Functions modeling change: a preparation for calculus, 5th edition – ebook pdf version - The ebook w

Page 1


https://ebookmass.com/product/functions-modeling-change-apreparation-for-calculus-5th-edition-ebook-pdf-version/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Calculus: Early Transcendental Functions 4th Edition, (Ebook PDF)

https://ebookmass.com/product/calculus-early-transcendentalfunctions-4th-edition-ebook-pdf/

ebookmass.com

Functions and Change: A Modeling Approach to College Algebra 6th Edition Bruce Crauder

https://ebookmass.com/product/functions-and-change-a-modelingapproach-to-college-algebra-6th-edition-bruce-crauder/

ebookmass.com

Teaching to Change the World 5th Edition – Ebook PDF Version

https://ebookmass.com/product/teaching-to-change-the-world-5thedition-ebook-pdf-version/

ebookmass.com

Lavish Lies Box Set: Complete Series Books 1-3 Charlotte Byrd

https://ebookmass.com/product/lavish-lies-box-set-complete-seriesbooks-1-3-charlotte-byrd/

ebookmass.com

You Won't Believe Me Cyn Balog

https://ebookmass.com/product/you-wont-believe-me-cyn-balog/

ebookmass.com

A Writer's Resource: A Handbook for Writing and Research 6th Edition Elaine Maimon

https://ebookmass.com/product/a-writers-resource-a-handbook-forwriting-and-research-6th-edition-elaine-maimon/ ebookmass.com

Declutter Workbook Martin Hill

https://ebookmass.com/product/declutter-workbook-martin-hill/

ebookmass.com

The Local and the Digital in Environmental Communication 1st ed. Edition Joana Díaz-Pont

https://ebookmass.com/product/the-local-and-the-digital-inenvironmental-communication-1st-ed-edition-joana-diaz-pont/

ebookmass.com

Métodos de investigación clínica y epidemiológica (Spanish Edition) Josep Maria Argimon Pallàs & Josep Jiménez Villa [Pallàs

https://ebookmass.com/product/metodos-de-investigacion-clinica-yepidemiologica-spanish-edition-josep-maria-argimon-pallas-josepjimenez-villa-pallas/

ebookmass.com

https://ebookmass.com/product/gate-2019-electrical-engineeringprevious-years-solved-question-papers-trishna-knowledge-systems/

ebookmass.com

Chapter4:ExponentialFunctions

Thischapterintroducesthefamilyofexponentialfunctionsandthenumber ��.Itcomparesexponentialand linearfunctions,solvesexponentialequationsgraphically,andgivesapplicationstocompoundinterest.

The SkillsRefresher sectionforChapter4reviewsthepropertiesofexponents.

Chapter5:LogarithmicFunctions

Thischapterintroduceslogarithmicfunctionswithbase10andbase ��,bothinordertosolveexponentialequationsandasinversesofexponentialfunctions.Afterdiscussingmanipulationswithlogarithms,thechapter focusesonmodelingwithexponentialfunctionsandlogarithms.Logarithmicscalesandasectiononlinearizingdataconcludethechapter.

The SkillsRefresher sectionforChapter5reviewsthepropertiesoflogarithms.

Chapter6:TransformationsofFunctionsandTheirGraphs

Thischapterinvestigatestransformations.Itrevisitsshifts,introducesreflectionsandstretches,andexplores evenandoddsymmetryusingtransformations.Theeffectoforderingwhencombiningtransformationsis explored.

Chapter7:TrigonometryandPeriodicFunctions

Thischapterintroducestrigonometricfunctionsinbothradiansanddegreesasmodelsforperiodicmotion. Afterexploringgraphsandformulasofsine,cosine,andtangent,generalsinusoidalfunctionsareintroduced. Thischapterintroducestheinversetrigonometricfunctionstosolvetrigonometricequations.

The SkillsRefresher sectionforChapter7reviewssineandcosinevaluesofspecialanglesmeasuredin bothradiansanddegrees.

Chapter8:TriangleTrigonometryandPolarCoordinates

Thischapterdevelopsright-triangletrigonometry,andintroducestheLawofSinesandtheLawofCosines.It alsodefinespolarcoordinates,explorestheirrelationshiptoCartesiancoordinates,andconsidersthegraphs ofpolarinequalities.

Note:Chapter8canbeskippedbyinstructorswhoprefernottoemphasizetriangletrigonometry.

Chapter9:TrigonometricIdentities,ModelsandComplexNumbers

Thischapteropenswithadiscussionoftrigonometricequations,andthenexplorestrigonometricidentities andtheirroleintrigonometricmodels,suchasdampe doscillationsandacousticbeats.Thechaptercloses withcomplexnumbers,includingEuler’sFormulaanddeMoivre’stheorem.

Chapter10:Compositions,Inverses,andCombinationsofFunctions

Thischapterdiscussescombinationsoffunctions.Itinvestigatescompositeandinversefunctions,whichwere introducedinChapter2,inmoredetail.

Chapter11:PolynomialandRationalFunctions

Thischapterdiscussespowerfunctions,polynomials,andrationalfunctions.Thechapterexploresdominance andlong-runbehaviorandconcludesbycomparing polynomialandexponentialfunctions,andbyfitting functionstodata.

The SkillsRefresher sectionforChapter11reviewsalgebraicfractions.

Chapter12:Vectors

Thischaptercontainsmaterialonvectorsandoperationsinvolvingvectors.Anintroductiontomatricesis includedinthelastsection.

Chapter13:SequencesandSeries

Thischapterintroducesarithmeticandgeometricsequencesandseriesandtheirapplications.

Chapter14:ParametricEquationsandConicSections

Theconcludingchapterlooksatparametricequations,implicitfunctions,hyperbolicfunctions,andconic sections:circles,ellipses,andhyperbolas.Thechapterincludesasectiononthegeometricalpropertiesofthe conicsectionsandtheirapplicationstoorbits. Note:Chapter14isavailableonlineonly.

SupplementaryMaterials

Thefollowingsupplementarymaterialsareavailableforthefifthedition:

• TheInstructor’sManual containsteachingtips,lessonplans,syllabi,andworksheets.Ithasbeen expandedandrevisedtoincludeworksheets,identificationoftechnology-orientedproblems,andnew syllabi.(ISBN978-1-119-01383-9)

• ThePrintedTestBank containstestquestionsarrangedbysection.

• TheInstructor’sSolutionManual hascompletesolutionstoallproblems.(ISBN978-1-118-94162-1)

• TheStudentSolutionManual hascompletesolutionstohalfoftheodd-numberedproblems.(ISBN 978-1-118-94163-8)

• TheComputerizedTestBank,availableinbothPCandMacintoshformats,allowsinstructorstocreate, customize,andprintatestcontaininganycombinationsofquestionsfromalargebankofquestions. Instructorscanalsocustomizethequestionsorcreatetheirown.

• ClassroomActivities arepostedatthebookcompanionwebsite.Theseactivitiesweredevelopedto facilitatein-classgroupworkaswellastointroducenewconceptsandtopracticeskills.Inadditionto theblankcopiesforeachactivitythatcanbehandedouttothestudents,acopyoftheactivitywithfully workedoutsolutionsisalsoavailable.

• TheBookCompanionSite atwww.wiley.com/college/connallycontainsallinstructorsupplements.

• WileyPLUS isapowerfulonlinesuiteofteachingandlearningresourcestightlyintegratedwiththetext. WileyPLUSenablesinstructorstoassign,deliverandgradeindividuallycustomizedhomeworkassignmentsusingexercisesandproblemsfromthetext.Studentsreceiveimmediatefeedbackontheirhomeworkandaccesstofullsolutionstoassignedproblemselectronically.Studentsmayalsoaccesshintsto theproblems.Inadditiontoonlinehomework,WileyPLUSprovidesstudenttutorials,aninstructorgradebook,integratedlinkstotheelectronicversionofthetext,andallofthetext’ssupplementalmaterials. Formoreinformation,visitwww.wiley.com/college/wileyplusorcontactyourlocalWileyrepresentative formoredetails.

• Mini-lectureVideos linkedwithexamplesintheWileyPLUSstudentversionofthetextprovidegreater detailtothesolutionofexamplesineachsectionofthetext.Thesemayassiststudentsinreadingthetext priortoclassorinreviewingmaterialafterclass.

