Epigenetics and dna damage miriam galvonas jasiulionis - Read the ebook now or download it for a ful

Page 1


https://ebookmass.com/product/epigenetics-and-dna-damage-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Medical Epigenetics 2nd Edition Trygve Tollefsbol

https://ebookmass.com/product/medical-epigenetics-2nd-edition-trygvetollefsbol/

ebookmass.com

Epigenetics in Cardiovascular Disease Yvan Devaux

https://ebookmass.com/product/epigenetics-in-cardiovascular-diseaseyvan-devaux/

ebookmass.com

Doodle Dogs For Dummies Miriam Fields-Babineau

https://ebookmass.com/product/doodle-dogs-for-dummies-miriam-fieldsbabineau/

ebookmass.com

Sexual Crime and Trauma 1st ed. Edition Helen Swaby

https://ebookmass.com/product/sexual-crime-and-trauma-1st-ed-editionhelen-swaby/

ebookmass.com

Gator’s Gambit (Special Forces: Operation Alpha) (Operation Checkmate Book 6) Dorothy Ewels & Operation Alpha

https://ebookmass.com/product/gators-gambit-special-forces-operationalpha-operation-checkmate-book-6-dorothy-ewels-operation-alpha/ ebookmass.com

The Weather Thesaurus: A Fiction Writer's Sourcebook of Words and Phrases to Describe the Weather Dahlia Evans

https://ebookmass.com/product/the-weather-thesaurus-a-fiction-writerssourcebook-of-words-and-phrases-to-describe-the-weather-dahliaevans-2/ ebookmass.com

Geopolitics & Democracy: Western Liberal Order from Foundation to Fracture Peter Trubowitz

https://ebookmass.com/product/geopolitics-democracy-western-liberalorder-from-foundation-to-fracture-peter-trubowitz/

ebookmass.com

Thermodynamic Models for Chemical Engineering: Design, Develop, Analyse and Optimize Jean-Noel Jaubert

https://ebookmass.com/product/thermodynamic-models-for-chemicalengineering-design-develop-analyse-and-optimize-jean-noel-jaubert/ ebookmass.com

Violeta Parra’s Visual Art: Painted Songs 1st ed. Edition

Lorna Dillon

https://ebookmass.com/product/violeta-parras-visual-art-paintedsongs-1st-ed-edition-lorna-dillon/ ebookmass.com

Shrimp to Whale: South Korea from the Forgotten War to K-Pop Ramon Pacheco Pardo

https://ebookmass.com/product/shrimp-to-whale-south-korea-from-theforgotten-war-to-k-pop-ramon-pacheco-pardo/

ebookmass.com

EpigeneticsandDNA Damage

TranslationalEpigeneticsSeries

TrygveTollefsbol,Ph.D.,D.O.,DistinguishedProfessor-SeriesEditor

ProfessorofBiology,UniversityofAlabamaatBirmingham,andSeniorScientist,ComprehensiveCancerCenter, ComprehensiveCenterforHealthy,Birmingham,AL,UnitedStates Aging,ComprehensiveDiabetesCenterandNutritionObesityResearchCenter,Birmingham,AL,UnitedStates Director,CellSenescenceCultureFacility,Birmingham,AL,UnitedStates

