Ferroic materials for smart systems from fundamentals to device applications dai - The full ebook se

Page 1


Ferroicmaterialsforsmartsystemsfrom fundamentalstodeviceapplicationsDai

https://ebookmass.com/product/ferroic-materials-for-smartsystems-from-fundamentals-to-device-applications-dai/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

MOLECULAR BEAM EPITAXY: materials and device applications

Asahi

https://ebookmass.com/product/molecular-beam-epitaxy-materials-anddevice-applications-asahi/ ebookmass.com

Handbook of Smart Photocatalytic Materials: Fundamentals, Fabrications and Water Resources Applications Chaudhery Mustansar Hussain

https://ebookmass.com/product/handbook-of-smart-photocatalyticmaterials-fundamentals-fabrications-and-water-resources-applicationschaudhery-mustansar-hussain/ ebookmass.com

Calculations and Simulations of Low-Dimensional Materials : Tailoring Properties for Applications 1st Edition Ying Dai

https://ebookmass.com/product/calculations-and-simulations-of-lowdimensional-materials-tailoring-properties-for-applications-1stedition-ying-dai/ ebookmass.com

The Throne of Shadows: An Arranged Marriage, Enemies to Lovers, Dark Fantasy Romance (The Shadow Fae Book 1)

Evangeline Anderson

https://ebookmass.com/product/the-throne-of-shadows-an-arrangedmarriage-enemies-to-lovers-dark-fantasy-romance-the-shadow-faebook-1-evangeline-anderson/ ebookmass.com

Nutrition: An Applied Approach 4th Edition, (Ebook PDF)

https://ebookmass.com/product/nutrition-an-applied-approach-4thedition-ebook-pdf/

ebookmass.com

Health promotion throughout the lifespan eBook

https://ebookmass.com/product/health-promotion-throughout-thelifespan-ebook/

ebookmass.com

Cyclic Vomiting Syndrome and Cannabinoid Hyperemesis 1st Edition William L. Hasler

https://ebookmass.com/product/cyclic-vomiting-syndrome-andcannabinoid-hyperemesis-1st-edition-william-l-hasler/

ebookmass.com

Master Romano: Dark Vampire Romance (Masters of the Consulate Book 4) Sylvia Black

https://ebookmass.com/product/master-romano-dark-vampire-romancemasters-of-the-consulate-book-4-sylvia-black/

ebookmass.com

Tide and Punishment Bree Baker [Baker

https://ebookmass.com/product/tide-and-punishment-bree-baker-baker-2/

ebookmass.com

Possessed by the Virgin: Hinduism, Roman Catholicism, and Marian possession in South India Bloomer

https://ebookmass.com/product/possessed-by-the-virgin-hinduism-romancatholicism-and-marian-possession-in-south-india-bloomer/

ebookmass.com

FerroicMaterialsforSmartSystems

FerroicMaterialsforSmartSystems

FromFundamentalstoDeviceApplications

JiyanDai

Author

Prof.JiyanDai

TheHongKongPolytechnicUniversity DepartmentofAppliedPhysics

HungHom

Kowloon

HongKong

Cover

©antoniokhr/GettyImages; (graph)CourtesyofProfessorJiyanDai, TheHongKongPolytechnicUniveristy

Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>

©2020Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34476-5

ePDFISBN: 978-3-527-81534-0

ePubISBN: 978-3-527-81537-1

oBookISBN: 978-3-527-81538-8

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

Contents

1GeneralIntroduction:SmartMaterials,Sensors,and Actuators 1

1.1SmartSystem 2

1.2DeviceApplicationofFerroelectricMaterials 5

1.2.1PiezoelectricDeviceApplications 6

1.2.2InfraredSensor 7

1.2.3FerroelectricRAM(FeRAM) 8

1.3DeviceApplicationofFerromagneticMaterials 9

1.3.1Spin-TransferTorqueMemory 9

1.3.2MagneticFieldSensorBasedonMultiferroicDevice 9

1.4FerroelasticMaterialandDeviceApplication 10

1.5ScopeofThisBook 12 References 13

2IntroductiontoFerroelectrics 15

2.1WhatIsFerroelectrics? 15

2.1.1 P –E Loop 15

2.1.2RelationshipsBetweenDielectric,Piezoelectric,Pyroelectric,and Ferroelectric 16

