Family Business in China, Volume 2: Challenges and Opportunities 1st Edition Chen
https://ebookmass.com/product/family-business-in-chinavolume-2-challenges-and-opportunities-1st-edition-chen/
ebookmass.com
Kaufman's Clinical Neurology for Psychiatrists 8th Edition Edition David Myland Kaufman
https://ebookmass.com/product/kaufmans-clinical-neurology-forpsychiatrists-8th-edition-edition-david-myland-kaufman/
ebookmass.com
What the Children Told Us: The Untold Story of the Famous “Doll Test” and the Black Psychologists Who Changed the World Tim Spofford
https://ebookmass.com/product/what-the-children-told-us-the-untoldstory-of-the-famous-doll-test-and-the-black-psychologists-who-changedthe-world-tim-spofford/ ebookmass.com
All Your Life (Blackbird Book 4) Lily Foster
https://ebookmass.com/product/all-your-life-blackbird-book-4-lilyfoster/
ebookmass.com
Property: Concise Edition (Aspen Casebook Series) 2nd Edition, (Ebook PDF)
https://ebookmass.com/product/property-concise-edition-aspen-casebookseries-2nd-edition-ebook-pdf/
ebookmass.com
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright © 2017ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
LibraryofCongressCataloging-in-PublicationData
AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData
AcataloguerecordforthisbookisavailablefromtheBritishLibrary
ISBN:978-0-12-800277-3
ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/
Publisher: CandiceG.Janco
AcquisitionEditor: AmyShapiro
EditorialProjectManager: TashaFrank
ProductionProjectManager: MohanapriyanRajendran Designer: MariaInesCruz
TypesetbyTNQBooksandJournals
Acknowledgments
Overtheyearsthefollowingassociationshaveprovideduswithan invaluableforumfortheinvestigationofgeothermaltopics:theStanford GeothermalWorkshop,oneofthegeothermalworld’slongest-running technicalworkshops;theGeothermalResearchCouncil(GRC);the InternationalGeothermalAssociation(IGA);andtheEuropean GeothermalEnergyCouncil(EGEC).Amongtheindividualswewould liketothankareProf.JohnLundoftheOregonGeoHeatCenter,who gaveusunstintingadviceandencouragement,andProf.RolandHorneof StanfordUniversity,whoshowedbyhispersonalexamplethehighlevel ofacademicrigorneededinthisfield.Inthesamelight,specialthanksare duetoProf.BurkhardSanneroftheEuropeanGeothermalEnergy Council.
WewouldalsoliketothankAndrasDianovszkyandMarkZsemkofor recreatingseveralimportantdiagramswhichhadgottenlostinthe shuffle.Lastbutnotleast,ourspecialthankstoDavidFenertyforhis editingandproofreadingsuggestions.
AnikoToth Miskolc,Hungary September,2016
1.1INTRODUCTION
Geothermalenergyisenergycontainedwithinthehightemperature massoftheEarth’scrust,mantle,andcore.SincetheEarth’sinterioris muchhotterthanitssurface,energyflowscontinuouslyfromthedeep, hotinterioruptothesurface.Thisistheso-calledterrestrialheat-flow.The temperatureoftheEarth’scrustincreaseswithdepthinaccordancewith Fourier’slawofheatconduction.Thustheenergycontentofaunitof massalsoincreaseswithdepth.
AlloftheEarth’scrustcontainsgeothermalenergy,butgeothermal energycanonlyberecoveredbymeansofasuitableenergy-bearing medium.Tobepractical,theenergy-bearingmediamustbe:hot enough(high-specificenergycontent),abundantenough,easilyrecoverable,inexpensive,manageable,andsafe.Watersatisfiesthese requirementsperfectly.Thespecificheatofwateris4.187kJ/kg C.Inthe steamphase,latentheatisaddedtoit.Hotwaterandsteamcanbe recoveredeasilythroughdeep,rotary-drilledwells.Throughtheuseofa suitabledesignedheatexchanger,heatcanbeefficientlytransferredfrom
thewaterorsteam.Steamisanespeciallysuitableworkingfluidforenergyconversioncycles.
Nowadays,geothermalenergyproductionismainlyachievedfromhot waterandsteamproductionviadeepboreholes.Anotherrapidlygrowingproductiontechnologyinvolvesexploitingtheenergycontent ofnear-surfaceregionsbyusingshallowboreholeheatexchangersand heatpumps.
