1
ElisabethGuichard 1 ,CharfedinneAyed 2 andChristianSalles 1 1CentredesSciencesduGo^ utetdel’Alimentation,CNRS,INRAE,InstitutAgro,Université deBourgogneFranche-Comté,Dijon,France; 2DepartmentofFood,NutritionandDietetics, SchoolofBiosciences,UniversityofNottingham,SuttonBoningtonCampus, Loughborough,UnitedKingdom
1.1Introduction
Duringeating,foodissubjectedtomasticationandsalivationtoformabolus,whichis thenswallowedforfurtherdigestion.Aromaandtastecompoundsarereleasedfrom foodbolusduringthemasticatoryandpost-swallowingsteps.Aromacompounds aretransferredfromfoodtosaliva,thentotheairphaseintheoralcavityandtransportedtothenasalcavityviatherespiratory flowinordertoreachtheolfactoryreceptorsandbeperceived.Tastecompoundsaredeliveredtothereceptorslocatedonthe tongueinordertobeperceived.Thischapterwillpresentanoverviewofthedifferent aromaandtastecompounds,theirdynamicreleasefromthefoodmatrixintothesaliva andtheoronasalcavity,takingintoaccountthein-mouthphysiologicalprocess,and theinfl uenceon flavorperception.
1.2Aromaandtastecompounds
Inthispart,wewillgiveanoverviewofthephysicochemicalandsensorypropertiesof thearomaandtastecompoundsresponsibleforperception.
1.2.1Physicochemicalpropertiesofaromacompounds
Aromacompoundsarepresentinverylowamountinfood(<1%).Theyaresmallmoleculescharacterizedbylowmolecularweight(<400Da)andahighvaporpressure, whichallowthemtobeeasilyreleasedinthegasphase,inordertobeperceivedby theolfactoryreceptors.Infood,morethan15,000volatilecompoundshavebeenidenti fied,asreportedinthedatabaseonvolatilecompoundsinfood(http://www.vcfonline.nl/VcfHome.cfm).Notallthevolatilecompoundsareodorant.Around3500 compoundscanbeperceivedbythenose(odorthreshold)anddescribedwithvarious odorantnotesintheFlavorbase(http://www.lef fingwell.com/ flavbase.htm).Odor
Flavor. https://doi.org/10.1016/B978-0-323-89903-1.00006-2 Copyright © 2023ElsevierLtd.Allrightsreserved.
thresholdsandodorqualitiesdependonstructuralparameterssuchaschainlength, unsaturationdegree,doublebondsposition,functionalgroupsposition,molecular characteristics,andstereochemistryofmolecules.Odorthresholdsvaryinawide rangeandcanbelowerthan1ng/L.Itisstilldif ficulttopredictodorpropertiesby structuralparameters(Tromelin,2016).Forexample,2-methoxy-3,5dimethylpyrazine(earthysmelling)hasanodorthresholdinairof0.001ng/L,whereas asimilarcompound,3-methoxy-2,5-dimethylpyrazine(pea-likesmelling)hasanodor thresholdsof56ng/L(MolyneuxandSchieberle,2007).
Inarecentmeta-analysisof5642publicationsonfoodaromafrom1980to2013 and949otherdocuments,alistofthe226mainkeyfoododorantswasmadebased ontheirodoractivityvalue(OAV > 1)measuredinatotalof119publicationsdealing with227foodsamples(Dunkeletal.,2014).Themostfrequentlyoccurringkeyodorantsinfoodsaremethional(53.7%ofsamples,boiledpotatoesodor),2-and3-methyl butanal(50.7%,malty),butane-2,3-dione(41.9%,buttery),(E,E)-2,4-decadienal (41.4%,fried,fatty),andfuraneol(40.5%,caramel),followedbysotolon(seasoning), 1-octene-3-one(mushroom),aceticacid(vinegar),acetaldehyde(fruity,fresh),ethyl2and3-methylbutanoate(fruity),(E)-2-nonenal(cardboardlike),vanillin(vanillalike), 2-acetyl-1-pyrroline(roasted,popcorn),2-and3-methylbutanoicacid(sweaty),and butanoicacid(sweaty).
Aromacompoundsbelongtodifferentchemicalclasses,mainlyalcohols,acidsand esters,phenoliccompounds,carbonylcompounds,sulfurandnitrogenaliphaticcompounds,heterocyclicaromacompounds,terpenes,andnorisoprenoids.
1.2.1.1Alcohols
Alcoholsareimportant flavorcompounds,whicharewidelypresentinfoodsand mainlyinfruits.Unsaturatedalcoholshaveagreaterimpactonfood fl avorthansaturatedalcohols.Forexample,C6alcohols,suchas cis-3-hexenoland cis-6-hexenol (leafalcohol),areformedinplantsasaresultofenzymaticoxidationoflinoleicand linolenicacidbylipooxygenasesandhydroperoxidelyases(JelenandWasowocz, 2012)andareresponsibleforfreshlycutgrassaroma.Terpenealcoholssuchas linalool,nerol,geraniol,alpha-terpineolpresentfruityand floralnotes,whicharecharacteristic,forexample,ofMuscatgrapearomaandphenylethanol,withatypicalrose aroma.Alcoholsarealsoprecursorsforsynthesisofaldehydesandesters.
1.2.1.2Carbonylcompounds
Anotherimportantchemicalclassisthecarbonylcompounds,aldehydesandketones, whichareresponsibleforvarioustypicalodorantnotessuchastheapplelikeodorof acetaldehyde,almondodorofbenzaldehyde,vanillaodorofvanillin,raspberryaroma of4-hydroxyphenyl-2-butanone,alsocalledraspberryketone.Therearealsoimportant aromacompoundsindairyproducts(LeQuéréandMolimard,2002),withthe butteraromaofdiacetyl(2,3-butanedione)andacetoin(3-hydroxy-2-butanone), blue-cheesearomaof2-nonanoneand2-heptanone.
Retentionandreleaseofaromaandtastecompounds,influenceonperception5
1.2.1.3Estersandlactones
Estersandlactonespresentmainlyfruitynotessuchas,forexample,thebananaaroma ofisoamylacetate,applearomaofbutylacetate,peacharomaofgamma-decalactone, andcoconutaromaofgamma-nonalactone.Esterswithlowmolecularweightare mainlypresentinfruits, flowers,andfermentedbeverages;mostofthemareformed fromacidsandalcohols.Unsaturatedestershavelowerthresholdsthansaturatedones.
1.2.1.4Hydrocarbons
Amongthehydrocarbons,aliphatichydrocarbonsarenotorlittleodorantbutterpenes areimportantaromacompoundsinessentialoils,i.e.,limonene,whichisthemain compoundinorangejuice.Sesquiterpenehydrocarbonshavelowerimpactthanmonoterpenesduetotheirhigherdetectionthresholds.Otherterpenederivativespresentlow thresholdsandspeci ficodornotessuchasdamascenone(plum)orbeta-ionone(violet).
1.2.1.5Sulfurandnitrogencompounds
Sulfurandnitrogencompoundsarepresentinverylowamountandpossessverylow thresholds.Sulfurcompoundscontainthiols,thioesters,sul fides,polysulfides,dithiazins,oxathiazines,thiophenes,andthiazoles.Theyaremainlypresentinvegetablesas, forexample,dimethylsulfideresponsibleforcabbagearoma.Theyarealsoresponsibleforoff-flavorsuchasthe “rottenegg” aromaofhydrogensulfi de.Thiolsarepresentinfermentedfoods,drinks,cheese,andwine.Methanethiol,aproductof degradationofmethionine,hasacabbagelikeodorandisabundantinCamembert cheese.Thiolscanreactwithothervolatilecompoundsandformthioesters(Engel, 1999).
Ofallthealiphaticnitrogencontainingcompounds,amines,isothiocyanates,and aminophenolsarethemostimportantforaroma.Amineshaveastrongammonia likearoma.TheyareStreckerdegradationproductsandtheirodordependsonthepH. Isothiocyanateshavebothnitrogenandsulfurelements,andtheycontributetopungentnotesinvegetables(BurdockandFenaroli,2010).
1.2.1.6Heterocycliccompounds
Heterocyclicaromacompoundscontainsulfur,nitrogen,oroxygenatomsinaring, suchasthiophenes,pyrrolines,thiazoles,furanones,pyrenes,pyrazines,orpyridines. Theyareformedfromsimpleprecursorsathightemperature,mostlybyMaillardreaction.Heterocyclescontaininghydrogenarethemaincompoundsofcaramelaroma (Paravisinietal.,2015).Alkylpyrazinesdetectedincoffee,cocoa,peanuts,chipshave roasted,nutlikearomas(BaltesandBochmann,1987).
1.2.2Physicochemicalpropertiesoftastecompounds
Tastecompoundsbelongtodifferentchemicalclassessuchasorganicacids,carbohydrates,mineralsalts,aminoacids,peptides,proteins,nucleotides,andsomephenolic
orheteroatomiccompounds.Theypresentgreatdifferencesindetectionthresholds. Theyaredetectedbythetastebuds,locatedmainlyonthesurfaceofthetonguewithin tastepapillaeandareresponsibleforthe fivebasictastes:sweet,salty,sour,bitter,and umami.
1.2.2.1Mineralsalts
Sodiumchlorideismainlyresponsibleforsaltytasteinfood,butothersaltssuchas potassiumorcalciumchlorideareperceivedsaltytoalowerextend.However,they alsopresentbitternotes,aswasobservedforcalciumandmagnesiumsaltsingoat cheese(Engeletal.,2000).
1.2.2.2Organicacids
Acidperceptionisduetothepresenceofhydroniumionsfromorganicacids.Citric andmalicacidsaremainlyresponsibleforacidtasteinfruitsandvegetables,tartaric acidingrapes,aceticacidinvinegar,andlacticacidindairyproducts.Somealphaand betaacidsarealsoresponsibleforbitternotes(ChenandLin,2004).