• TheFacultyNetwork isapeer-to-peernetworkofacademicfacultydedicatedtotheeffectiveuseof technologyintheclassroom.Thisgroupcanhelpyouapplyinnovativeclassroomtechniques,implement specificsoftwarepackages,andtailorthetechnologyexperiencetothespecificneedsofeachindividual class.Visitwww.wherefacultyconnect.comoraskyourWileyrepresentativefordetails.

ConcepTests

ConcepTests,modeledonthepioneeringworkofHarvardphysicistEricMazur,arequestionsdesignedto promoteactivelearningduringclass,particularly(butnotexclusively)inlargelectures.Ourevaluationdata showstudentstaughtwithConcepTestsoutperformedstudentstaughtbytraditionallecturemethods 73% versus 17% onconceptualquestions,and 63% versus 54% oncomputationalproblems.ConcepTestsarrangedby

x Preface

sectionareavailableinPowerPointandClassroomResponseSystem-readyformatsfromyourWileyrepresentative.(ISBN978-1-118-94161-4)

Acknowledgments

Wewouldliketothankthemanypeoplewhomadethisbookpossible.First,wewouldliketothankthe NationalScienceFoundationfortheirtrustandtheirsupport;weareparticularlygratefultoJimLightbourne andSpudBradley.

WearealsogratefultoourAdvisoryBoardfortheirguidance:BenitaAlbert,LidaBarrett,SimonBernau, RobertDavis,LoveniaDeconge-Watson,JohnDossey,RonaldDouglas,EliFromm,BillHaver,DonLewis, SeymourParter,JohnPrados,andStephenRodi.

WorkingwithLaurieRosatone,AnneScanlan-Rohrer,KenSantor,ShannonCorliss,JoannaDingle, KimberlyKanakes,JacquelineSinacori,CourtneyWalsh,andMadelynLesureatJohnWileyisapleasure. Weappreciatetheirpatienceandimagination.

Manypeoplehavecontributedsignificantlytothistext.Theyinclude:LaurenAkers,FahdAlshammari, DavidArias,TimBean,CharlotteBonner,BillBossert,BrianBradie,NoahS.Brannen,MikeBrilleslyper, DonnaBrouillette,MatthewM.Campbell,JoCannon,RayCannon,KennyChing,AnnaChung,PierreCressant,MarciaCrump,LaurieDelitsky,BobDobrow,HelenM.Doerr,IanDowker,CarolynEdmond,Maryann Faller,AidanFlanagan,BrendanFry,BradGarner, CarrieGarner,JohnGerke,ChristieGilliland,Wynne Guy,DonnieHallstone,DavidHalstead,LarryHenly,DeanHickerson,JoEllenHillyer,BobHoburg,Phil Hotchkiss,MikeHuffman,MacHyman,RajiniJesudason,LorenJohnson,DavidJones,ScottKaplowitch, NazaninKarimi,ThomasKershaw,MaryKilbride,SteveKinholt,KandaceKling,AngelaKubena,Rob LaQuaglia,BarbaraLeasher,KennethLemp,RichardLittle,DavidLovelock,GuadalupeLozanoTerán, NicholasLyktey,ChaimaaMakoudi,LenMalinowski,NancyMarcus,KateMcGivney,GowriMeda,Bob Megginson,DeborahMoore,EricMotylinski,BillMueller,MichaelNakamaye,KyleNiedzwiecki,Karina Nielsen,KathrynOswald,IgorPadure,BridgetNealeParis,JanetRay,RitamRay,KenRichardson,Halip Saifi,SharonSanders,MarySchumacher,MikeSeer y,MikeSherman,DonnaSherrill,MaxShuchman,Fred Shure,KanwalSingh,MyraSnell,ReginaSouza,NatashaSpeer,SonyaStanley,MichaelSteuer,JimStone, PeggyTibbs,JeffTaft,EliasToubassi,JerryUhl,PatWagener,BenjaminWest,DaleWinter,TimothyWisecarver,andXianbaoXu.

Reportsfromthefollowingreviewersweremosthelpfulinshapingthesecond,third,fourth,andfiftheditions:VictorAkatsa,JeffreyAnderson,BethBorel,LindaBraddy,MichaelBrassington,IngridBrown-Scott, LindaCasper,KimChudnick,TedCoe,RayCollings,JoeCoyle,PamCrawford,MarciaCrump,Monica Davis,LaurieDelitsky,PhyllisDesormeaux,HelenDoerr,DianeDownie,PeterDragnev,PatriciaDueck, JulieFisher,JenniferFowler,AlyneFulte,DavidGillette,JackGreen,ZdenkaGuadarrama,DonnieHallstone,JeffHoherz,MajidHosseini,RickHough,AnnHumes,BryanIngham,MaryLouJumonville,Pallavi Ketkar,WilliamKiele,MileKrajcevski,JohnLaMaster,RichardLane,DebbieLee,PhyllisLeonard,Daphne MacLean,DianeMathios,KristaMaxson,MichaelMcAfee,VinceMcGarry,MariaMiles,LauraMooreMueller,EllenMusen,DaveNolan,LindaO’Brien,ChrisParks,ScottPerry,JeffreyS.Powell,AnnePraderas, MichaelPrice,MaryRack,GregoryRhoads,JoeRody,EmilyRoth,JohnSawka,AmyN.Schachle,Barbara ShabellDeirdreSmith,ErnieSolheid,ReginaP.Souza,SandySpears,DianaStaats,JonathanStadler,Mary JaneSterling,DennisStramiello,DebbieStrance,AllisonSutton,JohnThomason,DianeVanNostrand,Jim Vicich,LindaWagner,NicoleWilliams,JimWinston,VauhnWittman-Grahler,BruceYoshiwara,FangZhao, andXinyunZhu.SpecialthanksareowedtoFayeRiddleforadministeringtheprojectandtoAlexKasman forhissoftwaresupport.

EricConnallyDeborahHughes-HallettAndrewM.GleasonPhilipCheifetz AnnDavidianDanFlath SelinKalaycıoğluBrigitteLahme PattiFrazerLockGuadalupeI.LozanoElliotJ.MarksWilliamG.McCallum JerryMorrisKarenRhea EllenSchmiererPatShure AdamH.SpieglerCarlSwenson AaronD.Wootton

ToStudents:HowtoLearnfromthisBook

•Thisbookmaybedifferentfromothermathtextbooksthatyouhaveused,soitmaybehelpfultoknowabout someofthedifferencesinadvance.Ateverystage,thisbookemphasizesthe meaning (inpractical,graphical ornumericalterms)ofthesymbolsyouareusing.Thereismuchlessemphasison“plug-and-chug”andusing formulas,andmuchmoreemphasisontheinterpretationoftheseformulasthanyoumayexpect.Youwilloften beaskedtoexplainyourideasinwordsortoexplainananswerusinggraphs.

•ThebookcontainsthemainideasofprecalculusinplainEnglish.Successinusingthisbookwilldependon reading,questioning,andthinkinghardabouttheideaspresented.Itwillbehelpfultoreadthetextindetail, notjusttheworkedexamples.

•Therearefewexamplesinthetextthatareexactlylikethehomeworkproblems,sohomeworkproblemscan’t bedonebysearchingforsimilar-looking“workedout”examples.Successwiththehomeworkwillcomeby grapplingwiththeideasofprecalculus.

•Manyoftheproblemsinthebookareopen-ended.Thismeansthatthereismorethanonecorrectapproach andmorethanonecorrectsolution.Sometimes,solvingaproblemreliesoncommon-senseideasthatarenot statedintheproblemexplicitlybutwhichyouknowfromeverydaylife.

•Thisbookassumesthatyouhaveaccesstoacalculatororcomputerthatcangraphfunctionsandfind(approximate)rootsofequations.Therearemanysituationswhereyoumaynotbeabletofindanexactsolutiontoa problem,butcanuseacalculatororcomputertogetareasonableapproximation.Ananswerobtainedthisway canbeasusefulasanexactone.However,theproblemdoesnotalwaysstatethatacalculatorisrequired,so useyourownjudgment.