TransgenerationalEpigenetics

EditedbyTrygveO.Tollefsbol,2014

PersonalizedEpigenetics

EditedbyTrygveO.Tollefsbol,2015

EpigeneticTechnologicalApplications

EditedbyY.GeorgeZheng,2015

EpigeneticCancerTherapy

EditedbyStevenG.Gray,2015

DNAMethylationandComplexHumanDisease

ByMichelNeidhart,2015

EpigenomicsinHealthandDisease

EditedbyMarioF.FragaandAgustinF.FFerna ´ ndez,2015

EpigeneticGeneExpressionandRegulation

EditedbySumingHuang,MichaelLittandC.AnnBlakey,2015

EpigeneticBiomarkersandDiagnostics

EditedbyJoseLuisGarcı´a-Gime ´ nez,2015

DrugDiscoveryinCancerEpigenetics

EditedbyGerdaEggerandPaolaBarbaraArimondo,2015

MedicalEpigenetics

EditedbyTrygveO.Tollefsbol,2016

ChromatinSignalingandDiseases

EditedbyOlivierBindaandMartinFernandez-Zapico,2016

GenomeStability

EditedbyIgorKovalchukandOlgaKovalchuk,2016

ChromatinRegulationandDynamics

EditedbyAnitaGondor,2016

NeuropsychiatricDisordersandEpigenetics

EditedbyDagH.Yasui,JacobPeedicayilandDennisR.Grayson, 2016

PolycombGroupProteins

EditedbyVincenzoPirrotta,2016

EpigeneticsandSystemsBiology

EditedbyLeonieRingrose,2017

CancerandNoncodingRNAs

EditedbyJayprokasChakrabartiandSangaMitra,2017

NuclearArchitectureandDynamics

EditedbyChristopheLavelleandJean-MarcVictor,2017

EpigeneticMechanismsinCancer

EditedbySabitaSaldanha,2017

EpigeneticsofAgingandLongevity

EditedbyAlexeyMoskalevandAlexanderM.Vaiserman,2017

TheEpigeneticsofAutoimmunity

EditedbyRongxinZhang,2018

EpigeneticsinHumanDisease,SecondEdition

EditedbyTrygveO.Tollefsbol,2018

EpigeneticsofChronicPain

EditedbyGuangBaiandKeRen,2018

EpigeneticsofCancerPrevention

EditedbyAnupamBishayeeandDeepakBhatia,2018

ComputationalEpigeneticsandDiseases

EditedbyLooKeatWei,2019

Pharmacoepigenetics

EditedbyRamo ´ nCacabelos,2019

EpigeneticsandRegeneration

EditedbyDanielaPalacios,2019

ChromatinSignalingandNeurologicalDisorders

EditedbyOlivierBinda,2019

TransgenerationalEpigenetics,SecondEdition

EditedbyTrygveTollefsbol,2019

NutritionalEpigenomics

EditedbyBradleyFerguson,2019

PrognosticEpigenetics

EditedbyShilpySharma,2019

EpigeneticsoftheImmuneSystem

EditedbyDieterKabelitz,2020

StemCellEpigenetics

EditedbyEranMeshorerandGiuseppeTesta,2020

EpigeneticsMethods

EditedbyTrygveTollefsbol,2020

HistoneModificationsinTherapy

EditedbyPedroCastelo-BrancoandCarmenJeronimo,2020

EnvironmentalEpigeneticsinToxicologyandPublicHealth

EditedbyRebeccaFry,2020

GenomeStability

EditedbyIgorKovalchukandOlgaKovalchuk,2021

TwinandFamilyStudiesofEpigenetics

EditedbyShuaiLiandJohnHopper,2021

EpigeneticsandMetabolomics

EditedbyPabanK.AgrawalaandPoonamRana,2021

MedicalEpigenetics,SecondEdition

EditedbyTrygveTollefsbol,2021

EpigeneticsinPrecisionMedicine

EditedbyJose ´ LuisGarcı´a-Gime ´ nez,2022

EpigeneticsofStressandStressDisorders

EditedbyNagyA.Youssef,2022

Post-TranscriptionalGeneRegulationinHumanDisease

EditedbyBuddhiPrakashJain,ShyamalK.Goswamiand TapanSharma,2022

DepartmentofPharmacology,UniversidadeFederaldeSa ˜ oPaulo, Sa ˜ oPaulo,Brazil

LaboratoryofOntogenyandEpigenetics,EscolaPaulistadeMedicina, UniversidadeFederaldeSa ˜ oPaulo,Sa ˜ oPaulo,Brazil

MiriamGalvonasJasiulionis

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN978-0-323-91081-1

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: StacyMasucci

AcquisitionsEditor: PeterB.Linsley

EditorialProjectManager: SamW.Young

ProductionProjectManager: SreejithViswanathan

CoverDesigner: ChristianBilbow

TypesetbySTRAIVE,India

KhalilAzizian,MoeinShirzad,NegarGorjizadeh,andAnsarKarimian

NegarGorjizadeh,NassimGorjizadeh,KhalilAzizian,AnsarKarimian, andMoeinShirzad

Sirtuinsandepigeneticmodifications.......................................................................92

Histoneacetylationanddeacetylation..................................................................92

Histonemethylation..............................................................................................94

Sirtuinsandtelomeremaintenance...........................................................................95

Sirtuinsandgenomicstability...................................................................................96

Sirtuinsanddiseases..................................................................................................98

Concludingremarks...................................................................................................99

SECTION2DNAdamageandepigenetics—Theirimpactinthe onsetofdiseases

CHAPTER7DNAdamage,metabolism,andepigeneticregulation................

Introduction...........................................................................................................111

Theinterplaybetweenepigeneticsandmetabolism........................................111

MetabolicdysfunctionandDNArepair..........................................................112

Crosstalkbetweenepigeneticsandmetabolismincancer...................................114

DNAdamage....................................................................................................114

Roleofepigeneticalterationsincellularmetabolism.....................................114

Roleofmetabolicdysfunctioninthecontextofepigenetics..........................117

Metabolicdysfunction,epigeneticmodification,andgenomicinstability.........120

Epigeneticsandsteroidhormonemetabolisminendocrine-drivencancer.........123

Epigeneticalterationsinprostatecancerprogression.....................................124

Epigeneticalterationsinbreastcancerprogression........................................126

Conclusionsandperspectives...............................................................................127

CHAPTER8DNAdamage,epigenetics,andaging.......................................

