FromBiofiltrationtoPromising OptionsinGaseousFluxes
Biotreatment
RecentDevelopments,NewTrends, Advances,andOpportunities
Editedby GabrielaSoreanu
DepartmentofEnvironmentalEngineeringandManagement, “CristoforSimionescu”FacultyofChemicalEngineeringandEnvironmental Protection,“GheorgheAsachi”TechnicalUniversityofIasi,Iasi,Romania
E ´ ricDumont UMRCNRS6144GEPEA,DSEEIMTAtlantique,CampusdeNantes, UniversityofNantes,Nantes,France
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2020ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationor methodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomthey haveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.
BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress
ISBN:978-0-12-819064-7
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
AcquisitionsEditor: AnitaKoch
EditorialProjectManager: LiEmerald
ProductionProjectManager: KiruthikaGovindaraju
CoverDesigner: VictoriaPearson
TypesetbyMPSLimited,Chennai,India
Listofcontributors.........................................................................................xvii
Forewordfromtheeditors................................................................................xxi
Acknowledgmentsfromtheeditors....................................................................xxiii
Preface...........................................................................................................xxv
MarcDeshussesandChristianKennes
Prologue:Ethicalchallengesposedbyusingemergingtechnologiesand geneticallymodifiedorganismstoremovegaseouspollutants...............................xxvii
DanielAlanVallero Part1Biologicaltreatmentofgaseousstreams:attached
CarmenGabaldo´n,PauSan-ValeroandGuillermoQuijano
1.3.1Constraintsandlimitationsofconventionalbiotechnologies
1.3.2Technologiesforovercomingsubstratetoxicityandmasstransfer
1.3.3Innovativesystemsforovercomingcloggingissues
KrzysztofBarbusi
2.2.1Typesofbiofiltersandprincipleofoperation
2.2.2Characteristicsofbiofilterbed
2.2.3Factorsaffectingmicrobialactivity
2.2.4Applicationsofbiofilters...........................................................................34
2.3Biotricklingfiltertechnology
2.3.1Biotricklingfilterequipmentandoperatingprinciple
2.5.2Two-phasepartitioningreactors
3.3Analyticalmodelsusedforthedeterminationofbiofilterperformances
3.3.1ModifiedMichaelis
3.3.2RapidprocedureforECmax
Chapter4:Porousmediamodelsforpackedbedcharacterization ...........................71 SoniaWoudbergandE ´ ricDumont
4.1Introduction .........................................................................................................71
4.2Empiricalmodels .................................................................................................73
4.2.1Ergunequation ..........................................................................................73
4.2.2ModelofCunninghametal.(1991) ..........................................................74
4.2.3ModelofMacdonaldetal.(1979) .............................................................75
4.2.4ModelofDelhome ´ nieetal.(2003) ...........................................................75
4.2.5ModelofIliutaandLarachi(2004) ...........................................................76
4.2.6ModelofMorgan-Sagastumeetal.(2001) ................................................76
4.2.7ModelofAndreasenandPoulsen(2013) ..................................................78
4.2.8ModelofAndreasenetal.(2012) .............................................................79
4.3Analyticalmodel(s)..............................................................................................81
4.3.1ModelofWoudbergetal.(2019) ..............................................................81
4.4Validationandcomparisonofmodelingprocedures.............................................82
4.5Conclusionandfurtherrecommendationformodelimproving andapplication.....................................................................................................86
5.1.1Scopeoflifecycleassessmentanditsapplicationto environmentalprocesses ...........................................................................89
5.1.2Environmentalandhealthburdensassociatedtogaseous emissionsusuallytreatedbybiofiltration ..................................................91
5.2Principlesoflifecycleanalysis ............................................................................91
5.2.1Goalsandscopedefinition
5.2.2Inventoryanalysis
5.2.3Impactassessment .....................................................................................93
5.2.4Interpretation.............................................................................................95
5.2.5Costassessment ........................................................................................95
5.3Applyinglifecycleassessmenttobiofiltration.....................................................95
5.3.1Lifecycleassessmentofbiotricklingfiltersfor biogasdesulfurization ...............................................................................96
5.4Gaps,limitations,andneeds ..............................................................................103
5.5Conclusion .........................................................................................................104
Part1.2Casestudies/Illustrativedesignaspects
Chapter6:High-performancebiofiltersforairtreatmentapplications
ZarookShareefdeen
6.1Anoverviewofbiofiltertechnology ..................................................................111
6.2Operationalandperformanceparameters
6.2.1Packingmediaselection ..........................................................................111
6.2.2Moisturecontent .....................................................................................115
6.2.3Temperature ............................................................................................115
6.2.4pH ...........................................................................................................116
6.2.5Nutrients .................................................................................................116
6.2.6Oxygen ...................................................................................................116
6.2.7Biomassgrowthandpressuredrop ..........................................................117