1.2.2.3Aminoacids
Aminoacidsareinvolvedindifferenttasteperceptions.Sweettastehasbeenassociatedwithglycineincrabandwithmethionineinseaurchin(Sallesetal.,2012). L-aminoacids(L-leucine, L-isoleucine, L-valine, L-arginine, L-methionine, L-phenylalanine, L-tyrosine, L-tryptophan, L-histidine)presentabittertaste,butmorepolarones (L-glycine, L-alanine, L-serine, L-threonine, L-lysine, L-proline)presentasweettasteas D-aminoacids(Katoetal.,1989).Aminoacidswithalateralacidfunctionsuchas Lglutamicand L-asparticacidsareresponsibleforacidtaste.Theirsodiumsaltsare responsibleforumamitaste.Sodiumglutamatepresentinsomefoodsataconcentrationhigherthanitsdetectionthreshold(300mg/L)mainlycontributestoumamitaste. Biogenaminesobtainedbydecarboxylationofaminoacidsmayalsopresenta bittertaste.
1.2.2.4Nucleotides
Twotypesofribonucleotidespresentinfoodsareresponsibleforumamitaste,inosine monophosphateinanimalproductsandguanosinemonophosphateinvegetalproducts (Ninomiya,2002).Theyarealsousedasfoodadditivesandareknowntoactinsynergywithsodiumglutamate.
1.2.2.5Mono-anddisaccharides
Sweetnessperceptionismainlyduetothepresenceofmono-anddisaccharidesand mainlysucrose(composedofglucoseandfructose).Theotherdisaccharidesare perceivedlesssweetthansucrose.Lactose(derivedfromgalactoseandglucose)is themostabundantinmilkbutwithasweeteningpowerfourtimeslowerthansucrose. Maltose(twounitsofglucose)isproducedinmouthfromstarchbytheactionof 6FlavorReleaseinHumans
Retentionandreleaseofaromaandtastecompounds,influenceonperception7
amylaseduringmasticationandtrehalose(twounitsofglucosejoinedbyaonetoone alphabond)producedbytheactionofdifferentmicroorganismspresentinsaliva.They aretwotimeslesssweetthansucrose(Laffi tteetal.,2016).Themonosaccharides glucoseandfructosenaturallyoccurringinfruitsarealsoperceivedlesssweetthan sucrose.
1.2.2.6Terpenoids
Someterpenoidsareperceivedsweet.Rebaudiosideandstevioside,extractedfromthe leavesof Steviarebaudiana,areperceived300to450timessweeterthansucrose (Lindley,2012).Theycanbeusedasfoodadditivebuttheirsafetyisstillunderdebate. MogrosidesconstituteafamilyofterpenesextractedfromaChineseplantandpresent astronglicoriceafter-tastewithacoolingtastewhichlimitstheirpotentialuseas sweetener.
1.2.2.7Peptides
Thetasteofpeptidesdependsontheirstructureandtheirphysicochemicalproperties. Bitterpeptidescontainagreatnumberofbitteraminoacids.Theirdetectionthresholds varyasafunctionoftheirchainlengthandtheorderofaminoacids.Asanexample Pro-Gly-ArgandArg-Pro-Glyhavedetectionthresholdsinwaterof,respectively, 25mmol/Land0.8mmol/L(Laffi tteetal.,2016).Cyclicdipeptidesnameddicyclopiperazinesareperceivedmorebitterthantheirlinearhomologs.Incheese,bitterpeptidesareformedfromcaseindegradation.Othertastesarecoveredbysmall peptides.Asexamples,acidpeptidescontainglutamicorasparticacids,andarginyl dipeptideswerefoundassalttasteenhancingmolecules.
1.2.2.8Proteins
Ingeneral,moleculeswithahighmolecularweighthavenotaste.However,alimited numberofproteinselicitastrongsweettasteamongwhichthaumatin,constituentof theberriesofanAfricanplant(Masudaetal.,2011),hasreceivedapprovaltobeused assweetenerinfoodstuff,duetoitshighsweetnesspotency(1600timeshigherthan sucrose).Anothersmall(6.4kDa)sweetprotein,brazzein,isapproximately2000 timessweeterthansucrose(Poirieretal.,2012),withatastemoresimilartosucrose thanthaumatin.
1.2.2.9Othercompounds
Arti ficialsweet-testingmoleculeshavebeengeneratedthroughchemicalsynthesisas sucrosereplacertoanswertohealthproblemsassociatedtodiabetes.Theyareoften usedinmixture.Saccharinalsoknownaso-benzoicsul fimidewasthe firstartificial sweetenerdiscovered.Itcanbeusedassweeteneratlowconcentrationbutitelicits astrongbittertasteathighconcentration(Cohen,1986).Cyclamatehasasweettaste similartosucrosewithaweakmetallicandsaltyaftertaste(SchiffmanandGatlin, 1993).AcesulfameKisanintensesweeteneroftenusedinassociationtomaskthe
unpleasantaftertasteofothersweeteners(SchiffmanandGatlin,1993).Aspartameisa syntheticpeptide(Asp-Phe-O-Methyl)knowntosynergizewithothersweetenersand thusmainlyusedinmixturewithacesulfameKandsaccharin.Sucraloseisapproximately600timessweeterthansucroseanditsuseisapprovedinallmajorcountries.
1.3Influenceoffoodingredientsandfoodstructureon thereleaseof flavorcompoundsduringtheinmouthprocessinrelationwithperception
Flavorperceptionisadynamicprocess,whichbeginsasfoodisputinthemouth,then mixedwithsaliva,brokenwiththeteethinthecaseof fi rmfoods,formingaboluseasy toswallow.Afterswallowing,some flavorcompoundsremainontheoralmucosa, leadingtoaftertaste.Inordertounderstandtherelationshipsbetween flavorrelease and fl avorperception,thereisaneedtofollowthereleaseatthesedifferentsteps,in adynamicprocess.
1.3.1Retentionandreleaseofaromacompounds
Infoods,aromacompoundsaresolubilizedinthedifferentphasesaccordingtotheir hydrophobicpropertiesandaremoreorlessretainedbythemacromolecules,such asproteinsandpolyosides.Theirreleaseinthenasalcavitydependsbothonthe compositionofthefoodmatrixandonitsstructuralorganization.
Afoodmatrixiscomposedofmacromoleculesabletomodifythereleaseofaroma compoundsinthenasalcavityduetospeci ficinteraction,described firstinsimplesystems,theninrealfoods.
1.3.1.1Effectoffoodingredientsonaromaretentionand releaseinsimplemodelsystems
Mostoftheliteratureontheinteractionsbetweenaromacompoundsandfoodmatrix relatestosimplesystemscomposedoflipids,proteins,andcarbohydrates,aloneorin mixturebutotherconstituentssuchaspolyphenols,melanoidins,arti ficialsweeteners, alcohol,andsaltalsoaffectaromareleasefromwatersolution.
1.3.1.1.1Lipids
Insystemscontaininglipids,aromacompoundsarepartitionedbetweenthelipidand theaqueousphases,followingthephysicallawsofpartition.Thereleaseofaroma compoundsfrommodelsystemscontaininglipidsdependsonthenatureofboththe aromacompoundandthelipid.Mostofthearomacompoundsaremoresolublein oilthaninwater.Thesecompoundsareconsideredashydrophobic(log P > 1)and arethuslessreleasedinthevaporphasefromoilthanfromwater(lowerair/oilthan air/waterpartitioncoef ficient).Thereleaseofthemosthydrophobicaromacompounds alsodependsonthelevelandnatureofthelipid.Asanexample,ethylhexanoate(log 8FlavorReleaseinHumans
P ¼ 2.83)ismoresolubleinsunfl oweroilthaninoliveoil(Roudnitzkyetal.,2003). Thiswasexplainedbythehigheramountofunsaturatedfattyacidsinsunfloweroil (C18:2)whichleadstoahighersolubilityofaromacompounds(Guichard,2002). Aromacompoundsarealsomoresolubleinshortchainthaninlongchainsaturated triglycerides(Maier,1975).Asaromacompoundsareonlysolubleinliquidfat,a highamountofsolidfatreducedtheirsolubilityandthusincreasedtheirreleasein thevaporphase(Roudnitzkyetal.,2003).
1.3.1.1.2Proteins
Foodproteinsareknowntobindaromacompounds(Tromelinetal.,2006)bydifferent mechanismswhichdependbothonproteinstructureandnatureofaromacompound (Hengetal.,2004; Semenovaetal.,2002).Mostofthestudiesrelatedtoaromaproteininteractionshavebeendoneusingmilkproteinsamongwhich b-lactoglobulin hasbeenthesubjectofmanystudies(Hansen,1997; Lubbersetal.,1998; O’Neill, 1996)andonlyfewstudiesarerelatedtocaseins(Voilleyetal.,1991)evenifthey areamongthemostabundantmilkproteins. b-Lactoglobulinisabletobindaroma compoundsbyhydrophobicinteractions.Withinthesamechemicalclassofaroma compounds,thestrengthoftheinteractionincreasedwiththechainlength(Jouenne andCrouzet,2000; O’NeillandKinsella,1987; Sostmannetal.,1997).ThepH,temperature,andionicstrengthaffectedthestrengthofthebindingbymodifyingthestructureoftheprotein(JouenneandCrouzet,2000; Taveletal.,2010; Tromelinetal., 2006).Theseinteractionsreducedthereleaseofaromacompoundsintheairphase andthusaromaperception(Andriotetal.,2000).Theinteractionsbetweenmilkproteinsandaromacompoundsmainlyinvolvedhydrogenbondingorhydrophobiceffect (Tromelinetal.,2006).However,aldehydesandsulfurcompoundsinteractwithproteinsbyirreversiblebindingaswasdemonstratedbetweentrans-2-hexenalandwhey proteinswiththeformationof fluorescentcompounds(Meynieretal.,2004).
Proteinsofleguminousplantsareoneofthemostpromisingmaterialsforformulatingnewformsoffoodproducts.Theseproteinsareisolatedfromsoy,peas,and beansandusedasfunctionaladditives.NonspecificvanderWaalsbindingwasattributedforhydrocarbonswhereashydrogenbindinganddipoleforceshavebeensuggestedforesters,ketones,aldehydes,andalcohols(ZhouandCadwallader,2006), covalentbindingwasdemonstratedbetweenpeaproteinisolatesandoctanalordibutyledisul fide(WangandArnt field,2016).Theroleoftheproteinstructureinbinding andreleaseofaromawasinvestigatedinthecaseofhexylacetateandrevealedthatthe nativeleguminousmoleculespossessthehigherbindingaffinityforthiscompound (Semenovaetal.,2002).