Introduction...........................................................................................................139

EpigeneticmodificationsversusDNAdamage...................................................139

DNAdamagecausescellularsenescenceandaging...........................................140

EpigeneticmarksthatpreventDNAdamageandaging:Youth-associated genome-stabilizingepigeneticmarks...............................................................141

HowepigeneticmodificationspreventDNAdamageandtheaging process:DNAProtectionvs.DNArepair........................................................141

IRShypomethylationdrivesthemolecularpathogenesisofage-related noncommunicablediseases...............................................................................143

WhatareanIRS,thestructureofeachIRSelement,andthe distributionofmethylationmarksinthegenome?......................................143

IRSmethylationlevelsandpatternchangesinhumandiseases.....................145 MechanismsofIRShypomethylationandhypermethylation.........................146

CHAPTER9DNAdamagesignaling,cellreprogramming,

MikioShimadaandTomokoMiyake

CHAPTER10TheinterplaybetweenDNAdamageandepigenetics

DaynaChallisandKateH.Brettingham-Moore

CHAPTER11Oncometabolites,epigeneticmarks,andDNArepair.................. 191

JonathanDowandPeterM.Glazer

Oncometabolitebiology.......................................................................................191

Bridgingtwohallmarks:Alteredmetabolismand genomicinstability.......................................................................................191

Oncometabolites’identificationincancer.......................................................192

OncometabolitesinduceglobalhistoneandDNAhypermethylation via αKG-dependentdioxygenaseinhibition.................................................192

OncometabolitesandDNArepair........................................................................194

EarlyimplicationsofoncometabolitesinDNAdamage repair.............................................................................................................194

Identificationoftheoncometabolite-inducedHDRdeficiency......................194

OncometabolitesdisruptHDRsignalingviaH3K9 hypermethylation..........................................................................................196

Therapeuticstrategiestargetingtheoncometabolite-induced HDRdefect...................................................................................................198 References.............................................................................................................199

SECTION3TherapeuticstrategiesinducingDNAdamage andepigeneticalterations

DNAdamage-inducingchemotherapies..............................................................210

Alkylatingagents..............................................................................................211 Platinum-basedcompounds..............................................................................213

Cisplatinanalogs..............................................................................................215

CHAPTER13EpigenetictherapyandDNAdamageresponse..........................

MarinaBarettiandNiloferS.Azad

Introduction...........................................................................................................227

Commonlyalteredepigeneticregulatoryproteinsimplicated incancerandtheirimplicationfortherapy.....................................................228

TherapiesforaberrantDNAmethylation........................................................230

Inhibitorsofhistonemodifications..................................................................231

Targetingepigeneticreaders............................................................................234

TargetingtheepigeneticsoftheDNAdamageresponseincancer: Theconceptofsyntheticlethality....................................................................235

Epigeneticinhibitorsincombinationwithchemotherapy andradiotherapy:Syntheticlethalinteractionsandclinical applications...................................................................................................237

EpigeneticchangesofDNAdamagerepairgenesaspredictive markersofresponsetochemotherapy..........................................................238

EpigeneticinhibitorsincombinationwithdrugsthattargetDNA repaircomponentsforsyntheticlethaltherapy............................................240

Conclusion:Implicationsofepigeneticregulationforimproved cancertreatment................................................................................................244

GiovanadaSilvaLeandro,MarcelaTeatinLatancia, NathaliaQuintero-Ruiz,andCarlosFredericoMartinsMenck

Immunofluorescence(IF)todetectphosphorylatedhistone H2AX(Ser139).............................................................................................263 Immuno-slot-blotassayforpyrimidinedimers...............................................271

CHAPTER15Usefulmethodstostudyepigeneticmarks:DNAmethylation, histonemodifications,chromatinstructure, andnoncodingRNAs............................................................... 283

AnaLuisaPedrosoAyub,BrunadeOliveiraPerestrelo, GuilhermeCavalcantePessoa,andMiriamGalvonasJasiulionis

Introduction...........................................................................................................283

MethodsusedtostudyDNAmethylation............................................................284

Basedonbisulfitetreatment............................................................................285

BasedonCpGcapture.....................................................................................288

5mCcontent.....................................................................................................289

Methodsusedtostudyhistonemodifications......................................................290

Chromatinimmunoprecipitation(ChIP)..........................................................290

Immunodetectionwithspecificantibodies......................................................291

Proteomics........................................................................................................292

Methodsusedtostudychromatinaccessibility...................................................292

DeoxyribonucleasetreatmentfollowedbyDNAsequencing (DNase-seq)..................................................................................................293

Formaldehyde-assistedisolationofregulatoryelementsfollowed bysequencing(FAIRE-seq).........................................................................294

MicrococcalnucleasetreatmentfollowedbyDNAsequencing (MNase-seq)..................................................................................................294

Assayfortransposase-accessiblechromatinwithhigh-throughput sequencing(ATAC-seq)...............................................................................294

Methodsusedtoidentifychromatin-associatedproteins.....................................295

Chromatinenrichmentforproteomics(ChEP)................................................295

