidpieces)andfilament(rareinfoodapplications).The temperaturecontrolduringextrusion-based3Dprintingofpastesrichinfator sugar(mostlyamorphous)isessentialtoensureprintability.Asanexample, fattyacidswithlargernumbersofcarbonatomsdepicthighermeltingpoint.In anoppositeway,alargernumberofdoublebondsresultinlowermelting point. Liptonetal.(2010) optimisedthecontentofbutterfatintraditional doughrecipestoavoidliquefactionoftheprintedstructurewhenbaked

(Liptonetal.,2010).Thesameresearchershaveusedbaconfatasflavour enhancertoprintturkeymeatpureeincombinationwithtransglutaminase additive.

Chocolateisthemostcommonedibleinkduetoitsmeltingbehaviour.It canbefedintotheprinterreservoirinmeltedstate(paste-like)orinpowder form.Arecentstudyconductedby Mantihaletal.(2017) usedgratedchocolatetoprintintricateshapes.Thedimensions(wallthickness,heightand diameter),weightaswellasphysicalproperties(meltingproperties,flow behaviour,snapability)ofthe3Dprintedchocolatewereevaluated.The nozzletemperaturebeforedepositionwasmaintainedat32 Ctoextrude themeltedstateofthesample,astheflowbehaviourcurvesindicatedthatthe meltingofchocolatestartedbetween28and30 C.Theoperatingtemperature adoptedby Mantihaletal.(2017) waswithintherangeobservedinprevious studiesinwhichtemperaturesfrom28to40 Cwereemployed(Haoetal., 2010;Sewelletal.,2009).Theformulationofchocolateself-supportinglayers ischallengingduetothecomplexcrystallisationbehaviourexhibitedbycocoa butter,themainstructuringmaterialinchocolateandconfections.Sixdifferent crystalpolymorphshavebeenidentifiedforcocoabutter(Marangoniand McGauley,2003).Thecorrectpolymorphshouldbeproducedinthechocolate foritsbestmelting,texturalandshelf-lifeproperties.Thechocolatedeposition directlyintoa3Dobjectbymeansofextrusionwasintroducedbyresearchers fromCornellUniversityusingaFab@homefabricationsystem(Schaal,2007). Theirstudies,however,didnotlookatthematerials’propertiesandgeometricalaccuracyoftheextrudate. Haoetal.(2010) revealedthefactorsinfluencingthegeometricalprecisionofthechocolatedeposition:(1)nozzle aperturediameter,(2)optimumnozzleheightfromtheformingbed,and(3) theextrusion axismovement.TheexpertiseoftheresearchgroupledbyHao enabledthefoundationofChocEdgeLtd,aspin-offcompanyfromtheUniversityofExeter,whichpioneeredthecommercialisationof3Dchocolate printers.

Productionandprintingofediblefilamentsarerare.Onlyapatentwas foundontheincorporationofanactiveingredientsuchasanoilextractfor taste,odourormedicinalbenefit,intoafilamentmadeofpolyvinylpyrrolidone,starchandthickening(orbinding)agents.Thehotmelt extrudedpresentedbytheinventionshowsa1.75or3mm.Whenprinted,the thermoplastichasgoodstrength,stiffnessandphysicalproperties,andcanbe 3Dprintedinanyshape(US20160066601A1,2014).Inpharmaapplications, however,itispossibletofindfewworksontheloadingofmedicinesinto thermoplasticfilaments. Goyanesetal.(2015) produceddifferentfilaments containingparacetamolorcaffeineinawater-solublepolymer(polyvinyl alcohol)suitableforprintingintopharmaceuticaldosageforms.Theyuseda dualFDM3Dprintertoprintadiverserangeofmultilayercapsule-shaped deviceswithmodifieddrugreleaseprofilestomeettheneedsofspecific therapies. Sadiaetal.(2016) developedpharmaceuticalfilamentcomposedof

methacrylicpolymer(EudragitEPO)andthermallystablefiller,tribasiccalciumphosphate.Theytestedfourmodeldrugswithdifferentphysicochemical properties:5-ASA(5-aminosalicylicacid),captopril,theophyllineandprednisolone.TheproductionoffilamentsfollowedbyFDMcanbeadvantageous toavoidpostprocessingstepsusuallyrequiredfor3DPusingsemisolidstarting materialsthroughasyringe-basedtoolhead.Forfoodapplications,withina limitedrangeofingredients,itisbelievedthatedibleorfood-gradefilaments willfindapplicationintheconfectionoffoodpackaging.

