Exergy. energy, environment and sustainable development 3rd edition ibrahim dincer and marc a. rosen

Page 1


https://ebookmass.com/product/exergy-energy-environment-and-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Energy, Environment, and Sustainability 2nd Edition Saeed. Moaveni

https://ebookmass.com/product/energy-environment-andsustainability-2nd-edition-saeed-moaveni/

ebookmass.com

Sustainable Development and Energy Transition in Europe and Asia, Volume 9 Bernadette Andreosso-O'Callaghan

https://ebookmass.com/product/sustainable-development-and-energytransition-in-europe-and-asia-volume-9-bernadette-andreossoocallaghan/

ebookmass.com

Future Energy: Improved, Sustainable and Clean Options for Our Planet 3rd Edition Trevor M. Letcher (Editor)

https://ebookmass.com/product/future-energy-improved-sustainable-andclean-options-for-our-planet-3rd-edition-trevor-m-letcher-editor/

ebookmass.com

Fundamentals of radiation oncology : physical, biological, and clinical aspects 3rd Edition M.D. Hasan Murshed (Editor)

https://ebookmass.com/product/fundamentals-of-radiation-oncologyphysical-biological-and-clinical-aspects-3rd-edition-m-d-hasanmurshed-editor/

ebookmass.com

Global Technology Management 4.0: Concepts and Cases for Managing in the 4th Industrial Revolution Pratim Milton Datta

https://ebookmass.com/product/global-technologymanagement-4-0-concepts-and-cases-for-managing-in-the-4th-industrialrevolution-pratim-milton-datta/ ebookmass.com

017 - Totenjunge Roxann Hill

https://ebookmass.com/product/017-totenjunge-roxann-hill-2/

ebookmass.com

Financial Markets and Economic Performance: A Model for Effective Decision Making 1st Edition John E. Silvia

https://ebookmass.com/product/financial-markets-and-economicperformance-a-model-for-effective-decision-making-1st-edition-john-esilvia/

ebookmass.com

Analytical Methods for Food Safety by Mass Spectrometry: Volume I Pesticides Guo-Fang Pang

https://ebookmass.com/product/analytical-methods-for-food-safety-bymass-spectrometry-volume-i-pesticides-guo-fang-pang/

ebookmass.com

Abstract Algebra and Famous Impossibilities: Squaring the Circle, Doubling the Cube, Trisecting an Angle, and Solving Quintic Equations 2nd Edition Sidney A. Morris

https://ebookmass.com/product/abstract-algebra-and-famousimpossibilities-squaring-the-circle-doubling-the-cube-trisecting-anangle-and-solving-quintic-equations-2nd-edition-sidney-a-morris/ ebookmass.com

History, Abolition, and the Ever-Present Now in Antebellum

American Writing Jeffrey Insko

https://ebookmass.com/product/history-abolition-and-the-ever-presentnow-in-antebellum-american-writing-jeffrey-insko/

ebookmass.com

Exergy

Exergy Energy,EnvironmentandSustainableDevelopment

ThirdEdition

IbrahimDincer

OntarioTech.University,Oshawa,ON,Canada

MarcA.Rosen

OntarioTech.University,Oshawa,ON,Canada

Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2021ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopying, recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission, furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterand theCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changesinresearch methods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods, compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyof others,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/ordamageto personsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,or ideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-824372-5

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JonathanSimpson

AcquisitionsEditor: LisaReading

EditorialProjectManager: LeticiaLima

ProductionProjectManager: SruthiSatheesh

CoverDesigner: ChristianBilbow

TypesetbySPiGlobal,India

Dedication

“TomyMother,Fatma,whomIwasattachedverymuchandwhoraisedmeasan orphantoanaccomplishedacademicianwithherunconditionalloveandendless support.Imissheralot.

TomyFather,Hasan,whowasamanofdignity,decency,andprinciplesandwasa truevolunteerandadedicatedcommunityhelperinassistingeveryneedypeople aroundhim.Hewasatruealtruist.Healwaysdisciplinedmeforgoodupuntilhe passedawaywhenIwas9.Istruggledalotwithouthimandstillmisshim verymuch.

Tomywife,Gulsen,mychildren,Meliha,Miray,IbrahimEren,Zeynep,and IbrahimEmirfortheirtruelove,patience,motivation,andsupport.”

And

“Tomywife,Margot,mychildren,AllisonandCassandra,mysiblings,Bryanand Rhona,andmyparents,SharonandLou,forthelove,support,andinspiration.”

IbrahimDincer

Preface

Exergyanalysisistrulyrecognizedasamethodthatusestheconservationofmassandconservationofenergyprinciples togetherwiththesecondlawofthermodynamicsfortheanalysis,design,andimprovementofenergyandothersystems. Theexergymethodisausefultoolforfurtheringthegoalofmoreefficientenergy-resourceuse,foritenablesthelocations, typesandmagnitudesofwastesandlossestobeidentifiedandmeaningfulefficienciestobedetermined.

Duringthepastfewdecadeswehavewitnessedrevolutionarychangesinthewaythermodynamicsistaught,researched andpracticed.Themethodsofexergyanalysis,entropygenerationminimizationandthermoeconomicsarethemostvisible andestablishedformsofthischange.Todaythereisamuchstrongeremphasisonexergyaspectsofsystemsandprocesses. Theemphasisisnowonsystemanalysisandthermodynamicoptimization,notonlyinthemainstreamofengineeringbut alsoinphysics,biology,economics,andmanagement.Asaresultoftheserecentchangesandadvances,exergyhasgone beyondthermodynamicsandbecomeanewdistinctdisciplinebecauseofitsinterdisciplinarycharacterastheconfluenceof energy,environmentandsustainabledevelopment.

Thethirdeditionofthisbook,withmoreenhancedandimprovedchapters,isalsoaresearch-orientedtextbookand thereforeincludespracticalfeaturesinausableformatoftennotincludedinother,solelyacademictextbooks.Thisbook isessentiallyintendedforusebyadvancedundergraduateorgraduatestudentsinseveralengineeringandnonengineering disciplinesandasanessentialtoolforpractitioners.Theoryandanalysisareemphasizedthroughoutthiscomprehensive book,reflectingnewtechniques,modelsandapplications,togetherwithcomplementarymaterialsandrecentinformation. Coverageofthematerialisextensive,andtheamountofinformationanddatapresentedissufficientforexergyrelated coursesorasasupplementforenergy,environmentandsustainabledevelopmentcourses,ifstudiedindetail.Webelieve thatthisbookwillbeofinteresttostudentsandpractitioners,aswellasindividualsandinstitutions,whoareinterestedin exergyanditsapplicationstovarioussystemsindiverseareas.Thisvolumeisalsoavaluableandreadablereferencefor anyonewhowishestolearnaboutexergy.

Theintroductorychapteraddressesgeneralconcepts,fundamentalprinciplesandbasicaspectsofthermodynamics, energy,entropy,andexergy.Thesetopicsarecoveredinabroadmanner,soastofurnishthereaderwiththebackground informationnecessaryforsubsequentchapters. Chapter2 providesdetailedinformationonenergyandexergyandcontrasts analysisapproachesbasedoneach,while Chapter3 focusesonchemicalexergyanditsimportantroleinexergyanalysisfor manysystemsandprocesses.In Chapter4,extensivecoverageisprovidedofenvironmentalconcerns,theimpactofenergy useontheenvironmentandlinkagesbetweenexergyandtheenvironment.Throughoutthischapter,emphasisisplacedon theroleofexergyinmovingtosustainabledevelopment.

Chapter5 delvesintotheuseofexergytechniquesbyindustryforvarioussystemsandprocessesandinactivitiessuchas designandoptimization.Thischapterlaysthefoundationforthemanyapplicationspresentedin Chapters6–19,which representtheheartofthebook.Theapplicationscoveredrangefrompsychrometricprocesses(Chapter6),refrigeration andheatpumps(Chapter7),absorptioncooling(Chapter8),thermalstorage(Chapter9),drying(Chapter10),renewable energysystems(Chapter11),steampowerplants(Chapter12),cogenerationanddistrictenergy(Chapter13),cryogenics andliquefaction(Chapter14),trigenerationandmultigeneration(Chapter15),crudeoildistillation(Chapter16),hydrogen production(Chapter17),fuelcells(Chapter18),andaircraftsystems(Chapter19).

Chapter20 coverstherelationbetweenexergyandeconomics,andtheexploitationofthatlinkthroughanalysistools suchasexergoecomics. Chapter21 extendsexergyapplicationstolarge-scalesystemssuchascountries,regionsand sectorsofaneconomy,focusingonhowefficientlyenergyresourcesareutilizedinsocieties. Chapter22 focusestheutilizationofexergywithinlifecycleassessmentandpresentsvariousapplications. Chapter23 discusseshowexergycomplementsandcanbeusedwithindustrialecology.Multiobjectiveoptimization,whichdrawsonmuchoftheearlierpaperin thebook,isdescribedin Chapter24.Thebookconcludesbyhighlightingthepotentialofexergyasatoolinenergypolicy makingandaddressingtheneedforexergyeducationandawarenessin Chapter25.Aclosingsection,includingthoughtson futureperspectives,ispresentedin Chapter26

Incorporatedthroughoutaremanyillustrativeexamplesandcasestudies,whichprovidethereaderwithasubstantial learningexperience,especiallyinareasofpracticalapplication.

Theappendicescontainunitconversionfactorsandtablesandchartsofthermophysicalpropertiesofvariousmaterials intheInternationalSystemofunits(SI).

Completereferencesareincludedtopointthetrulycuriousreaderintherightdirection.Informationontopicsnot coveredfullyinthetextcan,therefore,beeasilyfound.

Wehopethisvolumeallowsexergymethodstobemorewidelyappliedandthebenefitsofsucheffortsmorebroadly derived,sothatenergyusecanbemademoreefficient,clean,andsustainable.

Acknowledgments

Wehavemodifiedandenhancedsomeofthematerialpresentedinthepreviouseditionsofthisbookasderivedfrom variousresearchworksandcollaborationsovertheyears.Wegreatlyappreciatetheeffortsofallthosewithwhomwehave collaboratedinthepast.

Inaddition,thecontributionsandassistancefromseveralpastundergraduateandgraduatestudents,asacknowledgedin previouseditions,areagainhighlyappreciated.

Inthisthirdedition,wegratefullyacknowledgetheassistanceprovidedbyPhDstudentMr.AliIsmaelforimplementing revisionsandreviewingseveralchapters,checkingforconsistency,andupdatingfigures,tablesandquestions/problems; Ms.MerveOzturk,Dr.PouriaAhmadi,Dr.AhmedDuranSahin(andhisgraduatestudentBihterDurna),andDr.Tahir Ratlamwala(andhisgraduatestudentUzairSuria)forupdatingspecificchapters;Dr.YusufBicer,Mr.OsamahSiddiqui, Mr.HarisIshaq,Ms.ShaimaaSeyamandMr.KhalidAltayibforsupplyingsomecasestudymaterials/examples;and Dr.MuhammedIberiaAydinfordrawingsuchcolorfullovelyfigures.