MethodsusedtostudynoncodingRNAs(ncRNA)............................................295

ncRNAgeneexpressionanalysis.....................................................................295

miRNA-mediatedposttranscriptionalregulationanalysis...............................297

NoncodingRNA-proteininteractions..............................................................298

LncRNAandchromatininteraction.................................................................299

ncRNAlocalization..........................................................................................300

ncRNAgeneexpressionmodulationmethods.................................................300

Conclusions...........................................................................................................303

References.............................................................................................................303

Contributors

DeboraKristinaAlves-Fernandes

DepartmentofPharmacology,EscolaPaulistadeMedicina,UniversidadeFederaldeSaoPaulo, Sa ˜ oPaulo,SP,Brazil

AnaLuisaPedrosoAyub

DepartmentofPharmacology,EscolaPaulistadeMedicina,UniversidadeFederaldeSa ˜ oPaulo, SaoPaulo,SP,Brazil

NiloferS.Azad

SidneyKimmelComprehensiveCancerCenteratJohnsHopkinsHospital,Baltimore,MD, UnitedStates

KhalilAzizian

DepartmentofMicrobiology,FacultyofMedicine,KurdistanUniversityofMedicalSciences, Sanandaj,Iran

MarinaBaretti

SidneyKimmelComprehensiveCancerCenteratJohnsHopkinsHospital,Baltimore,MD, UnitedStates

NikolaBowden

HunterMedicalResearchInstituteandUniversityofNewcastle,Callaghan,NSW,Australia

KateH.Brettingham-Moore

TasmanianSchoolofMedicine,UniversityofTasmania,Hobart,TAS,Australia

JessicaBuck

TelethonKidsInstitute,BrainTumourResearch,Perth;UniversityofWA,CentreforChildHealth Research,Crawley,WA,Australia

DaynaChallis

TasmanianSchoolofMedicine,UniversityofTasmania,Hobart,TAS,Australia

JonathanDow

YaleUniversitySchoolofMedicine,NewHaven,CT,UnitedStates

RaeleneEndersby

TelethonKidsInstitute,BrainTumourResearch,Perth;UniversityofWA,CentreforChildHealth Research,Crawley,WA,Australia

ShinjiniGanguly

ClevelandClinic,Cleveland,OH,UnitedStates

AnthonyGhanem

ClevelandClinic,Cleveland,OH,UnitedStates

SebastianoGiallongo

InternationalClinicalResearchCenter,St’AnneUniversityHospital;DepartmentofBiology,Faculty ofMedicine,MasarykUniversity,Brno,CzechRepublic

PeterM.Glazer

YaleUniversitySchoolofMedicine,NewHaven,CT,UnitedStates

NassimGorjizadeh

CellularandMolecularBiologyResearchCenter,HealthResearchInstitute,BabolUniversityof MedicalSciences,Babol,Iran

NegarGorjizadeh

DepartmentofCellandMolecularBiology,FacultyofBiologicalSciences,KharazmiUniversity, Tehran;CellularandMolecularBiologyResearchCenter,HealthResearchInstitute,Babol UniversityofMedicalSciences,Babol,Iran

MiriamGalvonasJasiulionis

DepartmentofPharmacology,EscolaPaulistadeMedicina,UniversidadeFederaldeSa ˜ oPaulo, SaoPaulo,SP,Brazil

PhilippeJohannToBerens

Institutdebiologiemoleculairedesplantes,Strasbourg,France

AnsarKarimian

CellularandMolecularBiologyResearchCenter,HealthResearchInstitute,BabolUniversityof MedicalSciences,Babol,Iran

MarcelaTeatinLatancia

DepartmentofMicrobiology,InstituteofBiomedicalSciences—UniversityofSa ˜ oPaulo(USP), SaoPaulo,Brazil

GiovanadaSilvaLeandro

DepartmentofMicrobiology,InstituteofBiomedicalSciences—UniversityofSa ˜ oPaulo(USP), SaoPaulo,Brazil

OrianaLoRe

InternationalClinicalResearchCenter,St’AnneUniversityHospital,Brno,CzechRepublic; DepartmentofStemCellBiologyandTransplantology,ResearchInstituteoftheMedicalUniversityVarna,Varna,Bulgaria

CarlosFredericoMartinsMenck

DepartmentofMicrobiology,InstituteofBiomedicalSciences—UniversityofSaoPaulo(USP), Sa ˜ oPaulo,Brazil

OmarY.Mian

ClevelandClinic,Cleveland,OH,UnitedStates

TomokoMiyake

LaboratoryforZero-CarbonEnergy,InstituteofInnovativeResearch,TokyoInstituteofTechnology, Tokyo,Japan

JeanMolinier

Institutdebiologiemoleculairedesplantes,Strasbourg,France

ApiwatMutirangura

DepartmentofAnatomy,FacultyofMedicine,CenterofExcellenceinMolecularGeneticsofCancer andHumanDisease,ChulalongkornUniversity,Bangkok,Thailand