•Thisbookattemptstogiveequalweighttofourmethodsfordescribingfunctions:graphical(apicture),numerical(atableofvalues),algebraic(aformula)andverbal(words).Sometimesit’seasiertotranslateaproblem giveninoneformintoanother.Forexample,youmightreplacethegraphofaparabolawithitsequation,or plotatableofvaluestoseeitsbehavior.Itisimportanttobeflexibleaboutyourapproach:ifonewayoflooking ataproblemdoesn’twork,tryanother.

•Studentsusingthisbookhavefounddiscussingtheseproblemsinsmallgroupshelpful.Thereareagreatmany problemsthatarenotcut-and-dried;itcanhelptoattackthemwiththeotherperspectivesyourcolleagues canprovide.Ifgroupworkisnotfeasible,seeifyourinstructorcanorganizeadiscussionsessioninwhich additionalproblemscanbeworkedon.

•Youareprobablywonderingwhatyou’llgetfromthebook.Theansweris,ifyouputinasolideffort,youwill getarealunderstandingoffunctionsaswellasarealsenseofhowmathematicsisusedintheageoftechnology.

TableofContents

1LINEARFUNCTIONSANDCHANGE

1.1FUNCTIONSANDFUNCTIONNOTATION2

1.2RATEOFCHANGE10

1.3LINEARFUNCTIONS18

1.4FORMULASFORLINEARFUNCTIONS27

1.5MODELINGWITHLINEARFUNCTIONS37

1.6FITTINGLINEARFUNCTIONSTODATA46

REVIEWPROBLEMS52

STRENGTHENYOURUNDERSTANDING60

SKILLSREFRESHERFORCHAPTERONE:LINEAREQUATIONS62

2FUNCTIONS

2.1INPUTANDOUTPUT70

2.2DOMAINANDRANGE78

2.3PIECEWISE-DEFINEDFUNCTIONS84

2.4PREVIEWOFTRANSFORMATIONS:SHIFTS90

2.5PREVIEWOFCOMPOSITEANDINVERSEFUNCTIONS97

2.6CONCAVITY104

REVIEWPROBLEMS109

STRENGTHENYOURUNDERSTANDING113

3QUADRATICFUNCTIONS

3.1INTRODUCTIONTOTHEFAMILYOFQUADRATICFUNCTIONS116

3.2THEVERTEXOFAPARABOLA122

REVIEWPROBLEMS129

STRENGTHENYOURUNDERSTANDING130

SKILLSREFRESHERFORCHAPTER3131

SKILLSFORFACTORING131

COMPLETINGTHESQUARE136

4EXPONENTIALFUNCTIONS

4.1INTRODUCTIONTOTHEFAMILYOFEXPONENTIALFUNCTIONS140

4.2COMPARINGEXPONENTIALANDLINEARFUNCTIONS149

4.3GRAPHSOFEXPONENTIALFUNCTIONS157

4.4APPLICATIONSTOCOMPOUNDINTEREST165

4.5THENUMBER �� 168

REVIEWPROBLEMS176

STRENGTHENYOURUNDERSTANDING182

SKILLSREFRESHERFORCHAPTER4:EXPONENTS183

5LOGARITHMICFUNCTIONS

5.1LOGARITHMSANDTHEIRPROPERTIES188

5.2LOGARITHMSANDEXPONENTIALMODELS195

5.3THELOGARITHMICFUNCTIONANDITSAPPLICATIONS203

5.4LOGARITHMICSCALES214

REVIEWPROBLEMS225

STRENGTHENYOURUNDERSTANDING228

SKILLSREFRESHERFORCHAPTER5:LOGARITHMS229

6TRANSFORMATIONSOFFUNCTIONSANDTHEIRGRAPHS

6.1SHIFTS,REFLECTIONS,ANDSYMMETRY234

6.2VERTICALSTRETCHESANDCOMPRESSIONS243

6.3HORIZONTALSTRETCHESANDCOMBINATIONSOFTRANSFORMATIONS250

REVIEWPROBLEMS259

STRENGTHENYOURUNDERSTANDING263

7TRIGONOMETRYANDPERIODICFUNCTIONS

7.1INTRODUCTIONTOPERIODICFUNCTIONS266

7.2THESINEANDCOSINEFUNCTIONS272

7.3RADIANSANDARCLENGTH279

7.4GRAPHSOFTHESINEANDCOSINE286

7.5SINUSOIDALFUNCTIONS293

7.6THETANGENTFUNCTION301

7.7TRIGONOMETRICRELATIONSHIPSANDIDENTITIES304

7.8INVERSETRIGONOMETRICFUNCTIONS310

REVIEWPROBLEMS315

STRENGTHENYOURUNDERSTANDING319

SKILLSREFRESHERFORCHAPTER7:SPECIALANGLES322

8TRIANGLETRIGONOMETRYANDPOLARCOORDINATES

8.1TRIGFUNCTIONSANDRIGHTTRIANGLES328

8.2NON-RIGHTTRIANGLES335

8.3POLARCOORDINATES342

REVIEWPROBLEMS350

STRENGTHENYOURUNDERSTANDING352

9TRIGONOMETRICIDENTITIES,MODELS,ANDCOMPLEXNUMBERS

9.1TRIGONOMETRICEQUATIONS354

9.2IDENTITIES,EXPRESSIONS,ANDEQUATIONS358

9.3SUMANDDIFFERENCEFORMULASFORSINEANDCOSINE365

9.4TRIGONOMETRICMODELSANDSUMIDENTITIES369

9.5SUMSWITHDIFFERENTPERIODSANDACCOUSTICBEATS381

9.6COMPLEXNUMBERSANDDEMOIVRE’STHEOREM385

REVIEWPROBLEMS393

STRENGTHENYOURUNDERSTANDING396

10COMPOSITIONS,INVERSES,ANDCOMBINATIONSOFFUNCTIONS

10.1COMPOSITIONOFFUNCTIONS398

10.2INVERTIBILITYANDPROPERTIESOFINVERSEFUNCTIONS404

10.3COMBINATIONSOFFUNCTIONS414

REVIEWPROBLEMS424

STRENGTHENYOURUNDERSTANDING430

11POLYNOMIALANDRATIONALFUNCTIONS

11.1POWERFUNCTIONSANDPROPORTIONALITY432

11.2POLYNOMIALFUNCTIONS443

11.3THESHORT-RUNBEHAVIOROFPOLYNOMIALS451

11.4RATIONALFUNCTIONS457

11.5THESHORT-RUNBEHAVIOROFRATIONALFUNCTIONS464

11.6COMPARINGPOWER,EXPONENTIAL,ANDLOGFUNCTIONS471

11.7FITTINGEXPONENTIALSANDPOLYNOMIALSTODATA476

REVIEWPROBLEMS484

STRENGTHENYOURUNDERSTANDING489

SKILLSREFRESHERFORCHAPTER11:ALGEBRAICFRACTIONS491

12VECTORSANDMATRICES

12.1VECTORS496

12.2THECOMPONENTSOFAVECTOR503

12.3APPLICATIONSOFVECTORS510

12.4THEDOTPRODUCT516

12.5MATRICES522

REVIEWPROBLEMS531

STRENGTHENYOURUNDERSTANDING534

13SEQUENCESANDSERIES

13.1SEQUENCES536

13.2DEFININGFUNCTIONSUSINGSUMS:ARITHMETICSERIES541

13.3FINITEGEOMETRICSERIES548

13.4INFINITEGEOMETRICSERIES553

REVIEWPROBLEMS559

STRENGTHENYOURUNDERSTANDING561

14PARAMETRICEQUATIONSANDCONICSECTIONS(OnlineOnly)

14.1PARAMETRICEQUATIONS14-2

14.2IMPLICITLYDEFINEDCURVESANDCIRCLES14-11

14.3ELLIPSES14-15

14.4HYPERBOLAS14-18

14.5GEOMETRICPROPERTIESOFCONICSECTIONS14-22

14.6HYPERBOLICFUNCTIONS14-36

REVIEWPROBLEMS14-40

STRENGTHENYOURUNDERSTANDING14-41

Chapter One

LINEAR FUNCTIONS AND CHANGE

1.1 FUNCTIONSANDFUNCTIONNOTATION

Ineverydaylanguage,theword function expressesthenotionofdependence.Forexample,aperson mightsaythatelectionresultsareafunctionoftheeconomy,meaningthatthewinnerofanelection isdeterminedbyhowtheeconomyisdoing.Someoneelsemightclaimthatcarsalesareafunction oftheweather,meaningthatthenumberofcarssoldonagivendayisaffectedbytheweather.