1.3.1.1.3Carbohydrates
Carbohydratecompoundscanbeclassi fiedintothreecategoriesaccordingtotheirmolecularweight:simplesugarssuchasglucoseandsucrose(mono-anddisaccharides), oligosaccharides(2 10monosaccharides)suchasoligofructoseandpolysaccharides (>10monosaccharides)suchasstarch(DelarueandGiampaoli,2006).Theiraddition infoodsinfl uencedbothtaste,especiallysweetness,andtextureperception.Their Retentionandreleaseofaromaandtastecompounds,in
impactonaromareleasewasquitedifficulttopredict,sincetheyareabletoinduce bothretentionandreleaseeffects,dependingontheintrinsicpropertiesofthefoodmatrixsuchasthetypeofcarbohydrates,theirconcentration(Nawar,1971),andalsoon thepropertiesofaromacompoundssuchassterichindrance,polarity,andrelative volatility,asalreadyreviewed(Goubetetal.,1998).Amongthecarbohydrates,starch wasabletointeractwitharomacompounds,mainlybytheformationofinclusioncomplexeswithamylose(Biaisetal.,2006),whichalsomodifiedtherheologicalproperties ofstarch(Heinemannetal.,2005).Theadditionofpectininducedasmallretentionof aromacompounds,mainlyduetotheformationofamacromolecularnetwork(Rega etal.,2002),whichlimitedthediffusionofsmallmolecules.Inthecaseofcarrageenan,asmallretentionwasobservedforestersandasaltingouteffectforalcohols (Bylaiteetal.,2004).
1.3.1.1.4Othereffects
Otheringredientsfromthefoodmatrixinfluencedaromarelease.Anincreasedamount ofsaltinducedanincreaseintheair/waterpartitioningofmostofthearomacompounds,duetoasaltingouteffect,explainedbyareductionoftheavailablesolvent intheliquidphase.Thiseffectwasmoremarkedforhydrophobiccompounds,lesssolubleinwater(Lauverjatetal.,2009).Additionofethanoldecreasedthepartitioncoefficientofvariousclassesofvolatilecompoundsbyincreasingtheirsolubility (Voilleyetal.,1991).Othernonvolatilecompoundssuchaspolyphenols,melanoidins, arti ficialsweetenersalsoimpactedaromareleaseandperception.
1.3.1.2Effectoffoodingredientsonaromaretentionand releaseinrealfoods
Foodscannotonlyberepresentedbysimplesystemscontainingonemacromolecule. Theinteractionsbetweenaromacompoundsandmacromoleculeshavetotakeaccount ofthemultiphasicsystemscomprisingwater,lipids,andproteinsor/andcarbohydrates,inthepresenceofotheringredients.
Foodsystemscontaininglipidscanbeconsideredasoil-in-waterorwater-in-oil emulsions.Thevolatilityofaromacompoundsinemulsionsdependsontheamount offatbutalsoonthetypeoffat(Relkinetal.,2004).Anincreaseinfatcontent decreasedthereleaseofthemorehydrophobiccompounds;thiseffectwashigher thanthatofproteinsorpolyosides(Kopjaretal.,2010; Seuvreetal.,2000).Moreover, theeffectofproteinvariedaccordingtotheamountoflipidsinicecream(Ayedetal., 2018);anincreaseinproteincontentinducedadecreaseofaromareleasebutthiseffect wassignificantonlyatalowfatlevel.Anadditionofmonoglyceridesinemulsions inducedadecreaseinair/emulsionpartitioncoef ficientofthearomacompounds (Maoetal.,2014).Thepresenceofproteins(beta-lactoglobulinorsodiumcaseinate) asemulsifi ersattheoil/waterinterfaceincreasedtheresistancetotransferofhydrophobicaromacompoundsfromoiltowaterandthusinducedadecreaseintheirreleasein theairphase(Harveyetal.,1995; Rogachevaetal.,1999).Anadditionofpolyphenols inoliveoilemulsionsstabilizedbybeta-lactoglobulinmodifiedthestructureofthe interface,improvingthedispersiondegree(Genoveseetal.,2015a)andincreasing 10FlavorReleaseinHumans
Retentionandreleaseofaromaandtastecompounds,in
thereleaseofthemorevolatilecompounds(Genoveseetal.,2015b).Thiswas explainedbyinteractionbetweenpolyphenolsandwheyproteins,whichreduced thebindingbetweenaromaandproteinsbyacompetitioneffect.Theseresultsare ofgreatinterestintheformulationofhealthierfoodswithadditionofpolyphenols andprovidingagoodaromaperception.
Theadditionofsalt(NaCl)modifiedthestructureofthefoodmatrix.Asan example,beta-lactoglobulinwasmainlypresentinitsdimericforminthepresence ofNaClbecauseofamodificationofelectrostaticforces(Sakuraietal.,2001),leading toanincreaseinthebindingof2-octanone(JouenneandCrouzet,1997).Ahigher NaClcontentincreasedthestrengthofiota-carrageenangelsandtheself-diffusion ofethylbutanoate(Gostanetal.,2004),whichwasexplainedbythegreatersizeof theopenspacelocatedbetweenthegelchains,resultinginfewerobstaclestothe freediffusionofsolutes.Inmodelcheeses,theadditionofsaltmodifi edthetexture bydecreasingwateractivity,increasing firmness,andtherebyincreasingtherelease ofaromacompounds,thiseffectbeingsigni ficantatalowleveloffat(20%)and notatahigherfatlevel(40%)(Saint-Eveetal.,2009).
Hydroalcoholicsystems,suchaswine,havebeenextensivelystudied.Theyare complexmatrices,inwhichethanol,polyphenols,andpolysaccharidesareableto interactindividuallywitharomacompounds.Whenpresentinmixtures,tanninsgenerallyenhancedthereleaseofaromacompoundswhilefructoseinducedaretentioneffect,theseeffectsbeingmodulatedbyethanol(Villamoretal.,2013).Theeffectof increasinglevelsofpolysaccharidesinamodelwinecontainingtanninsdifferedaccordingtothetypeofpolysaccharide.Atlowconcentration,arabinogalactaninduced anincreaseinaromareleasewhateverthearomacompound(saltingouteffect), whereasatconcentrationhigherthan1g/Laretentionwasobservedforthemorehydrophobicaromacompounds,suggestingintermolecularbindingwhichwasnomore observedataconcentrationof5g/L,duetosaturationofthebindingsites(Mitropoulouetal.,2011).
1.3.1.3Effectoffoodstructureandtexture
Theeffectofmatrixstructureandtextureonthereleasepropertiesofaromacompoundshasbeenreviewedinmodelgels(Lubbers,2006)andindairyproducts (Gierczynskietal.,2011).Inmultiphasesystems,thecompositionandnatureofproteinsandlipidsinduceddifferentmicrostructures,whichexerteddifferenteffectsonthe retentionandreleasepropertiesofaromacompounds.Itwasthusdifficulttodissociate theeffectofcompositionfromtheeffectoftexture.Differentstudieshavetriedto demonstratetheeffectoftextureand/ormicrostructureatthesamefoodcomposition. Bymodifyingtheenergyofemulsification,emulsionswererealizedwithdifferent dropletsizes(Charlesetal.,2000).Withanincreaseinemulsiondropletsize,anincreaseinthereleaseofhydrophiliccompoundsandadecreaseofhydrophobiccompoundswereobserved.Thiswasexplainedbydifferencesinaromacompoundsmass transferinrelationtothemodificationofthesurfaceareaandthustheexchangesbetweentheoilandwaterphase.Inyogurtsrealizedwiththesameproteinconcentration, amechanicaltreatmentwasappliedtodecreasetheviscosity(Saint-Eveetal.,2006).
Itwasobservedthatthisinduceddecreaseinviscosityresultedinanincreaseinaroma releaseandthusintheintensityofaromaperception.Moreover,inthesamestudy,the natureofprotein-induceddifferencesinmicrostructureaffectingaromareleaseparameters,caseinateenrichedyogurtshadahigherviscositythanwhey-proteinenrichedyogurts,whichdecreasedthereleaseofaromacompoundsintheairphase.Inmodel cheeses,amodificationoftheproteinstructurebyacidificationwithchymosinwas showntoinduceanincreaseinviscosityandthusagreaterandfasterreleaseofall aromacompounds(Gierczynskietal.,2007).Similarobservationwasmadewith realcheesesvaryingin firmness(Repouxetal.,2012).Thereleaserateofethylpropanoateandnonan-2-oneduringthein-mouthbreakdownincreasedwiththe firmnessof thecheeses,duetoagreateramountofparticlesformedatthebeginningofthechewing processinthecaseof firmcheeses,whichledtoanincreaseintheexchangearea.After swallowing,thereleaseofthemosthydrophobiccompound,nonan-2-onedecreased moreslowlythanthatofethylpropanoateduetoitsgreatersolubilityinthelipid filmremaininginthemouth,leadingtoahigherin-mouthremanenceandthusalonger sensorypersistence(Guichardetal.,2017).
NaClalsomodifiedthestructureofthefoodmatrix;forexample,ahigherNaClcontent increasedthestrengthofiota-carrageenangelsandtheself-diffusionofethylbutanoate (Gostanetal.,2004),whichwasexplainedbythegreatersizeoftheopenspacelocated betweenthegelchains,resultinginfewerobstaclestothefreediffusionofsolutes.
Hydrocolloidmixturessuchastheoneusedforconfectionerygelscontaintypically apolysaccharide-proteinmixsuchaspectin,starch,orgelatin(Bureyetal.,2009). Phaseseparationofthesemixturesleadstoacontinuousphaserichinonehydrocolloid whichembedstheotherone.
Whilearomareleasefromonespeci fichydrocolloidmatrixisratherwellunderstood,thereisstilllimitedunderstandingofaromadistributionandreleasefrom morecomplexmixofhydrocolloidmatrices(Savaryetal.,2007; Tayloretal.,2001).
Tayloretal.(2001) haveinvestigatedthecorrelationbetweenaromareleaseand phaseseparatedgelsinvivo,andnosigni ficantdifferenceintimetomaximumintensityormaximumintensityofreleasewasobservedbetweenthegelswithdifferentmicrostructures.Morerecently, Suetal.(2021) observedthatgelatine-starchbiphasicgel withdiversemicrostructuresandtextureshasnosigni ficanteffectonaromarelease invivo.Nevertheless,theyobservedasignificantimpactonaromadistributionand releasewhensucrosewasaddedtothemixture.Themicrostructurewasaffected, anditsigni ficantlyaffectedthebehaviorofthemorehydrophobiccompounds.
