Free-surface flow: shallow-water dynamics katopodes - Download the ebook today to explore every deta

Page 1


https://ebookmass.com/product/free-surface-flow-shallow-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Free-surface flow: environmental fluid mechanics Katopodes

https://ebookmass.com/product/free-surface-flow-environmental-fluidmechanics-katopodes/ ebookmass.com

Geophysical fluid dynamics : understanding (almost) everything with rotating shallow water models First Edition Zeitlin

https://ebookmass.com/product/geophysical-fluid-dynamicsunderstanding-almost-everything-with-rotating-shallow-water-modelsfirst-edition-zeitlin/

ebookmass.com

Surface Process, Transportation, and Storage Qiwei Wang

https://ebookmass.com/product/surface-process-transportation-andstorage-qiwei-wang/

ebookmass.com

Pinch of Nom Express : Fast, Delicious Food Kate Allinson

https://ebookmass.com/product/pinch-of-nom-express-fast-deliciousfood-kate-allinson/

ebookmass.com

https://ebookmass.com/product/maniacs-imp-iron-punishers-mcbook-3-ciara-st-james/

ebookmass.com

Make Me Burn Marie Harte

https://ebookmass.com/product/make-me-burn-marie-harte-2/

ebookmass.com

Solid Waste Landfilling: Concepts, Processes, Technology

Raffaello Cossu

https://ebookmass.com/product/solid-waste-landfilling-conceptsprocesses-technology-raffaello-cossu/

ebookmass.com

The Barn: An Extraordinary True Story David Hill

https://ebookmass.com/product/the-barn-an-extraordinary-true-storydavid-hill/

ebookmass.com

Brokerage and Networks in London’s Global World: Kinship, Commerce and Communities Through the Experience of John Blackwell David Farr

https://ebookmass.com/product/brokerage-and-networks-in-londonsglobal-world-kinship-commerce-and-communities-through-the-experienceof-john-blackwell-david-farr/

ebookmass.com

Second Edition Jay Dorfman

https://ebookmass.com/product/theory-and-practice-of-technology-basedmusic-instruction-second-edition-jay-dorfman/

ebookmass.com

Free-SurfaceFlow

Shallow-WaterDynamics

Free-SurfaceFlow

Shallow-WaterDynamics

NikolaosD.Katopodes

Butterworth-HeinemannisanimprintofElsevier

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2019ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesfor whomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligence orotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedin thematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-815487-8

ForinformationonallButterworth-Heinemannpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: KenMcCombs

EditorialProjectManager: SerenaCastelnovo/JoshuaMearns

ProductionProjectManager: SuryaNarayananJayachandran

Designer: MatthewLimbert

TypesetbyVTeX

Dedicatedtotheonethatmastersitall, andmakesmeproudeveryday

HerculescombatingtheRiverAcheloos. StatuebyBosio,LouvreMuseum,Paris

Prologue

Nomaneverstepsinthesamerivertwice,foritisnotthesameriverand heisnotthesameman.

Heraclitus;circa750B.C.

Motivation

Thelengthscalescoveredbyenvironmentalfree-surfaceflowsareoftensodissimilarthatresolvingthemwithequalfidelityleadstonoadvantagealthough incursamajorcost.Mostnaturalandman-madechannelshavealengththatis considerablylargerthantheirdepthandwidth.Theobjectiveofanyanalysisof free-surfaceflowsalsovariessignificantlydependingontheassociatedapplication.Thus,knowledgeofsecondarycurrentsinariverisoftenunimportant ifthegoalistopredictpotentialfloodingofamunicipality.Itisthereforewise toseekanapproximationtofree-surfaceflowbyaveragingtheflowproperties alongthedirectionscorrespondingtothesmallerscalesoftheproblem.Historically,theseapproximationsweredevelopedlongbeforewewereabletosolve thecompletehydrodynamicequationsoffree-surfaceflow,thusitisnosurprise thatthesemethodscontainempiricalelementsthatareoftenofquestionablescientificvirtue.Ontheotherhand,averagedflowmodelsarepowerfultoolsfor solvingpracticalproblemsthatarenotamenabletosolutionbymoreelegant modelsoffluidmechanics.

Thebest-knownapproximationoffree-surfaceflowisobtainedbyintegratingthehydrodynamicequationsoverthedepthofflow,whichleadstothe conceptof shallow-waterflow.Whenthegoverningequationsareaveragedin theverticaldirection,theconceptofair-waterinterfacedegenerates.Thepositionofthefreesurfaceisrepresentedbythedepthofflow,whichisindependent oftheverticalcoordinate,andnolongerdeterminestheextentofthesolution domain.Therefore,three-dimensional,incompressiblefree-surfaceflowisconvertedtoatwo-dimensional,depth-averagedflowthatisphysicallyanalogous tocompressiblegasflowsincethedepthassumesthesameroleasthegasdensity.Thus,an elevationwave onthefreesurfaceisabsorbedbythedepthlikea compressionwave bythegasdensity.Similarly,a depressionwave onthefree surfaceistreatedlikea rarefactionwave inthegas.Thedepthandthedepthaveragedvelocitiesarethenewdependentvariablesoftheproblem,andthe verticaldimensiondisappearsfromtheanalysis.Furthermore,thehorizontaldimensionsoftheproblemarepermanentlyfixedexceptwhenwavespropagate onadrybed,asinthecaseoftidalflatsandfloodplains.