Itislikelythatthenaturalheatofvolcanoesandothergeothermal sourceswerealreadybeingusedintheremotePaleolithicera,butconcrete evidenceonlydatesfrom8000to10,000yearsago.Wearethereforeforced touseindirectmethodswhenspeculatingonmankind’searliestrelationshipwithgeothermalphenomenaandproductsoftheEarth’sheat.
Theusesofnaturalhotwaterforbalneologyandtheexploitationof hydrothermalproductsforawiderangeofpracticalapplications increasedremarkablyduringthemillenniumprecedingtheChristianera. ThisuseeventuallyextendedtotheboundariesofancientRome, achievingmaximumuseduringthe3rdcenturyA.D.,theRoman Empire’sapex.AfterRome’sdeclineinthe6thcentury,geothermal exploitationalsodeclinedthroughoutSouthernEurope,aperiodof disusewhichlasteduntilthebeginningofthesecondmillennium.There isevidencethatgeothermalresourceswerestillbeingexploitedinthe centuriesthatfollowed,inChinaandmanyothercountries,butonavery limitedscaleandonlyinrudimentaryforms.
DeepintheRemontalouRivervalley,atthesouthedgeofAuvergnein theCentralFrenchmassif,thetownofChaudes Aigueshasan82 Chot spring,oneofthehottestnaturalthermo-mineralspringsinEurope.The regionhasbeeninhabitedsinceprehistorictimes.Themainspring,called lepar,isoneofabout30gushingspringsconcentratedinasmallarea. Frommid-OctobertotheendofApril,a5-kmnetworkofpipesbringsthe hotwaterfromfiveofthesespringstoheat150homes.Housesbuiltabove thespringsusethehotwaterdirectlybelowforheating,andhavedoneso sincethe14thcentury(Cataldietal.,1999).
GeothermalwaterwasfirstusedforboricacidproductioninLarderello, Italy,in1827.BoricacidproductionwasanItalianmonopolyinEurope, andbecamealarge-scaleindustryinthemiddleofthe19thcentury.
Othercountriesalsobegantodeveloptheirgeothermalresourcesonan industrialscale.V.Zsigmondy,forexample,becamealegendinHungariangeothermalhistoryafterhedrilledEurope’sdeepestwell(971m) inBudapestin1877.Sincethatdate,theresultinggeothermalwaterhas beenusedforbalneologyinthefamousSzechenyiSpa.In1892,thefirst geothermaldistrict-heatingsystembeganoperationsinBoise,Idaho, USA.In1928,Iceland,anotherpioneerintheutilizationofgeothermal energy,alsobeganexploitingitsgeothermalfluids(mainlyhotwaters)for domesticheatingpurposes.
knownastheMohorovicicdiscontinuity,wherethespeedofpropagation ofseismicwavessuddenlyincreasesfrom7km/sto8.1km/s.The Mohorovicicdiscontinuitycanbefoundbeneaththecrustandabovethe mantle.Themantleextendstoadepthof2900km,wherethereitchanges intothemuchdenserliquidcore.Thecoreiscomposedlargelyofmolten iron.Withinthisliquidcoreisasolidifiedironinnercorewitharadiusof about1350km.Onalargescale,thesearethemaincomponentsofthe Earth’sstructure,asshownin Fig.1.2
Fromthegeothermalpointofview,onlythecrustandtheuppermantle areofimportance.Directinformationaboutthemantleisavailablefrom deepboreholesonly.ThethreedeepestareinSakhalin,Qatar,andthe KolaPeninsula.Theyhaveabottomholedepthofabout12km.Allother dataderivefromindirectgravimetric,seismic,dipole-resistivity,and othergeophysicalinformation.
Thecrustisnotahomogeneoussphericalshell.Thecontinentalcrust beneaththecontinentsandtheenclosedseasismainlygranitecomposite, richinsilicawithadensityof2670kg/m3.Theoceaniccrustismainly basaltic.Itispoorinsilicawithadensity2950kg/m3.Thethicknessofthe continentalcrustisvariable.Beneaththehighrangesitcanbe70 75km thick,butbeneaththesinkingsedimentarybasinsitsthicknessisonly 20 25km.