Inmathematics,themeaningoftheword function ismoreprecise,butthebasicideaisthe same.Afunctionisarelationshipbetweentwoquantities.Ifthevalueofthefirstquantitydetermines exactlyonevalueofthesecondquantity,wesaythesecondquantityisafunctionofthefirst.We makethefollowingdefinition:

A function isarulethattakescertainnumbersasinputsandassignstoeachinputnumber exactlyoneoutputnumber.Theoutputisafunctionoftheinput.

Theinputsandoutputsarealsocalled variables

RepresentingFunctions:Words,Tables,Graphs,andFormulas

Afunctioncanbedescribedusingwords,datainatable,pointsonagraph,oraformula.

Example1 Itisasurprisingbiologicalfactthatmostcricketschirpataratethatincreasesasthetemperature increases.Forthesnowytreecricket(Oecanthusfultoni),therelationshipbetweentemperatureand chirprateissoreliablethatthistypeofcricketiscalledthethermometercricket.Wecanestimate thetemperature(indegreesFahrenheit)bycountingthenumberoftimesasnowytreecricketchirps in 15 secondsandadding40.Forinstance,ifwecount20chirpsin15seconds,thenagoodestimate ofthetemperatureis 20+40=60◦ F.1

Theruleusedtofindthetemperature �� (in ◦ F)fromthechirprate �� (inchirpsperminute)isan exampleofafunction.Theinputischirprateandtheoutputistemperature.Describethisfunction usingwords,atable,agraph,andaformula.

Solution

• Words:Toestimatethetemperature,wecountthenumberofchirpsinfifteensecondsandadd forty.Alternatively,wecancount �� chirpsperminute,divide �� byfourandaddforty.Thisis becausethereareone-fourthasmanychirpsinfifteensecondsasthereareinsixtyseconds. Forinstance, 80 chirpsperminuteworksoutto 1 4 80=20 chirpsevery 15 seconds,givingan estimatedtemperatureof 20+40=60◦ F.

• Table:Table1.1givestheestimatedtemperature, �� ,asafunctionof ��,thenumberofchirps perminute.NoticethepatterninTable1.1:eachtimethechirprate, ��,goesupby 20 chirpsper minute,thetemperature, �� ,goesupby 5◦ F.

Table1.1 Chirprateandtemperature ��,chirprate �� ,predicted (chirps/minute)

◦ F)

=(80, 60) ��,chirprate (chirps/min) �� (◦ F)

Figure1.1: Chirprateandtemperature

1 ThisrelationshipisoftencalledDolbear’sLaw,asitwasfirstproposedinAmosDolbear,"TheCricketasaThermometer," in TheAmericanNaturalist, 31(1897),pp.970–971.

1.1FUNCTIONSANDFUNCTIONNOTATION 3

• Graph:ThedatafromTable1.1areplottedinFigure1.1.Forinstance,thepairofvalues �� =80, �� =60 isplottedasthepoint �� ,whichis 80 unitsalongthehorizontalaxisand 60 unitsup theverticalaxis.Datarepresentedinthiswayaresaidtobeplottedonthe Cartesianplane.The precisepositionof �� isshownbyitscoordinates,written �� =(80 , 60)

• Formula:Aformulaisanequationgiving �� intermsof ��.Dividingthechirpratebyfourand addingfortygivestheestimatedtemperature,so:

Estimatedtemperature(in ◦ F)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ �� = 1 4 Chirprate(inchirps/min)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ �� +40

Rewritingthisusingthevariables �� and �� givestheformula: �� = 1 4 �� +40

Let’schecktheformula.Substituting �� =80,wehave �� = 1 4 80+40=60 , whichagreeswithpoint �� =(80 , 60) inFigure1.1.Theformula �� = 1 4 �� +40 alsotellsusthat if �� =0,then �� =40.Thus,thedashedlineinFigure1.1crosses(orintersects)the �� -axisat �� =40;wesaythe �� -intercept is 40

AllthedescriptionsgiveninExample1providethesameinformation,buteachdescriptionhas adifferentemphasis.Arelationshipbetweenvariablesisoftengiveninwords,asatthebeginning ofExample1.Table1.1isusefulbecauseitshowsthe predictedtemperatureforvariouschirprates. Figure1.1ismoresuggestiveofatrendthanthetable,althoughitishardertoreadexactvaluesof thefunction.Forexample,youmighthavenoticedthateverypointinFigure1.1fallsonastraight linethatslopesupfromlefttoright.Ingeneral,a graphcanrevealapatternthatmightotherwise gounnoticed.Finally,theformulahastheadvantageofbeingbothcompactandprecise.However, thiscompactnesscanalsobeadisadvantagesinceitmaybehardertogainasmuchinsightfroma formulaasfromatableoragraph.

MathematicalModels

Whenweuseafunctiontodescribeanactualsituation,thefunctionisreferredtoasa mathematical model.Theformula �� = 1 4 �� +40 isamathematicalmodeloftherelationshipbetweenthetemperatureandthecricket’schirprate.Suchmodelscanbepowerfultoolsforunderstandingphenomena andmakingpredictions.Forexample,thismodelpredictsthatwhenthechirprateis80chirpsper minute,thetemperatureis 60◦ F.Inaddition,since �� =40 when �� =0,themodelpredictsthatthe chirprateis 0 at 40◦ F.Whetherthemodel’spredictionsareaccurateforchirpratesdownto 0 and temperaturesaslowas 40◦ Fisaquestionthatmathematicsalonecannotanswer;anunderstanding ofthebiologyofcricketsisneeded.However,wecansafelysaythatthemodeldoesnotapplyfor temperaturesbelow 40◦ F,becausethechirpratewouldthenbenegative.Fortherangeofchirprates andtemperaturesinTable1.1,themodelisremarkablyaccurate.

Ineverydaylanguage,sayingthat �� isafunctionof �� suggeststhatmakingthecricketchirp fasterwouldsomehowmakethetemperaturechange.Clearly,thecricket’schirpingdoesnotcause thetemperaturetobewhatitis.Inmathematics,sayingthatthetemperature“depends”onthechirp ratemeansonlythatknowingthechirprateissufficienttotellusthetemperature.

ChapterOneLINEARFUNCTIONSANDCHANGE

FunctionNotation

Toindicatethataquantity �� isafunctionofaquantity ��,weabbreviate �� isafunctionof �� to �� equals“�� of ��” and,usingfunctionnotation,to �� = �� (��)

Thus,applyingtherule �� totheinputvalue, ��,givestheoutputvalue, �� (��),whichisavalueof �� Here �� iscalledthe dependentvariable and �� iscalledthe independentvariable.Inotherwords, Output = �� (Input) or

Dependent = �� (Independent)

Wecouldhaveusedanyletter,notjust �� ,torepresenttherule.

Theexpressions“�� dependson ��”or“�� isafunctionof ��”do not implyacause-and-effect relationship,asthesnowytreecricketexampleillustrates.

Example2 Example1givesthefollowingformulaforestimatingairtemperature, �� ,basedonthechirprate, ��, ofthesnowytreecricket: �� = 1 4 �� +40

Inthisformula, �� dependson ��.Writing �� = �� (��) indicatesthattherelationshipisafunction.

Example3 Thenumberofgallonsofpaintneededtopaintahousedependsonthesizeofthehouse.Agallon ofpainttypicallycovers 250 squarefeet.Thus,thenumberofgallonsofpaint, ��,isafunctionofthe areatobepainted, �� ft2 .Wewrite �� = �� (�� )

(a)Findaformulafor ��

(b)Explaininwordswhatthestatement �� (10 ,000)=40 tellsusaboutpaintinghouses.

