Environmental metabolomics: applications in field and laboratory studies to understand from exposome

Page 1


EnvironmentalMetabolomics:Applicationsinfield andlaboratorystudiestounderstandfromexposome tometabolome1stEditionDianaAlvarez-Munoz (Editor)

https://ebookmass.com/product/environmental-metabolomicsapplications-in-field-and-laboratory-studies-to-understandfrom-exposome-to-metabolome-1st-edition-diana-alvarez-munozeditor/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications 1st Edition Joel Faintuch

https://ebookmass.com/product/microbiome-and-metabolome-in-diagnosistherapy-and-other-strategic-applications-1st-edition-joel-faintuch/

ebookmass.com

Translational Biotechnology : A Journey from Laboratory to Clinics. 1st Edition Hasija

https://ebookmass.com/product/translational-biotechnology-a-journeyfrom-laboratory-to-clinics-1st-edition-hasija/

ebookmass.com

Introduction to Quantum Field Theory with Applications to Quantum Gravity 1st Edition Iosif L. Buchbinder

https://ebookmass.com/product/introduction-to-quantum-field-theorywith-applications-to-quantum-gravity-1st-edition-iosif-l-buchbinder/ ebookmass.com

Savage Alpha: Shadowed Heirs book two C.J. Primer

https://ebookmass.com/product/savage-alpha-shadowed-heirs-book-two-cj-primer/

ebookmass.com

Delmar's Standard Textbook of Electricity, 7th Edition Herman

https://ebookmass.com/product/delmars-standard-textbook-ofelectricity-7th-edition-herman/

ebookmass.com

Czeslaw Milosz's Faith in the Flesh: Body, Belief, and Human Identity 1st Edition Stanley Bill

https://ebookmass.com/product/czeslaw-miloszs-faith-in-the-flesh-bodybelief-and-human-identity-1st-edition-stanley-bill/

ebookmass.com

Socialism in Marx’s Capital: Towards a Dealienated World 1st ed. 2021 Edition Paresh Chattopadhyay

https://ebookmass.com/product/socialism-in-marxs-capital-towards-adealienated-world-1st-ed-2021-edition-paresh-chattopadhyay/

ebookmass.com

Molecular

hematology Fourth Edition Gribben

https://ebookmass.com/product/molecular-hematology-fourth-editiongribben/

ebookmass.com

Taxation Essentials of LLCs and Partnerships Ricketts

https://ebookmass.com/product/taxation-essentials-of-llcs-andpartnerships-ricketts/

ebookmass.com

A Curse of Queens Amanda Bouchet

https://ebookmass.com/product/a-curse-of-queens-amanda-bouchet-8/

ebookmass.com

DianaA

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfrom thepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher ’spermissionspoliciesand ourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,can befoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-818196-6

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher:JancoCandice

AcquisitionsEditor:LouisaMunro

EditorialProjectManager:SaraPianavilla

ProductionProjectManager:KumarAnbazhagan

CoverDesigner:MilesHitchen

TypesetbyTNQTechnologies

Contributors

KonstantinosA.Aliferis PesticideScienceLaboratory,AgricultureUniversityofAthens,Athens, Greece;DepartmentofPlantScience,McGillUniversity,Sainte-Anne-de-Bellevue,QC,Canada

DianaA ´ lvarez-Mun ˜ oz WaterandSoilQualityResearchGroup,DepartmentofEnvironmental Chemistry,IDAEA-CSIC,Barcelona,Spain

FranciscaArellano-Beltra ´ n DepartmentofChemistry,FacultyofExperimentalSciences, UniversityofHuelva,CampusElCarmen,Huelva,Spain;ResearchCenterofNaturalResources, HealthandtheEnvironment(RENSMA),UniversityofHuelva,CampusElCarmen,Huelva,Spain

AnaArias-Borrego DepartmentofChemistry,FacultyofExperimentalSciences,Universityof Huelva,CampusElCarmen,Huelva,Spain;ResearchCenterofNaturalResources,Healthandthe Environment(RENSMA),UniversityofHuelva,CampusElCarmen,Huelva,Spain