6.2.8Biofilterperformanceindicators ..............................................................117
6.3Recentbiofilterapplicationswithconventionalandinnovativepacking materials ............................................................................................................117
6.3.1Woodchip(NH3 removal;industry:animalhouseemissions) ..............118
6.3.2Compost(tolueneremoval;industry:petroleumrefineryemissions) .....118
6.3.3Compost(biodehydrationstage,curingstageofcompost; NH3 andH2Sremoval) .........................................................................118
6.3.4Compostandwoodendowels(dimethylsulfide,hexane, andtolueneremoval).............................................................................119
6.3.5Woodcharcoal(xyleneremoval) ..........................................................119
6.3.6Compostandsandmixture(H2Sremoval;industry:composting ofmunicipalsolidwaste) ......................................................................119
6.3.7Compost ceramicmixture(tolueneandxyleneremoval) .....................120
6.3.8Compost lavarockmixture(n-butanolremoval) .................................120
6.3.9Compostandbiochar(H2Sremoval) .....................................................120
6.3.10Expandedschist(highlevelH2Sremoval) ............................................120
6.3.11Cellularconcretewaste(H2Sremoval) .................................................121
6.3.12Pinebark,perliteandcompost,andpolyurethanefoam (removalofmethane) ............................................................................121
6.3.13Rockwool(removalofcompostgas) .....................................................121
6.3.14Loofasponge(removalofcumene) .......................................................122
6.4Advancesinbiofiltrationprocess .......................................................................122
6.4.1Applicationofhybridpackingmedia ......................................................122
6.4.2Applicationofcometabolismtotreatpollutants(CH4 andethanol) ........122
6.4.3Synergyprocess:biofilterandadsorption................................................123
6.4.4Applicationofozoneforcontrolofexcessivebiomassgrowth ...............123
6.4.5Applicationofnonthermalplasma ..........................................................124
6.4.6Changesinairflowpatterns:atubularbiofilter
6.5Predictivemathematicalmodels .........................................................................124
6.6Conclusionandfuturedirection .........................................................................125
Chapter7:Biofiltrationofvolatileorganiccompoundsandpolycyclic aromatichydrocarbons
AlbertoVergara-Ferna´ndez,FelipeScottandPatricioMoreno-Casas
7.1Introduction
7.2Researchonvolatileorganiccompoundbiofiltration
7.3Researchonpolycyclicaromatichydrocarbonbiofiltration ................................133
7.4Operationalconsiderationsinbiofiltersforvolatileorganiccompoundsand polycyclicaromatichydrocarbonstreatment ......................................................134
7.4.1Natureandconcentrationofthegaseouspollutants
7.4.2Microorganisms ......................................................................................137
7.4.3Packingmedia.........................................................................................138
7.4.4Moisturecontent
7.4.5Temperature
Chapter8:BiogastreatmentforH2S,CO2,andothercontaminantsremoval
RoxanaA ´ ngelesTorres,DavidMarı´n,Marı´adelRosarioRodero, CeliaPascual,ArmandoGonza´lez-Sanchez,IgnaciodeGodosCrespo, RaquelLebreroandRau´lMun˜ozTorre
8.1Introductiontobiogasandbiomethaneproduction:aglobalperspective ...........153
8.2BiologicalCO2 removaltechnologies ................................................................156
8.2.1HydrogenotrophicCO2
8.2.2PhotosyntheticCO2
8.3BiologicalH2Sremovaltechnologies .................................................................165
8.3.1Externaldesulfurization
8.3.2ChemotrophicmicrobialconversionofH2Stoelementalsulfur
8.3.3Aqueous-ironprocesseswithbacterialregeneration ................................167
8.3.4 Insitudesulfurization .............................................................................168
8.4Siloxaneremoval
8.5Conclusion
ZarookShareefdeen
9.1Anoverviewofbiofilterdesign
9.2Airstreamcharacterizations ...............................................................................177
9.3Pretreatmentofcontaminatedair .......................................................................178
9.4Limitationsofbiofiltertechnology.....................................................................180
9.5Operationandmaintenanceofindustrialbiofilters
9.6Biofiltermodelsinfull-scaledesign ..................................................................181
9.7Industrialcasestudies ........................................................................................182
9.7.1Animalfeedingoperations,Morris,MN,UnitedStates ...........................182
9.7.2Emissionsfromadairyfarmeffluentpond,MasseyUniversity, NewZealand ...........................................................................................183
9.7.3Bioaerosolremovalfromwasteairstreamsatamaterials recoveryfacility,Leeds,UnitedKingdom ...............................................184
9.7.4OdorandH2Sremovalfromasludgestoragetanksand pumpingstations,Niederrad,Frankfurt,Germany ...................................186
9.7.5OdorandH2Sremovalfromtheclarifierwastewater treatmentplant,Cambridge,ON,Canada ................................................186
9.7.6Odorandvolatileorganiccompoundremovalfromheadworks, LosAngeles,CA,UnitedStates ..............................................................187
9.7.7OdorremovalfromarenderingplantinsouthernBrazil .........................188
9.7.8Dispersionofdimethylsulfidefromabiofilterata meatrenderingfacility,Hickson,ON,Canada ........................................189
9.8Conclusionandfutureperspectives ....................................................................191
Ce´cileHortandAngelaLuengas
10.1Indoorairpollution:particularities
10.2Pollutionsourcesofindoorair
10.4Regulationsconcerningindoorairquality
10.5.2Conventionalmicrobial/fungal basedbioreactors
10.5.3Botanicalbiofiltrationbypottedplants(passivebiofiltration)
11.2.9Othervolatileorganiccompounds .....................................................227