Thephysicsofshallow-waterflowissodrasticallydifferentfromthatof free-surfaceflowthatitisarguablewhetherornotthesecondbookinthisseries shouldbeincludedunderthetitle Free-SurfaceFlow.However,thepractical usageofthesetwotheoriesissocloselyintertwinedthatitisimpossibleto masteronewithoutunderstandingtheother.Fortheiradvantagesandlimitations combinetocreateaninseparableapproachtosolvingenvironmentalproblems associatedwithsurfacewaters.

Whenthegeometryoftheproblemallowsit,shallow-waterflowcanbeintegratedoverthewidthofawell-definedconduit,whichleadstotheconcept of open-channelflow.Inthiscase,attentionisfocusedonfindingthedepthof flowandthevolumeofwatercarriedbythestreamperunittime.Thecalculationofthevolumetricflowrateisbasedontheintegraloflocalvalues,thus

takingintoaccountthevariationofthevelocityvectoroverthestream’scross sectionalarea.Thisareaisafunctionofthedepthofflow,which,togetherwith theaveragevelocitysufficetocompletelydescribetheproblem.Thedepthand theflowratearefunctionsonlyoftimeanddistancealongthechannel’slongitudinalaxis,thusthesolutiondoesnotdependontheverticalortransverse coordinates,whichresultsinamajorsimplification.Thisso-called hydraulic descriptionofflowproblemsformsthebasisforone-dimensionalmodelingof avarietyofflowsinvolvingafreesurface.Theword hydraulic originatesfrom theGreek ύδωρ,(water),andeither αυλός (pipe)or αύλαξ (flume).Bothof theseconduitsguidetheflowalongtheirlongitudinalaxiswhilelimitingany transverseorverticalvelocitycomponents.Therefore, hydraulics isabranchof hydrodynamics thatimpliesa scaling ofthegeneralflowconditionswhenthe lengthofflowismuchlargerthanthedepthorwidth.

Ofcourse,notalltypesoffree-surfaceflowaresuitableforthistypeof averaging,asanumberofconditionsmustbemetfortheapproximationtobe valid.Intruefree-surfacehydrodynamics,thedomainoftheproblemconstantly changesaspartofthesolutioninunsteadyflow.Insteadyflow,thedomainis fixed,butthepreciseconfigurationoftheboundarygeometryisnotknowna priori,thusagainitmustbedeterminedaspartofthesolution.

Ontheotherhand,furthersimplificationsareoftenpossiblebytruncationof theopen-channelflowequationsatvariouslevels,arrivingfinallyattheso-called hydrologic formulation,whichallowsforthesimplest,albeitcrudest,solutionof free-surfaceflowproblems.Yet,thecomplexityofthegeometryandsurfaceresistanceinoverlandflow,forexample,allowsustoaddresssuchproblemswith lessrigorousmathematicalformulationswhileachievingsatisfactoryaccuracy. Thehydraulicsofopenchannelswasapparentlyknownintheantiquity whenmajorstructureswerecompletedforconveyingwatertomajorcenters ofcivilization.Themodernhistoryofopen-channelflowbeginswiththework ofChézy(1776),whoestablishedthefirstequationsdescribinguniformchannelflow.Afewyearslater,Monge(1807)laidthefoundationofthetheory ofwavepropagationinacompressiblegasthatalsodescribesshallow-water waves.Atapproximatelythesametime,Bélanger(1828)developedthefirst numericalsolutionfornon-uniformflowinopenchannels,andlaterGauckler (1867)andManning(1891)furtherdevelopedtheflowresistanceequations.The descriptionofunsteadyflowwascompletedbyBarrédeSaint-Venant(1871), thustheone-dimensionalshallow-waterequationsareoftencalledthe Saint Venantequations.AcomprehensivetreatiseonthesubjectwaswrittenbyDarcy andBazin(1865)whocombinedanalyticalandexperimentaltechniquesintwo beautifulvolumes.Finally,anenhancementofshallow-watertheorywasmade byBoussinesq(1903),whoincludedhigher-ordertermsthataccountforwave dispersion.

Thefirstformaltreatiseonopen-channelflowwaswrittenbyBakhmeteff (1932)andwasfollowedbyWoodwardandPosey(1941).Thesubjectwas enlightenedbytheclassictextofStoker(1957),whointroducedtheterm Mathe-

maticalHydraulics,andreviewedallpreviousworkonwavesinopenchannels. Almostsimultaneously,atreatiseonthesubjectappearedthatremainseven todaythemostcomprehensivereferenceonopen-channelflow.Chow(1959) coveredalltechnicaldetailsforanalysisanddesignofopenchannels.However, thebookthatreallycapturedthemindsandheartsofyoungengineerswasthe brilliantbookbyHenderson(1966).Hisphysicalinsightofferedapedagogical approachtotheconceptsofchannelflowthathasnotbeenmatchedtothisday. Manyworthycontributionstothesubjectofshallow-waterwavesweremade duringthefirstpartofthetwenty-firstcentury,andcontinueatarapidrate. Alistofcurrentbooksonrelatedtopicscanbefoundinthegeneralbibliography section,astheyhaveallbeeninvaluableinthedevelopmentofthistext.At thesametime,arevolutioninnumericalmathematicsanddigitalcomputation hastakenplacethatbroughtunprecedentedchangetoallfieldsofscienceand engineering.