1.2.2.2Gel-FormingExtrusion

Therheologyofgelscanbetailoredbasedonthefractionand/orcolloidal forces.Whenstressedbeyondtheirgelyieldpoint(s),theyexhibitshearthinningflowbehaviour y duetotheattritionofparticle particlebonds withinthegel,asdescribedby Eq.1.5.

¼ sy þ K gn (1.5) where s istheshearstress, n istheshearthinningexponent(<1), K isthe viscosityparameterand g istheshearrate. Lewis(2002) demonstrateda correlationbetweentheelasticpropertiesandshaperetentionandspanning featuresofgelsystemsduringextrusion-based3DP.Lewis’sworkreportsthat insidethenozzle(assumingacylindricalshape),theinkflowswithathreezonevelocityprofile:(1)thecore(unyieldedgel)flowsataconstantvelocity,surroundedby(2)ayieldedfluid(shell)experiencinglaminarflow,and(3) athinsliplayerdevoidofcolloidalparticlesatthenozzlewall.Therefore, Eq.1.6 canbeusedtocorrelatetheelasticparameter y (whichcanbeshearYS orelasticmodulus)withthemechanicalequilibriumofcolloidalgelsdepicted bytheratio f/fgel,where f isproportionaltothebonddensity,and fgel scales inverselywithbondstrength.In Eq.1.6, k isconstantand x isthescaling exponent(w2.5)(Lewis,2002).

Indeed, Lewis(2002) reportedtheequationdevelopedby Smayetal. (2002) whichgivestheminimumelasticityrequiredtoproduceself-supporting 3Dconstructs(Eq.1.7).

In3DP,theelasticpropertiesshouldbetakenintoconsiderationtogether withthetemporalcontrolofthegelationmechanismstopreventpremature gelationofthematerialinsidethenozzle.Thegelationmechanismscanbe classifiedinfivecategories:(1)thermal gelation,(2)chemicalcross-linking, (3)ionotropiccross-linking,(4)complexcoacervateformation,and(5) enzymaticcross-linking.

1. Thermal gelation:Gelatinisaclassicprintingmaterialwherethegelationisinduceduponcoolingduetheformationofjunctionbysmallsegmentsofpolypeptidechainsrevertingtothecollagentriplehelix-like structure(usuallywithin15 20 C,dependingontherawmaterialand extractionconditions).Settingtimeofthegelandtemperatureofgelation aredeterminantfactorstoadjustprintingspeedandtemperature.Gelatinof highbloomshowscharacteristicallyhighermeltingandgellingpointswith ashortergellingtime.Thisfeaturecanbeusedtoenhanceprintabilityof foodsystems,asdemonstratedpreviouslyby Liptonetal.(2010).

2. Chemicalcross-linking:Thisisacommonstrategyappliedtopromote thermalstabilityingels,suchasgelatin.Anexampleismethacrylationof gelatinforbioprintingapplications,whichisfurthercross-linkedbyUVlight (Wangetal.,2017).Chemicalcross-linking,however,isunlikelytobeapplied forfoodprinting,asmanycross-linkingreagentsareharmfulandmustbe completelyremovedfromthedesignedstructurebeforetheyareconsumed.