11.2.10Excretion ...........................................................................................228
11.3Factorsaffectingvolatileorganiccompoundremovalbyplants .......................228
11.3.1Plantfactors:photosyntheticsystem....................................................228
11.3.2Light ...................................................................................................228 11.3.3Temperatureandrelativehumidity......................................................229
11.4Degradationofvolatileorganiccompoundbyplant-associated microorganismsinthesubstrate .......................................................................230
11.5Particulatemattercaptureandretentionbyplants ............................................231
11.5.1Environmentalfactorsinfluencingtheefficiencyofplants forparticulatematterremoval .............................................................233
11.6RemovalofCO2 andregulationofrelativehumidityandtemperature
11.8Advancementsinairphytoremediation:physiologicaland molecularaspects .............................................................................................236
11.8.1Phytohormones
11.8.2Effectsatthegeneticlevel
Chapter12:Plant
PeterJ.Irga,CharlotteC.Shagol,KwangJinKim,ThomasPettit andFraserR.Torpy
12.1Introduction:theplantmicrobiome ..................................................................245
12.2Plant microbeinteractionsinvolatileorganiccompoundremoval
12.2.1Phyllosphere........................................................................................247
12.2.2Rhizosphere
12.3Exploitingplant microbeinteractionstoenhanceairphytoremediation..........254
12.4Bioparticleemissionfrombotanicalsystems ...................................................255
12.5Conclusionandfuturedirections ......................................................................257
Chapter13:Technologicalaspectsoftheremovalofairpollutantsby phytosystems ..................................................................................263
ThomasPettit,PeterJ.Irga,FraserR.Torpy,CharlotteC.Shagol andKwangJinKim
13.1Introductionanddevelopmentofphytosystemtechnology
13.2Airflowrate,orientation,anddirection
13.3Moistureandirrigation ....................................................................................268
13.4Botanicalcomponentanditspotentialinfluenceonairfiltration
13.5Growthmediaanditspotentialinfluenceonairfiltration ................................272
13.5.1Physicalcharacteristics .......................................................................273
13.5.2Chemicalcharacteristics ......................................................................274
13.5.3Biologicalcharacteristicsandbioaerosolscontrol ...............................276
13.6Futuredirections,knowledgegaps,andexperimentalconsistencies
13.7Conclusion
Chapter14:Phytosystemsimplementation:examplesofapplication
PeterJ.Irga,ThomasPettit,CharlotteC.Shagol,KwangJinKim andFraserR.Torpy
14.1Introduction .....................................................................................................283 14.2Activephytosystemcasestudies
14.2.1Nedlawphytosystem(commercial)
14.2.2Dynamicbotanicalairfiltrationsystem(prototype) ............................286
14.2.3KingMongkut’sUniversityofTechnologybotanicalbiofilter phytosystem(prototype) ......................................................................287
14.2.4NaturventionNaavaOne(commercial) ...............................................288
14.2.5BravolinearInternetofThingsactivegreenwall(commercial) ...........290
14.2.6JunglefyBreathingWallphytosystem(commercial) ...........................290
14.2.7OutdoorinfrastructureapplicationsoftheBreathingWall phytosystem ........................................................................................294
14.2.8ManlyValeB-Linecarpark,ManlyValeAustralia ............................294
14.3Conclusion:identificationofknowledgegapsandrecommendations forfuturework .................................................................................................296
Part2.2Microalgae-basedapproaches ................................................................301
Chapter15:Microalgaewithpotentialinairtreatment .......................................303 MarianaDiaconu
15.1Introduction .....................................................................................................303
15.2Microalgaeasafeedstockinenvironmentalremediation:premisesforair treatment ..........................................................................................................305
15.2.1Microalgaecells:morphology,structure,andphysiology
15.2.2Themainspeciesofalgaeusedinenvironmentalremediation: CO2 mitigationandairrevitalization...................................................311
15.3Biomasscompositionofmicroalgae .................................................................315
15.4Cultivationconditionsformicroalgae ..............................................................317
15.5Microalgalapplicationsinenvironment:airpollutionmitigation
15.6Conclusion .......................................................................................................320
Chapter16:Microalgaephotobioreactorsforgaseouscontaminantsremoval
JuanCristo´balGarcı´aCan˜edo
16.1Introduction
16.2Biologicalprocessofcarbonfixationinphotosyntheticorganisms: ageneralapproach ...........................................................................................328
16.2.1Lightreactions ....................................................................................328
16.2.2Darkreactions .....................................................................................330
16.2.3OtherCarbondioxideconcentrationmechanisms
16.3Photobioreactordesignsandlayouts:addressingcarbondioxide removalandbiomassproductivity....................................................................334
16.4Carbondioxidefixationinthepresenceofothergases ....................................340 16.5Conclusion
Chapter17:Microalgae-basedbiomassproductionforcontrol ofairpollutants ..............................................................................345 ArumuganainarSureshandSolomonBenor
17.3Removalofgaspollutantswithbiosystems
17.4Whymicroalgaeforgaspollutantsremoval?