Anothermicrostructuremodificationwasperformedby Chiuetal.(2015) who addedgasbubbletoasoftgel.Theseauthorsshowedthatincreasedaerationresulted inanincreaseoftotalaromareleaseof1-octen-3-ol.Airinclusionsleadtobiggersurfacearea,consequentlyacceleratingmasstransferofvolatilesatthefood-salivainterface. Suetal.(2021) showedthatthisphenomenonisdifferentfordifferentgroupsof aromacompounds.Airinclusionaffectsmorethebalanceofsomealdehydesinthe fi nalproduct.Nevertheless,thisairinclusionseemstobeanefficientstrategyto compensatethereductioninaromainsuchcomplexmixturewithoutcompromising onperceived flavor.
Volatilereleasecanberelatedtogelstrength; Franketal.(2015) showeda fl avor intensityincreaseinanagargelwhileitsstrengthattributesdecreased.Therefore,a loweroralprocessingwasrequiredinasoftgelreleasingmorevolatilesandincreasing perceived flavor. MaloneandAppelqvist(2003) showedthatgelledparticlesbasedon starchbreakdownwhenexposedtoamylasecontainedinsaliva,andthisaccelerates thereleaserateofvolatilecompounds,combinedwithfractureproperties.
1.3.2Retentionandreleaseoftastecompounds
Themobilitypropertiesofsmallmoleculesgoverntheirreleaseinthemouthduringthe in-mouthprocesswhenconsumingafood,whetherwithinthesamephaseorduringa transitionbetweenphases.Inthecaseofsodium,themainfactorsaffectingsodium migrationduringthefoodoralprocessingaretheconcentrationgradientofsodium andtheresistancetosodiummigration.Theresistancetosodiumdiffusionisgoverned bythetortuosityandsievingeffectsofthefoodmatrix,whereastheresistancetothe convectivetransportofsodiumisreflectedbythevelocityoftheserum flowduringthe foodmatrixcompression(KuoandLee,2014a,b).Thesetwophenomena,diffusion andconvection,areexacerbatedwithincreasedsurfacearea,asaresultofthematrix fragmentationduringthemastication.
Thereleaseofsaltfromlipoproteinmodelmatricesvaryingincompositionintoartificialsalivawasstudiedbymeasuringapparentdiffusioncoef ficientsofsodiumchloride(Flouryetal.,2009, 2010).Theauthorsreportedthatthevariationofthediffusion coef ficientaccordingtothecheesematrixcompositionwaslinkedtotheirstructural andtexturalproperties.Diffusioncoef ficientsdecreasedstronglywhenthedrymatter contentdecreased.Thiswasexplainedbythelowerproteinconcentrationinthematrix facilitatingthediffusionofthesolutes.Theauthorsalsoobservedthatthediffusion coef ficientincreasedwiththepHatrennetingandwiththeinitialsaltconcentration probablyduetochangesinthestructureandmicrostructureofthematrix.
Theinfluenceofmicrostructureonsodiumreleasewasconfirmedbyastudyon modelsolidlipoproteincolloidsvaryingincompositionandstructure(KuoandLee, 2017).Theauthorsshowedthatsodiumreleasecanbecontrolledviatheconvective transferordiffusivetransfermechanismsbycontrollingtheporosityandparticle sizeoffat,respectively.
1.3.2.1Effectoffoodstructureandtexture
Insemisolidandsolidproducts, flavorcompoundscanbeentrappedeitherinthelipophilicorthehydrophilicphase.Compoundscanbetrappedinahardhydrophilicphase (gel)andthatpreventstheirsolubilitytosaliva.Anincreaseintheirreleasecanbe observedwhenthematrixissoftening,melting,ordissolvingwhichhappensduring chewing(deRoos,2003).
Theimpactofairinclusioningelsonsaltinessandsweetnesswasdemonstratedby Gohetal.(2010).Theseauthorsshowedthatwithhighgelaerationthesaltyandsweet perceptionwasmaintainedwhiletastantconcentrationsweredecreased.Likewise, Chiuetal.(2015) observedsimilarpropertiesonsoftgelinsaltinessperception.Air Retentionandreleaseofaromaandtastecompounds,in
inclusionscreateagreatersurfacearea,consequentlyincreasingthemasstransferof tastanttosalivawhichresultsinhigherperception.
1.3.3Dynamicreleaseanddynamicperception
1.3.3.1Dynamicaromareleaseandperception
Inordertofollowthereleaseofaromacompoundsinthenasalcavityascloseas possibletotheolfactoryreceptors,differenttechnologieshavebeendevelopedusing atmosphericpressurechemicalionizationmassspectrometry(Tayloretal.,2000)or protontransferreactionmassspectrometry(Lindingeretal.,1998).Morerecently thecouplingwithatime-of-flightanalyser(PTR-ToF-MS)guaranteeshighmassresolutionuptothethirddecimal,allowingtoassignaformulatomostmasspeaks (Romanoetal.,2014).
Onlyfewpapersreportedsimultaneouslydynamicreleaseanddynamicperception. Therelationshipbetweenperceivedaromabysensoryscalingandtimeintensity wasstudiedingelatin-sucrosemodelgels(Baeketal.,1999).Byincreasinggelatin concentration,sensory fl avorperceptiondecreasedwithbothmethods;however,no signi ficantdifferenceswereobservedinthemaximumin-nosearomaconcentration, butonlyadecreaseintherateofaromarelease,suggestingthattherateofrelease correlatebetterwithsensoryperceptionthanthetotalamountofaromarelease.
Theeffectofcandytextureandeatingtechnique(meltingorchewing)wasstudied onthedynamicsofinvivoaromareleasefollowedbyPTR-MSandtemporaldominanceofsensations(TDS)usingatrainedpanel(Délérisetal.,2011).Relationships betweenthedynamicsofreleaseandperceptionhavebeenestablishedbetweendominancedurationandtimetoreachmaximalintensity.Similarapproacheswereconductedonfruityogurt(Mesurolleetal.,2013)andEspressocoffee(Barronetal.,2012), highlightingalsothedif ficultyto findclearrelationshipsbetweenthetwoanalyses. Infact,datafromPTR-MSmeasuretheamountofaromareleasedwhereasTDSmeasuresthedominantsensation.Moreover,eachsensoryattributecanbeissuedfrom severalaromacompoundsandeachiondetectedbyPTR-MSmaycomefromdifferent molecules.
Inbiscuits,nosignificantcorrelationwasfoundbetweenanetholeinvivorelease andperception,duetoahigheffectoftexturalpropertieson fl avorperceptionand oftheexistenceofaroma-sweetnessinteractions(Bursegetal.,2009).
1.3.3.2Dynamicreleaseoftastecompoundsandperception
Fewerstudieswerecarriedoutontastecompoundsreleasecomparedtothenumerous studiesreportingkineticsofvolatilecompoundrelease.Duringthein-mouthprocess, tastantsareprogressivelydissolvedinsaliva,whilefoodisbrokendownandtransformedintoabolusunderthecombinedactionofsalivaandchewing(Sallesetal., 2011).Thesephenomenacontrolthedeliveryoftastantstothereceptorslocatedon thetongue,whichisoneofthekeyfactorsdeterminingtheperceivedtasteoffoods. Thesamplingofsalivaatdifferenttimesofmasticationusingadsorbentsorbydirect 14FlavorReleaseinHumans
Retentionandreleaseofaromaandtastecompounds,influenceonperception15
spittingoutofsalivaintubesfollowedbyHPLCanalysisisthemorecommon approachthoughminiconductimetrysensorlocatedinthemouthhasbeenusedfor acontinuousandreal-timemeasureofthechangeinconductivity(Davidsonetal., 1998; Emorineetal.,2012).
Asforvolatilecompounds,thepatternsoftemporaltastecompoundsreleaseand temporaltasteperceptiondependonboththecompositionofthefoodmatrix(foodingredients)andtheoralphysiologycharacteristicsoftheconsumers(Lawrenceetal., 2012a,b; Sallesetal.,2011).
Thetastantsareretainedinfoodthroughphysicochemicalinteractionsandareprogressivelyreleasedinthemouthunderthecombinedactionofmasticationandsaliva. Importantdifferenceswereobservedaccordingtothenatureofthemacromolecules constitutingthefoodmatrix.Thenatureofthenonvolatilecompoundseemslesscriticalsince,foragivensubject,theshapeofthereleasecurveswerefoundsimilarfor mostofthe12compoundstested,theobserveddifferencesbeingdueonlytodifferencesinconcentration(Pionnieretal.,2004).However,asfor flavor,thedirectrelationshipsbetweentastecompoundreleasekineticsandtemporaltasteperceptionare complex.Inmodelcheesestheincreaseoffatcontentwasrelatedtoaglobaldecrease ofsodiumreleaseandanincreaseofsaltinessperception(Phanetal.,2008).However, theseeffectsvariedaccordingtothesaltconcentration(Lawrenceetal.,2012a).Atlow saltconcentration,noeffectoffatwasobservedforsodiumreleasewhilesaltiness perceptionwasmoreintensewhenthefatlevelwaslow.Atmediumsaltconcentration, noeffectwasobserved.Conversely,athighsaltconcentrationthesaltinessperception waslessintensewhenthefatcontentwaslowerwhilesodiumreleasewasthelowestat highfatcontent.
Thewatercontentoffoodalsoinfluencedthereleasedsaltconcentrationandsaltinessperception.Asanexample,incheeseproducts,ahighamountofwaterincreased sodiumreleaseduetoitssolvatingcapacitywhereasalowwatercontentassociatedto ahighsaltconcentrationincreasedsaltinessperception(Jacketal.,1995; P flaumetal., 2013).Thisphenomenonseemstobemainlyobservedatthebeginningofchewing (Phanetal.,2008).Moreover,inmodelcheeses,saltinessperceptionwasrather wellcorrelatedwithsaltreleasedinsalivaandsodiummobility(Boisardetal., 2014).Sucheffectsofwaterwerealsoreportedforbreads(Pflaumetal.,2013). Thestructureandtextureofbreadswerealsoreportedasimportantfactorsforsalt releaseandsaltinessperception(LeBleisetal.,2013; Panouilléetal.,2014; Pfl aum etal.,2013).