BrunadeOliveiraPerestrelo

DepartmentofPharmacology,EscolaPaulistadeMedicina,UniversidadeFederaldeSa ˜ oPaulo, SaoPaulo,SP,Brazil

GuilhermeCavalcantePessoa

DepartmentofPharmacology,EscolaPaulistadeMedicina,UniversidadeFederaldeSaoPaulo, Sa ˜ oPaulo,SP,Brazil

NathaliaQuintero-Ruiz

DepartmentofMicrobiology,InstituteofBiomedicalSciences—UniversityofSaoPaulo(USP), Sa ˜ oPaulo,Brazil

SalimataOusmaneSall

Institutdebiologiemoleculairedesplantes,Strasbourg,France

MargaridaA.Santos

DepartmentofEpigeneticsandMolecularCarcinogenesis,TheUniversityofTexasMDAnderson CancerCenter;GraduatePrograminGenetics&Epigenetics,TheUniversityofTexasMDAnderson CancerCenterUTHealthGraduateSchoolofBiomedicalSciences,Houston,TX,UnitedStates

MikioShimada

LaboratoryforZero-CarbonEnergy,InstituteofInnovativeResearch,TokyoInstituteofTechnology, Tokyo,Japan

MoeinShirzad

CellularandMolecularBiologyResearchCenter,HealthResearchInstitute,BabolUniversityof MedicalSciences,Babol,Iran

HieuT.Van

DepartmentofEpigeneticsandMolecularCarcinogenesis,TheUniversityofTexasMDAnderson CancerCenter;GraduatePrograminGenetics&Epigenetics,TheUniversityofTexasMDAnderson CancerCenterUTHealthGraduateSchoolofBiomedicalSciences,Houston,TX,UnitedStates

ManlioVinciguerra

InternationalClinicalResearchCenter,St’AnneUniversityHospital,Brno,CzechRepublic; DepartmentofStemCellBiologyandTransplantology,ResearchInstituteoftheMedicalUniversityVarna,Varna,Bulgaria

Preface

Thegenomeisconstantlysubjectedtodamagecausedbybothendogenousandexogenousfactors.In additiontothewell-establishedroleinthegenetranscriptionregulation,epigeneticmechanismsalso playanimportantroleinDNAreplicationandrepair.Dynamicandorchestratedalterationsinthe chromatinconferredbyepigeneticmodificationsarefundamentalforDNAdamageresponse.After damage,epigeneticmechanismsinducechromatinremodelinginordertoaccessthedamageregion, recruitrepairproteins,andcontributetothedecisionofrepairpathway.Notonlytheentiremachinery involvedinDNArepairiscrucialformaintainingthegenomeintegrity,butalsothepreciseepigenetic regulationofthisprocess.Epigeneticderegulationduringthisprocessmaycontributetopremature agingandtheonsetofdiseases,includingcancer,neurodegenerativedisorders,andimmunedeficiencies.Recentadvancesinsequencingtechnologies,methodstoevaluateepigeneticmodifications,and chromatinstructurehavecontributedenormouslytoourknowledgeregardingtheepigenome,chromatinconfiguration,anddynamicassociationofproteinswiththechromatin.Althoughtheundeniable relevanceofepigeneticmechanismsintheDNAdamageresponse,thecomplexmechanisticinterplay betweenchromatinregulationandDNArepairisstillpoorlyunderstood.Comprehendinghowthese processesareconnectedintime,space,andcontextmaybringlighttonovelandmoreeffective therapeuticstrategiesfordiseasessuchascancer.

ThisbooksummarizestherecentadvancesinthisintriguingfieldofDNAdamageandepigenetics. Thisbookisdividedintofoursectionsand15chapters.Thefirstsectionincludeschaptersaddressing thebasicscienceofDNAdamageanditsrelationwiththedifferentepigeneticmechanisms,including DNAmethylation,posttranslationalhistonemodifications,histonevariants,chromatinremodeling, miRNAs,andlncRNAs.ThesecondsectiondescribestheimpactofDNAdamageandepigenetics onmetabolism,aging,differentiation,andcancer.Thethirdsectionbringsconceptsandupdatesabout therapiesinducingDNAdamageandepigenetictherapies.Thefinalsectioncompilesthemaincurrent methodologiesusedtoanalyzebothDNAdamageandepigeneticalterations.

Overthepastyears,theinterplaybetweenDNAdamageandepigeneticsincreasedinterestnotonly inbasicsciencebutalsoinmedicine.Forthisreason,thebookisdedicatedtobiologists,biochemists, geneticists,immunologists,andphysicians,andallstudentsofbiologyandmedicine.