ApproachofThisText

ThesecondbookintheFree-SurfaceFlowseriesattemptstobridgethegapbetweenenvironmentalfluidmechanicsandopen-channelhydraulicsbyproviding arigoroustransitionbetweentheNavier-StokesandShallow-Waterequations. Aspecialefforthasbeenmadetoprovideaseamlessintegrationofvarying ordersofapproximation,fortheyallrepresentdifferentviewsofessentially thesameproblem.Asaresult,theunderlyingphilosophyoftheentirebookis that,regardlessofthedevelopmentsinnumericalmethods,scientificcomputationmustbebasedonappropriateapproximationsofthegeneralmathematical descriptionoffree-surfaceflow.Theseshouldbedeterminedbyathoroughunderstandingofthephysicalaspectsofflowmotion,whichvarysignificantlyat eachapproximationlevel.Onlybykeepingthesimplifiedmodelsinperspective cantheirlimitationsbeexplained,andtheirfailuresbeanticipated.

Anotherobjectiveofthesecondbookoftheseriesistolaythefoundationof theconstructingofcomputationalmethodsforsolvingtheshallow-waterequations.Theyareshowntobepartialdifferentialequationsofthehyperbolictype, thusgenuinesolutionsarefoundusingthemethodsofcharacteristicsintwoand threeindependentvariables.Bypresentingacomprehensivedescriptionofthis method,itisexpectedthatthecomputationalmethodsoutlinedinthethirdbook oftheserieswillbedevelopedonsoundprinciples.

Finally,thisbookpresentsanintroductiontosensitivityanalysis,parameter estimation,andcontrolofchannelflowbyboundaryactuators.Thismaterialis anextensionofthesolutemasscontrolpresentedinthefirstbookoftheseries, andallowstheefficientmanagementofhydraulicstructures.

Outline

Thematerialisdividedinchaptersthatrepresentcompleteentitieswhileleading sequentiallyfromgeneraltospecificformulationsoffree-surfaceflowproblems.

Chapter 1 describestheelementsofphysicsandmathematicsneededtodevelopthetheoryofshallow-waterwaves.Thisincludesthefundamentals ofsurfacedifferentialgeometry,andthecurvatureofsurfaces.Geometric relationsofcurvesandsurfacesinspacearedeveloped,andtheconcept ofmeancurvatureisdiscussedindetail.Explicitandimplicitsurfacesare defined,andEuler’stheoremisproved.Furthermore,aformaldescriptionofinitialandboundaryvalueproblems,astheyapplytofree-surface flow.Thedivergencerepresentationtothecurvatureofthefreesurfaceis presented,intheformthatisusedinmoderncomputermodels.Finally, aclassificationofpartialdifferentialequationsisgiven,thusproviding anearlyencounterwiththemethodofcharacteristics.Theclassification includesfirstordersystemsofequations,andhigher-orderequations.

Chapter 2 isdedicatedtothedescriptionoftheair-waterinterface.Surfacetensionisintroduced,andtheYoung-Laplaceequationisderived.Themeniscusprofileofafluidnexttosolidboundaryisanalyzed.TheMarangoni effectisintroducedandtheimportanceofBondnumberisexplained.The dynamicsoffloatingbodies,andthecircularhydraulicjumpareanalyzed. Implicitsurfacedescriptionisusedtoformulatethekinematicanddynamicconditionsatthefreesurface.Free-streamlinetheoryisusedto obtainexactsolutionsforfree-surfaceflowproblems.Boundaryconditionsforcontactlinesareintroduced,andsimpleviscousflowproblems withafreesurfacearesolvedanalytically.Flowdrivenbywindshear isexamined,andthesurfacedragcoefficientiddetermined.Significant waveheightisdefined,followedbyarandomwaveanalysis.Theatmosphericsurfacelayerisalsodiscussed,andtheMonin-Obukhovsimilarity theoryisintroduced.Theconceptofstormsurgeisdeveloped,andwave set-upisquantified.

Chapter 3 introducesthetheoryoflinearoscillatorywaves.HarmonicmotionandAiry’stheoryforgravitywavesarediscussed,andtheconceptof wavedispersionisintroduced.Thedispersionofawavepacketisstudied.Standingwavesandseichesarediscussed,andamphidromicpoints areidentified.Massandenergytransportbygravitywavesareanalyzed, andtheconceptofgroupvelocityisintroduced.Waverefractionand diffractionareanalyzedinrelationtocoastalproblems.Wavebreaking isaddressed,andtheconceptofradiationstressesisexplained.Finally, methodsforthepredictionofwaveset-uparepresented.