17.5MicroalgaebiomassproductionusingCO2
17.6MicroalgaebiomassproductionusingNOx
17.7MicroalgaebiomassproductionusingSOx
17.8MicroalgaebiomassproductionusingNH3 andH2S
17.9Factorsinfluenceinmicroalgaebiomassproductionusing gaspollutants
17.10Cultivationsystemformicroalgaebiomassproductionusing gaspollutants .................................................................................................360
17.11Microalgaeculturesystemsforindoorgaseouspollutants
Chapter18:Carbondioxidecapturefromcarbondioxide
Fe´lixGonzaloIbrahim,Rau´lMunozTorre,BernardoLlamasMoya andIgnaciodeGodosCrespo
18.1Introduction
18.4Microalgaeculturemethodsusedforcarbondioxidecapture
18.4.1Openraceways
18.4.2Enclosedphotobioreactors
Chapter19:Amodelmicroalgaforaddressingairtreatmentinspacecrafts
GabrielaSoreanu,IgorCretescu,MarianaDiaconu,MariaIgnat, ValeriaHarabagiu,CorneliuCojocaruandPetrisorSamoila
19.2Aspectsconcerningairpollutionissuesinspacecraftcabins
19.2.1Aircontaminantsinspacecrafts...........................................................398
19.2.2Overcomingairpollutioninspacecrafts ..............................................399
19.3Microalgae-basedprocess:afeaturedoptionforairtreatment .........................400
19.3.1Microalgaeairtreatmentandcirculareconomycontext ......................400
19.3.2 ArthrospiraPlatensis—amicroalgaecandidateforbiological lifesupportsystems.............................................................................406
19.4Emphasison Arthrospiraplatensis asamicroalgamodelforair treatmentinspacecrafts....................................................................................408
19.4.1Potentialof Arthrospiraplatensis intheremovalofspecificair contaminants .......................................................................................408
19.4.2 Arthrospiraplatensis premisesforminicirculareconomy inspace ...............................................................................................409
19.5Conclusionandperspectives ............................................................................414 Acknowledgment .......................................................................................................414
Chapter20:Microalgaeforcombinedairrevitalizationandbiomass productionforspaceapplications .....................................................419
GiselaDetrell,HaraldHelisch,JochenKeppler,JohannesMartin andNorbertHenn
Nomenclature .............................................................................................................419
20.1Biological-basedsystemsforfuturehumanspaceflightmissions .....................420
20.1.1Futuredestinations ..............................................................................420
20.1.2Bioregenerativesystems ......................................................................421
20.2Microalgaeforspaceapplications ....................................................................421
20.2.1MicroalgaeresearchonEarthfacilities ...............................................423
20.2.2Microalgaeresearchinspace ..............................................................423
20.2.3 Chlorellavulgaris—arobustcellwithgreatpotentialforspace application ..........................................................................................424
20.3MicroalgaeaspartofaLifeSupportSystem ...................................................425
20.3.1Biologicalchallenges ..........................................................................426
20.3.2Technicalchallenges ...........................................................................428
20.4Aphotobioreactorspaceflightexperimentasanexample .................................433
20.4.1PBR@LSR—ThehybridapproachofaLifeSupportSystem .............434
20.4.2Experimentflighthardware .................................................................434