Understandingthe relationshipbetween DNAdamageand epigeneticmechanisms 1

DNAdamageandDNAmethylation 1

SalimataOusmaneSalla,PhilippeJohannToBerensa,andJeanMolinier

Institutdebiologiemoleculairedesplantes,Strasbourg,France

Introduction

Livingorganismshavetocopewithenvironmentalcuesandwithendogenouschemicalcompounds thataredeleteriousfortheirgeneticinformation.Indeed,genotoxicstresseschallengegenomesbyinducingchangesinthechemicalstructureofnucleotides.Thesealterationsinvolvingthefourcanonical bases(adenine(A),cytosine(C),guanine(G),andthymine(T))orbreakingtheDNAstrand(s)are definedasDNAdamage/lesionsandarespecificofparticulargenotoxicagents.1 Basemodification istheadditionofachemicalmoietyresultingeitherfromareactionwithagenotoxicagent(i.e.,alkylation)orfromanenzymaticreaction(i.e.,DNAmethylation).Thus,basescouldbeoxidized,deaminated,alkylated,ormethylatedleadingtodifferenttypesofmodifications.2 Importantly, methylationratherthanbeingexclusivelyconsideredasaDNAlesion perse isalsoanepigenetic mark.2 Indeed,onekeycomponentoftheepigenomeiscytosinemethylationleadingto5-methylcytosine(5-mC),whichisrequiredforthestablesilencingoftransposableelements(TE)aswellasforthe regulationofgeneactivity.3 WhileinmammalsDNAmethylationoccursintheCGcontext,inplants, 5-mCisfoundin2additionalsequencecontexts:CHGandCHH(whereH ¼ A,T,orC).4 Suchbase modificationlikelyaddsanotherlayerofcomplexityinthereactivityofgenomicregionssubjectedtoa genotoxicstress.GiventhatmostoftheDNAlesionsoccurataparticularbase,thenucleotidecompositionofthegenomeisanimportantfeaturetotakeintoaccount.Moreover,severalstudies highlightedthattheepigenomelandscapetendstoplayanimportantroleintheabilityoftheDNA/ genometobedamagedandtoefficientlyperformtheirrepair.5

Therefore,thischapterwillbedevotedtothepresentationofthedifferenttypesofbasemodificationsandtheirconsequencesongenomeintegrity.Aparticularemphasiswillbeplacedontheinfluence oftheDNAmethylationprofileondamageformationandonthemaintenanceofmethylomeintegrity uponrepair.Wewillfocusontheemergingnotionthatcomplexinterplaysexistbetweengenome, methylome,DNAdamage,andrepairandthatplantshavedevelopedsophisticatedstrategiestosimultaneouslymaintain(epi)genomeintegrity. aEqualcontribution.

EpigeneticsandDNADamage. https://doi.org/10.1016/B978-0-323-91081-1.00005-4 Copyright # 2022ElsevierInc.Allrightsreserved.

Basemodifications

Cellularprocessesaswellasenvironmentalfactorsinducegenotoxicstressleadingtotheformationof alargerepertoireofbasemodificationsthataffectgenomestability.ThesemodificationsalterDNA structureandaresensedeitherasDNAlesions(i.e.,baseoxidation)orasepigeneticmarks(i.e.,DNA methylation).2 Severalfeaturesofthegenomicregionssuchasnucleotidecompositionandspatialorganizationmayinfluencetheirabilitytoaccumulatebasemodificationsthatmustbeaccurately repaired(forDNAlesions)orfine-tuned(forDNAmethylation).Upondetection,thesemodifiedbases areactivelyremovedviaDNAsynthesis-dependentrepairprocessestomaintain(epi)genomeintegrity (Fig.1).

DNAmethylation

DNAmethylationistheadditionofamethylgrouponeitheradeninetoform6-methyladenine(6-mA) orcytosinetoform5-methylcytosine(5-mC).3 5-mCisthemoststudiedDNAmethylation/epigenetic mark.5-mCisdetectableatdifferentratesinplants,mammals,andbacteriaandisthoughttobelowin drosophilaorabsentinyeast.6 5-mCchangesDNAflexibilitybyenhancingstiffnessandmodulates DNAaccessibilitytodifferentfactors.7 Moreover,thepresenceof5-mCwithinalocusmayfavor thepreferentialformationofDNAdamage(i.e.,photolesions).8,9

Deamination

Inadditiontotheenzymatic-mediateddeamination,10–12 asignificantamountofhydrolyticdeaminationcanalsooccurespeciallyonsingle-strandedDNA.13–15 Thehydrolyticdeaminationofcytosine formsuracil(U)thatisrecognizedasaDNAlesion.Deaminationcanalsooccuron5-methylcytosine andproducesthymine(T)creatingaT:Gmismatch.ReplicationofthesedamagedsitesincludingC:G toT:AtransitionpreventsthemaintenanceofDNAmethylationatthisparticulargenomicsequence andthusleadstothealterationofbothgenomeandmethylomeintegrities.13 ToavoidsuchbasetransitionandpermanentlossofDNAmethylation,thedeaminationproductisremovedbyspecificglycosylase,viatheBERpathway.16,17