Themostrecentworksonthereleaseinthemouthoftastecompoundsandtheir perceptionarefocusedonsaltbecauseofthehealthrecommendationsconsidering thestructuralandmicrostructureaspectsofthefoodmatrix(KuoandLee,2017). Asexample,thestructureofsolidlipoproteincolloid(SLC)gelsobtainedbyheatinducedgelationofemulsionswasstudiedbyultrasmall-angleX-rayscatteringinordertobetterunderstandmechanismsinvolvedinsodiumrelease(Kuoetal.,2016). ThegyrationradiusofthefatglobuleofSLCgelswith3.5%NaClwasfoundnegativelycorrelatedwiththeCmax(themaximumconcentrationofreleasedsodium andtheAUCareaunderthecurveofsodiumreleasevs.timeplot).Anexplanation isthat,atthesametotalfatcontent,smallerfatglobulesimpliedagelnetworkwith
ahighernumberofdispersedfatparticles.Asfatinterferedwiththeproteinnetwork, thehighernumberofdispersedfatparticlescouldleadtoagreaterextentofbreakdown resultinginmoretotalsurfaceareaforthebrokengelsthusfavoringtheenhanced releaseofsodiumfromthegelwhencompressed.Thisphenomenonwasnotobserved atalowerNaClconcentration(1.5%),becauseoflowerforcesininterproteininteraction.Thus,strongerinteractionmadetheinitiationofbreakuponcompressionmore likelytooccurattheprotein-fatinterfacewhichdominatedthebreakdownproperties oftheSLCgelswith3.5%NaCl.Withthesamekindofsolidlipoproteincolloidfoods, thesaltinessperceptionwascorrelatedpositivelywithfracturablebutnotcrumblyattributes.Itwasthuspostulatedthatforthefat-containingSLCs,moderatebreakdown propertywouldfavorsodiumrelease.WhentheSLCbreaksdownrelativelyfast,the crumbledgelparticlesrequirelesschewingwork,andthus,mayleadtolowersodium releaseandsaltinessperception(KuoandLee,2017).Ithasbeenreportedthatoverall sodiummobilitydecreasedwithincreasingproteinandfatlevelsinlipoprotein matrices,influencingsaltinessperception(Boisardetal.,2014; OkadaandLee, 2017).Asanexample,increasingproteinorfatcontentcontributedtoamoreordered environment,contributingtoahigherboundsodiumfraction(OkadaandLee,2017).
1.4Influenceoforalphysiologyoninvivoreleaseand perception
Wheneatingfoods,notonlythefoodcompositionandstructureinfluencein-mouth fl avorrelease,butthefoodmatrixpropertiesandtheoveralloralprocessingareinteractive.Thisinteractionleadstodifferent fl avorreleaseprofilesrefl ectinginterindividualvariabilities.Variousoralparameterssuchasmastication,salivary fl owrate andcomposition,swallowing,oralvolumes,mouthcoating,mucousadhesion,and breathair fl owforvolatilecompoundsmayinfluencetheavailabilityof fl avorcompoundsforreceptorsdifferentlyaccordingtoindividualsandthusinfluence flavor perception.
1.4.1Influenceoforalphysiologyoninvivoaromacompound releaseandperception
Real-timeinvivomethodshavebeenusedextensivelytostudytheimpactofthe compositionand/ortextureofafoodproductonaromareleaseduringchewing (Bolandetal.,2006; Gierczynskietal.,2007; Mestresetal.,2005, 2006).Ageneral tendencyisthathigherhardnessinducedagreaterchewingactivityassociatedwith highersalivation,leadingtoagreaterexchangeareaandahigheramountofaroma released(Gierczynskietal.,2007).Anadditionofsaltinmodelcheesesinduceda greatersalivation,anincreaseinthenumberofswallowingeventsandchewingdurationwhichincreasedthetotalamountofreleaseofhydrophobicaromacompoundsin thenasalcavity(Boisardetal.,2013).
Retentionandreleaseofaromaandtastecompounds,influenceonperception17
Howeverdifferentbehaviorswereobservedbetweensubjectsexplainedby differentchewingstrategies(Yvenetal.,2012).Therelationshipsbetweenoralphysiology(respiration,salivation,mastication .)andaromareleasehavebeenstudied forsubjectsconsumingdifferentfoods(Gierczynskietal.,2008; Pionnieretal.,2004; Repouxetal.,2012).Subjectswithahighamountofaromareleasehadalsohigh valuesofrespiratoryrate,numberofchews,andmuscleactivity(Pionnieretal., 2004).Agreaterrespiratoryratecontributedtobringingmorevolatilestotheupper airways,andconsequentlymorevolatileswerepresentintheexpiredairofthesubjects.Ahighmuscleactivityinducedabetterdegradationofthebolus.Consequently, thefoodsurfaceincontactwiththevaporphaseincreasedandthusthetransferof aromacompoundsfromthematrixtothevaporphasewashigher.AstatisticalmultiblockPLSapproachwassuccessfullyusedtobetterunderstandtherelativeimpactsof differentphysiologicalparametersonaromarelease(Feronetal.,2014).Themain impactofmasticatorybehaviorwasobservedbutothersignifi canteffectscouldbe highlighted.Bolusrheologymainlyinfluencedaromareleasefrom firmercheeses. Thepersistenceofaromareleaseinthebreathwasmainlyexplainedbyhigherbolus spreadabilityandbolusmoistening,whichresultedinahigheramountofproduct remaininginthemouth.Thecompositionofstimulatedsalivainfluencedtheamount ofaromarelease,withalowerreleaseforsubjectswithahigheramountofsalivary proteins.
1.4.2Influenceoforalphysiologyoninvivotastecompound releaseandperception
Thecompositionofthefoodmatrixindirectlyinfluencestastecompoundreleaseby changesintheirtexturalpropertiesinducingchangesinthephysiologicalbehavior ofindividualsduringeating.Asalreadymentioned,hardfoodproductsgenerally requestedahigherchewingtime.Duringthecomplexfoodoralprocessing,thephysicochemicalpropertiesofthefoodaremodifi edandtheperceptionof flavorandtexture isaffected.Fragmentationincreasedthesurfaceexposedtosalivaandthusfacilitated thedissolutionoftastecompoundsinsalivaandinfluencedtasteperceptionwhilethe bolusisprogressivelybuiltfromfoodparticlesandsaliva.Themasticationpatternand salivacharacteristicsmayvaryconsiderablybetweenindividuals.Thesephysiological variationsareanimportantsourceofinter-individualvariabilityfortemporaltaste releaseandperception.Asanexample,inmodelcheeses,animportantreleaserate ofsodiumwascorrelatedwithahighsalivary flowrate,andimportantbiteforce andchewingworkwhilesalivary fl owrateandchewingefficiencyinfluencedthe speedofperception,notthesaltinessintensity(Phanetal.,2008).Moregenerally, ithasbeenreportedthatsodiumreleasewasratherrelatedtomechanicalchewingactivitywhilesaltinesstemporalperceptionwasratherrelatedtothesalivary flowrate (Lawrenceetal.,2012b).
Evenifmasticationandsalivarypropertiesarethemajortwooralparametersrelated totastecompoundreleaseinmouth,otherphysiologicalparameterswereshowntoinfluencetastereleaseandperception.Somecommonfoodmacromoleculessuchas
polysaccharideshavemucoadhesivepropertieswhichmayinfluencethedeliveryof activecomponents(Cooketal.,2017),andthuscontributetomodulatetheorganolepticpropertiesoffoodbyretainingtasteoraromamolecules.Asanexample, somepolysaccharides,commoninfoodcomposition,werefoundtoinfl uencesalt releaseintheoralcavityduringeating.Themucoadhesivepropertiesofcarboxymethylcellulosecanmodifyretention,release,andperceptionofsodiumovertime. Thisexplainstheretentionofsodiumionsinthemouthbeingprolongedduetothe mucoadhesivenatureofthepolysaccharide(Cooketal.,2018b).Therefore,the perceptionoftheretainedsodiumwasdiminishedduetotheanioneffect.Itwasreportedalsothat,moregenerally,theperceptionoftastantsandaromaovertimecan changedependingonthemucoadhesivepolysaccharideused(Cooketal.,2018a).
1.5Simulationoforalprocessingusingdifferentdevices
Sensoryperceptionof flavorreleaseduringeatingishighlydependentuponmouthparameters.Majorlimitationshavebeenreportedduringinvivo flavorreleasestudies, suchasmarkedintra-andinterindividualvariability.Toovercometheselimitations, someartificialdeviceshavebeendevelopedtomimicthehumanmasticationof foodsamples.Althoughtherearemanydevicesdedicatedtothesimulationofchewing,inthispartwewillfocusonthoseallowingthesimulationof flavorreleaseinoral conditions.
Oneofthesimplestartifi cialmouthswasdevelopedby vanRuthandRoozen (2000) andconsistedofajacketedreactorequippedwithaplungerthatperforms simultaneousverticalandrotationalmovementstosimulatecompressionandshearing simulatingchewingmovements.Thisarti ficialmouthwastestedonseveralmodeland realfoodstomimicthereleaseofkeyaromacompounds,showingagoodsimilarity withinvivodata.Thereactordevelopedby Rabeetal.(2002) allowedtocontrolsaliva andair flowsandwassuccessfullyusedforliquidmodelsystemsandbeverages(Rabe etal.,2004).TheRetronasalAromaSimulator(RobertsandAcree,1995)witharelativelyhighvolume(1L)allowedforaprecisecontrolofshearrateandwassuccessivelyusedtofollowaromareleasefromdifferentproducts(orangejuice,chocolate, icecream,andcookies)incomparisonwithinvivorelease(Deibleretal.,2001).
However,themodelsdescribedabovepoorlyrepresentedalimitednumberoforal functionswhicharefarfromanactualoralenvironment.