3. Ionotropiccross-linking:Ionotropiccross-linkinghasbeenwidely appliedbythefoodindustry,especiallyinmicroencapsulationprocesses (Bokkhimetal.,2016;Chingetal.,2015).In3DFP,thestudiesconducted by(Vancauwenbergheetal.,2017,2018)areexamplesofionotropiccrosslinking.Theirworkreportstheuseoflowmethoxylated(LM)pectingelas apromisingedibleinkforconfectionaryapplications.Theexperiments wereconductedatroomtemperature,andtheelasticpropertiesupon depositionweredevelopedwithinaconcentrationrangefrom15to55g/L. Calciumchloridesolutionwasusedtocross-linkthegel-likelayersby followingtwostrategies:(1)postimmersionofthe3DconstructinCaCl2 solution(concentration300mM)(Vancauwenbergheetal.,2017),and(2) concurrentcrosslinkbycoaxialextrusion(CaCl2)oftheouterflowranging from30to150mM(Vancauwenbergheetal.,2018).Thecoaxialextrusion allowedthegelationofthepectinduringtheprintinganddidnotrequire anyposttreatmentafterprinting(Fig.1.3).

FIGURE1.3 Schematicrepresentationofcoaxialextrusion(A)andpictureofthecoaxial extruderapparatus(B).In(C),itisshownacross-sectionrepresentationofpectininsidethenozzle beingextrudedwithcollateralflowofCaCl2 solution(Vancauwenbergheetal.,2018).

4. Complexcoacervateformation:Xanthangumandgelatinhavebeen printedtosimulateabroadrangeofmouthfeels.Theresultantcomplex coacervateformedbythemixturebetweenxanthanandgelatinehasshown granularity,whichwasnotobservedwhenthepristinehydrocolloidswere tested(Cohenetal.,2009).Thisbehaviourcanbeexplainedbythe hydrogel-formingmechanismofthecombinationbetweenapolycation (xanthan)andanamphotericpolymer(gelatin).

5. Enzymaticcrosslinking: Schutyseretal.(2018) hasusedtransglutaminaseascross-linkingagenttoincreasethegelationtemperatureof thesodiumcaseinateand,inturn,enableprintabilityoflow-concentrated sodiumcaseinatedispersions.Originalsodiumcaseinate(20%w/w)presentedagelationpointlowerthan15C.Itwasobservedthattheenzymatic cross-linkingpromotedasignificantincreaseonthegelationpointof 15 20 Cat20%w/w.Theincubationtimehasalsoaffectedthegelation temperaturethatdepictedanupwardtrendfrom31.2to42.3Cbyvarying thetimefrom30to90min,respectively(Schutyseretal.,2018).

1.2.3AssessmentofPrintingQuality

Theprintingqualityofthefinal3Dconstructcanbeassessedbymeansoftwo keyparameters:(1)shapefidelityincomparisonwiththedimensionsofthe3D design,and(2)mechanicalproperties.Shapefidelityisusuallymonitored.

1.2.3.1ShapeFidelity

Latticestructuresarecommonlyusedtoassesstheprintingqualityofsoft-like printedconstructs. Heetal.(2016) demonstratedthatapartfromprinting parameterssuchasfeedrate,printingdistanceandairpressure,thelinedistance(D)andtheareaofalattice(A)willimpactsignificantlytheprinting qualityofgellattices.Ascanbeseenin Fig.1.4,attheintersection(black emptycircle),adumbbellshapewasobservedduethehydrogelsdiffusionby gravity.BycomparingprintedgelstructureswithD ¼ 5mmandD ¼ 2mm, theresearchersobservedawiderdumbbellintersectionshapeforthecondition oflowerD.ThismeansthatbydecreasingD,thedumbbellcornersarelikely tobecamecloserandeventuallyhaveaneffectofareaoverlapping(Heetal., 2016).Therefore,thematerial’spropertiessuchasgelsettingtimeand viscoelasticbehaviourwillplaysignificantroleonthedeterminationof minimumD(forlatticestructures)whereareaoverlappingisavoided.

Theidealprintingconditioncanalsobeassessedvisuallybyobservingthe shapeofthefilamentmaterialextrudedoutofthenozzle. Fig.1.5 showsthat idealgelationischaracterisedbyauniformextrudedfilamentinthethree dimensionsandsmoothsurface.Atconditionsofundergelationorlowconcentrationoftotalsolids,theinkwillshowliquid-likebehaviourandformation

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Fundamentals of 3d food printing and applications godoi - The ebook is ready for download, no waitin by Education Libraries - Issuu