2.1.2.1Ferroelectric–Dielectric 16

2.1.2.2Ferroelectric–Piezoelectric 17

2.1.2.3Ferroelectric–Pyroelectric 18

2.2OriginofFerroelectrics 18

2.2.1Structure-InducedPhaseChangefromParaelectricto Ferroelectric 18

2.2.2SoftPhononMode 19

2.3TheoryofFerroelectricPhaseTransition 21

2.3.1LandauFreeEnergyandCurie–WeissLaw 21

2.3.2LandauTheoryofFirst-OrderPhaseTransition 23

2.3.3LandauTheoryofaSecond-OrderPhaseTransition 26

2.4FerroelectricDomainsandDomainSwitching 28

2.4.1DomainStructure 28

2.4.2FerroelectricSwitching 28

2.5FerroelectricMaterials 29

2.5.1FromBaTiO3 toSrTiO3 29

2.5.2FromPbTiO3 toPbZrO3 32

2.5.3AntiferroelectricPbZrO3 33

2.5.3.1Pb(Zrx Ti1 x )O3 (PZT) 35

2.5.4RelaxorFerroelectrics 36

2.5.4.1RelaxorFerroelectrics:PMN-xPTSingleCrystal 37

2.5.4.2PolarNanoRegions 38

2.5.4.3MorphotropicPhaseBoundary(MPB)ofPMN-PTCrystal 40

2.6FerroelectricDomainandPhaseFieldCalculation 41 References 42

3DeviceApplicationsofFerroelectrics 47

3.1FerroelectricRandom-AccessMemory 47

3.2FerroelectricTunnelingNon-volatileMemory 50

3.2.1TunnelingModels 51

3.2.2Metal–Ferroelectric–SemiconductorTunnelJunction 55

3.2.3FerroelectricTunnelingMemristor 56

3.2.4StrainModulationtoFerroelectricMemory 57

3.3PyroelectricEffectandInfraredSensorApplication 58

3.3.1PyroelectricCoefficient 58

3.3.2PyroelectricInfraredSensor 59

3.3.3PyroelectricFiguresofMerit 60

3.4ApplicationinMicrowaveDevice 63

3.5FerroelectricPhotovoltaics 65

3.6ElectrocaloricEffect 67

References 68

4FerroelectricCharacterizations 73

4.1 P –E LoopMeasurement 73

4.2Temperature-DependentDielectricPermittivityMeasurement 76

4.3PiezoresponseForceMicroscopy(PFM) 77

4.3.1ImagingMechanismofPFM 77

4.3.2Out-of-planePolarization(OPP)andIn-planePolarization(IPP) PFM 80

4.3.2.1ElectrostaticForceinPFM 83

4.3.2.2PerspectivesofPFMTechnique 84

4.4StructuralCharacterization 86

4.5DomainImagingandPolarizationMappingbyTransmissionElectron Microscopy 87

4.5.1SelectedAreaElectronDiffraction(SAED) 88

4.5.2ConvergentBeamElectronDiffraction(CBED)forTetragonality Measurement 91

References 92

5RecentAdvancesinFerroelectricResearch 95

5.1SizeLimitofFerroelectricity 95

5.2FerroelectricityinEmerging2DMaterials 96

5.3FerroelectricVortex 99

5.4MolecularFerroelectrics 104

5.5FerroelectricityinHfO2 andZrO2 FluoriteOxideThinFilms 106

5.6FerroicPropertiesinHybridPerovskites 114 References 117

6PiezoelectricEffect:BasicTheory 123

6.1GeneralIntroductiontoPiezoelectricEffect 123

6.2PiezoelectricConstantMeasurement 124

6.2.1PiezoelectricChargeConstant 125

6.2.2PiezoelectricVoltageConstant 126

6.2.3DielectricPermittivity 127

6.2.4Young’sModulus(ElasticStiffness) 127

6.2.5ElasticCompliance 127

6.2.6ElectromechanicalCouplingFactor 128

6.2.6.1HowtoMeasureElectromechanicalCouplingFactor? 129

6.3EquivalentCircuit 132

6.4CharacterizationofPiezoelectricResonatorBasedonaResonance Technique 135

6.4.1LengthExtensionalModeofaRod 135

6.4.2ExtensionalVibrationModeofaLongPlate 138

6.4.3ThicknessShearModeofaThinPlate 139

6.4.4ThicknessModeofaThinDisc/Plate 140

6.4.5RadialModeinaThinDisc 141

6.4.6MechanicalQualityFactor 141 References 141

7PiezoelectricDevices 143

7.1PiezoelectricUltrasonicTransducers 143

7.1.1StructureofUltrasonicTransducers 143

7.1.2TheoreticalModelsofUltrasonicTransducer(KLMModel) 145

7.1.3CharacterizationofUltrasonicTransducers 147

7.1.3.1Bandwidth(BW) 147

7.1.3.2SensitivityoftheTransducer 148

7.1.3.3Resolution 148

7.1.4TypesofUltrasonicTransducers 149

7.1.4.1MedicalApplication 149

7.1.5PiezoelectricFilmApplicationinUltrasoundTransducers 149

7.1.6ChallengesandTrendofDevelopingNewAdvancedUltrasound Transducers 150

7.2UltrasonicMotor 150

7.2.1Terminologies 151

7.2.2DesignofUSM 153

7.3SurfaceAcousticsWaveDevices 154

7.3.1InterdigitalElectrodeinSAWDevice 155

7.3.2AcousticWave 155

7.3.3PiezoelectricPropertyConsiderationsforSAWDevices 157

7.3.4CharacterizationofSAWDevices 159

7.3.5Lead-FreePiezoelectricMaterials 161 References 163

8Ferromagnetics:FromMaterialtoDevice 165