O ` scarAznar-Alemany WaterandSoilQualityResearchGroup,DepartmentofEnvironmental Chemistry,IDAEA-CSIC,Barcelona,Spain

Julia ´ nBlasco InstituteofMarineSciencesofAndalusia(CSIC),CampusRioSanPedro,Ca ´ diz,Spain

Be ´ nildeBonnefille HydroSciences,UnivMontpellier,CNRS,IRD,Montpellier,France

Bele ´ nCallejo ´ n-Leblic DepartmentofChemistry,FacultyofExperimentalSciences,Universityof Huelva,CampusElCarmen,Huelva,Spain;ResearchCenterofNaturalResources,Healthandthe Environment(RENSMA),UniversityofHuelva,CampusElCarmen,Huelva,Spain

PedroCarriquiriborde CentrodeInvestigacionesdelMedioambiente(CIM),Facultadde

CienciasExactas,UniversidadNacionaldelaPlata CONICET,LaPlata,BuenosAires,Argentina Chien-MinChen DepartmentofEnvironmentalResourcesManagement,ChiaNanUniversityof Pharmacy&Science,Tainan,Taiwan

Fre ´ de ´ riqueCourant HydroSciences,UnivMontpellier,CNRS,IRD,Montpellier,France

ArthurDavid UnivRennes,Inserm,EHESP,Irset(Institutderechercheensante ´ ,environnement ettravail),UMR_S1085,Rennes,France

XiaopingDiao StateKeyLaboratoryofMarineResourceUtilizationinSouthChinaSea,Hainan University,Haikou,HainanProvince,China;MinistryofEducationKeyLaboratoryofTropical IslandEcology,HainanNormalUniversity,Haikou,HainanProvince,China

ThibautDumas HydroSciences,UnivMontpellier,CNRS,IRD,Montpellier,France

MarinellaFarre ´ WaterandSoilQualityResearchGroup,DepartmentofEnvironmentalChemistry, IDAEA-CSIC,Barcelona,Spain

He ´ le ` neFenet HydroSciences,UnivMontpellier,CNRS,IRD,Montpellier,France

TamaraGarcı´a-Barrera DepartmentofChemistry,FacultyofExperimentalSciences,University ofHuelva,CampusElCarmen,Huelva,Spain;ResearchCenterofNaturalResources,Healthand theEnvironment(RENSMA),UniversityofHuelva,CampusElCarmen,Huelva,Spain

RubenGil-Solsona CatalanInstituteforWaterResearch(ICRA),ParcCientı´ficiTecnolo ` gicdela UniversitatdeGirona,Girona,Spain

ElenaGomez HydroSciences,UnivMontpellier,CNRS,IRD,Montpellier,France

Jose ´ LuisGo ´ mez-Ariza DepartmentofChemistry,FacultyofExperimentalSciences,University ofHuelva,CampusElCarmen,Huelva,Spain;ResearchCenterofNaturalResources,Healthand theEnvironment(RENSMA),UniversityofHuelva,CampusElCarmen,Huelva,Spain

AwadheshN.Jha UniversityofPlymouth,Plymouth,Devon,UnitedKingdom

VeraKovacevic DepartmentofChemistry,UniversityofToronto,Toronto,ON,Canada; EnvironmentalNMRCentre,DepartmentofPhysicalandEnvironmentalSciences,Universityof TorontoScarborough,Toronto,ON,Canada

MartaLlorca WaterandSoilQualityResearchGroup,DepartmentofEnvironmentalChemistry, IDAEA-CSIC,Barcelona,Spain

GemaRodrı´guez-Moro DepartmentofChemistry,FacultyofExperimentalSciences,University ofHuelva,CampusElCarmen,Huelva,Spain;ResearchCenterofNaturalResources,Healthand theEnvironment(RENSMA),UniversityofHuelva,CampusElCarmen,Huelva,Spain