Chapter 4 introducestheShallow-Waterapproximation.Followingascale analysisofchannelflow,thegeneralequationsareintegratedoverthe verticaltoyieldvariouslevelsoflong-waveapproximation.Thekinematicfree-surfaceandbottomboundaryconditionsareemployed,andthe conceptsofflowdepthanddepth-averagedvelocityaredefined.Higherordershallow-watertheoryisalsopresented,andequationsfornonlinear dispersivewavesarederived.Vorticitytransportinshallowwaterisstudied,andthegasdynamicsanalogyisoutlined.GravitywavesofPoincaré,

Kelvin,andRossbytypearedescribed.Dispersionofnonlinearwavesis outlined,andtheBoussinesqequationsarederived.TheSerreequations forfullynonlinearwavesarederived,andtheKorteweg-deVriesequation ispresentedalongwiththesolitarywavesolution.Finally,aHamiltonian approachtowaterwavesispresented,aimingatconstructionmorerobust modelsfornonlineardispersivewaves.

Chapter 5 investigatesthecauseoftidalforcesandtheireffectonriversandestuaries.Theequilibriumanddynamictheoriesoftidesareintroduced,and standingtidalwavesareanalyzed.Kelvinwavesandamphidromicpoints aredefined,andtheharmonicdescriptionoftidesisbrieflydiscussed.

Chapter 6 dealswiththelowestordershallow-waterapproximationinone spacedimension,representingwhatiscommonlyknownasopen-channel flowtheory.TheequationsofdeSaint-Venantarederivedforchannels ofarbitrarycross-sectionalshape.Non-prismaticchannels,lateralflow, andtheeffectoffloodplainintegrationinthecrosssectionarediscussed. Conservationformsandalternativeformulationsofthegoverningequationsarealsopresented.Furthertruncationoftheequationsispursued, andthesimplestpossiblemodelsoffree-surfaceflowareestablished.Extensionsoftheequationstononlineardispersivewavesandwave-current interactionarealsopresented.Theconceptofradiationstressesisintroducedandtheshallow-waterequationmodelsaremodifiedtoaccountfor shortwaves.

Chapter 7 simplifiesmattersfurtherbyfocusingonsteadyopen-channelflow. Graduallyandrapidly-variedflowaredefined,andindependentmethods ofanalysisareproposed.Bakhmeteff’sconceptofspecificenergyisintroduced,andtheconditionsforcriticalflowarediscussed.Theconceptof specificforceisintroducedintheprocessofmomentumconservation,and thephenomenonofthehydraulicjumpisanalyzed.Variousapplications ofchannelconstrictionsandexpansionsarepresented,andtheinterplay betweentheconservationandofmomentumandenergyisusedtosolve avarietyofrapidly-variedflowproblems.

Chapter 8 describesthefundamentalconceptsofflowresistance.Thebasic ideasofskinandformresistancearepresented,andequationsforlaminar andturbulentflowanalysisarederived.Approximatemodelsforturbulenceareconstructedandappliedtofree-surfaceflow.Theprofilesof velocitydistributionadjacenttosmoothandroughwallsaredeveloped, andapproximatetheoriesforconstructingfrictioncoefficientsarestudied.Furtherdevelopmentofturbulentflowmodelsismadeforlaterusein relatednumericalsolutions.Uniformflowconditionsaredeveloped,and channelslopeclassificationispresentedinconnectiontodesignconsiderations.

Chapter 9 isdedicatedtosteady,non-uniformflow.Thedifferentialequationforgradually-variedchannelflowisderived,andsomeanalytical solutionsaredevelopedforsimplifiedchannelconditions.Acomplete

classificationoffree-surfaceprofilesispresented,andsomeelementsofa numericalsolutionaregiven.Techniquesarealsopresentedforhydraulic jumplocation,spatially-variedflow,andthelake-dischargeandtwo-lake problems.

Chapter 10 isanintroductiontothemethodofcharacteristicsasitapplies toshallow-waterflow.Partialdifferentialequationsareclassifiedand physicalproblemsareassociatedwithcharacteristiccurves.Thepaths alongwhichwavestravelinspaceandtimeareexamined,andcompatibilityrelationsalongthemarederived.Thecharacteristicsofkinematic anddynamicwavesareconstructedmathematicallyandgraphically,and boundaryconditionsforlongwavesinopenchannelsarespecified.Twodimensional,supercriticalflowisanalyzed,andsteady-statewavefronts inchanneltransitionsarecomputed.

Chapter 11 Themethodofbicharacteristicsisintroducedfortwo-dimensional, unsteadyflow,andthecorrespondingcompatibilityequationsarederived. Boundaryconditionsfortwo-dimensionalflowareestablishedandassociatedwiththegeometryofthecharacteristicconoid.

Chapter 12 describessimplewaves,surges,andshocksinone-dimensional flow.Depressionandelevationwavesandhydraulicboresaredefined.By usingcharacteristicanalysis,thespontaneousformationofshockwavesis studied.Weaksolutionsofconservationlawsareconstructedforanalyzingsurgesandbores.Shockinteraction,reflection,andenergydissipation arealsodiscussed.