8.1GeneralIntroductiontoFerromagnetics 165

8.2FerromagneticPhaseTransition:LandauFree-EnergyTheory 168

8.3DomainandDomainWall 169

8.4MagnetoresistanceEffectandDevice 171

8.4.1AnisotropicMagnetoresistance(AMR) 171

8.4.2GiantMagnetoresistance(GMR) 172

8.4.3ColossalMagnetoresistance(CMR) 175

8.4.4TunnelingMagnetoresistance(TMR) 176

8.4.4.1Spin-TransferTorqueRandom-AccessMemory(STT-RAM) 177

8.5MagnetostrictiveEffectandDeviceApplications 178

8.5.1MagnetostrictivePropertiesofTerfenol-D 180

8.5.2MagnetostrictiveUltrasonicTransducer 183

8.5.3MagnetoelasticEffect 184

8.5.3.1MagnetomechanicalStrainGauge 185

8.6CharacterizationsofFerromagnetism 186

8.6.1VibratingSampleMagnetometer(VSM) 186

8.6.2SuperconductingQuantumInterferenceDevice(SQUID) 187

8.6.3MagneticForceMicroscopy(MFM) 188

8.6.4Magneto-OpticalKerrEffect(MOKE) 189

8.7HallEffect 191

8.7.1OrdinaryHallEffect 191

8.7.2AnomalousHallEffect 191

8.7.3SpinHallEffect 192 References 193

9Multiferroics:SinglePhaseandComposites 197

9.1IntroductiononMultiferroic 197

9.2MagnetoelectricEffect 199

9.3WhyAreTheresoFewMagneticFerroelectrics? 199

9.4SinglePhaseMultiferroicMaterials 200

9.4.1SwitchingMechanisminBFOFilms 204

9.5MECompositeMaterials 205

9.6ModelingtheInterfacialCouplinginMultilayered METhinFilm 207

9.6.1PZT/CFOMultilayeredHeterostructures 207

9.6.2FerroelectricPropertiesofPZT/CFOMultilayers 209 References 212

10DeviceApplicationofMultiferroics 217

10.1MECompositeDevices 217

10.1.1EffectofPreloadStress 221

10.2MemoryDevicesBasedonMultiferroicThinFilms 223

10.3MemoryDevicesBasedonMultiferroicTunneling 224

References 229

11FerroelasticityandShapeMemoryAlloy 231

11.1ShapeMemoryAlloy 231

11.1.1SMAPhaseChangeMechanism 232

11.1.2NonlinearityinSMA 233

11.1.3One-WayandTwo-WayShapeMemoryEffect 235

11.1.4SuperelasticEffect(SE) 235

11.1.5ApplicationExamplesofSMAs 236

11.2FerromagneticShapeMemoryAlloys 237

11.2.1FormationofTwinVariants 238

11.2.2ChallengesforNi–Mn–GaSMA 242

11.2.3DeviceApplicationofMSMA 243

References 244

Index 247

GeneralIntroduction:SmartMaterials,Sensors,and Actuators

Theearlytwenty-firstcenturyhasforeseenaccelerationofinnovationsin roboticsandautomationsaswellasartificialintelligence(AI),wheresensors/ transducersandsmartmaterialsplayveryimportantroles.TheconceptofAI hasbeenaroundsincethelate1950s;however,it’sonlysincethefirstdecadeof thetwenty-firstcenturythatexcitementaboutithasreallybeguntogrowdue totheabilityoffastcomputationandabundantsizeofmemorydevices.Avery successfuldemonstrationofAIisGoogle’sAlphaGo,whichisthefirstcomputer programtodefeataprofessionalhumanGoplayer(seeFigure1.1).Another successfulapplicationofAIistheunmannedvehiclesandaircraftswherelarge numberofsensorsandactuatorsareused.

Onemayask,whatistherelationbetweenthekeyword“ferroicmaterials”of thisbookandthementionedrobotics,automations,andAI?Theansweristhat thesesmartandintelligencesystemsrelyonlargeamountofdatafromsensors andmemoriesformachinelearningandactuatorsforclose-loopedfeedbackcontrolsystems;andamongthesesensors,actuators,andmemories,ferroicmaterials playveryimportantroles.

Forexample,thepiezoelectricpropertyofaferroelectricmaterial(oneofthe mosttypicalferroicmaterials)canbeusedforultrasoundsensorstodetectdistanceofyourcarfromawallforautoparkingsystem.Aferroelectricmaterialcan beusedasthefunctionalelementformanykindsofsensorsfrompressuresensor toaccelerationsensor,infraredsensor,etc.Beyondthat,aferroelectricpolarizationanditsswitchingcanalsobeusedinmemorydevicessuchasferroelectric random-accessmemory(FeRAM)wheretheferroelectriclayeractsasgateinsulatorinafield-effecttransistor(FET)structure.Ferroelectrictunneling-based resistiverandom-accessmemory(RRAM)hasalsobeendemonstrated,andsuch ferroelectric-basedmemoryhasbeenshowntobeabletoperformasanartificial synapse.Moreinterestingly,artificialneuralnetworks(ANNs)basedonthese ferroicsynapsescanrealizebrain-likecomputingandAIfunctionssuchasimage recognition.AsshowninFigure1.2,synapseswithBiFeO3 (BFO)ferroelectric layerhasbeensuccessfullydemonstrated.