Theartificialmouthdevelopedby Sallesetal.(2007) reproducedmostofthefunctionsofthehumanmouth.Theactivecellcomprisesseveralmobilepartsthatcanaccuratelyreproduceshearandcompressionstrengthsandtonguefunctionsinreal-time, accordingtodatapreviouslycollectedinvivo.Themechanicalfunctionalitiesofthe systemwerevalidatedusingpeanuts,withafairdegreeofconsistencywiththehuman data.FlavorreleasecanbemonitoredonlineusingeitherAPCI-MSorchemicalsensors,orofflineusingHPLCfornonvolatilecompounds(Mielleetal.,2010).Thisdevicethushastheadvantageofallowinginvitrostudiesunderoralconditionson flavor releaseandbolusformationfromsolidmatrices.Flavoredlipoproteinmatricesvarying 18FlavorReleaseinHumans
Retentionandreleaseofaromaandtastecompounds,influenceonperception19
infatcontentwerechewedusingthisdevicewhereeachoralparameterwascontrolled anddecoupled.Eachcontrolledoralparameterhadsigni ficantlydifferentinfluenceson thereleaseofaromacompoundsaccordingtotheirphysicochemicalcharacteristics.In particular,itwasreportedthatbitingandshearingforcesinfluenceddifferentlythe releaseofaromacompoundsaccordingtotheircharacteristics.Thesalivary flow rateprimarilyinfluencedthemorehydrophobiccompounds.Moreover,signi ficantinteractionswerealsoobservedbetweenshearangle,salivary fl owrate,andfatcontent, accordingtothephysicochemicalpropertiesofthevolatilecompounds(Tarregaetal., 2019).
Therelationshipsbetweenthepropertiesofextrudedpea-basedsnackbolusesand themultiscalestructureofsaidfoodswereinvitrodeterminedusingthesamedevice, allowingcontrolofthe flowrateofarti ficialsalivary fluidandchewingtime(Kristiawanetal.,2021).Thestructureoftheextrudedpeasnackswascharacterizedbytheir densityandproteinsolubilityindithioerythritol,whichrefl ectedtheamountofprotein aggregatescross-linkedbydisul fidebonds.Thus,aphenomenologicalmodeloforal breakdownofextrudedpeasnackswasestablishedbylinkingtheevolutionofsalivary absorptioncapacityandthatofconsistencyofbolusinfunctionofthesnackdensity andthequantityofdisulfi debondsproteinaggregatescreatedduringtheextrusionprocess.Theuseoftheartificialchewerallowedcontrolofthemainmechanismspertainingtotheformationofextrudedpea flourboluses:fragmentationandsaliva absorption.Betweenthesetwomechanisms,salivaabsorptiongovernedtheevolution ofbolusshearviscosity,whichisanessentialpropertyforfoodswallowingandfor consumeracceptability.Thus,suchaninvitroapproach,extendedtoinvitro fl avor release,couldbeappliedtoalargerangeofsolidfoods,formodelingfoodoralprocessingphenomenaandusedforreverseengineeringtodesignfoodswithatargeted structure.
Thetongueplaysacrucialrolethroughoutfoodoralprocessing,inparticular,transportingfoodtothemolarorcheekteeth,compressingorsqueezingfoodagainstthe hardpalate,mixingfoodparticleswithsaliva,andtransportingbolustothepharynx. Itplaysamajorroleinfoodoralprocessingand flavorreleaseforsoftorsemisolid foods,whicharenotchewed.Verysimpleartificialtonguesweredesignedusing softpolymerssuchassiliconerubber(Ishiharaetal.,2014)orsonagel(Gaoetal., 2014).Theyweremainlyusedtosimulatetonguecompressionofgels,betweena softmaterialandahardplatetostudygelfracture(Kohyamaetal.,2019).
Theeffectsoftonguepressureandmasticationonthereleaseofvolatilecompounds inthemouthwereevaluatedusingamodelmouthwithanartifi cialtongue(Benjamin etal.,2012).Arangeoftongueintraoralpressureswasappliedforvariousperiods whilemonitoringthereleasedvolatilecompoundsonlineusingaprotontransferreactionmassspectrometer.Aclearpeakwasobservedaftereachcycle,followinga differentpatternaccordingtothephysicochemicalpropertiesofthevolatilecompoundsandthemechanicalparametersappliedtothearti ficialtongue.
Anotheroralfunctionthathasbeententativelysimulatedisswallowing.Tosimulatethedynamicconditionsofvolatilecompoundreleasefromliquidfoodsafterswallowing,amodelartifi cialthroatwasdesigned(Weeletal.,2004).However,thissimple modelsystemcannotfullysimulatetheeventsthatoccurinthehumanthroatasthe
invitrovolatilecompoundreleasepatternwasfoundmuchlowerthanthatobserved invivo.Later,apharyngealperistalsissimulatorwasdevelopedandenabledtodemonstratethatduringswallowing,thethicknessandthecomposition(rateofdilution)of boluscoatingsmaybehighlyinfluencedbothbytherheologicalpropertiesofthebolus andbythephysiologicalpropertiesofthepharyngealmucousmembrane(Mathieu etal.,2018).Thisisaveryinterestingmodeltostudythemechanicalinteractionsbetweenthefoodbolusandthelubricatedanddeformablepharyngealmucousmembranes.However,no flavorreleaseexperimentswereconductedwiththisdeviceyet.
1.6Conclusion
Inconclusion, flavormoleculesbelongtodifferentchemicalclassesandpossess varioussensoryproperties.Theyarepresentinthefoods,butinordertoreachthesensoryreceptorstheyhavetobereleasedinthesalivaduringtheeatingprocessandfor aromacompoundsintheairphasefromtheoraltothenasalcavity.In-mouth fl avor compoundreleaseand flavorperceptionareverycomplexphenomena,whichare notwellunderstoodyet.Thepropertiesofthefoodmatrixandoralphysiologicalcharacteristicsandtheirinteractionsarethemaindriversforinter-individualvariability. Thedevelopmentofmechanisticmodelsallowedabetterunderstandingoftherelease ofaromaandtastecompoundsduringtheeatingprocess.However,therelease behaviordoesnotalwaysexplainsensoryperception,duetootherphysiologicalmechanismsatthecentralandperipherallevels.Theseaspectswillbedescribedindetailin thefollowingchapters.
References
Andriot,I.,Harrison,M.,Fournier,N.,Guichard,E.,2000.Interactionsbetweenmethylketones and b-lactoglobulin:sensoryanalysis,headspaceanalysis,andmathematicalmodeling. J.Agric.FoodChem.48,4246 4251.
Ayed,C.,Martins,S.,Williamson,A.M.,Guichard,E.,2018.Understandingfat,proteinsand salivaimpactonaromareleasefrom flavouredicecreams.FoodChem.267,132 139. Baek,I.,Linforth,R.S.T.,Blake,A.,Taylor,A.J.,1999.Sensoryperceptionisrelatedtotherateof changeofvolatileconcentrationin-noseduringeatingofmodelgels.Chem.Sens.24,155 160. Baltes,W.,Bochmann,G.,1987.Modelreactionsonroastaromaformation.4.massspectrometricidentificationofpyrazinesfromthereactionofserineanthreoninewith sucroseundertheconditionsofcoffeeroasting.ZeitschriftFurLebensmittel-Untersuchung Und-Forschung184,485 493.
Barron,D.,Pineau,N.,Matthey-Doret,W.,Ali,S.,Sudre,J.,Germain,J.C.,Kolodziejczyk,E., Pollien,P.,Labbe,D.,Jarisch,C.,Dugas,V.,Hartmann,C.,Folmer,B.,2012.Impactof cremaonthearomareleaseandthein-mouthsensoryperceptionofespressocoffee.Food Funct.3,923 930.
Retentionandreleaseofaromaandtastecompounds,influenceonperception21
Benjamin,O.,Silcock,P.,Beauchamp,J.,Buettner,A.,Everett,D.W.,2012.Tonguepressure andoralconditionsaffectvolatilereleasefromliquidsystemsinamodelmouth.J.Agric. FoodChem.60,9918 9927.
Biais,B.,LeBail,P.,Robert,P.,Pontoire,B.,Buleon,A.,2006.Structuralandstoichiometric studiesofcomplexesbetweenaromacompoundsandamylose.Polymorphictransitionsand quantificationinamorphousandcrystallineareas.Carbohydr.Polym.66,306 315.
Boisard,L.,Tournier,C.,Semon,E.,Noirot,E.,Guichard,E.,Salles,C.,2013.Saltandfat contentsinfluencethemicrostructureofmodelcheeses,chewing/swallowingandinvivo aromarelease.FlavourFragr.J.29,96 106.
Boisard,L.,Andriot,I.,Martin,C.,Septier,C.,Boissard,V.,Salles,C.,Guichard,E.,2014.The saltandlipidcompositionofmodelcheesesmodifiesin-mouth flavourreleaseand perceptionrelatedtothefreesodiumioncontent.FoodChem.145,437 444.
Boland,A.B.,Delahunty,C.M.,VanRuth,S.M.,2006.Influenceofthetextureofgelatingels andpectingelsonstrawberry flavourreleaseandperception.FoodChem.96,452 460. Burdock,G.A.,Fenaroli,G.,2010.Fenaroli’sHandbookofFlavorIngredients.CRCPress, BocaRatonFL(USA).
Burey,P.,Bhandari,B.R.,Rutgers,R.P.G.,Halley,P.J.,Torley,P.J.,2009.Confectionerygels: areviewonformulation,rheologicalandstructuralaspects.Int.J.FoodProp.12,176 210. Burseg,K.,Linforth,R.S.T.,Hort,J.,Taylor,A.J.,2009.Flavorperceptioninbiscuits;correlatingsensorypropertieswithcomposition,aromarelease,andtexture.Chemosens. Percept.2,70 78.
Bylaite,E.,Ilgunaite,Z.,Meyer,A.S.,Adler-Nissen,J.,2004.In fluenceoflambda-carrageenan onthereleaseofsystematicseriesofvolatile flavorcompoundsfromviscousfoodmodel systems.J.Agric.FoodChem.52,3542 3549.
Charles,M.,Rosselin,V.,Beck,L.,Sauvageot,F.,Guichard,E.,2000.Flavorreleasefromsalad dressings:sensoryandphysicochemicalapproachesinrelationwiththestructure.J.Agric. FoodChem.48,1810 1816.
Chen,W.J.,Lin,J.K.,2004.Mechanismsofcancerchemopreventionbyhopbitteracids(Beer aroma)throughinductionofapoptosismediatedbyfasandcaspasecascades.J.Agric. FoodChem.52,55 64.
Chiu,N.,Hewson,L.,Yang,N.,Linforth,R.,Fisk,I.,2015.Controllingsaltandaroma perceptionthroughtheinclusionofair fillers.LWT-FoodSci.Technol.63,65 70. Cohen,S.M.,1986.Saccharin-past,present,andfuture.J.Am.DieteticAssoc.86,929 931.