Chapter 13 Dam-breakanalysisoninitiallydryandflowingstreamsisperformedusingthemethodofcharacteristics.Theeffectsofslopeand frictiononthedam-breakwavearepresented.Acomplete,albeitonedimensional,analysisofpartialclosingandopeningofasluicegateis presented,andtheresultingsystemofalgebraicequationsaresolved.

Chapter 14 introducestheconceptofadjointsensitivity,anddiscussesparameterestimationandmodelvalidation.Themethodsofsteepestdescentand conjugategradientareintroducedandusedtoidentifythebasicparametersoffree-surfaceflow.Adjointequationsarederivedforopen-channel flow,andmulti-dimensionalshallow-waterflow.Boundaryconditionsand solutionmethodsforadjointequationsarepresented.Thefundamental conceptsofactivefloodcontrolareintroduced,andtechniquesforfocusingdepressionwavesonthepeakoffloodwavesarepresented.Adjoint equationsaredevelopedleveebreachcontrol,andnon-reflectingboundaryconditionsareconstructedformulti-dimensionalsensitivitywavesin openchannels.

Acknowledgments

Thisbookhasdemandedalongtimetocomplete,thusmanystudentshave contributedtoitsdevelopment.Iamindebtedtoallofthem,andespeciallyto thosewhosubsequentlyhaveusedthebookwhileteachingtheirownclasses,

xxvi Prologue afterleavingtheUniversityofMichigan.Theirvaluablesuggestionshavemade thisagratifyingproject.Iamalsogratefultomyownmentors,GeorgeTerzidis andTheodorStrelkoff,whointroducedmetothesubject,andguidedmethrough someofitstortuouspaths.Ithasbeenawonderfulvoyageofexplorationand learning.

N.D.Katopodes AnnArbor

REFERENCES

Bakhmeteff,BorisAlexandrovi ˇ c,1932.HydraulicsofOpenChannels.McGraw-Hill,NewYork. BarrédeSaint-Venant,A.J.C.,1871.Théorieetequationsgénéralesdumouvementnonpermanent deseauxcourantes.ComptesRendusdesSéancesdel’AcadémiedesSciences73,147–154. Bélanger,J.B.,1828.EssaisurlaSolutionNumériquedequelquesProblémesRelatifsauMouvementPermanentdesEauxCourantes.Carilian-Goeury,Paris.

Boussinesq,JosephValentin,1903.ThéorieAnalytiquedelaChaleur.Vol.II.Gauthier-Villarset Fils,Paris.

Chézy,Antoine,1776.FormulepourTrouverlaVitessedel’EauConduitdanuneRigoledonnée (Formulatofindtheuniformvelocitythatthewaterwillhaveinaditchorinacanalofwhich theslopeisknown).Dossier847,Ms.1915,ofthemanuscriptcollectionoftheÉcoleNational desPontsetChaussées,Paris.Reproducedin:Mouret,G.,1921.AntoineChézy:histoired’une formuled’hydraulique.AnnalesDesPontsEtChaussées61,165–269.

Chow,VenTe,1959.Open-ChannelHydraulics.McGraw-Hill,NewYork.

Darcy,M.H.,Bazin,M.H.,1865.RecherchesHydrauliques,Premièrepartie:RecherchesExpérimentalessurl’Écoulementdel’EaudanslesCanauxDécouverts.E.Dunod,Éditeur,Paris, p.1865.

Gauckler,P.G.,1867.EtudesThéoritiquesetPratiquessurl’EcoulementetleMouvementdesEaux. ComptesRendusdel’AcadémiedesSciences64,818–822. Henderson,FrancisM.,1966.OpenChannelFlow.Macmillan,NewYork. Manning,R.,1891.OntheFlowofWaterinOpenChannelsandPipes.TransactionsInstituteof CivilEngineersofIreland20,161–209.

Monge,Gaspard,1807.Applicationdel’AnalyseàlaGéométrie.Àl’usagedel’Ecoleimpériale polytechnique,Paris.

Stoker,JamesJ.,1957.WaterWaves:TheMathematicalTheorywithApplications.WileyInterscience,NewYork.

Woodward,S.M.,Posey,C.J.,1941.HydraulicsofSteadyFlowinOpenChannels.JohnWiley& Sons,Inc.,London.

Velsen’shydraulicdesigndrawings.Reproducedfrom RivierkundigeVerhandeling,AfgeleidUit WaterwigtEnWaterbeweegkundige byCornelisVelsen,1749,Amsterdam

Chapter1

BasicConcepts

...thetruthisthatthedeclinationoftheheavenlybodiesbringsafierydisasterupontheearth.Then,thosewholiveonhighaltitudessufferagreater disasterthanthoselivingnearriversorbythesea.However,theNilewho isoursaviorforeverything,savesusfromthisconundrumbyflooding. Plato.Timaeus–AboutAtlantisandNature.Circa360B.C.

1.1INTRODUCTION

Infree-surfaceflow,theanalyticaldescriptionoftheflowconditionsisachieved bydeterminingthevelocityvectorfieldandthescalarfieldcorrespondingto thepressureintensity.Inaddition,thepositionofthefreesurfacemustbedeterminedbyimposingthekinematicanddynamicboundaryconditionsonthefree surface.Forflowonanunevenbottom,thekinematicconditionalsoneedstobe appliedtothechannelbed,asexplainedinChapter 2.Iftheanalysisisbased ontheturbulentNavier-Stokesequations,theresultingsolutionyieldsthemost completeinformationabouttheflowproblem.However,physicalreasoningand observationsconfirmthatwhenthedepthofflowisconsiderablysmallerthan thehorizontaldimensionsoftheproblem,theflowpatternisaltereddrastically.