Thisbookwilltellyoufundamentalsandcharacterizationmethodsofferroic materials,physics,andtechnologiesbehindferroicdevicedesignandapplicationsaswellastheirrecentadvances.

FerroicMaterialsforSmartSystems:FromFundamentalstoDeviceApplications, FirstEdition.JiyanDai. ©2020Wiley-VCHVerlagGmbH&Co.KGaA.Published2020byWiley-VCHVerlagGmbH&Co.KGaA.

2 1GeneralIntroduction:SmartMaterials,Sensors,andActuators

Figure1.2 Across-barstructureofsynapseandartificialneuronnetworksbasedona cross-barstructure.FerroelectricthinfilmssuchasBiFeO3 canbeusedasthejunctionmaterial. Source:AdaptedfromBoynetal.(2017).

1.1SmartSystem

Asmartsystem,suchasaself-drivingcarorremote-controlaircraft,isasystemthatreliesonsensorsandactuatorstorealizeinstantfeedbackofcontrolled variables(CVs)suchasspeed,height,etc.Thebasiccomponentofasmartsystemusuallycontainssensors,actuators,andcontrolsystem.Anintelligentsmart systemneedslargeamountofdataprocessingandmemories,whileferromagneticandferroelectricmaterialshavebeenimplementedinrealizingnon-volatile memristors.Beyondthat,memoriesbasedonferroelectricthinfilmsmayalso findapplicationinelectronicsynapsesasbuildingblockstowardbuildingANN.

Figure1.1 AIbeatshumanchessplayer.
Nucleus
Axon
Axon
Synapse

Figure1.3 (a)Photoofaremotecontrolcopterand(b)diagramofaPIDfeedbackcontrol systemwheresensorsandactuatorsareimplemented.

Asanexample,asmartsystemofremotecontrolcopterrelyingon proportional–integral–derivative(PID)feedbackcontrolsystemisshown inFigure1.3.PIDisathree-orderfeedbackcontrolsystemthathasbeenwidely usedinautodrivingvehiclesandauto-pilotairplanestomakethedynamic systemoperatesmoothlyorbeingstableduringvideoimaging.Equation(1.1) illustratesthemechanismofPIDcontrolwherethreetermsofproportionalgain (P),integralgain(I),andderivativefeedback(D)canprovideinstantresponseto curetheerror(E)betweenthesetpoint(speedofvehicleorheightofthecopter) andcontrolledvariable(CV):

Inthisfeedbackcontrolsystem,wecanfindapplicationsofferroicmaterials,for example,piezoelectric-basedgyroscope,surfaceacousticwavedeviceforwireless communication,andferroelectric-basedinfrareddetector.Ingyroscope,rotation andaccelerationcanbesensedbymeasuringinducedvoltagegeneratedbypiezoelectriceffect;asurfaceacousticwavedevicebasedonpiezoelectriceffectisused forcommunicationbandselection;andaferroelectric-basedinfrareddetector canbeusedasanintrudersensormakingthecopterabletofindpeopleforrescuemission.Figure1.4showsthefiniteelementmodeling(FEM)simulationof threeresonantmotionsinaPb(Zrx, Ti1 x )O3 (PZT)-basedgyroscopeandphoto ofafabricatedgyroscope(ChangandChen2017).

Sensors:Devicesthatcan“sense”achangeinsomephysicalcharacteristicsand performanelectricalinputfunctionarecommonlycalled sensors.Forexample, astrainsensorconvertsmechanicalstrainintoelectricalsignal.

Actuators:Devicesthatperformanoutputfunctionaregenerallycalled actuators.Anactuatorcanbeutilizedtocontrolsomeexternalmodulioroutput mechanicalmovementsuchasultrasonicwave.Forexample,anatomicforce microscope(AFM)usespiezoelectricactuatorstorealizescanningalongthree directions.

Transducers:Bothsensorsandactuatorsarecollectivelyknownas transducers becausetheyareusedtoconvertenergyofonekindintoenergyofanother kind.Transducerscanbeusedtosenseawiderangeofdifferentenergyforms

1GeneralIntroduction:SmartMaterials,Sensors,andActuators

Figure1.4 FEMsimulationsofthreeresonantmotionsinaPZT-basedgyroscopeandphotoof afabricatedgyroscope.Source:AdaptedfromChangandChen(2017).

suchasmovement,electricalsignals,thermalormagneticenergy,etc.Thetype ofinputoroutputtransducersbeingusedreallydependsonthetypeofsignal orprocessbeing“sensed”or“controlled,”butwecandefineatransducerasa devicethatconvertsonephysicalquantityintoanother.