Solution (a)If �� =250,thehouserequiresonegallonofpaint.If �� =500,itrequires 500∕250=2 gallons ofpaint,if �� =750 itrequires 750∕250=3 gallonsofpaint,andsoon.Weseethatahouseof area �� requires �� ∕250 gallonsofpaint,so �� and �� arerelatedbytheformula

�� = �� (�� )= �� 250 .

(b)Theinputofthefunction �� = �� (�� ) isanareaandtheoutputisanamountofpaint.Thestatement �� (10 ,000)=40 tellsusthatanareaof �� =10 ,000 ft2 requires �� =40 gallonsofpaint.

FunctionsDon’tHavetoBeDefinedbyFormulas

Peoplesometimesthinkthatfunctionsarealwaysrepresentedbyformulas.However,otherrepresentations,suchastablesorgraphs,canbeuseful.

Example4

Theaveragemonthlyrainfall, ��,atChicago’sO’HareairportisgiveninTable1.2,wheretime, ��,is inmonthsand �� =1 isJanuary, �� =2 isFebruary,andsoon.Therainfallisafunctionofthemonth, sowewrite �� = �� (��).However,thereisnoformulathatgives �� when �� isknown.Evaluate �� (1) and �� (11).Explainwhatyouranswersmean.

Table1.2 AveragemonthlyrainfallatChicago’sO’Hareairport

Solution Thevalueof �� (1) istheaveragerainfallininchesatChicago’sO’HareairportinatypicalJanuary. Fromthetable, �� (1)=1 8 inches.Similarly, �� (11)=2 4 meansthatinatypicalNovember,there are2.4inchesofrainatO’Hare.

WhenIsaRelationshipNotaFunction?

Itispossiblefortwoquantitiestoberelatedandyetforneitherquantitytobeafunctionoftheother.

Example5

Anationalparkcontainsfoxesthatpreyonrabbits.Table1.3givesthetwopopulations, �� and ��, overa12-monthperiod,where �� =0 meansJanuary1, �� =1 meansFebruary1,andsoon.

Table1.3 Numberoffoxesandrabbitsinanationalpark,bymonth ��,month 01234567891011 ��,rabbits 1000750567500567750100012501433150014331250 �� ,foxes 1501431251007557505775100125143

(a)Is �� afunctionof ��?Is �� afunctionof ��?

(b)Is �� afunctionof ��?Is �� afunctionof �� ?

Solution (a)Rememberthatforarelationshiptobeafunction,aninputcanonlygiveasingleoutput.Both �� and �� arefunctionsof ��.Foreachvalueof ��,thereisexactlyonevalueof �� andexactlyone valueof ��.Forexample,Table1.3showsthatif �� =5,then �� =750 and �� =57.Thismeans thatonJune1thereare 750 rabbitsand 57 foxesinthepark.Ifwewrite �� = �� (��) and �� = �� (��), then �� (5)=750 and �� (5)=57

(b)No, �� isnotafunctionof ��.Forexample,suppose �� =750,meaningthereare 750 rabbits. Thishappensbothat �� =1 (February1)andat �� =5 (June1).Inthefirstinstance,thereare 143 foxes;inthesecondinstance,thereare 57 foxes.Sincethereare ��-valueswhichcorrespondto morethanone �� -value, �� isnotafunctionof �� Similarly, �� isnotafunctionof �� Attime �� =5,wehave �� =750 when �� =57,while attime �� =7,wehave �� =1250 when �� =57 again.Thus,thevalueof �� doesnotuniquely determinethevalueof ��.

HowtoTellifaGraphRepresentsaFunction:VerticalLineTest

Whatdoesitmeangraphicallyfor �� tobeafunctionof ��?Lookatagraphof �� against ��,with �� on theverticalaxisand �� onthehorizontalaxis.Forafunction,each ��-valuecorrespondstoexactly one ��-value.Thismeansthatthegraphintersectsany verticallineatmostonce(eitheronceornotat all).Ifaverticallinecutsthegraphtwice,thegraphcontainstwopointswithdifferent ��-valuesbut thesame ��-value;thisviolatesthedefinitionofafunction.Thus,wehavethefollowingcriterion:

VerticalLineTest:Ifthereisaverticallinethatintersectsagraphinmorethanonepoint, thenthegraphdoesnotrepresentafunction.

Example6 InwhichofthegraphsinFigures1.2and1.3could �� beafunctionof ��?

150) �� ��

50)

Figure1.2: Sincenoverticallineintersectsthiscurveat morethanonepoint, �� couldbeafunctionof ��

Figure1.3: Sinceoneverticallineintersectsthiscurve atmorethanonepoint, �� isnotafunctionof ��

ChapterOneLINEARFUNCTIONSANDCHANGE

Solution ThegraphinFigure1.2couldrepresent �� asafunctionof �� becausenoverticallineintersectsthis curveinmorethanonepoint.ThegraphinFigure1.3doesnotrepresentafunctionbecausethe verticallineshownintersectsthecurveattwopoints.

Agraphfailstheverticallinetestifatleastoneverticallinecutsthegraphmorethanonce,as inFigure1.3.However,ifagraphrepresentsafunction,then every verticallinemustintersectthe graphatnomorethanonepoint.

ExercisesandProblemsforSection1.1

SkillRefresher

InExercisesS1–S4,simplifyeachexpression.

S1. �� + 1 2 �� S2. �� +0 07�� +0 02��

S3.

InExercisesS5–S8,findthevalueoftheexpressionsforthe givenvalueof �� and ��

S5. �� −5�� for �� = 1 2 , �� =−5

S6. 1−12�� + ��2 for �� =3

S7. 3 2− ��3 for �� =−1 S8. 4 1+1∕�� for �� =− 3 4

Exercises

InExercises1–2,writetherelationshipusingfunctionnotation (thatis, �� isafunctionof �� iswritten �� = �� (��)).

1. Numberofmolecules, ��,inagas,isafunctionofthe volumeofthegas, ��

2. Weight, ��,isafunctionofcaloricintake, �� .

InExercises3–6,labeltheaxesforasketchtoillustratethe givenstatement.

3. “Overthepastcenturywehaveseenchangesinthepopulation, �� (inmillions),ofthecity...”

4. “Sketchagraphofthecostofmanufacturing �� items...”

5. “Graphthepressure, �� ,ofagasasafunctionofitsvolume, ��,where �� isinpoundspersquareinchand �� isin cubicinches.”

6. “Graph �� intermsof ��...”

7. Figure1.4givesthedepthofthewateratMontaukPoint, NewYork,foradayinNovember.

(a) Howmanyhightidestookplaceonthisday?

(b) Howmanylowtidestookplaceonthisday?

(c) Howmuchtimeelapsedinbetweenhightides?

ThefiguresinExercisesS9–S10areparallelograms.Findthe coordinatesofthepoint ��

depthofwater(feet)

4812162024 time(hours)

Figure1.4

8. UsingTable1.4,graph �� = �� (�� ),thenumberofgallons ofpaintneededtocoverwallsofarea �� .Identifytheindependentanddependentvariables.

Table1.4

9. UseFigure1.5tofillinthemissingvalues: (a) �� (0)=? (b) �� (?)=0

15.(a) Youaregoingtograph �� = �� (��).Whichvariable goesonthehorizontalaxis?

(b) If 10= �� (−4),givethecoordinatesofapointonthe graphof ��

(c) If 6 isasolutionoftheequation �� (��)=1,givea pointonthegraphof ��

Figure1.5

10. UseTable1.5tofillinthemissingvalues.(Theremaybe morethanoneanswer.)

(a) �� (0)=? (b) �� (?)=0 (c) �� (1)=? (d) �� (?)=1

Table1.5

Exercises11–14useFigure1.6.

Figure1.6

11. Find �� (6 9)

12. Givethecoordinatesoftwopointsonthegraphof ��

13. Solve �� (��)=0 for �� 14. Solve �� (��)= �� (��) for ��

26. Attheendofasemester,students’mathgradesarelisted inatablewhichgiveseachstudent’sIDnumberintheleft columnandthestudent’sgradeintherightcolumn.Let �� representtheIDnumberand �� representthegrade. Whichquantity, �� or �� ,mustnecessarilybeafunction oftheother?