Observationsshowthatastheflowbecomesmoreshallow,particleorbits andstreamlinesunderagravitywavearegraduallytransformedfromcircles toellipses.Therefore,theverticalcomponentofthevelocitybecomesnegligiblecomparedtothehorizontalcomponents.Furthermore,asexplainedin section I-6.4.3,thepiezometricheadremainsconstantnormaltostreamlines withminimalcurvature.Thisimpliesthatthepressuredistributioncanbedirectlydeterminedoncethedepthofflowisknown,thusthepressureisnolonger adependentvariableintheproblem.Therefore,theshallow-waterequations,i.e. thevertically-averagedcontinuityandhorizontalmomentumequations,suffice todeterminethesolutionoftheflowproblemwithaccuracy.Suchasolutionis nearlyidenticaltotheoneobtainedbysolvingthecorrespondingfree-surface flowproblem,providedthattheassumptionsassociatedwiththeshallow-water limitoftheflowaresatisfied.

Thereductioninthephysicaldimensionsoftheproblemandthenumberof dependentvariablesrepresentsadefiniteimprovementinefficiency.Inthelimit, asthedepthapproacheszero,theshallow-waterapproximationactuallyyields perfectresults.However,therealvalueofshallow-watertheoryisfoundinapplicationsofpracticalinterestwherethedepthisfinite.Intheseproblems,the resultsarealmostperfect,especiallywhenoneconsidersthesourcesofothererrorsencounteredinpredictionsofflowinrivers,lakes,andestuaries.Therefore, themainchallengeforthewaterscientistandengineerisnottheimplementationofthetheoryinpractice,buttheassessmentoftheinformationhiddenby theshallow-waterapproximation.Thisisafascinatingstatementbecausewe areaccustomedtobelievingthatasymptoticapproximationshavenoimplicationsonthephysicaldescriptionofaproblem.However,thisisfarfromtruefor shallow-waterwaves.Boththemathematicsandthephysicsdifferfromthose fordeep-waterwaves,andtheapproximationcreatesanewbranchofenvironmentalfluidmechanics.

1.1.1Shallow-WaterModels

Theobjectiveofthisbookistodevelopmathematicalmodelsbasedonthe shallow-waterapproximation.Asalreadymentioned,theseareapproximations

withreducedspatialdimensions,thusitisimportanttodistinguishshallowwaterfromgenuinefree-surfaceflowmodels.Asanexample,considertheflow patterncreatedbya sluicegate operatinginanopenchannel,asshownin Fig. 1.1.

Forthereaderunfamiliarwiththisdevice,Fig. 1.1 showsatypicalsetupina laboratoryflume,underflowconditionsthataretimeinvariant.Thegateslides verticallyinguidesmountedonthechannelsidewalls,andhelpsregulatethe flowbychangingthesizeofthegateopening.TheflowpatternshowninFig. 1.1 correspondstoafreeflowinggate,asopposedtoonethatissubmergedonthe downstreamside.Specifically,theleftfaceofthegateisincontactwiththefluid whiletherightfaceiscompletelyexposedtoair.Furthermore,ontheupstream side,theflowappearstobetranquilwiththeexceptionofaminordisturbance onthefreesurfacenearthesidewallofthechannel,whichisassociatedwith vortexstretching,asdescribedinFig. I-7.17 ofsection I-7.6.Thereisaslight super-elevationofthefreesurfaceatitspointofcontactwiththegate,whichis aresultofthefluidcomingtoanabruptstopagainstthemetalplate.

Onthedownstreamside,thepictureischaracterizedbyrapidflow,forming acurvilinearfreesurfacethatglidessmoothlyunderthegate.Thestreaksofair entrainmentarevisibleonthefreesurface,andtheyindicatethehighvelocity withwhichthewateremergesfromthegateopening.Finally,asmalldistance away,andonbothsidesofthegate,thefreesurfacebecomesparalleltothe channelbed.

Thegeometricelementsoftheflowaregivenbythebedelevation, ζ0 (x,z) , thedepthoftheundisturbedwatersurface, h0 (x,z) ,theCartesiancoordinates, (x,y,z) ,ofthegateandsidewallsofthechannel,andthepositionofthefree

FIGURE1.1 Laboratory-scalesluicegate

surface, η(x,z) .Noticethat η(x,z) isnotknownapriori,butinsteaditmust becomputedaspartofthesolution.Thebasicelementsofafree-surfaceflow modelfortheflowunderasluicegateareshowninFig. 1.2

FIGURE1.2 Definitionofflowregimesforasluicegate;free-surfaceflow

Ontheupstreamside,oftencalledthe backwater region,thefluidcomesto anabruptstopor stagnationpoint onthefaceofthegate.Atthesametime,the fluidbelowacceleratestopassthroughthereducedflowopening.Theelevation ofthefreesurfaceincreasesgraduallytoitsmaximumheightatthestagnation point,i.e.whereitmeetsthegateonitsupstreamface.Onthedownstreamside, alsocalledthe tailwater region,thetipofthegateguidesthefreesurfacetoa smooth,stronglycurvilinearprofileuntiltheinfluenceofthegatediminishes furtherdownstream.