Lastbutnotleast,wewarmlythankourfamilies.Theyhavebeenagreatsourceofsupportandmotivation,andtheir patienceandunderstandingthroughoutthisprojecthavebeenmostappreciated.

Chapter1

Thermodynamicfundamentals

Nomenclature

A area(m2)

d difference

e specificenergy(kJ/kg)

ex specificexergy(kJ/kg)

E energy(kJ)

Ex exergy(kJ)

Ex exergyrate(kg/s)

g gravitationalacceleration(m/s2)

h specificenthalpy(kJ/kg)

^ h specifictotalenergy(kJ/kg)

H enthalpy(kJ)

ke specifickineticenergy(kJ/kg)

KE kineticenergy(kJ)

m massflowrate(kg/s)

M molarmass(kg/mol)

pe specificpotentialenergy(kJ/kg)

PE potentialenergy(kJ)

q specificheattransfer(kJ/kg)

Q heattransfer(kJ)

Q heattransferrate(kg/s)

R gasconstant(kJ/kmolK)

s specificentropy(kJ/kgK)

S entropy(kJ/K)

T temperature(°CorK)

u specificinternalenergy(kJ/kg)

U internalenergy(kJ)

V velocity(m/s);volume(m3)

w specificwork(kJ/kg)

W work(kJ)

_ W workrate(kg/s)

Greekletters

d difference

D difference

h energyefficiency

c exergyefficiency

Subscripts

1,2 statepoints

cv controlvolume

e exit

gen generation

i inlet

Exergy https://doi.org/10.1016/B978-0-12-824372-5.00001-4 © 2021ElsevierLtd.Allrightsreserved.

si sink

so source

surr surroundings

sys system

Acronyms

FLT firstlawofthermodynamics

SLT secondlawofthermodynamics

1.1Introduction

Energy,entropy,andexergyconceptsstemfromthermodynamicsandapplytoallfieldsofscienceandengineering.This chapterprovidesthenecessarybackgroundforunderstandingtheseconcepts,aswellasbasicprinciples,generaldefinitions,andpracticalapplicationsandimplications.Illustrativeexamplesareprovidedtohighlighttheimportantaspectsof energy,entropy,andexergy.

Thescopeofthischapterispartlyillustratedin Fig.1.1,wherethedomainsofenergy,entropy,andexergyareshown. Thischapterfocusesontheportionofthefieldofthermodynamicsattheintersectionofenergy,entropy,andexergyfields. Notethatentropyandexergyarealsousedinotherfields(suchasstatisticsandinformationtheory);therefore,theyarenot subsetsofenergy.Also,someformsofenergy(suchasshaftwork)areentropy-free;thus,entropysubtendsonlyapartof theenergyfield.Likewise,exergysubtendsonlyapartoftheenergyfieldassomesystems(suchasairatatmospheric conditions)possessenergybutnoexergy.Mostthermodynamicsystems(suchassteaminapowerplant)possessenergy, entropy,andexergyand,thus,appearattheintersectionofthesethreefields.

1.2Energy

Energycomesinmanyforms.Thermodynamicsplaysakeyroleintheanalysisofprocesses,systems,anddevicesinwhich energytransfersandenergytransformationsoccur.Theimplicationsofthermodynamicsarefar-reaching,andapplications spantherangeofthehumanenterprise.Throughoutourtechnologicalhistory,ourabilitytoharnessenergyanduseitfor society’sneedshasimproved.Theindustrialrevolutionwasfueledbythediscoveryofhowtoexploitenergyonalarge scaleandhowtoconvertheatintowork.Natureallowstheconversionofworkcompletelyintoheat,butheatcannotbe entirelyconvertedintoworkanddoingsorequiresadevice(e.g.,acyclicengine).Enginesattempttooptimizetheconversionofheattowork.

1.2.1Applicationsofenergy

Mostofourdailyactivitiesinvolveenergytransferandenergychange.Thehumanbodyisafamiliarexampleofabiologicalsysteminwhichthechemicalenergyoffoodorbodyfatistransformedintootherformsofenergy,suchasheatand work.Engineeringapplicationsofenergyprocessesarewide-rangingandincludepowerplantstogenerateelectricity, enginestorunautomobilesandaircraft,refrigerationandairconditioningsystems,etc.

Manyexamplesofsuchsystemsarediscussedhere.Inahydroelectricpowersystem,thepotentialenergyofwateris convertedintomechanicalenergythroughtheuseofahydraulicturbine.Themechanicalenergyisthenconvertedinto

electricenergybyanelectricgeneratorcoupledtotheshaftoftheturbine.Inasteampowergeneratingplant,chemicalor nuclearenergyisconvertedintothermalenergyinaboilerorareactor.Theenergyisimpartedtowater,whichvaporizes intosteam.Theenergyofthesteamisusedtodriveasteamturbine,andtheresultingmechanicalenergyisusedtodrivea generatortoproduceelectricpower.Thesteamleavingtheturbineisthencondensed,andthecondensateispumpedbackto theboilertocompletethecycle.Breederreactorsuseuranium-235asafuelsourceandcanproducesomemorefuelinthe process.Asolarpowerplantusessolarconcentrators(parabolicorflatmirrors)toheataworkingfluidinareceiverlocated onatower,whereaheatedfluidexpandsinaturbogeneratorasinaconventionalpowerplant.Inaspark-ignitioninternal combustionengine,thechemicalenergyofthefuelisconvertedintomechanicalwork.Anair-fuelmixtureiscompressed andcombustionisinitiatedbyasparkdevice.Theexpansionofthecombustiongasespushesagainstapiston,whichresults intherotationofacrankshaft.Gasturbineengines,commonlyusedforaircraftpropulsion,convertthechemicalenergyof fuelintothermalenergythatisusedtorunagasturbine.Theturbineisdirectlycoupledtoacompressorthatsuppliestheair requiredforcombustion.Theexhaustgases,uponexpandinginanozzle,createthrust.Forpowergeneration,theturbineis coupledtoanelectricgeneratoranddrivesboththecompressorandthegenerator.Inaliquid-fuelrocket,afuelandan oxidizerarecombined,andcombustiongasesexpandinanozzlecreatingapropulsiveforce(thrust)topropeltherocket. Atypicalnuclearrocketpropulsionengineoffersahigherspecificimpulsewhencomparedtochemicalrockets.Afuelcell convertschemicalenergyintoelectricenergydirectlymakinguseofanion-exchangemembrane.Whenafuelsuchas hydrogenisionized,itflowsfromtheanodethroughthemembranetowardthecathode.Thereleasedelectronsattheanode flowthroughanexternalload.Inamagnetohydrodynamicgenerator,electricityisproducedbymovingahigh-temperature plasmathroughamagneticfield.Arefrigerationsystemutilizesworksuppliedbyanelectricmotortotransferheatfroma refrigeratedspace.Low-temperatureboilingfluids,suchasammoniaandrefrigerant-12,absorbthermalenergyasthey vaporizeintheevaporator,causingacoolingeffectintheregionbeingcooled.

Theseareonlysomeofthenumerousengineeringapplications.Thermodynamicsisrelevanttoamuchwiderrangeof processesandapplicationsnotonlyinengineeringbutalsoinscience.Agoodunderstandingofthistopicisrequiredto improvethedesignandperformanceofenergy-transfersystems.

1.2.2Conceptofenergy

TheconceptofenergywasfirstintroducedinmechanicsbyNewtonwhenhehypothesizedaboutkineticandpotential energies.However,theemergenceofenergyasaunifyingconceptinphysicswasnotadopteduntilthemiddleofthe 19thcenturyandisconsideredoneofthemajorscientificachievementsofthatcentury.Theconceptofenergyissofamiliar toustodaythatitseemsintuitivelyobvioustounderstand,yetweoftenhavedifficultydefiningitprecisely.

Energyisascalarquantitythatcannotbeobserveddirectlybutcanberecordedandevaluatedbyindirectmeasurements. Theabsolutevalueoftheenergyofasystemisdifficulttomeasure,whereastheenergychangeisrelativelyeasyto evaluate.

Examplesofenergyuseinlifeexperiencesareendless.Thesunisthemajorsourceoftheearth’senergy.Itemitsa spectrumofenergythattravelsacrossspaceaselectromagneticradiation.Energyisalsoassociatedwiththestructure ofmatterandcanbereleasedbychemicalandatomicreactions.Throughouthistory,theemergenceofcivilizationshas beencharacterizedbythediscoveryandeffectiveapplicationofenergytohelpmeetsociety’sneeds.

1.2.3Formsofenergy

Energymanifestsitselfinmanyforms,whichareeitherinternalortransient.Itcanbeconvertedfromoneformtoanother. Inathermodynamicanalysis,theformsofenergycanbeclassifiedintotwogroups:macroscopicandmicroscopic.

Macroscopicformsofenergy arethosewhichanoverallsystempossesseswithrespecttoareferenceframe,e.g., kineticandpotentialenergies.Forexample,themacroscopicenergyofarisingobjectchangeswithvelocityandelevation. Themacroscopicenergyofasystemisrelatedtomotionandtheinfluenceofexternaleffectssuchasgravity,magnetism, electricity,andsurfacetension.

Theenergythatasystempossessesasaresultofitsmotionrelativetosomereferenceframeis kineticenergy.Kinetic energyreferstotheenergyofthesystembecauseofits“overall”motion,eithertranslationalorrotational.Here,theterm “overall”isusedtospecifythatwerefertothekineticenergyoftheentiresystem,notthekineticenergyofthemoleculesin thesystem.Ifthesystemisagas,forexample,thekineticenergyistheenergyduetothemacroscopicflowofthegas,not themotionofindividualmolecules.

The potentialenergy ofasystemisthesumofthegravitational,centrifugal,electrical,andmagneticpotentialenergies. Theenergythatasystempossessesasaresultofitselevationinagravitationalfieldiscalledgravitationalpotentialenergy

(orcommonly,justpotentialenergy).Forexample,a1kgmass,100mabovetheground,hasgreaterpotentialenergythan thesamemassontheground.Potentialenergycanbeconvertedintootherformsofenergy,suchaskineticenergyifthe massisallowedtofall.

Kineticandpotentialenergydependsontheenvironmentinwhichthesystemexists.Inparticular,thepotentialenergy ofasystemdependsonthechoiceofazerolevel.Forexample,ifgroundlevelisconsideredtobeatzeropotentialenergy, thenthepotentialenergyofthemass100mabovethegroundhaspositivepotentialenergyequaltothemass(1kg)multipliedbythegravitationalconstant(g ¼ 9.807m/s2)andtheheightabovetheground(100m).Itspotentialenergywillbe 980.7(kgm2)/s2 (or980.7Newton-meters(Nm),or980.7J).Thedatumplaneforpotentialenergycanbechosenarbitrarily. Ifithadbeenchosenat100mabovethegroundlevel,thepotentialenergyofthemasswouldhavebeenzero.Ofcourse,the differenceinpotentialenergybetweenthemassat100mandthemassatgroundlevelisindependentofthedatumplane.