27. Aperson’sbloodsugarlevelataparticulartimeofthe dayispartiallydeterminedbythetimeofthemostrecent meal.Afterameal,bloodsugarlevelincreasesrapidly, thenslowlycomesbackdowntoanormallevel.Sketcha person’sbloodsugarlevelasafunctionoftimeoverthe

InExercises16–19arelationshipisgivenbetweentwoquantities.Arebothquantitiesfunctionsoftheotherone,orisone orneitherafunctionoftheother?Explain.

19. Thenumberofgallonsofgas, �� ,at$3pergallonandthe numberofpoundsofcoffee, �� ,at$10perpoundthatcan beboughtforatotalof$100.

InExercises20–25,couldthegraphrepresent �� asafunction of ��?

courseofaday.Labeltheaxestoindicatenormalblood sugarlevelandthetimeofeachmeal.

28. Whenaparachutistjumpsoutofaplane,thespeedofher fallincreasesuntilsheopensherparachute,atwhichtime herfallingspeedsuddenlydecreasesandstaysconstant untilshereachestheground.Sketchapossiblegraphof theheight �� oftheparachutistasafunctionoftime ��, fromthetimewhenshejumpsfromtheplanetothetime whenshereachestheground.

29. Abuzzardiscirclinghighoverheadwhenitspiessome roadkill.Itswoopsdown,lands,andeats.Laterittakes

ChapterOneLINEARFUNCTIONSANDCHANGE

offsluggishly,andresumescirclingoverhead,butata loweraltitude.Sketchapossiblegraphoftheheightof thebuzzardasafunctionoftime.

30. Table1.6givestheranking �� forthreedifferentnames— Hannah,Alexis,andMadison.Ofthethreenames,which wasmostpopularandwhichwasleastpopularin (a)1995? (b)2004?

Table1.6 Rankingofnames—Hannah( ��ℎ ),Alexis(���� ),andMadison (���� )—forgirlsbornbetween1995(�� =0)and 2004 (�� =9)2

(d) Starts10milesfromhomeandishalfwayhomeafter onehour.

(e) Starts5milesfromhomeandis10milesfromhome afteronehour.

31. Table1.6givesinformationaboutthepopularityofthe namesHannah,Madison,andAlexis.Describeinwords whatyouranswerstoparts(a)–(c)tellyouaboutthese names.

(a) Evaluate ���� (0)− ��ℎ (0)

(b) Evaluate ���� (9)− ��ℎ (9)

(c) Solve ���� (��) <���� (��)

32. Figure1.7showsthefuelconsumption(inmilespergallon,mpg)ofacartravelingatvariousspeeds(inmph).

(a) Howmuchgasisusedona300-miletripat40mph?

(b) Howmuchgasissavedbytraveling60mphinstead of70mphona200-miletrip?

(c) Accordingtothisgraph,whatisthemostfuelefficientspeedtotravel?Explain.

34. Figure1.8showsthemassofwaterinair,ingramsof waterperkilogramofair,asafunctionofairtemperature in ◦ C,fortwodifferentlevelsofrelativehumidity.

(a) Findthemassofwaterin1kgofairat 30◦ Cifthe relativehumidityis

(a)100% (b)50% (c)75%

(b) Howmuchwaterisinaroomcontaining300kgof airiftherelativehumidityis50%andthetemperatureis20◦ C?

(c) Thedensityofairisapproximately 1 2 kg/m 3 Ifthe relativehumidityinyourclassroomis50%andthe temperatureis20◦ C,estimatetheamountofwaterin theair.

amountofwater(ing)in1kgofair

33. Matcheachstoryaboutabikeridetooneofthegraphs (i)–(v),where �� representsdistancefromhomeand �� is timeinhourssincethestartoftheride.(Agraphmaybe usedmorethanonce.)

(a) Starts5milesfromhomeandrides5milesperhour awayfromhome.

(b) Starts5milesfromhomeandrides10milesperhour awayfromhome.

(c) Starts10milesfromhomeandarriveshomeonehour later.

2 DatafromtheSSAwebsiteatwww.ssa.gov,accessedJanuary12,2006.

Figure1.7
Figure1.8

35. Let �� (��) bethenumberofpeople,inmillions,whoown cellphones �� yearsafter1990.Explainthemeaningofthe followingstatements.

(a) �� (10)=100 3 (b) �� (�� )=20

(c) �� (20)= �� (d) �� = �� (��)

36.(a) Teninchesofsnowisequivalenttoaboutoneinch ofrain.3 Writeanequationfortheamountofprecipitation,measuredininchesofrain, �� = �� (��),asa functionofthenumberofinchesofsnow, ��

(b) Evaluateandinterpret �� (5)

(c) Find �� suchthat �� (��)=5 andinterpretyourresult.

37. An8-foot-tallcylindricalwatertankhasabaseofdiameter6feet.

(a) Howmuchwatercanthetankhold?

(b) Howmuchwaterisinthetankifthewateris5feet deep?

(c) Writeaformulaforthevolumeofwaterasafunction ofitsdepthinthetank.

38. Table1.7gives �� = �� (�� ),theamountofmoneyinbills ofdenomination �� circulatinginUScurrencyin2013.4 Forexample,therewere$74.5billionworth of$50bills incirculation.

(a) Find �� (100).Whatdoesthistellyouaboutmoney?

(b) Aretheremore$1billsor$5billsincirculation?

Table1.7

Denomination($) 1 2 5 10 20 50 100

Circulation($bn) 10 6 2 1 12 7 18 5 155 0 74 5 924 7

39. Table1.8showsthedailylowtemperatureforaone-week periodinNewYorkCityduringJuly.

(a) WhatwasthelowtemperatureonJuly19?

(b) Whenwasthelowtemperature73◦ F?

(c) Isthedailylowtemperatureafunctionofthedate?

(d) Isthedateafunctionofthedailylowtemperature?

Table1.8

Date 17 18 19 20 21 22 23

40. UsethedatafromTable1.3onpage5.

(a) Plot �� ontheverticalaxisand �� onthehorizontal axis.Usethisgraphtoexplainwhyyoubelievethat �� isafunctionof ��

(b) Plot �� ontheverticalaxisand �� onthehorizontal axis.Usethisgraphtoexplainwhyyoubelievethat �� isafunctionof ��

(c) Plot �� ontheverticalaxisand �� onthehorizontal axis.Fromthisgraphshowthat �� isnotafunction of ��.

(d) Plot �� ontheverticalaxisand �� onthehorizontal axis.Fromthisgraphshowthat �� isnotafunction of �� .

41. SinceRogerBannisterbrokethe4-minutemileonMay 6,1954,therecordhasbeenloweredbyoversixteenseconds.Table1.9showstheyearandtimes(asmin:sec)of newworldrecordsfortheone-milerun.5 (Officialrecords forthemileendedin1999.)

(a) Isthetimeafunctionoftheyear?Explain. (b) Istheyearafunctionofthetime?Explain. (c) Let ��(��) betheyearinwhichtheworldrecord, ��,was set.Explainwhatismeantbythestatement ��(3∶47.33)=1981.

(d) Evaluateandinterpret ��(3∶51.1).

Table1.9

1981 3:48.40 1957 3:57.2 1975 3:51.0 1981 3:47.33 1958 3:54.5 1975 3:49.4 1985 3:46.32 1962 3:54.4 1979 3:49.0 1993 3:44.39 1964

42. Thesalestaxonanitemis6%.Expressthetotalcost, �� , intermsofthepriceoftheitem, �� .

43. Apriceincreases 5% duetoinflationandisthenreduced 10% forasale.Expressthefinalpriceasafunctionofthe originalprice, ��

44. Writeaformulafortheareaofacircleasafunctionof itsradiusanddeterminethepercentincreaseinthearea iftheradiusisincreasedby 10%

45. Thereare �� malejob-applicantsatacertaincompanyand �� femaleapplicants.Supposethat 15% ofthemenareacceptedand 18% ofthewomenareaccepted.Writeanexpressionintermsof �� and �� representingeachofthefollowingquantities:

(a) Thetotalnumberofapplicantstothecompany.

(b) Thetotalnumberofapplicantsaccepted.

(c) Thepercentageofallapplicantsaccepted.

3 http://mo.water.usgs.gov/outreach/rain,accessedMay7,2006.