Alkylation

DNAalkylationincludesallmodificationsinducedbythebindingofanewalkylgrouponanoncanonicalpositionofDNAaftermonomolecularorbimolecularnucleophilicsubstitution(SN1/SN2)reactions.18–20 Alkylationcanoccurontheoxygenatomsinphosphodiesterbackbone,aswellason oxygenandnitrogenatomsofthe4nucleobases.18,21 ThesiteofDNAalkylationstronglydepends onthealkylatingagent,whichcanbeanendogenousmetabolitesuchasS-adenosylmethionine (SAM),22 oranexogenousagent,suchasalkylatingdrugscurrentlyusedaschemotherapeutics (i.e.,busulfan).18 Themostfrequentlytransferredalkylgroupisthemethylgroup,andthepredominant alkylationproductsareN7-methylguanine(N7-meG),N3-methyladenine(N3-meA),and O6-methylguanine(O6-meG).18–20 N7-meGandN3-meAarecleavedbyspontaneousdepurination orbyspecificDNAglycosylasesleavinginbothcasesanabasicsitewithcytotoxicandmutagenic potentialthatneedfurtherrepairbynucleotideexcisionrepair(NER)orbaseexcisionrepair(BER;

FIG.1

TypesofDNAdamages.DNAissubjectedtovarioustypesofalterationsthatleadtoeither(A)basemodifications, (B)mismatch,or(C)single /double-strandedbreaks(SSBs/DSBs).TheseDNAdamagesareprocessedand repairedbydifferentpathwaysthatrelyondenovoDNAsynthesis.WhentheoriginalDNAsequenceis methylated(M),theprocessingofthedamagedDNAleadstoatransientlossofDNAmethylationthatmustbe accuratelyre-establishedtomaintainmethylomeintegrity.

long-orshort-patchBER).23–25 Conversely,thehighlymutagenicO6-methylguanine,allowingapreferentialpairingwiththymine,26 canberepairedbydirectreversionleadingtothealkylationofa catalyticresidueofO6-methylguanine-DNAmethyltransferase(MGMT).27 Morerecently,N3methylcytosine(N3-meC),ausuallyraresideproductofclassicalalkylatingagents(i.e.,methylmethanesulfonate),20 wasshowntobeasignificantby-productofDNAmethyltransferaseenzyme(DNMT) activityresponsiblefor5-mCsynthesisinnematodes.28 Theseresultsmaynotablyexplaintheabsence ofDNAmethylationinthenematode Caenorhabditiselegans andtheobservedcoevolutionofmethylationandalkylationdamagerepairpathwaysallacrosseukaryotes.28

Oxidation

Asidedeaminationandalkylation,DNAoxidationisanothertypeofbasemodificationthataffectsgenomeintegrity.Environmentalfactors,suchasUVlight(UV-AandUV-B),aswellasendogenous cellularprocesses(i.e.,respiration)leadtotheformationofreactiveoxygenspecies(ROS):superoxide anion(O2 ),hydrogenperoxide(H2O2),andhydroxylradical(•OH).29–31 ROShaveagenotoxiceffect byreactingwithpurines,pyrimidines,andthedeoxyribosebackboneofDNA,toproducemorethan20 differenttypesofoxidativelyinducedDNAlesions.31 Theyieldofthesedifferentproductsishighly specifictothemolecularredoxcontext.Nevertheless,guanineisdescribedasthemajortargetof oxidation,especiallyatC8position,therebyformingthehighlymutagenic7,8-dihydro-8-oxoguanine (8-Oxo-G).31–34 Whenunrepaired,8-Oxo-GcanpairwiththeHoogsteenfaceofadenine,therebygeneratingaguaninetothyminetransversionmutationuponreplication,generatinganun-methylatable A:Tsite.35,36 Additionally,oxidationof8-Oxo-G/lysineformsbulkyproteins-DNAcross-linksthat aredeleterious.37 Asforalkylatingdamages,8-Oxo-GismainlyremovedbyspecificDNAglycosylases(i.e.,MutYandMutT)andfurtherprocessedbytheBERmachinery.38 Theoretically,5-mCcan alsoundergooxidativemodificationdespiteitsrelativelyhighreductionpotentialcomparedtoguanine.31,36,39 Inparticular,thedifferentoxidationproducts:5-hydroxymethylcytosine(5-hmC), 5-formylcytosine(5-fC),or5-carboxycytosine(5-caC)mainlygainedaninterestinthelastdecade. Inmammals,theactiveremovalof5-mCoccursuponsuccessiveenzymatic-mediatedoxidations.40,41 Theseserialoxidationsof5-mCproduce5-hmC,5-fC,and5-caCandarecatalyzedbytheten-eleven translocation(TET)proteinfamilymembers.42 Intheabsenceof bonafide 5-mCglycosylasesinmammals,thisalternativeprocessallowsefficientactiveDNAdemethylation.43 TheexistenceofaTETlikedemethylationpathwayinplants,asalternativestrategy,isasyetundetermined.44–46