Microscopicformsofenergy arethoserelatedtothemolecularstructureofasystemandthedegreeofmolecular activity,andtheyareindependentofoutsidereferenceframes.Thesumofallthemicroscopicformsofenergyofasystem isits internalenergy.Theinternalenergyofasystemdependsontheinherentqualities,orproperties,ofthematerialsinthe system,suchascompositionandphysicalform,aswellastheenvironmentalvariables(temperature,pressure,electricfield, magneticfield,etc.).Internalenergycanhavemanyforms,includingmechanical,chemical,electrical,magnetic,surface, andthermal.Someexamplesareconsideredforillustration:

l Aspringthatiscompressedhashigherinternalenergy(mechanicalenergy)thanaspringthatisnotcompressedbecause thecompressedspringcandoworkonchanging(expanding)totheuncompressedstate.

l Twoidenticalvessels,eachcontaininghydrogenandoxygen,thathavedifferentchemicalenergiesareconsidered.In thefirst,thegasesarecontainedintheelementalform,purehydrogenandpureoxygen,inaratioof2:1.Thesecond containsanidenticalnumberofatomsbutintheformofwater.Theinternalenergiesofthesesystemsdiffer.Aspark maysetoffaviolentreleaseofenergyinthefirstcontainer,butnotinthesecond.

Thestructureofthermodynamicsinvolvestheconceptofequilibriumstatesandpostulatesthatthechangeinthevalueof thermodynamicquantities,suchasinternalenergy,betweentwoequilibriumstatesofasystemdoesnotdependonthe thermodynamicpaththesystemtakestogetfromonestatetotheother.Thechangeisdefinedbythefinalandinitialequilibriumstatesofthesystem.Consequently,theinternalenergychangeofasystemisdeterminedbytheparametersthat specifythesysteminitsfinalandinitialstates.Theparametersincludepressure,temperature,magneticfield,surfacearea, mass,etc.Ifasystemchangesfromstate1tostate2,thechangeininternalenergy DU is(U2 U1),theinternalenergyinthe finalstateislessthanthatintheinitialstate.Thedifferencedoesnotdependonhowthesystemgetsfromstate1to2.The internalenergy,thus,isreferredtoasastatefunction,orapointfunction,thatis,afunctionofthestateofthesystemonly, andnotitshistory.

Thethermalenergyofasystemistheinternalenergyofasystem,whichincreasesasthetemperatureisincreased.For instance,wehavetoaddenergytoanironbartoraiseitstemperature.Thethermalenergyofasystemisnotreferredtoas heat,asheatisenergyintransitbetweensystems.

1.2.4Thefirstlawofthermodynamics(FLT)

Thefirstlawofthermodynamicsisthe lawoftheconservationofenergy,whichstatesthat,althoughenergycanchange form,itcanbeneitherbecreatednordestroyed.TheFLTdefinesinternalenergyasastatefunctionandprovidesaformal statementoftheconservationofenergy.

However,itprovidesnoinformationaboutthedirectioninwhichprocessescanspontaneouslyoccur,thatis,thereversibilityaspectsofthermodynamicprocesses.Forexample,theFLTcannotindicatehowcellscanperformworkwhile existinginanisothermalenvironment.TheFLTprovidesnoinformationabouttheinabilityofanythermodynamicprocess toconvertheatfullyintomechanicalworkoranyinsightintowhymixturescannotspontaneouslyseparateorunmixthemselves.Aprincipletoexplainthesephenomenaandcharacterizetheavailabilityofenergyisrequiredtodothis.Thatprincipleisembodiedinthesecondlawofthermodynamics,whichweexplainlater.

1.2.5Energyandthefirstlawofthermodynamics

Foracontrolmass,theenergyinteractionsforasystemmaybedividedintotwoparts: dQ,theamountofheat,and dW,the amountofwork.Unlikethetotalinternalenergy dE,thequantities dQ and dW arenotindependentofthemanneroftransformation,sowecannotspecify dQ and dW simplybyknowingtheinitialandfinalstates.Hence,itisnotpossibletodefine

afunction Q,whichdependsontheinitialandfinalstates,i.e.,heatisnotastatefunction.TheFLTforacontrolmasscanbe writtenasfollows:

WhenEq. (1.1) isintegratedfromaninitialstate1toafinalstate2,itresultsin

where E1 and E2 denotetheinitialandfinalvaluesoftheenergy E ofthecontrolmass, Q1-2 istheheattransferredtothe controlmassduringtheprocessfromstate1tostate2,and W1-2 istheworkdonebythecontrolvolumeduringtheprocess fromstate1tostate2.

Theenergy E mayincludeinternalenergy U,kineticenergy KE,andpotentialenergy PE termsasfollows:

Forachangeofstatefromstate1tostate2withaconstantgravitationalacceleration g,Eq. (1.3) becomes

where m denotesthefixedamountofmasscontainedinthesystem, V thevelocity,and Z theelevation.

Thequantities dQ and dW canbespecifiedintermsoftheratelawsforheattransferandwork.Foracontrolvolume,an additionaltermappearsfromthefluidflowingacrossthecontrolsurface(enteringatstateiandexitingatstatee).TheFLT foracontrolvolumecanbewrittenas

where m ismassflowrateperunittime, ^ h istotalspecificenergy,equaltothesumofspecificenthalpy,kineticenergy,and potentialenergy,i.e., ^ h ¼ h + V2/2+ gZ.

1.2.6Economicaspectsofenergy

Althoughallformsofenergyareexpressedinthesameunits(joules,megajoules,gigajoules,etc.),thefinancialvalueof energyvariesenormouslywithitsgradeorquality.Typically,electricalandmechanicalenergyarethemostcostly,followedbyhigh-gradethermalenergy.Attheotherextreme,thermalenergy,whichisonlyafewdegreesfromambient,has virtuallynocommercialvalue.Theseexampleshighlighttheweaknessoftryingtoequatetheenergycontainedinsteamor theheatcontentofgeothermalfluidswiththehigh-gradeenergyobtainablefromfossilfuelsornuclearpower.Economics usuallysuggeststhatoneshouldavoidusingenergyatasignificantlyhighergradethanneededforatask.Forexample, electricalenergy,whichhasahighenergygrade,shouldbeusedforsuchpurposesasmechanicalenergygeneration,productionoflight,sound,andveryhightemperaturesinelectricalfurnaces.Electricspaceheating,ontheotherhand,inwhich electricityisusedforraisingthetemperatureofambientaironlytoabout20°C,isanextremelywastefuluseofelectricity. Thisobservationappliesinbothdomesticandindustrialcontexts.Inmanyjurisdictions,thereisexcesselectricitygenerationcapacityatnight;therefore,someofthenighttimeelectricityissoldatreducedpricesforspaceheatingpurposes,even thoughthisisinherentlywasteful.Itisoftenmoreadvantageousandefficientinsuchsituationstoutilizeenergystorage, suchasflywheels,compressedair,orpumpedwater,whichleadstoreducedthermodynamicirreversibility.

Inindustrysettings,tasksoftenrequireenergybutatdifferentgrades.Theopportunityoftenexiststousethewasteheat fromoneprocesstoservetheneedsofanotherinaneffectiveandefficientmanner.Sometimes,acascadeoftaskscanbe satisfiedinthismanner,Forexample,atypicalglassworksreleaseswasteheatatbetween400°Cand500°C,whichissufficientforraisingintermediate-pressuresteamforrunningback-pressureturbinestoproduceelectricityorraisinglowpressuresteamatabout120°Cforotherpurposesorheatingoperationsattemperaturesashighas400–500°C.Theheat exhaustedfromasteamturbinecan,inturn,beusedtoevaporatemoisturefromagriculturalproducts.Thewatervapor obtainablefromsuchprocessescanbecondensedtoprovidewarmwateratabout60°C,whichcanbeemployedforspace heatingorforthesupplyofheattofishfarmsorgreenhouses.Inthisexample,theoriginalsupplyofhigh-gradeenergy obtainedbyburningcoal,oil,ornaturalgasperformsfourseparatetasks:

l Thevariousglassconstituentsaremeltedafterbeingheatedtoabovetheirsolidificationtemperature(about1500°C).

l Medium-pressuresteamisusedtoproduceelectricity(500°C).

l Theexhauststeamfromtheback-pressureturbineisusedforcropdrying(120°C).

l Thecondensedwatervaporheatswaterforuseinspaceheating,fishfarms,orgreenhouses(60°C).

1.2.7Energyauditmethods

Energymanagementopportunitiesoftenexisttoimprovetheeffectivenessandefficiencywithwhichenergyisused.For instance,energyprocessesinindustrial,commercial,andinstitutionalfacilities,includingheating,cooling,andairconditioning,canoftenbeimproved.Manyoftheseopportunitiesarerecognizableduringawalk-throughauditoramore detailedexaminationofafacility.Suchanauditisusuallymoremeaningfulifsomeonefromoutsidethefacilitybut,generally,familiarwithenergymanagementisinvolved.Typicalenergy-savingitemsnotedduringawalk-throughaudit includesteamandwaterleaksatconnectionsandotherlocations,damagedinsulation,excessivelighting,etc.Alertmanagementandoperatingstaffandgoodmaintenanceprocedurescan,withlittleeffort,reduceenergyusageand,thereby, savemoney.

Notallitemsnotedinawalk-throughauditareeasytoanalyze.Forexample,astreamofcoolingwatermaybedirected toadrainafterbeingusedforacoolingapplication,eventhoughsomethermalenergyremainsinthewater.Theeconomics ofrecoveringthisheatneedstobeinvestigatedtodetermineifitisworthrecovering.Somerelevantquestionstoconsiderin suchanassessmentincludethefollowing:

l Howmuchthermalenergyisavailableinthewastestream?

l Isthereauseforthisenergy?

l Whatarethecapitalandoperatingcostsinvolvedinrecoveringtheenergy?

l Willtheenergyandassociatedcostsavingspayfortheequipmentrequiredtorecovertheenergy?

Adiagnosticauditisrequiredtodeterminethethermalenergyavailableinawastestream,howmuchenergycanbe recovered,andifthereisauseforthisrecoveredenergywithinoroutsidethefacility.Thecostsavingsassociatedwith recoveringtheenergyaredetermined,andalongwiththecosttosupplyandinstalltheheatrecoveryequipment,thesimple paybackperiodcanbeevaluatedforthemeasuretoestablishitsfinancialviability.