20.4.3Theexperimentalrun ..........................................................................437
20.5Conclusion,futurequestions,andperspectives ................................................439 References .................................................................................................................441
ListofContributors
RoxanaA ´ ngelesTorres DepartmentofChemicalEngineeringandEnvironmentalTechnology, SchoolofIndustrialEngineering,UniversityofValladolid,Valladolid,Spain;InstituteofSustainable Processes,UniversityofValladolid,Valladolid,Spain
KrzysztofBarbusi ´ nski InstituteofWaterandWastewaterEngineering,SilesianUniversityof Technology,Gliwice,Poland
SolomonBenor DepartmentofBiotechnology,CollegeofBiologicalandChemicalEngineering, AddisAbabaScienceandTechnologyUniversity,AddisAbaba,Ethiopia;Research,Community Service,TechnologyTransferandTUILDirectorate,MinistryofScienceandHigherEducation, AddisAbaba,Ethiopia
CorneliuCojocaru “PetruPoni”InstituteofMacromolecularChemistryIasi Romanian Academy,Iasi,Romania
JoanColo ´ n BETATechCenter(TECNIONetwork),UniversityofVic-CentralUniversityof Catalonia,Vic,Spain
IgorCretescu DepartmentofEnvironmentalEngineeringandManagement,“Cristofor Simionescu”FacultyofChemicalEngineeringandEnvironmentalProtection,“GheorgheAsachi” TechnicalUniversityofIasi,Iasi,Romania
IgnaciodeGodosCrespo UniversityofValladolid,SchoolofIndustrialEngineering,Department ofChemicalEngineeringandEnvironmentalTechnology,Valladolid,Spain;SchoolofForestry, AgronomicandBioenergyIndustryEngineering(EiFAB),Soria,Spain;UniversityofValladolid, InstituteforSustainableProcesses,Valladolid,Spain
GiselaDetrell InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart,Germany
MarianaDiaconu DepartmentofEnvironmentalEngineeringandManagement,“Cristofor Simionescu”FacultyofChemicalEngineeringandEnvironmentalProtection,“GheorgheAsachi” TechnicalUniversityofIasi,Iasi,Romania
E ´ ricDumont UniversityofNantes,UMRCNRS6144GEPEA,IMT-Atlantique,Nantes,France
CarmenGabaldo ´ n UniversitatdeVale ` ncia,ResearchGroupGI2AM,DepartmentofChemical Engineering,Av.delaUniversitats/n,Burjassot,Spain
DavidGabriel GENOCOVResearchGroup,DepartmentofChemical,Biologicaland EnvironmentalEngineering,AutonomousUniversityofBarcelona,Barcelona,Spain
JuanCristo ´ balGarcı´aCan ˜ edo BioproductosNNResearchandDevelopmentofNaturalProducts, Culiaca ´ n,Sinaloa,Me ´ xico
ArmandoGonza ´ lez-Sanchez EngineeringInstitute,NationalAutonomousUniversityofMexico, SchoolCircuit,UniversityCity,MexicoCity,Mexico
ValeriaHarabagiu “PetruPoni”InstituteofMacromolecularChemistryIasi Romanian Academy,Iasi,Romania
HaraldHelisch InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart,Germany
NorbertHenn InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart,Germany
Ce ´ cileHort UniversityofPau&Paysdel’Adour/E2SUPPA,Thermal,EnergyandProcess Laboratory-IPRA,PauCedex,France
Fe ´ lixGonzaloIbrahim UniversityofValladolid,SchoolofIndustrialEngineering,Departmentof ChemicalEngineeringandEnvironmentalTechnology,Valladolid,Spain;SchoolofForestry, AgronomicandBioenergyIndustryEngineering(EiFAB),Soria,Spain;UniversityofValladolid, InstituteforSustainableProcesses,Valladolid,Spain
MariaIgnat “PetruPoni”InstituteofMacromolecularChemistryIasi RomanianAcademy,Iasi, Romania;FacultyofChemistry,“AlexandruIoanCuza”University,Iasi,Romania
PeterJ.Irga PlantsandEnvironmentalQualityResearchGroup,SchoolofCiviland EnvironmentalEngineering,FacultyofEngineeringandInformationTechnology,Universityof TechnologySydney,Ultimo,NSW,Australia
DamianKasperczyk EkoinwentykaLtd.,Ruda ´ Sla˛ska,Poland
JochenKeppler InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart,Germany
KwangJinKim UrbanAgricultureResearchDivision,NationalInstituteofHorticulturaland HerbalScience,Wanju,RepublicofKorea