4 http://www.federalreserve.gov/paymentsystems/coin_currcircvalue.htm,accessedFebruary16,2014.

5 www.infoplease.com/ipsa/A0112924.html,accessedJanuary15,2006.

ChapterOneLINEARFUNCTIONSANDCHANGE

46. Achemicalcompanyspends$2milliontobuymachinerybeforeitstartsproducingchemicals.Thenitspends $0 5 milliononrawmaterialsforeachmillionlitersof chemicalproduced.

(a) Thenumberoflitersproducedrangesfrom0to5 million.Makeatableshowingtherelationshipbetweenthenumberofmillionlitersproduced, �� ,and thetotalcost, �� ,inmillionsofdollars,toproduce thatnumberofmillionliters.

(b) Findaformulathatexpresses �� asafunctionof ��

1.2 RATEOFCHANGE

47. Apersonleaveshomeandwalksduewestforatimeand thenwalksduenorth.

(a) Thepersonwalks10milesintotal.If �� represents the(variable)distancewestshewalks,and �� representsher(variable)distancefromhomeattheendof herwalk,is �� afunctionof ��?Whyorwhynot?

(b) Supposenowthat �� isthedistancethatshewalksin total.Is �� afunctionof ��?Whyorwhynot?

Theworldwideannualsalesofsmartphoneshaveincreasedeachyearfromwhentheywerefirst introduced.Tomeasurehowfastsalesincrease,wecalculatea rateofchange innumberofunits sold

Changeinunitssold Changeintime

Duetotherisingpopularityofsmartphones,annualsalesofregularcellphones,or featurephones, havebeendeclining.SeeTable1.10.

Letuscalculatetherateofchangeofsmartphoneandfeaturephonesalesbetween2010and 2013.Table1.10gives

Averagerateofchangeof smartphonesalesfrom 2010 to 2013 = Changeinsales Changeintime = 968−301 2013−2010 ≈222 3 mn/ year.

Thus,thenumberofsmartphonessoldhasincreasedonaverageby 222 3 millionunitsperyear between 2010 and 2013.SeeFigure1.9.Similarly,Table1.10gives

Averagerateofchangeoffeaturephone salesfrom 2010 to 2013 = Changeinsales Changeintime = 838−1079 2013−2010 ≈−80 3 mn/ year.

Thus,thenumberoffeaturephonessoldhasdecreasedonaverageby 80 .3 millionunitsperyear between2010and2013.SeeFigure1.10.

Table1.10 Worldwideannualsalesofsmartphonesandfeaturephones6

Figure1.9: Smartphonesales

Figure1.10: Featurephonesales 6 AccessedFeb.142014,www.fiercewireless.com/europe/story/gartner-smartphones-outsell-feature-phones-2013/201402-13andwww.fiercewireless.com/europe/special-reports/analyzing-worlds-14-biggest-handset-makers-q2-2013

1.2RATEOFCHANGE 11

RateofChangeofaFunction

Therateofchangeofsalesisanexampleoftherateofchangeofafunction.Ingeneral,if �� = �� (��), wewrite �� forachangein �� and �� forachangein ��.Wedefine:7

The averagerateofchange,or rateofchange,of �� withrespectto �� overanintervalis

Averagerateofchange overaninterval = Changein �� Changein �� =

Theaveragerateofchangeofthefunction �� = �� (��) overanintervaltellsushowmuch �� changes,onaverage,foreachunitchangein �� withinthatinterval.Onsomepartsoftheinterval, �� maybechangingrapidly,whileonotherparts �� maybechangingslowly.Theaveragerateofchange evensoutthesevariations.

IncreasingandDecreasingFunctions

Inthepreviousexample,theaveragerateofchangeofsmartphonesalesispositiveontheinterval from2010to2013sincethenumberofsmartphonessoldincreasedoverthisinterval.Similarly,the averagerateofchangeoffeaturephonesalesisnegativeonthesameintervalsincethenumberof featurephonessolddecreasedoverthisinterval.Theannualsalesofsmartphonesisanexampleof an increasingfunction andtheannualsalesoffeaturephonesisanexampleofa decreasingfunction Ingeneralwesaythefollowing:

If �� = �� (��) for �� intheinterval �� ≤ �� ≤ ��,

• �� isan increasingfunction ifthevaluesof �� increaseas �� increasesinthisinterval.

• �� isa decreasingfunction ifthevaluesof �� decreaseas �� increasesinthisinterval.

Lookingatsmartphonesales,weseethatanincreasingfunctionhasapositiverateofchange. Fromthefeaturephonesales,weseethatadecreasingfunctionhasanegativerateofchange.In general:

If �� = �� (��),

•If �� isanincreasingfunction,thentheaveragerateofchangeof �� withrespectto �� is positiveoneveryinterval.

•If �� isadecreasingfunction,thentheaveragerateofchangeof �� withrespectto �� is negativeoneveryinterval.

Example1 Thefunction �� = �� (��)= ����2 givesthearea, �� ,ofacircleasafunctionofitsradius, ��.Graph �� . Explainhowthefactthat �� isanincreasingfunctioncanbeseenonthegraph.

Solution Theareaincreasesastheradiusincreases,so �� = �� (��) isanincreasingfunction.Wecanseethisin Figure1.11becausethegraphclimbsaswemovefromlefttorightandtheaveragerateofchange, Δ�� ∕Δ��,ispositiveoneveryinterval.

7 TheGreekletter Δ,delta,isoftenusedinmathematicstorepresentchange.Inthisbook,weuserateofchangetomean averagerateofchangeacrossaninterval.Incalculus,rateofchangemeanssomethingcalledinstantaneousrateofchange.

ChapterOneLINEARFUNCTIONSANDCHANGE

Highervalue of �� resultsin highervalue of ��

Lowervalue of �� resultsin lowervalue of ��

Example2

Solution

Figure1.11: Thegraphofanincreasingfunction, �� = �� (��),riseswhenreadfromlefttoright

Carbon-14isaradioactiveelementthatexistsnaturallyintheatmosphereandisabsorbedbyliving organisms.Whenanorganismdies,thecarbon-14presentatdeathbeginstodecay.Let �� = �� (��) representthequantityofcarbon-14(inmicrograms, �� g)inatree �� yearsafteritsdeath.SeeTable1.11. Explainwhyweexpect �� tobeadecreasingfunctionof �� andhowthegraphdisplaysthis.

Table1.11 Quantityofcarbon-14asafunctionoftime

,time(years)

��,quantityofcarbon-14(�� g) 200 177 157 139 123 109

Sincetheamountofcarbon-14isdecayingovertime, �� isadecreasingfunction.InFigure1.12,the graphfallsaswemovefromlefttorightandtheaveragerateofchangeinthelevelofcarbon-14 withrespecttotime, Δ��∕Δ��,isnegativeoneveryinterval.

,carbon-14( �� g)

Lowervalueof �� results inhighervalueof ��

Highervalueof �� results inlowervalueof ��

,time(years)

Figure1.12: Thegraphofadecreasingfunction, �� = �� (��),fallswhenreadfromlefttoright

Ingeneral,wecanidentifyanincreasingordecreasingfunctionfromitsgraphasfollows:

•Thegraphofanincreasingfunctionriseswhenreadfromlefttoright.

•Thegraphofadecreasingfunctionfallswhenreadfromlefttoright.

Manyfunctionshavesomeintervalsonwhichtheyareincreasingandotherintervalsonwhich theyaredecreasing.Theseintervalscanoftenbeidentifiedfromthegraph.

Example3 OnwhatintervalsisthefunctiongraphedinFigure1.13increasing?Decreasing?