1.2.8Energymanagement

Energymanagementreferstotheprocessofusingenergycarefullysoastosavemoneyorachieveotherobjectives.Energy managementmeasurescanbedividedintothefollowingcategories:maintenance(orhousekeeping),low-cost(orsimple), andretrofit.Manyenergymanagementmeasuresareoutlinedherealongwiththeirpotentialenergysavings.Thislistisnot intendedtobecomprehensive(e.g.,itdoesnotcoverallopportunitiesavailableforheating,cooling,andairconditioning equipment),buttohelpthoseinvolvedinmanagement,operations,andmaintenancetoidentifyenergysavingsopportunitiesspecifictoaparticularfacility.Otherenergymanagementopportunitiesexist.

Energymanagementisbestapproachedinanopenmannerthatallowspreviouslyacceptedinefficientpracticestobe explored.Improvedawarenessonthepartofthestaffmanaging,operating,ormaintainingafacility,combinedwithimaginationand/orexpertassistance,canyieldlargedividendsintermsofenergyuseandcostreductions.Severalpractical energymanagementmeasuresarecoveredbelow.

Maintenanceopportunities.Maintenancemeasuresforenergymanagementarethosecarriedoutregularly,normally nomorethanannually,andincludethefollowing:

l Sealingleaksatvalves,fittings,andgaskets.

l Repairingdamagedinsulation.

l Maintainingtemperatureandpressurecontrols.

l Maintainingsteamtraps.

l Cleaningheattransfersurfaces.

l Ensuringsteamqualityisadequatefortheapplication.

l Ensuringsteampressureandtemperaturerangesarewithinthetolerancesspecifiedfortheequipment.

l Ensuringsteamtrapsarecorrectlysizedtoremoveallcondensate.

l Ensuringheatingcoilsslopefromsteaminlettosteamtraptopreventcoilsfromfloodingwithcondensate.

Low-costopportunities. Low-costenergymanagementmeasuresarenormallyonce-offactionsforwhichthecostisnot consideredgreat:

l Shuttingequipmentwhennotrequired.

l Providinglockablecoversforcontrolequipment,suchasthermostats,topreventunauthorizedtampering.

l Operatingequipmentatornearcapacitywheneverpossibleandavoidingrunningmultipleunitsatreducedcapacity.

l Addingthermostaticairvents.

l Addingmeasuringandmonitoringequipmenttoprovidetheoperatingdataneededtoimprovesystemoperation.

l Assessingthelocationofcontroldevicestoensurethebestoperation.

Retrofitopportunities. Retrofitenergymanagementmeasuresarenormallyonce-offactionswithsignificantcoststhat involvemodificationstoexistingequipment.Manyofthesemeasuresrequiredetailedanalysisandarebeyondthescope ofthischapter.Workedexamplesareprovidedforsomeofthelistedenergymanagementopportunities,whileinothercases thereisonlycommentary.Typicalenergymanagementmeasuresinthiscategoryfollow:

l Convertingfromdirecttoindirectsteam-heatedequipmentandrecoveryofcondensate.

l Installing/upgradinginsulationonequipment.

l Relocatingsteam-heatedequipmentfromcentralbuildingareastoareaswithexteriorexposuressothatheatlossfrom theequipmentcanassistinheatingthearea.

l Reviewinggeneralbuildingheatingconceptsasopposedtotaskheatingconcepts.

l Modifyingprocessestostabilizeorreducesteamorwaterdemand.

l Investigatingtheschedulingofprocessoperationsinanattempttoreducepeaksteamorwaterdemands.

l Evaluatingwastewaterstreamsexitingafacilityforheatrecoveryopportunities.

1.3Entropy

Inthissection,basicphenomenalikeorderanddisorderaswellasreversibilityandirreversibilityarediscussed.Entropy andthesecondlawofthermodynamicsarealsocovered,alongwiththeirsignificance.

1.3.1Orderanddisorderandreversibilityandirreversibility

Withinthelast80years,ourviewofnaturehaschangeddrastically.Classicalscienceemphasizedequilibriumandstability. Now,weobservefluctuations,instability,andevolutionaryprocessesonalllevelsfromchemistryandbiologytocosmology.Everywhere,weobserveirreversibleprocessesinwhichtimesymmetryisbroken.Thedistinctionbetween reversibleandirreversibleprocesseswasfirstintroducedinthermodynamicsthroughtheconceptof“entropy.”

Theformulationofentropyisinthemoderncontextfundamentalforunderstandingthermodynamicaspectsofselforganizationandtheevolutionoforderandlifethatweobserveinnature.Whenasystemisisolated,theentropyofasystem continuallyincreasesduetoirreversibleprocessesandreachesthemaximumpossiblevalue,whenthesystemsattainastate ofthermodynamicequilibrium.Inthestateofequilibrium,allirreversibleprocessescease.Whenasystembeginsto exchangeentropywithitssurroundingsthen,ingeneral,itisdrivenawayfromtheequilibriumstatethatitisreachedwhen isolated,andentropyproducingirreversibleprocessesbegin.Anexchangeofentropyisassociatedwiththeexchangeof heatandmatter.Whennoaccumulationofentropywithinasystemoccurs,theentropyflowingoutofthesystemisalways largerthantheentropyflowingin,thedifferencearisingduetotheentropyproducedbyirreversibleprocesseswithinthe system.Asweshallseeinthefollowingchapters,systemsthatexchangeentropywiththeirsurroundingsdonotsimply increasetheentropyofthesurroundingsbutmayundergodramaticspontaneoustransformationsto“self-organization.” Irreversibleprocessesthatproduceentropycreatetheseorganizedstates.Suchself-organizedstatesrangefromconvection patternsinfluidstoorganizedlifestructures.Irreversibleprocessesarethedrivingforcethatcreatesthisorder.

Muchoftheinternalenergyofasubstanceisrandomlydistributedaskineticenergyatthemolecularandsubmolecular levelsandasenergyassociatedwithattractiveorrepulsiveforcesbetweenmolecularandsubmolecularentities,whichcan moveclosertogetherorfurtherapart.Thisenergyissometimesdescribedasbeing“disordered,”asitisnotaccessibleas workatthemacroscopiclevelinthesamewayasisthekineticenergyorgravitationalpotentialenergythatanoverall systempossessesduetoitsvelocityorpositioninagravitationalfield.Althoughsomeenergyformsrepresentthecapacity todowork,itisnotpossibledirectlytoaccesstheminutequantitiesofdisorderedenergypossessedatagiveninstantbythe entitieswithinasubstancesoastoyieldmechanicalshaftworkonamacroscopicscale.Thetermdisorderreferstothelack ofinformationaboutexactlyhowmuchandwhattypeofenergyisassociatedatanymomentwitheachmolecularorsubmolecularentitywithinasystem.

Atthemolecularandsubmolecularlevel,therealsoexists“orderedenergy”associatedwiththeattractiveandrepulsive forcesbetweenentitiesthathavefixedmeanrelativepositions.Partofthisenergyis,inprinciple,accessibleasworkatthe macroscopiclevelunderspecialconditions,whicharebeyondthescopeofthisbook.

Temperatureisthepropertythatreflectswhetherasystemthatisinequilibriumwillexperienceadecreaseorincreasein itsdisorderedenergyifitisbroughtintocontactwithanothersystemthatisinequilibrium.Ifthesystemshavedifferent temperatures,disorderedenergywillberedistributedfromthesystematthehighertemperaturetotheoneatthelower

temperature.Theprocessreducedtheinformationaboutpreciselywherethatenergyresides,asitisnowdispersedoverthe twosystems.

Heattransfertoasystemincreasesitsdisorderedenergy,whileheattransferfromasystemreducesitsdisordered energy.Reversibleheattransferischaracterizedbyboththeamountofenergytransferredtoorfromthesystemand thetemperatureatwhichthisoccurs.Thepropertyentropy,whosechangebetweenstatesisdefinedastheintegralof theratioofthereversibleheattransfertotheabsolutetemperature,isameasureofthestateofdisorderofthesystem.This “stateofdisorder”ischaracterizedbytheamountofdisorderedenergyanditstemperature.Reversibleheattransferfrom onesystemtoanotherrequiresthatbothsystemshavethesametemperatureandtheincreaseinthedisorderofoneisexactly matchedbyadecreaseinthedisorderoftheother.Whenreversibleadiabaticworkisdoneonorbyasystem,itsordered energyincreasesordecreasesbyexactlytheamountoftheworkand,correspondingly,thetemperaturechanges,depending onthesubstancesinvolved.Reversibleworkischaracterizedbytheamountofenergytransferredtoorfromthesystem, irrespectiveofthetemperatureofthesystem.Irreversiblework,suchasstirringworkorfrictionworkbetweensubsystems, involvesachangeinthedisorderofthesystemand,likeheattransfertoasystem,hastheeffectofincreasingtheentropy.

1.3.2Characteristicsofentropy

Wenowintroducethethermodynamicpropertyentropy,whichisameasureoftheamountofmoleculardisorderwithina system.Asystempossessingahighdegreeofmoleculardisorder(suchasahigh-temperaturegas)hashighentropyandvice versa.Thevaluesforspecificentropyarecommonlylistedinthermodynamictablesalongwithotherpropertydata(e.g., specificvolume,specificinternalenergy,specificenthalpy).Afundamentalpropertyrelatedtothesecondlawofthermodynamics,entropyhasthefollowingcharacteristics:

l Theentropyofasystemisameasureofitsinternalmoleculardisorder.

l Asystemcanonlygenerate,notdestroy,entropy.

l Theentropyofasystemcanbeincreasedordecreasedbyenergytransportsacrossthesystemboundary.

Heatandworkaremechanismsofenergytransfer.Theycancausechangesintheinternalenergyinabodyasenergyis transferredtoorfromit.Workisaccomplishedbyaforceactingthroughadistance.Heatrequiresadifferenceintemperatureforitstransfer.Thedefinitionofheatcanbebroadenedtoincludetheenergystoredinahotgasastheaveragekinetic energyofrandomlymovingmolecules.Thisdescriptionhelpsexplainthenaturalflowofheatfromahottoacoolersubstance.Theconceptofrandommotioncanbetranslatedintothenotionoforderanddisorderandleadstoarelationbetween orderanddisorderandprobability.Energytransfersassociatedwithasystemcancausechangesinitsstate.Thenatural directionofthechangeinthestateofasystemisfromastateoflowprobabilitytooneofhigherprobability.Sincedisorderedstatesaremoreprobablethanorderedones,thenaturaldirectionofchangeofstateofasystemisfromorderto disorder.Entropyisameasureoforderthathelpsexplainthenaturaldirectionforenergytransfersandconversions.The entropyofasystemataspecificstatedependsonitsprobability.Thus,thesecondlawofthermodynamicscanbeexpressed morebroadlyintermsofentropyinthefollowingway:

Inanytransferorconversionofenergywithinaclosedsystem,theentropyofthesystemincreases.Theconsequencesof thesecondlawcan,thus,bestatedas(1)thespontaneousornaturaldirectionofenergytransferorconversionistoward increasingentropyor(2)allenergytransfersorconversionsareirreversible.Moreloosely,theFLTimplies“Youcan’twin” becauseenergyisconservedsoyoucannotgetmoreenergyoutofasystemthanyouputin,whiletheSLTstates“Youcan’t breakeven”becauseirreversibilitiesduringrealprocessesdonotallowyoutorecovertheoriginalqualityofenergyyouput intoasystem.