RaquelLebrero DepartmentofChemicalEngineeringandEnvironmentalTechnology,Schoolof IndustrialEngineering,UniversityofValladolid,Valladolid,Spain;InstituteofSustainable Processes,UniversityofValladolid,Valladolid,Spain
AngelaLuengas UniversityofPau&Paysdel’Adour/E2SUPPA,Thermal,EnergyandProcess Laboratory-IPRA,PauCedex,France
DavidMarı´n DepartmentofChemicalEngineeringandEnvironmentalTechnology,Schoolof IndustrialEngineering,UniversityofValladolid,Valladolid,Spain;InstituteofSustainable Processes,UniversityofValladolid,Valladolid,Spain
JohannesMartin InstituteofSpaceSystems,UniversityofStuttgart,Stuttgart,Germany
PatricioMoreno-Casas GreenTechnologyResearchGroup,FacultaddeIngenierı´ayCiencias Aplicadas,UniversidaddelosAndes,Chile
BernardoLlamasMoya ETSIMinesandEnergy,TechnicalUniversityofMadrid,Madrid,Spain
CeliaPascual DepartmentofChemicalEngineeringandEnvironmentalTechnology,Schoolof IndustrialEngineering,UniversityofValladolid,Valladolid,Spain;InstituteofSustainable Processes,UniversityofValladolid,Valladolid,Spain
ThomasPettit PlantsandEnvironmentalQualityResearchGroup,FacultyofScience,University ofTechnologySydney,Broadway,NSW,Australia
GuillermoQuijano UniversidadNacionalAuto ´ nomadeMe ´ xico,LaboratoryforResearchon AdvancedProcessesforWaterTreatment,InstitutodeIngenierı´a,UnidadAcade ´ micaJuriquilla, Quere ´ taro,Me ´ xico
Martı´nRamı ´ rez UniversityofCadiz,DepartmentofChemicalEngineeringandFoodTechnology, VitiviniculturalandAgri-FoodResearchInstitute(IVAGRO),PuertoReal,Spain
Marı´adelRosarioRodero DepartmentofChemicalEngineeringandEnvironmentalTechnology, SchoolofIndustrialEngineering,UniversityofValladolid,Valladolid,Spain;InstituteofSustainable Processes,UniversityofValladolid,Valladolid,Spain
PetrisorSamoila “PetruPoni”InstituteofMacromolecularChemistryIasi RomanianAcademy, Iasi,Romania
PauSan-Valero UniversitatdeVale ` ncia,ResearchGroupGI2AM,DepartmentofChemical Engineering,Av.delaUniversitats/n,Burjassot,Spain
FelipeScott GreenTechnologyResearchGroup,FacultaddeIngenierı´ayCienciasAplicadas, UniversidaddelosAndes,Chile
CharlotteC.Shagol UrbanAgricultureResearchDivision,NationalInstituteofHorticulturaland HerbalScience,Wanju,RepublicofKorea
ZarookShareefdeen DepartmentofChemicalEngineering,CollegeofEngineering,American UniversityofSharjah,Sharjah,UnitedArabEmirates
GabrielaSoreanu DepartmentofEnvironmentalEngineeringandManagement,“Cristofor Simionescu”FacultyofChemicalEngineeringandEnvironmentalProtection,“GheorgheAsachi” TechnicalUniversityofIasi,Iasi,Romania
ArumuganainarSuresh DepartmentofBiotechnology,CollegeofBiologicalandChemical Engineering,AddisAbabaScienceandTechnologyUniversity,AddisAbaba,Ethiopia
MaciejThomas ChemiquaWaterandWastewaterCompany,Krako ´ w,Poland
FraserR.Torpy PlantsandEnvironmentalQualityResearchGroup,FacultyofScience, UniversityofTechnologySydney,Broadway,NSW,Australia
Rau ´ lMun ˜ ozTorre DepartmentofChemicalEngineeringandEnvironmentalTechnology,School ofIndustrialEngineering,UniversityofValladolid,Valladolid,Spain;InstituteofSustainable Processes,UniversityofValladolid,Valladolid,Spain
KrzysztofUrbaniec FacultyofCivilEngineering,MechanicsandPetrochemistry,Warsaw UniversityofTechnology,Płock,Poland
DanielAlanVallero DepartmentofCivilandEnvironmentalEngineering,PrattSchoolof Engineering,DukeUniversity,Durham,NC,UnitedStates
AlbertoVergara-Ferna ´ ndez GreenTechnologyResearchGroup,FacultaddeIngenierı´ay CienciasAplicadas,UniversidaddelosAndes,Chile
SoniaWoudberg StellenboschUniversity,AppliedMathematicsDivision,Departmentof MathematicalSciences,Matieland,SouthAfrica
Acknowledgmentsfromtheeditors
Forty-nineauthorsfrom13countrieslocatedinthe5continentshavedirectlycontributedto thechaptersofthisbook.Allauthorsareunanimouslyrecognizedfortheirskillsinthefield ofairandgastreatment,orinspecificfieldsrelatedtothetopicsofthisbook.Theeditors wouldliketothankallthesepeoplefortheirenthusiasmtoparticipateinthisbookandfor theirprofessionalism.