Asmartsystemneedssensorsandactuatorstorealizethesensingfunctions suchasdistance,movement,andaccelerationaswellasactions.Thesesensors andactuatorsusesmartmaterialstorealizetheconversionbetweendifferent energiesandmodulitoelectricalsignalssuchasvoltage,current,andcapacitance.Ofcourse,manysensordevicesaremadeofsemiconductorssuchasthe FET,butthisisnotthefocusofthisbook.

“Smartmaterial ”isaverylargeconcept,infact,thereisnostupidmaterial(a joke),i.e.allmaterialsaresmartinsomewaysincetheyallhavetheirownpropertiesandresponsetoexternalstimuli.Butinthisbook,werestrictthe“smart materials”tothosematerialswith“ferroic”characteristics.Wefocusonbasic physics,materialsscience,structures,devices,andapplicationsofferroicmaterialsforsmartsystems.Theferroicmaterialsareusuallyclassifiedaspossessing oneofthefollowingsbasedoncouplingofstimuli:

(i) Ferroelectric,whichisalsopiezoelectricwhenelectromechanicallycoupled andpyroelectricwhenthermoelectricallycoupled.

(ii) Ferromagnetic,whichisalsomagnetostrictivewhenmagnetomechanically coupled.

(iii) Ferroelastic,whichalsoincludesshapememorywhenthermomechanically coupled.

Amongtheseferroics,wecanseethatstrain,electricpolarizationandmagnetization,andtheirinterplayorcouplingareinvolved.Wecallamaterialasferroic materialifitpossessesatleastoneofthepropertiesofferroelectric,ferromagneticandferroelastic.

IfwelookatthediagramshowninFigure1.5,wecanseethatthecoupling andinterplaybetweenelectricity,mechanics,magnetism,heat,andopticsresult inmanysmartfunctions,suchasferroelectric,piezoelectric,pyroelectric,ferromagnetic,electromechanical,etc.Onebookcannotcoverallofthem,butthose belongtoferroicmaterialsanddevicesespeciallyintheformofthinfilmswillbe

1.2DeviceApplicationofFerroelectricMaterials 5

Figure1.5 Diagramshowingcouplingbetweendifferentmoduliandtheclarificationofsmart materials.

extensivelyintroducedinthisbook.Beforegoingintodetails,someapplication examplesofferroicmaterialsinsmartsystemsaregiveninthischapter.

1.2DeviceApplicationofFerroelectricMaterials

Whenpeopletalkaboutapplicationsofferroelectricmaterials,thefirstthing jumpsoutismostpossiblythePZT(lead–zirconium–titanatewithchemical formulaPb(Zrx Ti1 x )O3 ),whichisknownasanexcellentpiezoelectricmaterial. Asthemostpopularferroelectric,PZTisalsothemostimportantpiezoelectric materialincommercialapplications.Piezoelectricmaterialshaveverybroad applicationsinmanyfields,frommedicalultrasoundimagingtoultrasonic wirebondingmachineinsemiconductorindustry,frompressuresensorsto accelerometer,etc.ThemarketsizeofpiezoelectricmaterialsismorethanUS $1billionnowandisexpectedtobeUS$1.68billionby2025(GRANDVIEW RESEARCH).

Anotherfieldofapplicationofferroelectricmaterialsistheinfraredsensors basedontheirpyroelectricproperty,whichisalsooneofthemostimportant propertiesofaferroelectricmaterial.Beyondthesewell-knownapplications, anotherimportantapplicationbasedontheswitchingofferroelectricpolarizationisthenon-volatilememorydevicesuchasFeRAM.Examplesaregivenin thefollowinganddetailswillbeintroducedinthefollowingchapters.

1.2.1PiezoelectricDeviceApplications

Anexampleofsmartsystemusingpiezoelectricmaterialisthedistanceradar systeminacarorasonarsysteminsubmarinesasshowninFigure1.6,wherethe keysensingelementisbasedonpiezoelectricmaterialtorealizetheconversion betweenelectricalenergyandacousticenergyforsendingandreceivingsound waves.Otherapplicationexamplesofpiezoelectricdevicesincludeactivedampingsystem,micro-scanningsysteminscanningprobeimaginginstrument(such asAFM),forcesensor,accelerometer,energyharvesting,etc.

Medicalultrasoundimagingsystemwithpiezoelectricmaterialasthetransducertoconvertelectricalandacousticenergiesisanotherverygoodexample ofdeviceapplicationwherethepiezoelectricmaterialplaystherolesofsensingandactuatingfunctions.Figure1.7showsphotosofultrasoundtransducers developedinourgroup.Knowledgeinultrasoundtransducerfabrication,characterization,andapplicationswillbeintensivelyintroducedinChapter6.