Beneaththecrust,theuppermantleisrigid.Thisistheso-calledlithosphere.Itsthicknessisapproximately80 100km.Underthelithosphere,thepropagationspeedoftheseismicwavesdecreasesina
FIGURE1.2 StructureofEarth’sinterior.
Thedensitydifferencebetweenthemantlematerialandthemelted lithosphereplateissubstantiallygreater(600kg/m3)thanthedensity differencecausedbythethermalexpansionwhichis50kg/m3.Thusthe Archimedeanliftingforcecaninduceamoreintensiveupliftingflowin theregionofthedissolvedlithosphereplate.There-meltedintermediary andacidicmagmaisaccretedfrombelowtothecontinentalcrust.Thusit willberaised.Atthesametime,theextremelystrongconvectiveheatflowpropagatesfurtherinthesolidcrustasaveryintensiveconductive heatflux.Thustheorogenicareasaremoreactivegeothermally,andtheir terrestrialheat-flowissubstantial.Thesolidcrustmayevenbemelted here,andvolcanicareascandevelop.Thisoccurstypicallyalongtheplate boundariesofthePacificcoast.
Thereareotherregionsoutsidetheplateboundarieswherethe terrestrialheat-flowisanomalouslyhigh.SuchregionsaretheCarpathian Basin,theParisBasin,ortheKubanregionatthenorthernsideofthe CaucasusMountains.Thereasonforthehighheat-floworiginatesinthe thinningcontinentalcrustduetothetensionstressesandsubcrustal erosion.ThecrustintheCarpathianBasinmaybeasthinasonly20km. Thiswindowleadsnecessarilytothehigherterrestrialheat-flow.Itis obviousthatthethincrustenablesahigherheatfluxsince:
where d isthethicknessofthecrust,kistheaverageheatconductivity,Tm isthetemperatureatthetopofthemantle,andT0 isthesurfacetemperature.Thegeothermalgradientisalsohigher:
Thegeothermalgradient g intheCarpathianBasinishigherthanthe continentalmeanvaluewhichis0.045 0.065 C/m.Thusrelativelyhot rockmassescanbefoundinrelativelyshallowdepth.Thismeans favorablenaturalconditionstoaccessgeothermalreservoirs,torecover thegeothermalenergy.
1.3GEOTHERMALRESERVOIRS
Thegeothermalfieldisageographicalnotiondesignatinganyregion ontheEarth’ssurfacewheresuchsurfacemanifestationsasgeysers,fumaroles,orboilingmud-pondsindicateanactivegeothermaldomain underground.Thesephenomenaarecharacteristicofactivevolcanicregions.Wheregeothermalfieldsexistbuthavenospectacularsurface manifestations,highterrestrialheat-flowandabove-averagegeothermal 1.WHATISGEOTHERMALENERGY?
withageothermalgradientofatleast40 50 C/km.Itshouldbeobvious thatalongwithsatisfactoryrechargeofthereservoir,asufficientlyporous (20%)andpermeable(500 1000mD)formationisalsonecessary.In Europe,suchconditionsexistmainlyinsunkensedimentarybasinslike theCarpathianorParisbasins.
Inageothermalsystem,temperatureincreaseslinearlywithdepth. Porosity,however,decreasesexponentiallywithdepthassedimentunderneathiscompactedbythelithostaticpressureofsedimentaboveit:
Theexpression Eq.(1.3) approximatesthisdistributionquitewell,in which f0 istheporosityatthesurface,zisthedepth,andAdependson thetypeofthesediment.Thetendencyisshownin Fig.1.5.Theporosity andthetemperaturedistributionsdeterminetheregionwhererecoverablehotwaterreservoirscanbefound.
Thesemedium-temperaturehotwaterfieldsarequitecommonworldwide,andmaybeconfined,artesianaquifersoropen,hydrostaticsystems. Theirtemperatureistypicallylowerthan150 C.Theymaybeworthdirect useasdistrict-heating,agricultural,andindustrialprocessheatsources.