TheeditorswishtothanktheElseviereditorialprojectmanagers(EmeraldLi,AnitaKoch, KiruthikaGovindarajuandReddingMorse)fortheirassistanceduringthebookprogress process.
Also,theeditorswishtothanktheinternationalarchitectureagencyXTUarchitectsforthe complimentaryuseofthecoverimage. Editors,
Preface
Fromitsorigin,anduntilrecently,planetearthhasbeenfreeofanysignificant anthropogenicpollutionandourenvironmenthasremainedunaffectedbyhumanactivities. Itisonlyaftertheindustrialrevolution,andmoresignificantlyinthepastcentury,that water,soil,andairpollutionhasbecomeamajorconcern.Thishasledtothegradual implementationofenvironmentalregulationsandthedevelopmentofspecificpollution controltechnologies.Traditionally,moreinteresthasoftenbeengiventowaterpollution problemsbothintermsofregulationandtreatmenttechnologies.Thefirstenvironmental waterregulationsenteredintoforcemanydecadesago.Althoughconcernsaboutair pollutionhavelaggedsomewhatbehindwaterpollutioninthepast,today,atmospheric pollutionisverymuchinthespotlight.Thisisdue,amongothers,totheincreasing awarenessaboutitseffectonclimateandtotheclearevidencesoftheimpactofgreenhouse gases,suchascarbondioxide,ontheglobalwarmingofourplanet.Further,emissionsof volatileorganiccompounds,inorganicpollutantsaswellasparticulatematterhavea significantimpactonhumanhealthandontheenvironment.Thereforeenvironmental regulationshavebeensetup,whileavarietyofairandgastreatmenttechnologiesarebeing developedinordertomeettheseregulations.Thedevelopmentofnovelairandgas treatmenttechnologieshasbeenanareaofintenseresearch.Asaresult,today,both biologicalaswellasnonbiologicalprocessesareavailableforthetreatmentofair pollutants.However,inthepasttwoorthreedecades,increasinginterestisbeingshownin bioprocessesascost-effective,reliable,andgreenalternativesforthetreatmentofair emissions.Thisisbecausebioprocessesareoftenmoresustainable,lessenergyintensive, andmorecost-effectivethanconventionalphysicalorchemicalprocesses.Optimizationof thesebioprocessesandtheirimplementationinabroaderrangeofapplications(including someunconventionalonessuchasspaceexplorationorbiogasprocessing)hasbeenamajor focusofrecentresearch.Evenso,onlyveryfewbooksdescribingfundamentalandapplied aspectsaswellascasestudiesofbioprocessesappliedtoairorgastreatmentareavailable. Theseinclude BiofiltrationforAirPollutionControl (CRC,1999), BioreactorsforWaste GasTreatment (Kluwer/Springer,2001),and AirPollutionPreventionandControl: BioreactorsandBioenergy (Wiley&Sons,2013).Thereforethepublicationofabook reportingonrecentdevelopmentsandnewtrendsinthisfieldisanexcitingevent.
Profs.GabrielaSoreanuandE ´ ricDumontmanagedtheamazingfeatofhavingover40 authorsandco-authorsfromaroundtheworldcontribute20chaptersontopicsrelatedto bioreactorsforairpollutioncontrolandgasbioprocessing.Thedifferentchapterscover traditionaltreatmentofairpollutantsinbiofiltersandbiotricklingfilters,theyreportonthe stateoftheartwithcasestudies,andhighlightselectedemergingapplications.Wewelcome theinclusionofnovelassessmentofbioprocessesforairtreatmentusinglifecycle assessment(LCA)aswellasforwardlookingapproachessuchastheuseofphytosystems ormicroalgaebioreactorsforairandgastreatment.Thelatterareprominentlyfeaturedin thisbookandtheirdiscussionhighlightstheneedtobecomfortableworkingattheinterface betweenengineering,microbiology,andbotany.Anotherthemeofincreasingimportanceis therecoveryofresourcesorthedeconstructionandreconstructionsofmaterialsfromour wastestreams.Theseconcepts,essentialtothedevelopmentofasustainablesociety,are startingtoappearinairpollutioncontrol,andbiologicalprocessesareideallysuitedfor theseendeavors.
Thebookshouldappealbroadlytoreadersinacademiaandinindustryandbeyond.While theyoungresearcherwillfindideasandinspirationfornovelresearch,thepracticing engineerwillgetagoodsenseofthestateoftheartinthefield,andawelcomeupdateto thebooksmentionedearlier.Allreaderswillgainabroaderperspectiveofthemany possibilitiesbioreactorsofferforairandgasprocessing.