Averynewapplicationexampleispiezoelectric-basedfingerprintIDsystemin mobilephone.Thecurrentlyusedfingeridentificationsystemisbasedoncapacitancemeasurementtoobtaintwo-dimensional(2D)informationoffingerprint, butitfacestheproblemofdifficultytoidentifythefingerprintwhenthefingeris dirtyorwet.Ultrasoundfingerprintidentificationsystembasedonpiezoelectric ultrasonictransducerandimagingsystemcanobtainathree-dimensionalimage

Figure1.6 Piezoelectricmaterials-basedsonarsystemforcar(a)andsubmarine(b).

(a)

(b)

Figure1.7 (a)Transducersand(b)B-modeimageofawirephantomacquiredwith PolyU-madearrayultrasoundtransducer.

(b)
(a)

1.2DeviceApplicationofFerroelectricMaterials 7

PMUT unit

Capping layer

Coupling materials + MEMS

Piezoelectric layer

Cavity

CMOS wafer

Bottom electrodeTop electrode

Figure1.8 Illustrationofconceptofaultrasonictransducer-basedfingerprintIDsystembased oncomplementarymetal-oxide-semiconductormicro-electro-mechanicalsystems (CMOS-MEMS)technology.

offingerprintwithacertaindepth.Thiscanovercometheproblemsofthecurrentfingerprintidentificationsysteminmostmobilephones.InvenSense,Inc.is oneofthemainsuppliersofthissolution,andFigure1.8isanillustrationofthe ultrasonicfingerprintsystem.

1.2.2InfraredSensor

Aninfraredsensorisusuallymadeofaferroelectricmaterial,whichisalso pyroelectricthatgeneratessurfaceelectricchargeswhenexposedtoheat intheformofinfraredradiation.Apyroelectric-basedinfraredsensorcandetect thetemperaturechangebutproducenoresponseforasteadytemperaturesince thepyroelectricsensingelementcanonlyproducepolarizationchange-induced electricchargewhenthesensorissubjecttotemperaturechange.Figure1.9a showsaphotoofarealinfrareddetectorwithitsinternaldevicestructure illustratedinFigure1.9b,wheretheactiveelementismadeofpyroelectric materialssuchasLiTaO3 .Thosepyroelectricmaterialswiththeirpolarization abletobeswitchedareferroelectrics.Therefore,pyroelectricsensorsthatare widelyusedasinfrareddetectorsareimportantdeviceapplicationsforferroic materialsinasmartsystem.

electrode layer

Circuit board

(a)(b)

Figure1.9 Aphotoofaninfrareddetector(a)andillustrationofitsinternalstructure(b).

Window
Pyroelectric plate
Bottom electrode
Absorbing

1.2.3FerroelectricRAM(FeRAM)

FerroelectricRAM(FeRAM,F-RAM,orFRAM)isarandom-accessmemorythat issimilartoDynamicRandomAccessMemory(DRAM)instructurebutusesa ferroelectriclayerinsteadofadielectriclayertoachievenon-volatility.FeRAM isoneofagrowingmemberofalternativenon-volatilerandom-accessmemory technologiesthatoffersthesamefunctionalityasflashmemory.

AdvantagesofFeRAMoverflashmemoryincludelowerpowerusage,faster writeperformance,andmuchgreatermaximumread/writeendurance(about 1010 –1014 cycles).FeRAMshavedataretentionofmorethan10yearsat +85 ∘ C (uptomanydecadesatlowertemperatures).MarketdisadvantagesofFeRAM aremuchlowerstoragedensitiesthanflashdevicesandhighercost.

Aferroelectricmaterialhasanonlinearrelationshipbetweentheappliedelectricfieldandthestoredcharge.Specifically,theferroelectriccharacteristichas theformofahysteresisloop,whichisverysimilarinshapetothehysteresis loopofferromagneticmaterials.Thedielectricconstantofaferroelectricistypicallymuchhigherthanthatofalineardielectricbecauseoftheeffectsofelectric dipolesformedinthecrystalstructureoftheferroelectricmaterial.Whenan externalelectricfieldisappliedacrossadielectric,thedipolestendtoalignthemselveswiththefielddirection.Thisalignmentprocessisproducedbysmallshifts inthepositionsofionsandshiftsinthedistributionsofelectricchargesinthe crystalstructure.Afterthechargesareremoved,thedipolesretaintheirpolarizationstate.Binary“0”sand“1”sarestoredasoneofthetwopossibleelectricpolarizationsineachdatastoragecell.Forexample,inFigure1.10,a“1”isencoded usingthenegativeremnantpolarization“ P r ,”anda“0”isencodedusingthepositiveremnantpolarization“+P r ”.InthisFETstructurewithaferroelectriclayeras gatedielectric,thetwopolarizationstatescorrespondtodifferent V th ,resulting inamemorywindowwithinwhichtheONandOFFstatesoftheFETcanberead.

Figure1.10 Schematicdiagramoffield-effecttransistor(FET)andthecurrent–voltage(I–V ) characteristicsinducedbytwodifferentpolarizationstate.