Low-entropyenergysourcesarenormallydesiredandusedtodriveenergyprocessesaslow-entropyenergyis“useful.” Energysourcescanberatedonanentropyorusefulnessscale,withzero-entropyenergyformslikeworkandkineticand gravitationalpotentialenergybeingthemostuseful,andhigh-entropyformslikeheatbeinglessuseful.

ThisbroaderinterpretationoftheSLTsuggeststhatreal“energyconservation”shouldconsidertheconservationofboth energyquantityandquality.Forhighthermodynamicefficiency,energytransfersorconversionsshouldbearranged,all elsebeingequal,sothatthechangeinentropyisminimum.Thisrequiresthatenergysourcesbematchedinentropyto energyend-use.

1.3.3Significanceofentropy

Theentropyofasystematsomestateisameasureoftheprobabilityofitsoccurrence,withstatesoflowprobabilityhaving lowentropyandstatesofhighprobabilityhavinghighentropy.Fromtheprevioussection,itisseenthattheentropyofa

systemmustincreaseinanytransferorconversionofenergybecausethespontaneousdirectionofthechangeofstateofa closedsystemisfromalesstoamoreprobablestate.Consequently,asimplestatementofthesecondlawis“Inanyenergy transferorconversionwithinaclosedsystem,theentropyofthesystemincreases.”

Inopensystems,energyconversionscanoccur,whichcausetheentropyofpartorallofasystemtodecrease.Charginga storagebattery,freezingicecubes,andthegrowthoflivingentitiesareexamples.Ineachoftheseexamples,theorderofthe systemincreasesandtheentropydecreases.Ifthecombinationofthesystemanditssurroundingsisconsidered,however, theoverallneteffectisalwaystoincreasedisorder.Tochargeabattery,wemustprovideacertainminimumamountof externalenergyofacertainqualitytoreformthechemicalcombinationsinthebatteryplates.Inthecaseofthebattery,the inputenergycanbeintheformofelectricity.Someofthislow-entropyelectricalenergyislostasitisconvertedintohighentropyheatinthecurrent-carryingwires.Infreezingice,weincreasetheorderbydecreasingtheentropyofthewaterinthe icecubetraysthroughtheremovalofheat.Theremovedheatistransferredintoasubstancethatisatalowertemperature, increasingitsentropyanddisorder.Thenetchangeinentropyispositive.Foricecubesinafreezer,wealsosupplytothe motorlow-entropyelectricalenergy,whichultimatelyisdegradedtoheat.Inlifeprocesses,highlyorderedstructuresare builtfromsimplerstructuresofvariouschemicals,buttoaccomplishthis,livingentitiestakeinrelativelylow-entropy energy—sunlightandchemicalenergy—andreleasehigh-entropyheatandotherwastes.Theentropyoftheoverallsystem againincreases.

Fig.1.2 illustratesaheattransferprocessfromtheentropypointofview.Duringtheheattransferprocess,thenet entropyincreases,withtheincreaseinentropyofthecoldbodymorethanoffsettingthedecreaseinentropyofthehot body.ThismustoccurtoavoidviolatingtheSLT.Moregenerally,processescanoccuronlyinthedirectionofincreased overallentropyordisorder.Thisimpliesthattheentireuniverseisbecomingmorechaoticeveryday.

AnotherwayofexplainingthisconsequenceoftheSLTistostatethatallenergytransfersorconversionsareirreversible.Absentexternalenergyinputs,suchprocessesoccurspontaneouslyinthedirectionofincreasingentropy.Ina powerplant,forexample,althoughsomeofthelossescanbereduced,theycannotbeentirelyeliminated.Entropymust increase.Usualmechanismsforlow-entropyenergytobeconvertedtohigh-entropyheatareirreversibilitieslikefrictionor electricalresistanceorleakageofhigh-temperature,low-entropyheattoalowertemperatureregion,anditssubsequent degradation.

1.3.4Carnot’scontribution

AnotherstatementoftheSLTwasdevelopedmorethanonehundredyearsago.Oneofthemostbrilliantcontributionswas madebyayoungFrenchphysicist,SadiCarnot,inthe19thcentury.Carnot,studyingearlysteamengines,wasableto abstractfrompumpingpistonsandspinningwheelsthattheconversionofheattomechanicalworkrequiresadifference intemperature.Thepurposeofaheatengine,ashedescribedit,istotakeheatfromahigh-temperaturesource,convert someofittomechanicalwork,andthenrejecttherestoftheheattoalower-temperatureheatreservoir.Carnotdescribed heatenginesusingasimpleanalogytowaterwheels.Theenergyavailableforconversioninawaterwheelisthegravitationalenergycontainedinwaterasitflowsfromsomeheight(behindadamorfromamountainlake)downthroughthe wheel.Theamountofenergyavailabledependsonthedifferenceinheight—the“head”asitiscalled—betweenthesource andthepoolbelowthewheel.Theenergyavailabletoaheatenginedependsonthe“temperaturehead.”Justasahighdam

FIG.1.2 Illustrationofentropyincreaseanddecrease forcoldandhotbodiesduringheattransfer.

canprovidemoreenergythanalowone,alargetemperaturedifferencecanprovidemoreenergytobeconvertedbyaheat enginethancanasmalltemperaturedifference.Intheexampleofaheatengine,thehigh-temperaturereservoiristhehot steamproducedinthepowerplantfurnace.

Forasteamturbineandcondenserassembly,thelow-temperaturereservoirtowhichthedevicerejectstheunconverted energyisthecondensercoolingwater.Theimportanttemperaturedifferenceis,thus,thedifferenceintemperaturebetween theincomingsteam,usuallyabout700°C,andthewaterinthecondenser,whichistypicallybetweenenvironmentalconditions(around0–25°C)andtheboilingtemperatureofwater(100°C).The“temperaturehead”inthisexamplewould, therefore,be600–700°C.Carnot’sexplanationofheatenginesledtothesecondlaw.Onceenergyisintheformofheat, itcannotbeconvertedentirelyintomechanicalenergy.Someheatwillalwaysbeexhaustedorlostaccordingly.

1.3.5Thesecondlawofthermodynamics(SLT)

Althoughaspontaneousprocesscanproceedonlyinadefinitedirection,theFLTgivesnoinformationaboutdirection;it merelystatesthatwhenoneformofenergyisconvertedtoanother,thequantitiesofenergyinvolvedareconserved regardlessofthefeasibilityoftheprocess.Thus,processescanbeenvisionedthatdonotviolatetheFLTbutdoviolate theSLT,e.g.,transferofacertainquantityofheatfromalow-temperaturebodytoahigh-temperaturebody,withoutthe inputofanadequateexternalenergyformlikework.However,suchaprocessisimpossible,emphasizingthattheFLTis itselfinadequateforexplainingenergyprocesses.

TheSLTestablishesthedifferenceinthequalityofdifferentformsofenergyandexplainswhysomeprocessescan spontaneouslyoccurwhileotherscannot.Itisusuallyexpressedasaninequality,statingthatthetotalentropyaftera processisequaltoorgreaterthanthatbefore.Thisequalityonlyholdsforidealorreversibleprocesses.TheSLThasbeen confirmedexperimentally.

Itdefinesthefundamentalquantityentropyasarandomizedenergystateunavailablefordirectconversiontowork.The SLTalsostatesthatallspontaneousprocesses,bothphysicalandchemical,proceedtomaximizeentropy,thatis,tobecome morerandomizedandconvertenergytoalessavailableform.Adirectconsequenceoffundamentalimportanceistheimplicationthatatthermodynamicequilibrium,theentropyofasystemisatarelativemaximum,thatis,nofurtherincreasein disorderispossiblewithoutchangingthethermodynamicstateofthesystembysomeexternalmeans(suchasaddingheat). AcorollaryoftheSLTisthestatementthatthesumoftheentropychangesofasystemandthatofitssurroundingsmust alwaysbepositive.Inotherwords,theuniverse(thesumofallsystemsandsurroundings)isconstrainedtobecomeforever moredisorderedandproceedtowardthermodynamicequilibriumwithsomeabsolutemaximumvalueofentropy.Froma biologicalstandpoint,thisisintuitivelyreasonable,asunlessgradientsinconcentrationandtemperatureareforciblymaintainedbytheconsumptionofenergy,organismsproceedspontaneouslytowardthebiologicalequivalentofequilibriumdeath.

TheSLTisgeneral.However,whenintermolecularforcesarelong-range,asinthecaseofparticlesinteractingthrough gravitation,therearedifficultiesbecauseourclassificationintoextensivevariables(proportionaltosize)andintensive variables(independentofsize)doesnotapply.Thetotalenergyisnolongerproportionaltosize.Fortunately,gravitational forcesareveryweakcomparedwithshort-rangeintermolecularforces.Itisonlyontheastrophysicalscalethatthisproblem becomesimportant.ThegeneralityoftheSLTprovidesapowerfulmeanstounderstandthethermodynamicaspectsofreal systemsthroughtheuseofidealsystems.AclassicexampleisPlanck’sanalysisofradiationinthermodynamicequilibrium withmatter(blackbodyradiation);inwhich,Planckconsideredidealizedsimpleharmonicoscillatorsinteractingwithradiation.Planckconsideredsimpleharmonicoscillatorsnotmerelybecausetheyaregoodapproximationsofmoleculesbut becausethepropertiesofradiationinthermalequilibriumwithmatterareuniversal,regardlessoftheparticularnatureofthe matterwithwhichtheradiationinteracts.Theconclusionsonearrivesatusingidealizedoscillatorsandthelawsofthermodynamicsmustalsobevalidforallotherformsofmatter,nomatterhowcomplex.

WhatmakesthisstatementoftheSLTvaluableasaguidetoformulatingenergypolicyistherelationshipbetween entropyandtheusefulnessofenergy.Energyismostusefultouswhenitisavailabletodoworkorwecangetittoflow fromonesubstancetoanother,e.g.,towarmahouse.Usefulenergy,thus,musthavelowentropysothattheSLTwillallow transferorconversionstooccurspontaneously.