Thereareseveraldirectobservationsthatcanbemadeabouttheflowconditions.First,inthevicinityofthegatethevelocityisnotuniforminthevertical direction,andneitheristheacceleration,asthefluidisforcedtochangefrom horizontaltoverticalmovement.Second,thepiezometricheadisnotconstant sincethepressuremustbeatmosphericatthefreesurfaceonbothsidesofthe gate.Third,althoughtheflowisdirectedalongthechannelaxis,thefreesurface, andconsequentlythevelocity,arenotperfectlyuniforminthetransverseflow direction.NoticethattheimageshowninFig. 1.2 isthe true,three-dimensional solutiondomainoftheproblem.

Whentheshallow-waterapproximationisimplemented,theimageshownin Fig. 1.2 collapsesontothehorizontalplane,andthefreesurfacedisappearsas aphysicalelementoftheflowdomain.Thegeometricelementsofthefloware givenbythebedelevation, ζ0 (x,z) ,andtheCartesiancoordinates, (x,z) ,ofthe gateandsidewallsofthechannel.AsshowninFig. 1.3,thesolutionisdefined bythedepthandthehorizontalcomponentsoftheflowrate,thusthephysical representationsofthetwoproblemsarequitedifferentalthoughthesolutions maybeidentical.Noticethatthepresenceofthesluicegateontheflowpattern

createsadiscontinuityinthedepthandvelocityofflow,thusthegateneedsto betreatedasaninternalboundarycondition.

FIGURE1.3 Definitionofflowregimesforasluicegate;shallow-waterflow

Whentheopen-channelflowapproximationisappropriate,thechannelimagecollapsesonthe x axis,asshowninFig. 1.4.Thegeometricconfiguration isreducedtothebedelevation, ζ0 (x),andthelocationofthegate, (x),along thechannelaxis.Ifthechanneldoesnothavearectangularcrosssection,the topwidth, B(y) ,andsectionarea, A(y),mustbegivenaswell.Nowaunique solutioncanbefoundbydetermining A ,andtheflowrate, Q ,ateverypoint alongthechannel.

FIGURE1.4 Definitionofflowregimesforasluicegate;open-channelflow

Theflowunderafree-flowingsluicegateisaproblemofbothdidacticand practicalvalue.TheconfigurationsshowninFig. 1.2,Fig. 1.3,andFig. 1.4 representseveralalternativeflowmodelsassociatedwiththeflowunderasluice gate.Dependingonthelevelofdetaildemandedbytheapplication,thequestionofcomplexityversusreliabilityisofgreatimportanceinchoosingthe appropriatemathematicalmodel.Theincorporationofdetailedfeaturesofthe free-surfaceprofilemayormaynotresultinincreasedaccuracyoftheresults althoughthedecisiontoincludethedetailsmayincreasetherequiredeffortdramatically.

Throughoutthisbook,numeroussketchesofshallow-waterandopenchannelflowaredrawnthatpotentiallymisrepresentthetheorybehindthe methodsbeingdiscussed.Forexample,asshowninFig. 1.5,wemayusea sketchforopen-channelflowthatshowsthe“freesurface”andchannelbedprofiles.Thisisdonetohelpbettervisualizetheproblem,asthesketchinFig. 1.4

doesnotgiveameaningfulpictureofthesolutionoftheproblem.Notice,however,thattheverticalandhorizontalscalesinFig. 1.5 maybequitedifferent, thusthefreesurfacemayappeartohavestrongercurvaturethanitistrue.

FIGURE1.5 Definitionofflowvariablesforopen-channelflow

ThecorrectreadingofthesketchinFig. 1.5 istointerpretthesolidline asthedepthprofileplottedagainstthechannelaxis.Thesumof h + ζ0 gives theelevationofthefreesurfaceasafunctionof x ,butdoesnotcoincidewith upperboundaryoftheproblem’sdomainintheverticaldirection,asisthecase inFig. 1.2.Instead,thesketchdepictsthevariationofoneofthedependent variablesofaone-dimensionalproblem,afterthesolutionhasbeencompleted. Therefore,thedefinitionsketchesintheremainderofthebookshouldnotbe interpretedasrepresentingthetruedomainoftheflow,butasvisualaidesto helpdescribethesolutionoftheproblemunderconsideration.

Oneoftheobjectivesofthisbookistoconstructmathematicalmodelsat theshallow-waterandopen-channellevelsofapproximationforproblemslike thefree-surfaceflowunderasluicegate.Suchmodelsallowforanaccurateand efficientdesignofflowcontrolstructuresthatisverydifficulttoachievebylaboratorystudiesalone.Theamountofinformationthatbecomesavailablethrough amathematicalmodel,andtheeaseoftransferabilitytootherflowstructures isthedrivingforceofmodernanalysis,design,andcontroloffluidflow.Once validated,amathematicalmodelprovidesinformationatanydesiredresolution, isscalable,applicableuniversally,andtransferabletoavarietyofpracticalapplications.