1.3DeviceApplicationofFerromagneticMaterials 9

FeRAMremainsarelativelysmallpartoftheoverallsemiconductormarket. In2016,worldwidesemiconductorsaleswereUS$338.93billion(accordingto WSTS,SIA),withtheflashmemorymarketaccountingforUS$59.2billion (accordingtoICinsights(Cho2018)).The2017annualrevenuegrowthof Cypresssemiconductor,perhapsthemajorFeRAMvendor,werereportedto beUS$2.33billion.Themuchlargersalesofflashmemorycomparedwiththe alternativeFeRAMssupportamuchlargerresearchanddevelopmenteffort. Flashmemoryisproducedusingsemiconductorlinewidthsof15nmatRenesas ElectronicsCorporation(2017).Flashmemorycanstoremultiplebitspercell (currentlySamsunghasannouncedthe64-layer512-GbintheNANDflash devices).Asaresultofinnovationsinflashcelldesign,thenumberofbitsper flashcellisprojectedtoincreasetodoubleoreventotriple.Asaconsequence, thearealbitdensitiesofflashmemoryaremuchhigherthanthoseofFeRAM, andthusthecostperbitofflashmemoryisordersofmagnitudelowerthanthat ofFeRAM.

1.3DeviceApplicationofFerromagneticMaterials

Amongmanysuccessfulapplicationsofferromagnetic-baseddevices,memory devicebasedonferromagneticmaterialisoneofthemostsuccessfulexamples, especiallyinthethinfilmform.Thisismanifestedbytheverylargemarketof magneticharddiscincomputingsystems.Butinmostrecentyears,solidstate memory(mainlyflashmemory)issupersedingthemagneticharddisc.Nevertheless,ferromagneticmaterialalsofindsitsapplicationinnon-volatilememories suchasspin-transfertorquememory.

1.3.1Spin-TransferTorqueMemory

Spin-transfertorquecanbeusedtofliptheactiveelementsinmagnetic random-accessmemory.Spin-transfertorquemagneticrandom-accessmemory (STT-RAMorSTT-MRAM)hastheadvantagesoflowerpowerconsumption andbetterscalabilityoverconventionalmagnetoresistiverandom-accessmemory(MRAM),whichusesmagneticfieldtofliptheactiveelements.Spin-transfer torquetechnologyhasthepotentialtomakepossibleMRAMdevicescombining lowcurrentrequirementsandreducedcost;however,theamountofcurrent neededtoreorientthemagnetizationatpresentistoohighformostcommercialapplications,andthereductionofthiscurrentdensityaloneisthebasis forpresentacademicresearchinspinelectronics.Figure1.11isaschematic diagramofspinvalvestructure,whilearrowsindicatethemagnetization direction.

1.3.2MagneticFieldSensorBasedonMultiferroicDevice

Ifamaterialpossessesmorethanoneoftheferroicpropertiesofferroelectric, ferromagneticandferroelastic,itiscalledmultiferroics.Unfortunately,such

1GeneralIntroduction:SmartMaterials,Sensors,andActuators

Figure1.11 Schematicdiagramofspinvalvestructurewherearrowsindicatethe magnetizationdirections.

materialsarerareandareusuallystronginonepropertybutveryweakin another,suchasBiFeO3 ,whichisverystronginferroelectricsbutveryweakin ferromagnetic(itisantiferromagneticinfact).Thismakesmultiferroicmaterials hardtobepracticallyappliedindevices.However,peoplehavebeentryingto makecompositematerialssuchaspiezoelectricwithmagnetostrictivematerials,wherethemechanicalcouplingbetweenthemmakesthe“multiferroic” meaningfulfordeviceapplication,forexample,makingverysensitivemagnetic fieldsensor.

Themagnetoelectric(ME)effectisthephenomenonofinducingmagnetizationbyanappliedelectricfield(E )orpolarizationbymagneticfield(H ).Many effortshavebeendevotedtoimprovethelimitofdetectionoftheMEcompositeatlowfrequencyrange,andvaluesof ∼10 7 Oeat1Hzhasbeenreported (Wangetal.2011).Basedonthemagnetic–strain–electriccoupling,scientists havedemonstrateddcmagneticfieldsensorwithadetectionlimitof2 × 10 5 Oe todcmagneticfieldwithanonlinearMEmagneticeffect(Lietal.2017).FerroelectricmaterialPZTandmagnetostrictivematerialMetglashavebeenimplementedinthecompositedevice(seeFigure1.12).

1.4FerroelasticMaterialandDeviceApplication

Shapememoryalloys(SMAs)arethemosttypicalferroelasticmaterial,which isanimportantmemberofferroics.Theshapememorycharacteristicsoriginatesfromthephasetransitionbetweenhightemperatureaustenitephaseand lowtemperaturemartensitephase,wheretheshapeatcubic-austenitephasecan beresumedfromlowtemperaturemartensitephasewhoselatticecanbelargely twisted(seeFigure1.13).