1.3.6Secondlawofthermodynamicsstatements

AlthoughtherearevariousformulationsoftheSLT,twokeystatementsareparticularlywell-known:

l Clausiusstatement.Itisimpossibleforheattomovebyitselffromalowertemperaturereservoirtoahighertemperaturereservoir.Thatis,heattransfercanonlyoccurspontaneouslyinthedirectionoftemperaturedecrease.For example,wecannotconstructarefrigeratorthatoperateswithoutanyworkinput.

l Kelvin-Planckstatement.Itisimpossibleforasystemtoreceiveagivenamountofheatfromahigh-temperature reservoirandprovideanequalamountofworkoutput.Whileasystemconvertingworktoanequivalentenergytransfer asheatispossible,adeviceconvertingheattoanequivalentenergytransferasworkisimpossible.Alternatively,aheat enginecannothaveathermalefficiencyof100%.

1.3.7TheClausiusinequality

TheClausiusinequalityprovidesamathematicalstatementofthesecondlaw,whichisaprecursortosecondlawstatements involvingentropy.GermanphysicistR.J.E.Clausius,oneofthefoundersofthermodynamics,stated

wheretheintegralsymbol Þ showstheintegrationshouldbedonefortheentiresystem.Thecyclicintegralof dQ/T is alwayslessthanorequaltozero.Thesystemundergoesonlyreversibleprocesses(orcycles)ifthecyclicintegralequals zero,andirreversibleprocesses(orcycles)ifitislessthanzero.

Eq. (1.6) canbeexpressedwithoutinequalityas

where Sgen ¼ DStotal ¼ DSsys + DSsurr

Thequantity Sgen istheentropygenerationassociatedwithaprocessorcycle,duetoirreversibilities.Thefollowingare casesforvaluesof Sgen:

l Sgen ¼ 0forareversibleprocess

l Sgen > 0foranirreversibleprocess

l Sgen < 0fornoprocess(i.e.,negativevaluesfor Sgen arenotpossible)

Consequently,onecanwriteforareversibleprocess

Foranirreversibleprocess,itresultsin

duetoentropygenerationwithinthesystemasaresultofinternalirreversibilities.Hence,althoughthechangeinentropyof thesystemanditssurroundingsmayindividuallyincrease,decrease,orremainconstant,thetotalentropychangeorthetotal entropygenerationcannotbelessthanzeroforanyprocess.

1.3.8Usefulrelationships

Itishelpfultolistsomecommonrelationsforaprocessinvolvingapuresubstanceandassumingtheabsenceofelectricity, magnetism,soliddistortioneffects,andsurfacetension.Thefollowingfourequationsapply,subjecttothenoted restrictions:

l dq ¼ du + dw (aFLTstatementapplicabletoanysimplecompressibleclosedsystem)

l dq ¼ du + pdv (aFLTstatementrestrictedtoreversibleprocessesforaclosedsystem)

l Tds ¼ du + dw (acombinedstatementoftheFLTandSLT,with Tds ¼ dq)

l Tds ¼ du + pdv (acombinedstatementoftheFLTandSLTvalidforallprocessesbetweenequilibriumstates)

1.4Exergy

Averyimportantclassofproblemsinengineeringthermodynamicsconcernssystemsorsubstancesthatcanbemodeledas beinginequilibriumorstableequilibriumbutarenotinmutualstableequilibriumwiththesurroundings.Forexample,

withintheearth,therearereservesoffuelsthatarenotinmutualstableequilibriumwiththeatmosphereandthesea.The requirementsofmutualchemicalequilibriumarenotmet.Anysystematatemperatureaboveorbelowthatoftheenvironmentisnotinamutualstableequilibriumwiththeenvironment.Inthiscase,therequirementsofmutualthermalequilibriumarenotmet.Anylackofmutualstableequilibriumbetweenasystemandtheenvironmentcanbeusedtoproduce shaftwork.

WiththeSLT,themaximumworkthatcanbeproducedcanbedetermined.Exergyis,therefore,consideredthemost usefulquantitythatstemsfromtheSLTandhelpsinanalyzingenergyandothersystemsandprocesses.

1.4.1Thequantityexergy

Theexergyofasystemisdefinedasthemaximumshaftworkthatcanbedonebythecompositeofthesystemandaspecifiedreferenceenvironment.Thereferenceenvironmentisassumedtobeinfinite,inequilibrium,andtoencloseallother systems.Typically,theenvironmentisspecifiedbystatingitstemperature,pressure,andchemicalcomposition.Exergyis notsimplyathermodynamicpropertybutisapropertyofbothasystemandthereferenceenvironment.

ThetermexergycomesfromtheGreekwords ex and ergon,meaningfromandwork.Theexergyofasystemcanbe increasedifexergyisinputtoit(e.g.,workisdoneonit).Thefollowingaresometermsfoundintheliteraturethatare equivalenttoornearlyequivalenttoexergy:availableenergy,exergy,utilizableenergy,availableenergy,andavailability.

1.4.2Exergyanalysis

Exergyhasthecharacteristicthatitisconservedonlywhenallprocessesoccurringinasystemandtheenvironmentare reversible.Itisdestroyedwheneveranirreversibleprocessoccurs.Whenanexergyanalysisisperformedonaplantsuchas apowerstation,achemicalprocessingplant,orarefrigerationfacility,thethermodynamicimperfectionscanbequantified asexergydestructions,whichrepresentlossesinenergyqualityorusefulness(e.g.,wastedshaftworkorwastedpotential fortheproductionofshaftwork).Likeenergy,exergycanbetransferredortransportedacrosstheboundaryofasystem.For eachtypeofenergytransferortransport,thereisacorrespondingexergytransferortransport.

Exergyanalysistakesintoaccountthedifferentthermodynamicvaluesofdifferentenergyformsandquantities,e.g., workandheat.Theexergytransferassociatedwithshaftworkisequaltotheshaftwork.Theexergytransferassociatedwith heattransfer,however,dependsonthetemperatureatwhichitoccursinrelationtothetemperatureoftheenvironment.

1.4.3Characteristicsofexergy

Someimportantcharacteristicsofexergyaredescribedandillustrated:

l Asystemincompleteequilibriumwithitsenvironmentdoesnothaveanyexergy.Nodifferenceappearsintemperature, pressure,concentration,etc.sothereisnodrivingforceforanyprocess.

l Theexergyofasystemincreasesthemoreitdeviatesfromtheenvironment.Forinstance,aspecifiedquantityofhot waterhasahigherexergycontentduringthewinterthanonahotsummerday.Ablockoficecarrieslittleexergyin winterwhileitcanhavesignificantexergyinsummer.

l Whenenergylosesitsquality,exergyisdestroyed.Exergyisthepartoftheenergythatisusefuland,therefore,has economicvalueandisworthmanagingcarefully.

l Exergy,bydefinition,dependsnotjustonthestateofasystemorflowbutalsoonthestateoftheenvironment.

l Exergyefficienciesareameasureofapproachtoideality(orreversibility).Thisisnotnecessarilytrueforenergyefficiencies,whichareoftenmisleading.

Exergycangenerallybeconsideredavaluableresource.Therearebothenergyornonenergyresourcesandexergyis observedtobeameasureofvalueforboth:

l Energyformswithhighexergycontentsaretypicallymorevaluedandusefulthanenergyformswithlowexergy.Fossil fuels,forinstance,havehighenergyandenergycontents.Wasteheatatanearenvironmentalcondition,ontheother hand,haslittleexergy,eventhoughitmaycontainmuchenergy,and,thus,isoflimitedvalue.Solarenergy,whichis thermalradiationemittedatthetemperatureofthesun(approximately5800K),containsmuchenergyandexergy.

l Aconcentratedmineraldeposit“contrasts”withtheenvironmentand,thus,hasexergy.Thiscontrastandexergy increasewiththeconcentrationofthemineral.Whenthemineralismined,theexergycontentofthemineralisretained, andifitisenrichedorpurified,theexergycontentincreases.Apoor-qualitymineraldepositcontainslessexergyand

can,accordingly,beutilizedonlythroughalargerinputofexternalexergy.Today,thissubstitutionofexergyoften comesfromexergyformssuchascoalandoil.Whenaconcentratedmineralisdispersed,theexergycontentis decreased.

Anengineerdesigningasystemmakestrade-offsamongcompetingfactors.Theengineerisexpectedtoaimforthehighest reasonabletechnicalefficiencyatthelowestreasonablecostundertheprevailingtechnical,economic,andlegalconditions aswellasaccountingforethical,ecological,andsocialconsequencesandobjectives.Exergyanalysisisatoolthatcan facilitatethiswork.Exergymethodsprovideuniqueinsightsintothetypes,locations,andcausesoflossesandcan,thereby, helpidentifypossibleimprovements.Forinstance,theExergeticLifeCycleAssessmentissuggestedasamethodtobetter meetenvironmentalobjectivesasstudiedindetailin Chapter18

Beforediscussingindetaillinkagesbetweenenergyandexergyandtherelationsbetweenexergyandboththeenvironmentandsustainabledevelopment,somekeypointsthathighlighttheimportanceofexergyanditsutilizationareprovided.Specifically,exergyanalysisisaneffectivemethodandtoolfor

l combiningandapplyingtheconservationofmassandconservationofenergyprinciplestogetherwiththesecondlawof thermodynamicsforthedesignandanalysisofenergysystems.

l improvingtheefficiencyofenergyandotherresourceuse(byidentifyingefficienciesthatalwaysmeasuretheapproach toidealityaswellasthelocations,types,andtruemagnitudesofwastesandlosses).

l revealingwhetherornotandbyhowmuchitispossibletodesignmoreefficientsystemsbyreducingtheinefficiencies inexistingsystems.

l addressingtheimpactontheenvironmentofenergyandotherresourceutilizationandreducingormitigatingthat impact.

l identifyingwhetherasystemcontributestoachievingsustainabledevelopmentorisunsustainable.

1.4.4Thereferenceenvironment

Asthevalueoftheexergyofasystemorflowdependsonthestateofboththesystemorflowandareferenceenvironment,a referenceenvironmentmustbespecifiedbeforetheperformanceofexergyanalysis.

Theenvironmentisoftenmodeledasareferenceenvironmentsimilartotheactualenvironmentinwhichasystemor flowexists.Thisabilitytotailorthereferenceenvironmenttomatchtheactuallocalenvironmentisoftenanadvantageof exergyanalysis.

Some,however,considertheneedtoselectareferenceenvironmentadifficultyofexergyanalysis.Tocircumventthis perceiveddifficulty,somesuggestthata“standardenvironment”bedefinedwithaspecifiedchemicalcomposition,temperature,andpressure.Apossiblechemicalstandardenvironmentforglobalusecould,forinstance,bebasedonastandard atmosphere,astandardsea,andalayeroftheearth’scrust.However,thedefinitionofsuchareferenceenvironmentis usuallyproblematicasthesesystemsarenotinequilibriumwitheachother.