1.2SURFACESINTHREE-DIMENSIONALSPACE

Theair-waterinterfacegeneratesatwo-dimensionalsurfacethatdefinesthediscontinuityofpropertiesbetweentwofluids,determinestheirdomainofsolution andtheirdynamicandchemicalinteractions.Aspreviouslyexplained,thesolutiontoanyfree-surfaceflowproblemdependsonthepreciseidentificationof thegeometriccharacteristicsofthisinterface.Two-dimensionalsurfaceshave beenthesubjectofstudyindifferentialgeometry,thusawealthofinformation ontwo-dimensionalsurfacescanbefoundinrelevanttextslikeSpivak(1999), Topogonov(2006),andPressley(2012).

1.2.1AnalyticRepresentationofSurfaces

Therearevariouswaytodescribeatwo-dimensionalsurfacemathematically. Themostintuitiveapproachistoexpressitasan explicitsurface,inwhichone oftheCartesiancoordinatesofapointonthesurfacecanbefoundasafunction oftheothertwo,i.e.

Thus,ifthegraphofthefunction f(x,z) isdefinedateverypointinspace, y generatesa regularsurface

Example1.2.1. Considerthesurface y = √x 2 + z2 thatdescribesthesurface ofaconewithvertexattheorigin,similartotheoneshowninFig. I-1.26 Notice,however,thatinthiscase y isnotaregularsurfacebecausetheoriginis asingularpoint.

Themainadvantageoftheexplicitrepresentationofasurfaceistheease intracingit.Forexample,Eq.(1.1)permitsarelativelyeasycomputationof thesurfaceheightfromanarbitrarydatum.However,therelationinEq.(1.1)is axisdependent,thusitmaybedifficulttotransformifnecessary.Furthermore, theexplicitrepresentationinherentlyexcludessurfaceswithfolds,overhangs, oreventhosethatareparalleltothe y axis.ThesurfacedepictedinFig. I-1 showsatypicalexampleofthesedifficulties.Finally,theexplicitrepresentation doesnotallowaneasyidentificationoflocalsurfacepropertiesormethodsfor predictingthebehaviorofothersurfacesintheneighborhood.

1.2.2ImplicitSurfaces

Considertheinstantaneousreleaseofatraceratapointlocateddeepina lake.Asthedyespreadsduetolakecurrentsandturbulentdiffusion,itisusefultovisualizetheplumebyplottingiso-concentrationsurfaces,asshownin Fig. 1.6

Theconcentrationiscontinuousinthree-dimensionalspace;however,we canvisualizeiso-surfaces,i.e.thinbandsofconstantconcentrationthatform two-dimensionalsurfacesofequalconcentration.Todefinethesesurfaces,we constructafunction F(x,y,z) suchthatwhen

= 0(1.2) thenthepointwithcoordinates (x,y,z) liesonthesurface.Noticethat F is moregeneralthannecessarytodescribeatwo-dimensionalsurface.Infact, F isathree-dimensionalfunctionthatinherentlydescribesavolume.If F> 0, thepoint (x,y,z) liesoutsidethesurfacewhileif F< 0,thepointliesinside thesurfaceinthree-dimensionalspace.Onlywhen F = 0thepointliesonthe surface, F ,andthisdefinesan implicitsurface.

Itmayfirstappearthatthisdefinitionofasurfaceismorecomplicatedthan theexplicitrepresentationofatwo-dimensionalsurface,however,Eq.(1.2)has certainsignificantadvantages.Forexample,itcaneasilydeterminewhethera point (x,y,z) isinsideoroutsidethesurfacebysimplycheckingthesignof

FIGURE1.6 Implicitsurfaces
F(x,y,z)

the implicitsurfacefunction F .Furthermore,computationoftheunitnormal vectoratanypointofanimplicitsurfaceisstraightforward,providedthat F is differentiable.Then,thegradientof F determinesthenormaldirectionsincethe unitnormalisgivenby

Example1.2.2 (ASphericalDroplet). Considerasphericaldropletofradius equaltounity.Ifitscenterislocatedattheorigin,theimplicitsurfacefunction

F(x,y,z) = x 2 + y 2 + z 2 1

separatesthree-dimensionalspaceintoaninteriorandanexteriorsub-domain dependingonthesignof F .When F = 0,thecorrespondingiso-surfacedefines thesurfaceofthedroplet,asshowninFig. 1.7.

FIGURE1.7 Implicitdropletsurfaceandnormalvectors

Theimplicitsurfaceiscomputednumericallybyevaluating F ona20 × 20 × 20gridalongwiththenormalvectorfieldgivenbyEq.(1.3).Iso-surfaces of F arethenconcentricspheres,andallnormalsaredirectedalongtheradiusof thespheres.Noticethatforclarityonlytheiso-surfacecorrespondingto F = 0 isshowninFig. 1.7

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Free-surface flow: shallow-water dynamics katopodes - Download the ebook today to explore every deta by Education Libraries - Issuu