TheSMAshavebeenwidelyusedindevicesfrombraceoforthodontia andothermedicalapplications,airjet,satelliteantenna,etc.Researchwas carriedoutindevelopingsystemsthatwouldoptimizethechevron“immersion”

1.4FerroelasticMaterialandDeviceApplication

Figure1.12 OutlineofMEdevicefromVirginiaTechandschematicofthecross-sectionofthe MEcomposite.Source:Wangetal.(2011).AdaptedwithpermissionofJohnWileyandSons.

Figure1.13 Phasetransitionbetweenhightemperatureaustenitephaseandlow temperaturemartensitephase,wheretheshapeatcubic-austenitephasecanberesumed fromlowtemperaturemartensitephasewhoselatticecanbelargelytwisted.

intothejetflowbasedontheflightcondition.AsshowninFigure1.14a, SMAsactivatedbyheatweredevelopedthatwouldallowforfullchevron immersioninjetflowduringhighthrustrequirements(e.g.duringtake-off) andnotimmersingitduringcruisewherethethrustefficiencyisofgreater importance(Anonn.d.).

Piezofiber

Figure1.14 (a)Braceoforthodontiausingshapememoryalloysand(b)arthrodesisdevice developedbyKarnesetal.

Forbrokenbonerehabilitation,aSMAplatewithamemorytransfertemperatureclosetobodytemperaturecanbeattachedtobothendsofthebrokenboneas showninFigure1.14b.Frombodyheat,theplatewillcontractandretainitsoriginalshape,thereforeexertingacompressionforceonthebrokenboneattheplace offracture.Afterthebonehashealed,theplatecontinuesexertingthecompressiveforceandaidsinstrengtheningduringrehabilitation(Garlocketal.2017).

1.5ScopeofThisBook

InChapters2–5,fundamentalsofferroelectrics,applicationsofferroelectric materials,recentadvances,andadvancedmeasurementandtestingtechniques inferroelectricswillbeintroduced.Inparticular,deviceapplicationsofferroelectricmaterialsinthinfilmformwillbeintroducedincludingFeRAM, ferroelectrictunneling-basedresistiveswitching,etc.Therecentadvances includeferroelectricityinemergingmaterialssuchas2Dmaterialsandhigh-k gatedielectricmaterialHfO2 ,whiletheadvancedcharacterizationtechnologies includethepiezoresponseforcemicroscopy(byimagingandswitchingferroelectricdomains)andCs-correctedtransmissionelectronmicroscopy(TEM) whereatomiclevelionicdisplacementcanbeidentified.

Asthemostimportantpropertyapplicationofferroelectricmaterials, fundamentalsofpiezoelectricphysicsandengineeringconsiderationsfordevice designandfabricationareintroducedinChapters6and7.

InChapter8,startingwithabriefintroductiononoriginofferromagnetismand itsanalogytoferroelectrics,deviceapplications,particularlyformagnetostrictive devices,areintroduced.

Chapters9and10willintroducethemultiferroicsofmaterialspossessingboth ferromagneticandferroelectricordersincludingsinglephaseandcomposite materials.Inparticular,devicesbasedontheintegrationofferroelectricand ferromagneticmaterialssuchasmultiferroicmemorydeviceandMEcoupling deviceforsensorapplicationswillbeintroduced.

InChapter11,ferroelasticmaterialsrepresentedbySMAandmagneticSMAs aswellastheirdeviceapplicationswillbeintroduced.

References

Boyn,S.,Grollier,J.,Lecerf,G.etal.(2017).Learningthroughferroelectricdomain dynamicsinsolid-statesynapses. NatureCommunications 8:1–7. Chang,C.-Y.andChen,T.-L.(2017).Design,fabrication,andmodelingofanovel dual-axiscontrolinputPZTgyroscope. Sensors 17(11):2505.

Cho,J.(2018). Amidcontradictoryforecast:ICinsights:‘Memorychipswillgrowat annualrateof5%onlyonaverageby2022’ .Seoul,Korea:BusinessKorea. Garlock,A.,Karnes,W.M.,Fonte,M.etal.(2017).Arthrodesisdevicesfor generatingandapplyingcompressionwithinjoints.US2017/0296241A1, Availableat:https://patents.google.com/patent/US20170296241A1/en. Li,M.,Dong,C.,Zhou,H.etal.(2017).HighlysensitiveDCmagneticfieldsensor basedonnonlinearMEeffect. IEEESensorsLetters 1(6):1–4.

RenesasElectronicsCorporation(2017).Renesaselectronicsachieveslarge-scale memoryoperationinfin-shapedMONOSflashmemoryforindustry’sfirst high-performance,highlyreliableMCUsin16/14nmprocessnodesandbeyond. Wang,Y.,Gray,D.,Berry,D.etal.(2011).Anextremelylowequivalentmagnetic noisemagnetoelectricsensor. AdvancedMaterials 23(35):4111–4114.Available at:https://doi.org/10.1002/adma.201100773.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Ferroic materials for smart systems from fundamentals to device applications dai - The full ebook se by Education Libraries - Issuu