Cook,S.L.,Bull,S.P.,Methven,L.,Parker,J.K.,Khutoryanskiy,V.V.,2017.Mucoadhesion:a foodperspective.FoodHydrocoll.72,281 296.
Cook,S.L.,Methven,L.,Parker,J.K.,Khutoryanskiy,V.V.,2018a.Polysaccharidefood matricesforcontrollingtherelease,retentionandperceptionof flavours.FoodHydrocoll. 79,253 261.
Cook,S.L.,Woods,S.,Methven,L.,Parker,J.K.,Khutoryanskiy,V.V.,2018b.Mucoadhesive polysaccharidesmodulatesodiumretention,releaseandtasteperception.FoodChem.240, 482 489.
Davidson,J.M.,Linforth,R.S.T.,Taylor,A.J.,1998.In-mouthmeasurementofpHandconductivityduringeating.J.Agric.FoodChem.46,5210 5214.
DeRoos,K.B.,2003.Effectoftextureandmicrostructureon flavourretentionandrelease.Int. DairyJ.13,593 605.
Deibler,K.D.,Lavin,E.H.,Linforth,R.S.T.,Taylor,A.J.,Acree,T.E.,2001.Verificationofa mouthsimulatorbyinvivomeasurements.J.Agric.FoodChem.49,1388 1393.
Delarue,J.,Giampaoli,P.,2006.Carbohydrate- flavourinteractions.In:Voilley,A.,Etievant,P. (Eds.),FlavourinFood.CRCPress.WoodheadPublishingLimitedandCRCPressLLC, Cambridge,UK,pp.208 228.
Déléris,I.,Saint-Eve,A.,Dakowski,F.,Sémon,E.,LeQuéré,J.-L.,Guillemin,H.,Souchon,I., 2011.Thedynamicsofaromareleaseduringconsumptionofcandiesofdifferentstructures, andrelationshipwithtemporalperception.FoodChem.127,1615 1624.
Dunkel,A.,Steinhaus,M.,Kotthoff,M.,Nowak,B.,Krautwurst,D.,Schieberle,P., Hofmann,T.,2014.Nature’schemicalsignaturesinhumanolfaction:afoodborne perspectiveforfuturebiotechnology.Angew.Chemie-Int.Ed.53,7124 7143.
Emorine,M.,Mielle,P.,Maratray,J.,Septier,C.,Thomas-Danguin,T.,Salles,C.,2012.Useof sensorstomeasureIn-mouthsaltreleaseduringfoodchewing.IEEESensor.J.12, 3124 3130.
Engel,E.,Nicklaus,S.,Septier,C.,Salles,C.,LeQuere,J.L.,2000.Tasteactivecompoundsina goatcheesewater-solubleextract.2.Determinationoftherelativeimpactofwater-soluble extractcomponentsonitstasteusingomissiontests.J.Agric.FoodChem.48,4260 4267. Engel,K.H.,1999.Theimportanceofsulfur-containigcompoundstofruit flavors.In: Teranishi,R.,Wick,C.K.,Hornstein,I.(Eds.),FlavorChemistry.SpringerUS,BostonMA (USA),pp.265 273.
Feron,G.,Ayed,C.,Qannari,E.M.,Courcoux,P.,Labouré,H.,Guichard,E.,2014.Understandingaromareleasefrommodelcheesesbyastatisticalmultiblockapproachonoral processing.PLoSOne9,e93113(15pp.).
Floury,J.,Rouaud,O.,LePoullennec,M.,Famelart,M.-H.,2009.Reducingsaltlevelinfood: Part2.Modellingsaltdiffusioninmodelcheesesystemswithregardstotheircomposition. LWT-FoodSci.Technol42,1621 1628.
Floury,J.,Jeanson,S.,Aly,S.,Lortal,S.,2010.Determinationofthediffusioncoef ficientsof smallsolutesincheese:areview.DairySci.Technol.90,477 508.
Frank,D.,Eyres,G.,Piyasiri,U.,Cochet-Broch,M.,Delahunty,C.,Lundin,L.,Appelqvist,I., 2015.Effectsofagargelstrengthandfatonoralbreakdown,volatilerelease,andsensory perceptionusinginvivoandinvitrosystems.J.Agric.FoodChem.63,9093 9102.
Gao,W.J.,Fan,W.L.,Xu,Y.,2014.Characterizationofthekeyodorantsinlightaromatype Chineseliquorbygaschromatography-olfactometry,quantitativemeasurements,aroma recombination,andomissionstudies.J.Agric.FoodChem.62,5796 5804.
Genovese,A.,Caporaso,N.,Villani,V.,Paduano,A.,Sacchi,R.,2015a.Oliveoilphenolic compoundsaffectthereleaseofaromacompounds.FoodChem.181,284 294.
Genovese,A.,Caporaso,N.,DeLuca,L.,Paduano,A.,Sacchi,R.,2015b.Influenceofoliveoil phenoliccompoundsonheadspacearomareleasebyinteractionwithwheyproteins. J.Agric.FoodChem.63,3838 3850.
Gierczynski,I.,Laboure,H.,Semon,E.,Guichard,E.,2007.Impactofhardnessofmodelcheese onaromarelease:invivoandin-vitrostudy.J.Agric.FoodChem.55,3066 3073.
Gierczynski,I.,Laboure,H.,Guichard,E.,2008.Invivoaromareleaseofmilkgelsofdifferent hardnesses:inter-individualdifferencesandtheirconsequencesonaromaperception. J.Agric.FoodChem.56,1697 1703.
Gierczynski,I.,Guichard,E.,Laboure,H.,2011.Aromaperceptionindairyproducts:theroles oftexture,aromareleaseandconsumerphysiology.Areview.Flav.Fragr.J.26,141 152. Goh,S.M.,Leroux,B.,Groeneschild,C.a.G.,Busch,J.L.H.C.,2010.Ontheeffectoftastant excluded fillersonsweetnessandsaltinessofamodelfood.J.FoodSci.75,245 249. Gostan,T.,Moreau,C.,Juteau,A.,Guichard,E.,Delsuc,M.-A.,2004.Measurementofaroma compoundself-diffusioninfoodmodelsbyDOSY.Magnet.Reson.Chem.42,496 499. Goubet,I.,LeQuere,J.-L.,Voilley,A.J.,1998.Retentionofaromacompoundsbycarbohydrates;influenceoftheirphysicochemicalcharacteristicsandoftheirphysicalstate.A review.J.Agric.FoodChem.46,1981 1990.
Retentionandreleaseofaromaandtastecompounds,influenceonperception23
Guichard,E.,Repoux,M.,Qannari,E.M.,Labouré,H.,Feron,G.,2017.Modelcheesearoma perceptionisexplainednotonlybyinvivoaromareleasebutalsobysalivarycomposition andoralprocessingparameters.FoodFunct.8,615 628.
Guichard,E.,2002.Interactionsbetween flavorcompoundsandfoodingredientsandtheirinfluenceon flavorperception.FoodRev.Int.18,49 70.
Hansen,A.,1997.Areviewoftheinteractionsbetweenmilkproteinsanddairy flavorcompounds.In:Damodaran(Ed.),FoodProteinsandLipids.PlenumPress,NewYork(USA), pp.67 75.
Harvey,B.A.,Druaux,C.,Voilley,A.,1995.Effectofproteinontheretentionandtransferof aromacompoundsatthelipd-waterinterface.In:Lorient,E.D.(Ed.),FoodMacromolecule andColloids.TheRoyalSocietyofChemistry,Cambridge,UK,pp.154 163.
Heinemann,C.,Zinsli,M.,Renggli,A.,Escher,F.,Conde-Petit,B.,2005.Influenceofamyloseflavorcomplexationonbuild-upandbreakdownofstarchstructuresinaqueousfoodmodel systems.Lebensm-Technol.38,885 894.
Heng,L.,VanKoningsveld,G.A.,Gruppen,H.,VanBoekel,M.,Vincken,J.P.,Roozen,J.P., Voragen,A.G.J.,2004.Protein- flavourinteractionsinrelationtodevelopmentofnovel proteinfoods.Trend.FoodSci.Technol.15,217 224.
Ishihara,S.,Isono,M.,Nakao,S.,Nakauma,M.,Funami,T.,Hori,K.,Ono,T.,Kohyama,K., Nishinari,K.,2014.Instrumentaluniaxialcompressiontestofgellangelsofvariousmechanicalpropertiesusingartificialtongueanditscomparisonwithhumanoralstrategyfor the firstsizereduction.J.Text.Stud.45,354 366.
Jack,F.R.,Piggott,J.R.,Paterson,A.,1995.Cheddarcheesetexturerelatedtosaltreleaseduring chewing,measuredbyconductivity-preliminarystudy.J.FoodSci.60,213 217.
Jelen,H.,Wasowocz,E.,2012.Lipidderived flavorcompounds.In:Jelen,H.(Ed.),Food Flavors.Chemical,SensoryandTechnologicalProperties.CRCPress,TaylorandFrancis group,BocaRaton,FL(USA),pp.65 93.
Jouenne,E.,Crouzet,J.,1997.Influenceofsodiumchlorideandureaonvolatilecompounds-blactoglobulininteractions.In:Zacharoff,A.B.(Ed.),InteractionofFoodMatrixwithSmall LigandsInfluencingFlavourandTexture,May29-311997Gothenburg(Sweden).INT1682.EuropeanCommunities,pp.37 43.
Jouenne,E.,Crouzet,J.,2000.EffectofpHonretentionofaromacompoundsbyblactoglobulin.J.Agric.FoodChem.48,1273 1277.
Kato,H.,Rhue,M.R.,Nishimura,T.,1989.Roleoffreeaminoacidsandpeptidesinfoodtaste. In:Teranishi,R.,Buttery,R.G.,Shahidi,F.(Eds.),FlavorChemistryTrendsandDevelopments.AmericanChemicalSociety,pp.158 175.
Kohyama,K.,Ishihara,S.,Nakauma,M.,Funami,T.,2019.Compressiontestofsoftfoodgels usingasoftmachinewithanartificialtongue.Foods8,182.
Kopjar,M.,I.,A.,Saint-Eve,A.,Souchon,I.,Guichard,E.,2010.Retentionofaromacompounds:aninterlaboratorystudyontheeffectofthecompositionoffoodmatriceson thermodynamicparametersincomparisonwithwater.J.Sci.FoodAgric.90,1285 1292. Kristiawan,M.,DellaValle,G.,Réguerre,A.L.,Micard,V.,Salles,C.,2021.Arti ficialoral processingofextrudedpea floursnacks.FoodEng.Rev.13,247 281.