Solution

Figure1.13: Graphofafunctionthatisincreasingonsomeintervalsanddecreasingonothers

Thefunctionappearstobeincreasingforvaluesof �� between −3 and −2,for �� between 0 and 1, andfor �� between 2 and 3.Thefunctionappearstobedecreasingfor �� between −2 and 0 andfor �� between 1 and 2.Usinginequalities,wesaythat �� isincreasingfor −3 <��< −2,for 0 <��< 1, andfor 2 <��< 3.Similarly, �� isdecreasingfor −2 <��< 0 and 1 <��< 2

FunctionNotationfortheAverageRateofChange

Supposewewanttofindtheaveragerateofchangeofafunction ��

Onthisinterval,thechangein �� isgivenby

overtheinterval

At �� = ��,thevalueof �� is �� (��),andat �� = ��,thevalueof �� is �� (��).Therefore,thechangein �� is givenby

Usingfunctionnotation,weexpresstheaveragerateofchangeasfollows:

Averagerateofchangeof

overtheinterval

InFigure1.14,noticethattheaveragerateofchangeisgivenbytheratiooftherise, �� (��)− �� (��), totherun, �� ��.Thisratioisalsocalledthe slope ofthedashedlinesegment.8 Inthefuture,wemaydroptheword“average”andtalkabouttherateofchangeoveraninterval.

Averagerateofchange = Slope

Figure1.14: TheaveragerateofchangeistheratioRise/Run 8 SeeSection1.3forfurtherdiscussionofslope.

ChapterOneLINEARFUNCTIONSANDCHANGE

Example4

Inpreviousexampleswecalculatedtheaveragerateofchangefromdata.Wenowcalculate averageratesofchangeforfunctionsgivenbyformulas.

Calculatetheaverageratesofchangeofthefunction �� (��)= �� 2 between �� =1 and �� =3 and between �� =−2 and �� =1.Showyourresultsonagraph.

Solution Between �� =1 and �� =3,wehave

Averagerateofchangeof �� (��) overtheinterval 1 ≤ �� ≤ 3 = Changein �� (��)

Changein �� = �� (3)− �� (1) 3−1 = 32 −12 3−1 = 9−1 2 =4

Between �� =−2 and �� =1,wehave

Averagerateofchangeof �� (��) overtheinterval −2 ≤ �� ≤ 1 = Changein �� (��)

Changein �� = �� (1)− �� (−2) 1−(−2) = 12 −(−2)2 1−(−2) = 1−4 3 =−1

Theaveragerateofchangebetween �� =1 and �� =3 ispositivebecause �� (��) isincreasingon thisinterval.SeeFigure1.15.However,ontheintervalfrom �� =−2 and �� =1,thefunctionispartly decreasingandpartlyincreasing.Theaveragerate ofchangeonthisintervalisnegativebecausethe decreaseontheintervalislargerthantheincrease.

(−2, 4) (1, 1) (3, 9) �� (��)= ��2

Slope =−1 ✛ Slope =4 ��

Figure1.15: Averagerateofchangeof �� (��) onanintervalistheslopeofthedashedlineonthatinterval

ExercisesandProblemsforSection1.2

SkillRefresher

InExercisesS1–S10,simplifyeachexpression.

S1. 4−6 3−2

S2. 1−3 22 −(−3)2

S3. −3−(−9) −1−2 S4. (1−32 )−(1−42 ) 3−4

S5. 1 2 −(−4)2 ( 1 2 −(52 )) −4−5

S6. 2(�� + �� )−3(�� ��)

S7. ��2 −(2�� + �� )2

S8. 4��2 −(�� ��)2

S9. ��2 3 4 (��2 3 4 ) �� ��

S10. 2(�� + ℎ)2 −2��2 (�� + ℎ)− ��

Exercises

InExercises1–4,onwhatintervalsisthefunctionincreasing? Decreasing?

9. Figure1.16showsdistancetraveledasafunctionoftime.

(a) Find �� and �� between: (i) �� =2 and �� =5 (ii) �� =0 5 and �� =2 5 (iii) �� =1 5 and �� =3

(b) Computetherateofchange, Δ�� ∕Δ��,overeachof theintervalsinpart(a),andinterpretitsmeaning.

5. Table1.10onpage10givestheannualsales(inmillions) ofsmartphonesandfeaturephones.Whatwastheaverage rateofchangeofannualsalesofeachofthembetween (a)2010and2012? (b)2012and2013? (c)Interprettheseresultsintermsofsales.

6. Table1.10onpage10showsthatfeaturephonesalesare afunctionofsmartphonesales.Isthisfunctionincreasing ordecreasing?

7. In2007,youhave40songsinyourfavoriteiTunes playlist.In2010,youhave120songs.In2014,youhave 40.WhatistheaveragerateofchangeperyearinthenumberofsongsinyourfavoriteiTunesplaylistbetween (a)2007and2010? (b)2010and2014? (c)2007and2014?

8. Table1.12givesthepopulationsoftwocities(inthousands)overa 17-yearperiod.

(a) Findtheaveragerateofchangeofeachpopulation onthefollowingintervals: (i)1996to2006(ii)1996to2013 (iii)2001to2013

(b) Whatdoyounoticeabouttheaveragerateofchange ofeachpopulation?Explainwhattheaveragerateof changetellsyouabouteachpopulation.

Table1.12

Figure1.16

Exercises10–14useFigure1.17.

Figure1.17

10. Findtheaveragerateofchangeof �� for 2.2 ≤ �� ≤ 6.1.

11. Givetwodifferentintervalsonwhich Δ�� (��)∕Δ�� =0

12. Whatistheaveragerateofchangeof �� between �� =2 2 and �� =6 1?

13. Whatistherelationbetweentheaveragerateofchange of �� andtheaveragerateofchangeof �� between �� =2 2 and �� =6 1?

14. Istherateofchangeof �� positiveornegativeonthefollowingintervals?

(a) 2 2 ≤ �� ≤ 4 (b) 5 ≤ �� ≤ 6

15. If �� isadecreasingfunction,whatcanyousayabout �� (−2) comparedto �� (2)?

16. If �� isanincreasingfunction,whatcanyousayabout �� (3)− �� (−1)?

ChapterOneLINEARFUNCTIONSANDCHANGE

Problems

17. Figure1.18showsthepercentofthesideofthemoontowardtheearthilluminatedbythesunatdifferenttimes duringtheyear2008.Usethefiguretoanswerthefollowingquestions.

(a) Givethecoordinatesofthepoints ��, �� , �� , �� , ��

(b) Plotthepoint �� =(15, 60) and �� =(60, 15).Which pointisonthegraph?

(c) Duringwhichtimeintervalsisthefunctionincreasing?

(d) Duringwhichtimeintervalsisthefunctiondecreasing?

% offaceofmoon

: Moonphases

18. Figure1.19givesthepopulationoftwodifferenttowns overa 50-yearperiodoftime.

(a) Whichtownstarts(inyear �� =0)withthemostpeople?

(b) Whichtownisgrowingfasteroverthese 50 years?

19.(a) Whatistheaveragerateofchangeof �� (��)=2�� −3 betweenthepoints (−2, −7) and (3, 3)?

(b) Thefunction �� iseitherincreasingordecreasingeverywhere.Explainhowyouranswertopart(a)tells youwhich.

(c) Graphthefunction.

20.(a) Let �� (��)=16− ��2 .Computeeachofthefollowing expressions,andinterpreteachasanaveragerateof change.

(i) �� (2)− �� (0) 2−0 (ii) �� (4)− �� (2) 4−2 (iii) �� (4)− �� (0) 4−0

(b) Graph �� (��).Illustrateeachratioinpart(a)bysketchingthelinesegmentwiththegivenslope.Over whichintervalistheaveragerateofdecreasethe greatest?

21. Imagineyouconstructedalistoftheworldrecordtimes foraparticularevent—suchasthemilefootrace,orthe 100-meterfreestyleswimmingrace—intermsofwhen theywereestablished.Istheworldrecordtimeafunction ofthedatewhenitwasestablished?Ifso,isthisfunction increasingordecreasing?Explain.Couldaworldrecord beestablishedtwiceinthesameyear?Istheworldrecord timeafunctionoftheyearitwasestablished?

22. Thefunction �� = �� (��) givesthepopulationofatown, inthousands,after �� years.Agraphof �� isgiveninFigure1.20.

(a) Findtheaveragerateofchangeofthepopulationof thetownduringthefirst 10 years.

(b) Doesthepopulationofthetowngrowmorebetween �� =5 and �� =10 years,orbetween �� =15 and �� =30 years?Explain.

(c) Doesthepopulationofthetowngrowfasterbetween �� =5 and �� =10 years,orbetween �� =15 and �� =30 years?Explain.

Figure1.18

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.