Inaccountingforlocalconditions,areferenceenvironmentcanvaryspatiallyandtemporally.Theneedtoaccountfor spatialdependenceisclearifoneconsidersanairconditioningandheatingsystemoperatinginthedifferentclimatesacross theearth.Inaddition,anaircraftorrocketexperiencesdifferentenvironmentalconditionsasitascendsthroughtheatmosphere.Theimportanceofaccountingfortemporaldependenceishighlightedbyconsideringatechnologylikeaseasonal thermalenergystorageunit,inwhichheatingorcoolingcapacitycanbestoredfromoneseason,whenitisavailableinthe environment,toanotherseason,whenitisunavailablebutindemand.

1.4.5Exergyvsenergy

Energyanalysisisthetraditionalmethodofassessingthewayenergyisusedinanoperationinvolvingthephysicalor chemicalprocessingofmaterialsandthetransferand/orconversionofenergy.Thisusuallyentailsperformingenergybalances,whicharebasedontheFLT,andevaluatingenergyefficiencies.Thisbalanceisemployedtodetermineandreduce wasteexergyemissionslikeheatlossesand,sometimes,toenhancewasteandheatrecovery.

However,anenergybalanceprovidesnoinformationonthedegradationofenergyorresourcesduringaprocessand doesnotquantifytheusefulnessorqualityofthevariousenergyandmaterialstreamsflowingthroughasystemandexiting asproductsandwastes.

TheexergymethodofanalysisovercomesthelimitationsoftheFLT.TheconceptofexergyisbasedonboththeFLT andtheSLT.Exergyanalysisclearlyindicatesthelocationsofenergydegradationinaprocessandcan,therefore,leadto improvedoperationortechnology.Exergyanalysiscanalsoquantifythequalityofheatinawastestream.Themainaimof

TABLE1.1 Comparisonofenergyandexergy. EnergyExergy

dependentonpropertiesofonlyamatterorenergyflowand independentofenvironmentproperties

hasvaluesdifferentfromzerowheninequilibriumwiththe environment(includingbeingequaltomc2 inaccordance withEinstein’sequation)

conservedforallprocesses,basedontheFLT

canbeneitherdestroyednorproduced

appearsinmanyforms(e.g.,kineticenergy,potentialenergy, work,andheat)andismeasuredinthatform

ameasureofquantityonly

dependentonpropertiesofbothamatterorenergyflowandthe environment

equaltozerowheninthedeadstatebyvirtueofbeingincompleteequilibriumwiththeenvironment

conservedforreversibleprocessesandnotconservedforreal processes(whereitispartlyorcompletelydestroyedduetoirreversibilities),basedontheSLT

canbeneitherdestroyednorproducedinareversibleprocess, butisalwaysdestroyed(consumed)inanirreversibleprocess

appearsinmanyforms(e.g.,kineticexergy,potentialexergy, work,andthermalexergy)andismeasuredbasedonworkor abilitytoproducework

ameasureofquantityandquality

exergyanalysisistoidentifymeaningful(exergy)efficienciesandthecausesandtruemagnitudesofexergylosses. Table1.1 presentsageneralcomparisonofenergyandexergy.

Itisimportanttodistinguishbetweenexergyandenergyinordertoavoidconfusionwithtraditionalenergy-based methodsofthermalsystemanalysisanddesign.Energyflowsintoandoutofasystemwithmassflows,heattransfers, andworkinteractions(e.g.,workassociatedwithshaftsandpistonrods).Energyisconserved,inlinewiththeFLT.Exergy, althoughsimilarinsomerespects,isdifferent.Itlooselyrepresentsaquantitativemeasureoftheusefulnessorqualityof energyormaterialsubstance.Morerigorously,exergyisameasureoftheabilitytodowork(ortheworkpotential)ofthe greatvarietyofstreams(mass,heat,andwork)thatflowthroughasystem.Akeyattributeofexergyisthatitmakesit possibletocompareoncommonbasisinteractions(inputsandoutputs)thatarequitedifferentinaphysicalsense.Another benefitisthatbyaccountingforalltheexergystreamsofthesystem,itispossibletodeterminetheextenttowhichthe systemdestroysexergy.Thedestroyedexergyisproportionaltothegeneratedentropy.Exergyisalwaysdestroyedinreal processes,partiallyortotally,inlinewiththeSLT.Thedestroyedexergy,orthegeneratedentropy,isresponsibleforthe less-than-idealefficienciesofsystemsorprocesses.

1.4.6Exergyefficiencies

The exergyefficiency isanefficiencybasedontheSLT.Inthissection,wedescribetheuseofexergyefficienciesin assessingtheutilizationefficiencyofenergyandotherresources.

Engineersmakefrequentuseofefficienciestogaugetheperformanceofdevicesandprocesses.Manyoftheseexpressionsarebasedonenergyandare,thus,FLT-based.Alsousefularemeasuresofperformancethattakeintoaccountlimitationsimposedbythesecondlaw.EfficienciesofthistypeareSLT-basedefficiencies.

ToillustratetheideaofaperformanceparameterbasedontheSLTandtocontrastitwithananalogousenergy-based efficiency,consideracontrolvolumeatsteady-stateforwhichenergyandexergybalancescanbewritten,respectively,as

Energyin ðÞ¼ Energyoutputinproduct ðÞ + Energyemittedwithwaste ðÞ (1.10)

Exergyin ðÞ¼ Exergyoutputinproduct ðÞ

Intheseequations,thetermproductmightrefertoshaftwork,electricity,acertainheattransfer,oneormoreparticularexit streams,orsomecombinationofthese.Thelattertwotermsintheexergybalance(Eq. 1.11)combinetoconstitutethe exergylosses.Lossesincludesuchemissionstothesurroundingsaswasteheatandstackgases.Theexergydestruction termintheexergybalanceiscausedbyinternalirreversibilities.

Fromenergyorexergyviewpoints,agaugeofhoweffectivelytheinputisconvertedtotheproductistheratioofproduct toinput.Thatis,energyefficiency canbewrittenas

andtheexergyefficiency c as

Theexergyefficiency c frequentlygivesafinerunderstandingofperformancethanenergyefficiency .Inevaluating ,the sameweightisassignedtoenergywhetheritisshaftworkorastreamoflow-temperaturefluid.Also,theenergyefficiency centersattentiononreducingenergyemissionstoimproveefficiency.Theparameter c weightsenergyflowsbyaccounting foreachintermsofexergy.Itstressesthatbothwasteemissions(orexternalirreversibilities)andinternalirreversibilities needtobedealtwithtoimproveperformance.Inmanycases,itistheirreversibilitiesthataremoresignificantandmore difficulttoaddress.

Efficiencyexpressionseachdefineaclassofefficienciesbecausejudgmenthastobemadeaboutwhatistheproduct, whatiscountedasaloss,andwhatistheinput.Differentdecisionsabouttheseleadtodifferentefficiencyexpressions withintheclass.

OtherSLT-basedefficiencyexpressionsalsoappearintheliterature.Oneoftheseisevaluatedastheratioofthesumof theexergyexitingtothesumoftheexergyentering.Anotherclassofsecondlawefficienciesiscomposedoftask efficiencies.

1.4.7Solarexergyandtheearth

Mostenergyinthethintoplayeroftheearth’ssurface,wherelifeisfound,derivesfromthesun.

Sunlight,richinexergy,isincidentontheearth.Muchisreflectedbytheatmosphere,whilesomeisabsorbedbyatmosphericconstituentsorreachesthesurfaceoftheearth,whereitisabsorbed.Mostoftheabsorbedsolarradiationisconvertedtothermalenergy,whichisemittedatthetemperatureoftheearth’ssurfaceandatmosphereandleavestheearthas thermalradiation(heat)withnoexergyrelativetotheearth.Thus,whilealmostalltheenergyinputtotheearthwithsolar energyisre-emittedtospaceasthermalenergy,theexergyassociatedwithsolarradiationisdeliveredtotheearth.

Thenetexergyabsorbedbytheearthisgraduallydestroyed,butduringthisdestruction,itmanagestodrivetheearth’s waterandwindsystemsandtosupportlife.Greenplantsabsorbexergyfromthesunlightandconvertitviaphotosynthesis intochemicalexergy.Thechemicalexergythenpassesthroughdifferentfoodchainsinecosystems,frommicro-organisms topeople.Thereexistsnomaterialwaste.

1.5Illustrativeexamples

Weprovidefourillustrativeexamplestohighlighttheconceptsdiscussedinthischapterandtheirimportanceandtodemonstratetheirapplicationinengineeringsettings.Theexamplescoverentropygenerationduringheattransferprocesses, entropygenerationinawallduetoheattransfer,andsensibleenergystorage.Thefollowingthreeexamplesareadapted fromexamplesofCengelandBoles [1].

1.5.1Illustrativeexample1

Aheatsourceat800Kloses2000kJofheattoasinkat(a)500Kand(b)750K.Determinewhichheattransferprocessis moreirreversible.

Solution:Asketchofthereservoirsisshownin Fig.1.3.Bothcasesinvolveheattransferthroughafinitetemperaturedifferenceandare,therefore,irreversible.Themagnitudeoftheirreversibilityassociatedwitheachprocesscanbedetermined bycalculatingthetotalentropychangeforeachcase.Thetotalentropychangeforaheattransferprocessinvolvingtwo reservoirs(asourceandasink)isthesumoftheentropychangesofeachreservoir,asthetworeservoirsformanadiabatic system.

Ordothey?Theproblemstatementgivestheimpressionthatthetworeservoirsareindirectcontactduringtheheat transferprocess.Butthiscannotbethecaseasthetemperatureatapointcanhaveonlyonevalue;thus,itcannotbe800Kon onesideofthepointofcontactand500Kontheotherside.Inotherwords,thetemperaturefunctioncannothaveadiscontinuity.Therefore,itisreasonabletoassumethatthetworeservoirsareseparatedbyapartitionthroughwhichthe

Source

Source

K

2000 kJ

FIG.1.3 Schematicfortheexampleofentropygenerationduringheattransferforaheatsinkat(A)500Kand(B)750K.

temperaturedropsfrom800Kononesideto500K(or750K)ontheother.Therefore,theentropychangeofthepartition shouldalsobeconsideredwhenevaluatingthetotalentropychangeforthisprocess.However,consideringthatentropyisa propertyandthevaluesofpropertiesdependonthestateofasystem,wecanarguethattheentropychangeofthepartitionis zeroasthepartitionappearstohaveundergonea steady processand,thus,hasexperiencednochangeinitspropertiesatany point.Webasethisargumentonthefactthatthetemperatureonbothsidesofthepartitionand,thus,throughoutremain constantduringthisprocess.Therefore,wearejustifiedtoassumethat DSpartition ¼ 0,astheentropy(aswellastheenergy) contentofthepartitionremainsconstantduringtheprocess.

Aseachreservoirundergoesaninternallyreversible,isothermalprocess,theentropychangeforeachreservoircanbe determinedfrom DS ¼ Q/T,where T istheconstantabsolutetemperatureofthesystemand Q istheheattransferforthe internallyreversibleprocess.