Kuo,W.-Y.,Lee,Y.,2014a.Temporalsodiumreleaserelatedtogelmicrostructuralpropertiesimplicationsforsodiumreduction.J.FoodSci.79,E2245 E2252.
Kuo,W.-Y.,Lee,Y.,2014b.Effectoffoodmatrixonsaltinessperception-implicationsfor sodiumreduction.Compr.Rev.FoodSci.FoodSaf.13,906 923.
Kuo,W.-Y.,Lee,Y.,2017.Correlatingstructuralpropertiestosodiumreleaseofmodelsolid lipoproteiccolloids.J.FoodEng.203,16 24.
Kuo,W.-Y.,Ilavsky,J.,Lee,Y.,2016.Structuralcharacterizationofsolidlipoproteiccolloid gelsbyultra-small-angleX-rayscatteringandtherelationwithsodiumrelease.Food Hydrocoll.56,325 333.
Laffitte,A.,Neiers,F.,Briand,L.,2016.Characterisationoftastecompounds:chemical structuresandsensoryproperties.In:Guichard,E.,Salles,C.,Morzel,M.,LeBon,A.M. (Eds.),Flavour,fromFoodtoPerception.Wiley-Blackwell,Oxford,UK,pp.154 191.
Lauverjat,C.,Deleris,I.,Trelea,C.I.,Salles,C.,Souchon,I.,2009.Saltandaromacompound releaseinmodelcheesesinrelationtotheirmobility.J.Agric.FoodChem.57,9878 9887.
Lawrence,G.,Buchin,S.,Achilleos,C.,Berodier,F.,Septier,C.,Courcoux,P.,Salles,C., 2012a.Invivosodiumreleaseandsaltinessperceptioninsolidlipoproteinmatrices.1. Effectofcompositionandtexture.J.Agric.FoodChem.60,5287 5298.
Lawrence,G.,Septier,C.,Achilleos,C.,Courcoux,P.,Salles,C.,2012b.Invivosodiumrelease andsaltinessperceptioninsolidlipoproteinmatrices.2.Impactoforalparameters.J.Agric. FoodChem.60,5299 5306.
LeBleis,F.,Chaunier,L.,DellaValle,G.,Panouille,M.,Reguerre,A.L.,2013.Physical assessmentofbreaddestructurationduringchewing.FoodRes.Int.50,308 317.
LeQuéré,J.-L.,Molimard,P.,2002.Cheese flavour.In:Roginski,H.,Fuquay,J.W.,Fox,P.F. (Eds.),EncyclopediaofDairySciences.AcademicPress,NewYork(USA),pp.330 340. Lindinger,W.,Hansel,A.,Jordan,A.,1998.On-linemonitoringofvolatileorganiccompounds atpptvlevelsbymeansofproton-transfer-reactionmassspectrometry(PTR-MS)Medical applications,foodcontrolandenvironmentalresearch.Int.J.MassSpect.IonProcess.173, 191 241.
Lindley,M.,2012.Naturalhigh-potencysweeteners.In:O’donnell,K.,Kearstley,M.W.(Eds.), SweetenersandSugarAlternativesinFoodTechnology.JohnWileyandSonsLtd, Chichester.
Lubbers,S.,Landy,P.,Voilley,A.,1998.Retentionandreleaseofaromacompounds.Food Technol.52(68),214,70,72,74,208,210,212.
Lubbers,S.,2006.Texture-aromainteractions.In:Voilley,A.,Etievant,P.(Eds.),Flavourin Food.CRCPress.WoodheadPublishingLimitedandCRCPressLLC,Cambridge,UK, pp.327 344.
Maier,H.G.,1975.EBindingofvolatilearomasubstancestonutrientsandfoodstuffs.In: Maarse,H.,Groenen,P.J.(Eds.),InternationalSymposiumonAromaResearch,May26-29 1975Zeist,theNetherlands.INT1-268:Pudoc,Wageningen,pp.143 157.
Malone,M.E.,Appelqvist,A.M.,2003.Gelledemulsionparticlesforthecontrolledreleaseof lipophilicvolatilesduringeating.J.Control.Rel.90,227 241.
Mao,L.K.,Roos,Y.H.,Miao,S.,2014.Flavourreleasefrommonoglyceridestructuredoil-inwateremulsionsthroughstaticheadspaceanalysis.FoodBiophys.9,359 367.
Masuda,T.,Ohta,K.,Mikami,B.,Kitabatake,N.,2011.High-resolutionstructureoftherecombinantsweet-tastingproteinthaumatinI.ActaCrystallographicaSect.F-Struct.Biol. Crystall.Commun.67,652 658.
Mathieu,V.,DeLoubens,C.,Thomas,C.,Panouille,M.,Magnin,A.,Souchon,I.,2018.An experimentalmodeltoinvestigatethebiomechanicaldeterminantsofpharyngealmucosa coatingduringswallowing.JBiomech.72,144 151.
Mestres,M.,Moran,N.,Jordan,A.,Buettner,A.,2005.Aromareleaseandretronasalperception duringandafterconsumptionof flavoredwheyproteingelswithdifferenttextures.1. Invivoreleaseanalysis.J.Agric.FoodChem.53,403 409.
Mestres,M.,Kieffer,R.,Buettner,A.,2006.Releaseandperceptionofethylbutanoateduring andafterconsumptionofwheyproteingels:relationbetweentexturalandphysiological parameters.J.Agric.FoodChem.54,1814 1821.
Mesurolle,J.,Saint-Eve,A.,Deleris,I.,Souchon,I.,2013.Impactoffruitpiecestructurein yogurtsonthedynamicsofaromareleaseandsensoryperception.Molecules18, 6035 6056.
Retentionandreleaseofaromaandtastecompounds,influenceonperception25
Meynier,A.,Rampon,V.,Dalgalarrondo,M.M.,Genot,C.,2004.Hexanalandt-2-hexenalform covalentbondswithwheyproteinsandsodiumcaseinateinaqueoussolution.Int.DairyJ. 14,681 690.
Mielle,P.,Tarrega,A.,Semon,E.,Maratray,J.,Gorria,P.,Liodenot,J.J.,Liaboeuf,J., Andrejewski,J.L.,Salles,C.,2010.Fromhumantoartificialmouth,frombasicstoresults. Sensor.Actuator.BChem.146,440 445.
Mitropoulou,A.,Hatzidimitriou,E.,Paraskevopoulou,A.,2011.Aromareleaseofamodelwine solutionasinfluencedbythepresenceofnon-volatilecomponents.Effectofcommercial tanninextracts,polysaccharidesandartificialsaliva.FoodRes.Int.44,1561 1570.
Molyneux,R.J.,Schieberle,P.,2007.Compoundidentification:aJournalofagriculturaland foodchemistryperspective.J.Agric.FoodChem.55,4625 4629.
Nawar,W.W.,1971.Somevariablesaffectingcompositionofheadspacearoma.J.Agric.Food Chem.19,1057 1059.
Ninomiya,K.,2002.Umami:auniversaltaste.FoodRev.Int.18,23 38.
Okada,K.S.,Lee,Y.,2017.CharacterizationofsodiummobilityandbindingbyNa-23NMR spectroscopyinamodellipoproteicemulsiongelforsodiumreduction.J.FoodSci.82, 1563 1568.
O’neill,T.E.,Kinsella,J.E.,1987.Bindingofalkanone flavorstobeta-lactoglobulin:effectsof conformationalandchemicalmodification.J.Agric.FoodChem.35,770 774.
O’neill,T.E.,1996.Flavorbindingbyfoodproteins:anoverview.In:Robert,J., Mcgorrin,J.V.L.(Eds.),Flavor-FoodInteractions,AnneTromelin-650.AmericanChemicalSociety,Washington,DC,pp.59 74.
Panouillé,M.,Saint-Eve,A.,Deleris,I.,LeBleis,F.,Souchon,I.,2014.Oralprocerssingand boluspropertiesdrivethedynamicsofsaltyandtextureperceptionofbread.FoodRes.Int. 62,238 246.
Paravisini,L.,Prot,A.,Gouttefangeas,C.,Moretton,C.,Nigay,H.,Dacremont,C., Guichard,E.,2015.Characterisationofthevolatilefractionofaromaticcaramelusing heart-cuttingmultidimensionalgaschromatography.FoodChem.167,281 289.
Pflaum,T.,Konitzer,K.,Hofmann,T.,Koehler,P.,2013.Influenceoftextureontheperception ofsaltinessinwheatbread.J.Agric.FoodChem.61,10649 10658.
Phan,V.A.,Yven,C.,Lawrence,G.,Chabanet,C.,Reparet,J.-M.,Salles,C.,2008.Invivo sodiumreleaserelatedtosaltyperceptionduringeatingmodelcheesesofdifferenttextures. Int.DairyJ.18,956 963.
Pionnier,E.,Chabanet,C.,Mioche,L.,LeQuere,J.L.,Salles,C.,2004.1.Invivoaromarelease duringeatingofamodelcheese:relationshipswithoralparameters.J.Agric.FoodChem. 52,557 564.
Poirier,N.,Roudnitzky,N.,Brockhoff,A.,Belloir,C.,Maison,M.,Thomas-Danguin,T., Meyerhof,W.,Briand,L.,2012.EfficientproductionandcharacterizationofthesweettastingbrazzeinsecretedbytheyeastPichiapastoris.J.Agric.FoodChem.60, 9807 9814.
Rabe,S.,Krings,U.,Banavara,D.S.,Berger,R.G.,2002.Computerizedapparatusfor measuringdynamic flavorreleasefromliquidfoodmatrices.J.Agric.FoodChem.50, 6440 6447.
Rabe,S.,Krings,U.,Berger,R.G.,2004.Dynamic flavourreleasefrommiglyol/wateremulsions:modellingandvalidation.FoodChem.84,117 125.
Rega,B.,Guichard,E.,Voilley,A.,2002.Flavourreleasefrompectingels:effectsoftexture, molecularinteractionsandaromacompoundsdiffusion.Sci.Des.Alim.22,235 248.
Relkin,P.,Fabre,M.,Guichard,E.,2004.Effectoffatnatureandaromacompoundhydrophobicityon flavorreleasefromcomplexfoodemulsions.J.Agric.FoodChem.52, 6257 6263.