Cross-links

DNA–DNAcross-link(CL)hasagreatpotentialtoaltergenomeintegrity.CLcanoccurwithinone DNAstrand(intra-strandcross-links)orinbetweenthe2DNAstrands(inter-strandcross-links).47 Intra-strandcross-linksareverycommonforlight-dependentlivingorganisms.Indeed,theUVspectrumofsunlightinducescross-linksbetweendi-pyrimidines.5,48,49 Twosuccessivepyrimidines(CC, TT,TC,orCT)canberaisedtotheirhighlyreactivesingletortripletstateswhenabsorbingUVradiation,especiallyintheUV-CandUV-Bwavelengthrangingfrom100to280nmand280to315nm, respectively.48,49 Oncereachingthereactivesingletortripletstates,fastphotochemicalreactionslead totheformationofthreemainDNAintra-strandcross-linkdamagesorphotoproducts:cyclobutane

pyrimidinedimers(CPDs),pyrimidine6–4pyrimidonephotoproducts(6-4PPs),andthe6-4PPsDewar isomer.49

Converselytointra-strandcross-links,inter-strandcross-links(ICLs)arerelativelyrareevents,oftenthoughttobeaconsequenceofdrugtreatments.50 Forexample,mitomycinCinducesinter-strand cross-linksbetweentheguaninesofbothstrandsandalsoshowsspecificityforCpGsequences.50,51 Recently,thebiologicalimpactoftheoxidationproductofadenine,7,8-dihydro-8-oxoadenine(8Oxo-A),wasshowntohavesignificantpotentialtoformICLwithadenineandguanineontheopposite strand.52 TherepairofICLiscomplexandtriggersdenovoDNAsynthesisofbothstrandsinthevicinityofthedamagedregions,endangeringthemaintenanceoftheDNAmethylationfootprints.47,53

DNAmethylationandDNAdamageability

EndogenousandexogenousstimuliformdirectlyorindirectlyDNAlesionsinasequence-specificcontext.20,32,49,54 RecentstudieshighlightedtheheterogenicityoftheformationofDNAlesionswithin genomecomplexity,hereaftercalled“damageability”.9,55–59 DNAdamageabilitycanbedefinedas thedegreeofsusceptibilityofalocus,withinagenome,tobedamagedbyaparticulargenotoxicagent. Thisdamageabilitydependsonthewholecomplexityofthelocalchemicalcontextandshouldbeconsideredashighlyvariableduringlifespanandonlypartiallypredictable.Theputativereverseinfluence oftheepigenomeontheDNAdamageabilitydrewtheattentionofmanyresearchgroupsinthelast decade.5,55–57,60,61

DNAmethylation(5-mC),asthemainepigeneticmark,hasthepotentialtoinfluencethedamageabilityofthegenome.Theinfluenceof5-mContheformationofspontaneoushydrolyticdeamination wasshown, invitro,tooccurtwicemoreoftencomparedtounmethylatedcytosine.15 Moreover,a 5-mCadjacenttoapyrimidineismorepronetoformphotoproductsthananunmethylatedcytosine incombinationwithanotherpyrimidine.49 Invitro ligation-mediatedPCR, invitro irradiationof genomicDNA,andinvivoimmunoprecipitationofUV-damagedDNA(IPOUD)experimentsall highlightedasignificantlyincreasedpotentialofmethylatedDNAtoformphotodamageuponUV exposure.9,55,62 Giventhat3/4ofthedi-pyrimidinecombinations(CC,TC,orCT)involveatleast onecytosineandthatinplants,DNAmethylationoccursalsoinCHGortheCHHcontexts (whereHisA,T,orC),thehighlymethylatedgenomicregionsmaybemorereactivetoformphotodamage.Inotherwords,thesequencecontextincombinationwiththemethylomelandscapemay influencetheUVdamageabilityandlikelytherepairmachinerythatactatparticularloci.9,55,62

Additionally,5-mCcanalsoindirectlyinfluenceDNAdamageabilitythroughitsroleintheestablishmentofhigherchromatinstructuressuchasnucleosomeoccupancy,histoneposttranslationalmodification(PTM),andgenomefolding.63,64 Nucleosomedisplacement,forexample,wasshownto influencetheformationofDNAstrandbreakuponZeocintreatment.56 8-Oxo-GdistributionwasidentifiedtoaccumulateinH3enrichedregionsoftheyeastgenome61 andwasconsistentlymorefrequently observedintherathercompactlamina-associateddomainsofchromatin,displacedatthenuclearperiphery,inrat.57

Finally,5-mCcanalsoindirectlyimpacttheDNAdamagedynamics,bycontrollingDNArepair. Forexample,whenpreventingtranscription,64 5-mCcanhinderthedamagerecognitionbythe transcription-coupledrepair(TCR)pathway.65

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.