Theconceptualmodelofsuchamedium-temperaturehotwater reservoirisshownin Fig.1.6.Porousandpermeablesedimentarylayers aresettledmainlyhorizontallyontheimpermeablebedrock.Thereare hardlypermeablemainlyclayeylayersbetweenthepermeable
FIGURE1.5 Porosityandtemperaturedistributionalongdepth.
f
(1.3)
FIGURE1.7 Conceptualmodelofaconvectiveheatedreservoir.
gradientisanear-surface(<5km)freshmagmaticintrusion,witha temperatureof650 1000 C.Thisintensiveheatingproducesahigh (>1W/m2)heat-flow.Thereareadditionalnecessaryconditions.The permeabilityshouldbegreaterthan1darcy.Thismaypossibleinafractured carboniferousreservoirorincoarsedeltaicsediments.Asufficientlylarge verticalthicknessoftheaquiferisalsonecessary.Thusconvectiontransfers theheatalongalongerpath,moreefficiently.Thecold-waterrechargetothe deeperformationscanalsoincreasetheheattransferintensity.
Thetemperaturedistributionoftheconductiveheatedreservoirisnot linear.Insidetheaquifer,thetemperaturechangeisverysmall;thetemperaturegradientislargebetweenthetopofthereservoirandthesurface only.Thushightemperaturereservoirfluidcanbefoundatshallow depths,whichcanbeattainedbyshallow,largediameterboreholesmore economically.
Bothconvectiveandconductiveheatedreservoirscontainhotwaterin liquidphase.Thepressureofthewaterincreasesalongthedepthin accordanceofthelawofhydrostatics:
Thegeothermalfluidisobviouslyatitshottestinthedeepestpartofthe reservoir.Asitslowerdensitycausesittoriseup,andasitpassesthrough thefracturesorporechannels,itspressuredecreases.Meanwhile,a fractionofthesteamwillseparateoutofthewaterandflowupward,with theliquidflowingbackdown.Thisbringsthesteamtoalowerpressure region,whereitsexpansionisincreasedandtheprocessisintensified. McNitt(1977) explainedthisphenomenon.Hisbasicideawastocompare theamountofheatneededtoevaporateaunitmassofwaterwiththe amountofheatreleasedasthesteambubblecondenses.
Itisevidentthatthesteamphasebeginsassoonasthereservoir temperatureapproximatesthetemperaturefortheenthalpymaximumon thesaturationcurve.Thepressureshouldchangewithdepthhydrostatically,wherethetemperatureislessthan235 Clevel.Abovethatlevel, temperatureandpressureremainalmostconstantthroughoutthe dry-steamreservoir. Fig.1.11 showspressuredistributionwithincreasing
Entropy, s (kJ/kg K)
FIGURE1.10 Enthalpy entropydiagramofwater.
developtheHDRconcept.InHDRprojects,multi-fractured,interconnectingflowsystemsareproduced.Whereverylow-permeability formationsareenhancedbyhydraulicfracturingtocreateartificial reservoirs,theresultingsystemsareknownasEGS(enhancedgeothermal system).ThemostsuccessfulHDR/EGSprojecttodatewasimplemented inSoultzsousForets,France,wherea1.5MWpowerplantcurrently operates(see Fig.1.12).
References
Bertrani,R.,2015.Geothermalpowergenerationintheworld2010-2014updatereport.In: ProceedingsWorldGeothermalCongress2015.Melbourne,Australia.
Boldizsa ´ r,T.,1943.AspectsofGeothermalGradientinMiningIndustry(InHungarian)BKL, 20.Budapest.
Boldizsa ´ r,T.,1964.HeatFlowMapofHungary(InHungarian).In:ProceedingsofHungarian AcademicofSciences,Budapest,vol.33,pp.307 327.
Bullard,E.,1954.TheflowofheatthroughtheflooroftheAtlanticOcean.Proc.RoyalSoc. London222(1150),408 429.
Cataldi,R.,Hodgson,F.S.,Lund,W.J.,1999.StoriesfromaheatedEarth.In:OurGeothermal Heritage.GeothermalResourceCouncil,Sacramento,California,ISBN0-934412-19-7.
D’Amore,F.,Truesdel,A.H.,1979.ModelsforsteamchemistryatLarderelloandthegeysers. In:Proc.5thWorkshoponGeothermalReservoirEngineeringStanfordUniversity,Stanford,CA,pp.262 276.
Facca,G.,Tonani,F.,1964.Theoryandtechnologyofageothermalfield.Bull.Volcanol.27(1), 143 189.
McNitt,J.R.,1977.OriginofSteaminGeothermalReservoirs.SPEPaper6764.
To ´ th,A.,2010.Hungariancountryupdate2005 2009.In:ProceedingsofWorldGeothermal Congress,Bali,Indonesia.