(a) Fortheheattransferprocesstoasinkat500K:

DSsink ¼ Qsink/Tsink ¼ 2000kJ/500K ¼ 4.0kJ/Kand Sgen ¼ DStotal ¼

Therefore,1.5kJ/Kofentropyisgeneratedduringthisprocess.Notingthatbothreservoirsundergointernallyreversible processes,theentireentropygenerationoccursinthepartition.

(b) Repeatingthecalculationsinpart(a)forasinktemperatureof750K,weobtain

DSsource ¼ 2.5kJ/K DSsink ¼ 2 7kJ

Thetotalentropychangefortheprocessinpart(b)issmaller;therefore,itislessirreversible.Thisisexpectedastheprocess in(b)involvesasmallertemperaturedifferenceand,thus,smallerirreversibility.

Discussion:TheirreversibilitiesassociatedwithbothprocessescanbeeliminatedbyoperatingaCarnotheatengine betweenthesourceandthesink.Inthiscase,itcanbeshownthat

1.5.2Illustrativeexample2

Considersteadyheattransferthrougha5m 6mbrickwallofahouseofthickness30cm.Onadaywhenthetemperature outdoorsis0°C,thehouseismaintainedat27°C.Thetemperaturesoftheinnerandoutersurfacesofthebrickwallare measuredtobe20°Cand5°C,respectively,andtherateofheattransferthroughthewallis1035W.Determinetherateof entropygenerationinthewallandtherateoftotalentropygenerationassociatedwiththisheattransferprocess.

Solution:Wefirsttakethe wall asthesystem(Fig.1.4).Thisisa closedsystem asnomasscrossesthesystemboundary duringtheprocess.Wenotethattheentropychangeofthewalliszeroduringthisprocess,asthestateand,thus,theentropy

FIG.1.4 Schematicfortheexampleonentropygenerationinawallduetoheattransfer.

ofthewalldonotchangeanywhereinthewall.Heatandentropyenterfromonesideofthewallandleavefromthe otherside.

Assumptions: (i)Theprocessissteady;thus,therateofheattransferthroughthewallisconstant.(ii)Heattransferthrough thewallisone-dimensional.

Analysis:Therateformoftheentropybalanceforthewallsimplifiesto

Therefore,therateofentropygenerationinthewallis0.191W/K.

Notethatentropytransferbyheatatanylocationis Q/T atthatlocation,andthedirectionofentropytransferisthesame asthedirectionofheattransfer.

Todeterminetherateoftotalentropygenerationduringthisheattransferprocess,weextendthesystemtoincludethe regionsonbothsidesofthewallthatexperienceatemperaturechange.Then,onesideofthesystemboundarybecomes roomtemperaturewhiletheothersidebecomesthetemperatureoftheoutdoors.Theentropybalanceforthis extended system (systemanditsimmediatesurroundings)willbethesameasthatgivenabove,exceptthetwoboundarytemperatures willbe300Kand273Kinsteadof293Kand278K,respectively.Then,therateoftotalentropygenerationbecomes 1035W=300K ðÞ 1035W=273K ðÞ + S gen,total ¼ 0 ) S gen,total ¼ 0 341W=K

Discussion:Notethattheentropychangeofthisextendedsystemisalsozeroasthestateofairdoesnotchangeatanypoint duringtheprocess.Thedifferencebetweenthetwoentropygenerationratesis0.150W/Kandrepresentstheentropygenerationrateintheairlayersonbothsidesofthewall.Theentropygenerationinthiscaseisentirelyduetoirreversibleheat transferacrossafinitetemperaturedifference.

1.5.3Illustrativeexample3

Considerafrictionlesspiston-cylinderdevicecontainingasaturatedliquid-vapormixtureofwaterat100°C.Duringa constant-pressureprocess,600kJofheatistransferredtothesurroundingairat25°C.Asaresult,partofthewatervapor containedinthecylindercondenses.Determine(a)theentropychangeofthewaterand(b)thetotalentropygeneration duringthisheattransferprocess.

Solution:First,wetakethe waterinthecylinder asthesystem(Fig.1.5).Thisisa closedsystem asnomasscrossesthe systemboundaryduringtheprocess.Notethatthepressureand,thus,thetemperatureofwaterinthecylinderremainconstantduringtheprocess.Also,theentropyofthesystemdecreasesduringtheprocessbecauseofheatloss.

Assumptions: (i)Therearenoirreversibilitiesinvolvedwithinthesystemboundaries;thus,theprocessisinternally reversible.(ii)Thewatertemperatureremainsconstantat100°Ceverywhere,includingattheboundaries.

Analysis:(a)Notingthatwaterundergoesaninternallyreversibleisothermalprocess,itsentropychangecanbedetermined from

Schematicfortheexampleofentropygenerationassociatedwithheattransferfromapiston-cylinderdevice.

DSsystem ¼ Q=Tsystem ¼

(b)Todeterminethetotalentropygenerationduringthisprocess,weconsiderthe extendedsystem,whichincludeswater, thepiston-cylinderdevice,andtheregionimmediatelyoutsidethesystemthatexperiencesatemperaturechangesothatthe entireboundaryoftheextendedsystemisatthesurroundingtemperatureof25°C.Theentropybalanceforthis extended system (systemanditsimmediatesurroundings)yields

or

Theentropygenerationinthiscaseisentirelyduetoirreversibleheattransferthroughafinitetemperaturedifference. Notethattheentropychangeofthisextendedsystemisequivalenttotheentropychangeofthewaterasthepistoncylinderdeviceandtheimmediatesurroundingsdonotexperienceanychangeofstateatanypointand,thus,anychange inanyproperty,includingentropy.

Discussion:Forillustration,considerthereverseprocess(i.e.,thetransferof600kJofheatfromthesurroundingairat25°C tosaturatedwaterat100°C)andseeiftheincreaseofentropyprinciplecandetecttheimpossibilityofthisprocess.This time,heattransferistothewater(heatisgainedinsteadoflost);thus,theentropychangeofwateris1.61kJ/K.Also,the entropytransferattheboundaryoftheextendedsystemhasthesamemagnitudebutoppositedirection.Thisprocessresults inanentropygenerationof 0.4kJ/K.Anegativeentropygenerationindicatesthatthereverseprocessis impossible.

Tocompletethediscussion,considerthecasewherethesurroundingairtemperatureisadifferentialamountbelow100°C (say99.999…9°C)insteadofbeing25°C.Thistime,heattransferfromthesaturatedwatertothesurroundingairoccurs throughadifferentialtemperaturedifferencerenderingthisprocess reversible.Itcanbeshownthat Sgen ¼ 0forthisprocess. Rememberthatreversibleprocessesareidealized,andtheycanbeapproachedbutneverreachedinreality.

FurtherDiscussiononEntropyGenerationAssociatedwithHeatTransfer:

Intheexampleabove,itisdeterminedthat0.4kJ/Kofentropyisgeneratedduringtheheattransferprocess,butitisnot clearexactlywheretheentropygenerationtakesplace,andhow.Topinpointthelocationofentropygeneration,weneedto bemorepreciseaboutthedescriptionofthesystem,itssurroundings,andthesystemboundary.

Intheexample,weassumedboththesystemandthesurroundingairtobeisothermalat100°Cand25°C,respectively. Thisassumptionisreasonableifbothfluidsarewell-mixed.Theinnersurfaceofthewallmustalsobeat100°Cwhilethe outersurfaceisat25°C,astwobodiesinphysicalcontactmusthavethesametemperatureatthepointofcontact.Consideringthatentropytransferwithheattransfer Q throughasurfaceatconstanttemperature T is Q/T (asshownin Fig.1.6A), theentropytransferfromthewatertothewallis Q/Tsys ¼ 1.61kJ/K.Likewise,theentropytransferfromtheoutersurfaceof thewallintothesurroundingairis Q/Tsurr ¼ 2.01kJ/K.Clearly,entropyintheamountof(2.01 1.61) ¼ 0.4kJ/Kisgeneratedinthewall,asillustratedin Fig.1.6B.

Identifyingthelocationofentropygenerationenablesustodeterminewhetheraprocessisinternallyreversible.A processisinternallyreversibleifnoentropyisgeneratedwithinthesystemboundaries.Therefore,theheattransferprocess discussedintheexampleaboveisinternallyreversibleiftheinnersurfaceofthewallistakenasthesystemboundary;thus,

T =100°C Tsurr=25°C
FIG.1.5

of

(A)(B)(C)

FIG.1.6 Schematicrepresentationofentropygenerationduringaheattransferprocessthroughafinitetemperaturedifference.

thesystemexcludesthecontainerwall.Ifthesystemboundaryistakentobetheoutersurfaceofthecontainerwall,thenthe processisnolongerinternallyreversibleasthewall,whichisthesiteofentropygeneration,isnowapartofthesystem.

Forthinwalls,itistemptingtoignorethemassofthewallandregardthewallastheboundarybetweenthesystemand thesurroundings.Thisseeminglyharmlesschoicehidesthesiteofentropygenerationandisasourceofconfusion.The temperature,inthiscase,dropssuddenlyfrom Tsys to Tsurr attheboundarysurface,andconfusionarisesastowhichtemperaturetouseintherelation Q/T forentropytransferattheboundary.

Notethatifthesystemandthesurroundingairarenotisothermalasaresultofinsufficientmixing,thenpartofthe entropygenerationoccursinboththesystemandthesurroundingairinthevicinityofthewall,asshownin Fig.1.6C.

1.5.4Illustrativeexample4

Considertwosensiblethermalenergystoragesystems,XandY,inanenvironmentatatemperatureof25°C.Eachstorage receivesaquantityofheatfromastreamof500kgofwater,whichiscooledfrom80°Cto30°C.Therecoveryoperationand thestoragedurationforthetwostoragesdiffer.Determine(a)theenergyrecovery,loss,andefficiencyforeachstorageand (b)thecorrespondingexergyparameters.Comparethestorages.

Solution:Assumption:Thethermalstoragesystemisassumedtobecomprisedofthreeprocesses:charging,storing,and discharging(Fig.1.7).Thissimplemodelisusedinordertodistinguishenergyandexergyconceptsclearlyandhighlight theimportanceofexergyasatoolforpracticalthermodynamicsystems.

(a) BothsensiblethermalstoragesystemsXandYreceiveaquantityofheatfromastreamof500kgofwater,whichis cooledfrom80°Cto30°C.Therefore,theheatinputtoeachstorageduringthechargingperiodis

i ¼ mi cp DT ¼ 500 4:186 80 30 ðÞ¼

ForsystemX:

After1day,94,185kJofheatisrecoveredduringthedischargingperiodfromstoragesystemXbyastreamof4500kg ofwaterbeingheatedfrom30°Cto35°C.Thatis,

o ¼ mo cp DT ¼ 4500 4:186 35 30 ðÞ¼ 94,185kJ

Therefore,theenergyefficiencyforsensiblethermalstorageXbecomes

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.