MarcDeshusses1 andChristianKennes2 1DukeUniversity,Durham,NC,UnitedStates, 2UniversityofLaCorun˜a,ACorun˜a,Spain
Prologue:Ethicalchallengesposedbyusing emergingtechnologiesandgenetically modifiedorganismstoremovegaseous pollutants
DanielAlanVallero
DepartmentofCivilandEnvironmentalEngineering,PrattSchoolofEngineering, DukeUniversity,Durham,NC,UnitedStates
1Generalapproaches
1.1Introduction
Biofiltrationtechnologiesdrawfromawealthofknowledgebuiltfromscienceand engineering,beginningwithmimicryofnaturalprocessessuchaswastewatertreatment technologiesofthe20thcentury,whichsimplyfoundmicrobesalreadypresentinthe environmentandadaptingthemtodegradepollutants(Wackett,1996;Cheremisinoff,1997; Scragg,2005;Vallero,2015).Engineersweremainlyconcernedwiththeabilityofthese naturalorganismstoadapttoacontrolledsystemwheremetabolicrateswerecompressedin timeandspace,withthechallengeofmakingthewastestheexclusiveenergysourcesfor themicrobes(Mckinney,1962,1973,2004).Thepotentialriskandharmmainlyrevolved aroundtheextenttowhichtheseengineeringprocesseswereeffectiveand,ifnot,thepublic healthandecologicaldamagethatcouldoccur.Thustheethicalchallengewastomakesure thatthetreatmentoperatedasdesigned,thatisethicalsuccesswasameasureofefficiency. Anunethicalengineerwasdeemedtobeonewhodidnottakesufficientcaretomakesure thedesignwasgoodandappropriatetotheapplication.Ofcourse,eventheseearly technologiesmetwithconcernsfromnearbyresidents,forexample,aboutodors,and
secondaryimpacts,forexample,installationoftreatmentplantsleadingtounplanned development,lossofhabitat(Declaration,1992;HerMajesty’sStationeryOffice(HMSO), 1994;Sternetal.,1996;Southerland,2004),andurbansprawl(Clawson,1962).
Newuncertaintiesandriskswereintroducedwithgeneticmodification,sincethenew biotechnologiescouldintroducedownstreamrisksbeyondineffectivetreatmentprocesses. Engineersremainedconcernedaboutefficiency,butincreasinglyhadtobemoreconcerned aboutsideeffectsanddownstreamimpacts.Scientistsandethicistswereconcernedabout possiblereleasesandescapesofgeneticallymodifiedorganisms(GMOs)beyondthescope oftreatmentorremediationprojects,forexample,oilorhazardouswastespills.Therates andeffectivenessatdegradingchemicalandbiologicalwastescouldbeincreased,butdid thesenewtechnologiesintroducerisks,suchashorizontaltransfer,thatis“geneflow,” awayfromthesite(Doblhoff-Dieretal.,2000; Turveyetal.,2005; Kellyetal.,2009; von Weizsa ¨ cker,2014; SierraClub,2015Vallero,2015)?Debatesaboutrisktrade-offsgrewat theendofthe20thcenturyandcontinuetoday,albeitwithdecreasingintensity.
1.2Ethicalconstructs
Ethicscanbeclassifiedandcategorizedmanyways,butmainlyfallsintothreemain categories:virtueethics,consequentialethics,anddeontologicalethics.Briefly,virtue ethicsdescribesthecharacterofamoralagent(i.e.,rightandwrong,goodandbad)asa drivingforce,andisusedtodescribetheethicsofSocrates,Aristotle,andotherearlyGreek philosophers.
Consequentialismholdsthattheconsequencesofaparticularactionformthebasisforany validmoraljudgment.Fromaconsequentialiststandpoint,amorallyrightactionisonethat producesagoodoutcomeorconsequence—inotherwords“theendsjustifythemeans.” Giventheirtrainingandtheexpectationsoftheirprofession,engineersareresultsoriented, whichmakesconsequentialism,orteleology,anattractiveethicalconstruct.Toolslike benefit costanalysesareattractivetotechnologistswhomustjustifytheselectionofone optionoveranother.Theyalsoprovideanapparentquantificationofthisrationaleby calculatingabenefit costratio(BCR).Thisisanindicationofthecomparativeutilityof options.
Biofiltrationisacceptableifitprovidesadesiredutilityandisunacceptableifitdoesnot. Totheengineer,itwouldbeunprofessionalandimmoraltouseanytechnologythatdoes notproducethedesiredresult.Thusethicsistiedtofeasibility.Knowinglychoosingan infeasibleoptioniswrong.Often,theengineerdoesnotdefinethedesiredoutcome,for example,effluentoremissionconcentrations.Governmentagencies,clients,andothers oftendo.Theengineerismerelytheagentinachievingtheutility,thatistheengineerisa utilitarian.JohnStuartMillisrecognizedastheprincipalauthorofutilitarianism