SaraRodrı´guez-Mozaz CatalanInstituteforWaterResearch(ICRA),ParcCientı´ficiTecnolo ` gic

delaUniversitatdeGirona,Girona,Spain

PawelRostkowski NILU NorwegianInstituteforAirResearch,Kjeller,Norway

SaraRamı´rez-Acosta DepartmentofChemistry,FacultyofExperimentalSciences,Universityof Huelva,CampusElCarmen,Huelva,Spain;ResearchCenterofNaturalResources,Healthandthe Environment(RENSMA),UniversityofHuelva,CampusElCarmen,Huelva,Spain

AlbertSerra-Compte CatalanInstituteforWaterResearch(ICRA),ParcCientı´ficiTecnolo ` gic delaUniversitatdeGirona,Girona,Spain

MyrnaJ.Simpson DepartmentofChemistry,UniversityofToronto,Toronto,ON,Canada; EnvironmentalNMRCentre,DepartmentofPhysicalandEnvironmentalSciences,Universityof TorontoScarborough,Toronto,ON,Canada

HailongZhou StateKeyLaboratoryofMarineResourceUtilizationinSouthChinaSea,Hainan University,Haikou,HainanProvince,China;SchoolofLifeandPharmaceuticalSciences,Hainan University,Haikou,HainanProvince,China

Preface

Metabolomicsconsistsofthesimultaneouscharacterizationofthemetabolitespresentinan organismandoffersa“picture”ofthebiochemistryoftheorganismatanyonetime.Its applicationtotheenvironment,knownasEnvironmentalMetabolomics,allows characterizingtheinteractionthatoccursbetweenorganismsandthesurrounding environment.Concretely,thisbookisfocusedontheinteractionbetweenorganismsand contaminantsthatarepresentintheenvironmentduetohumanactivitiesandmayhave toxiceffects.

Theapplicationofmetabolomicsintheenvironmentalfieldforbiomarkersdiscoveryis relativelynew.Scientificpapersonthissubjectstartedbeingpublishedabout10yearsago, butithasbeeninthelast5yearswhentheapplicationofmetabolomicsforanalyzing biologicalsamplesinenvironmentalmonitoringhasstronglyattractedtheattentionof researches.Consequently,anincreasingnumberofpapersarecurrentlybeenpublished generatingahighamountofdatathatneedtobecompiledandharmonizedtogetrelevant information.

Thisbookgathersinformationonenvironmentalmetabolomicswhennaturalorganismsare exposedtometals,persistentorganicpollutants,andemergingpollutants.Itshowsthe readerdifferentexperimentalsetups,analyticaltechniques,dataprocessing,anddata analysis.Thisbookwillleadyouthroughthemetabolomicsworkflowandwillserveasa guideforimplementation.Besides,itallows,forthefirsttime,tohavegeneralbiomarkers snapshotveryusefulforriskassessment.Italsodiscussesthecurrentlimitationsandfuture perspectivesofenvironmentalmetabolomics.

Theaudienceofthisbookiswide-rangingfromundergraduatetograduatestudents interestedinenvironmentalresearch,researchersinthefieldofenvironmentaltoxicology andchemistry,legislators,andpolicy-makers.

We,theEditors,learnedalotfromtheauthorsandhopethatyoureadersalsodo.Weexpect thattheknowledgecontainedherewillhelptofurthergaininsightandadvanceon environmentalmetabolomicsscience.

Acknowledgments

Hugethankstoallthepeoplewhohavebeeninvolvedinthisproject,especiallytothe authors;withouttheirhardwork,thisbookwouldnothavebeenpossible.Thanksto Elsevier,particularlytotheacquisitionseditor,theeditorialprojectmanager,andthe productionprojectmanager.Finally,wearethankfultoourfamiliesfortheirsupport,for understandingourpassionforscience,andallthetimededicatedtothissubject.

CHAPTER1

Fundamentalsofenvironmental metabolomics

VeraKovacevic1, 2,MyrnaJ.Simpson1, 2

1DepartmentofChemistry,UniversityofToronto,Toronto,ON,Canada; 2EnvironmentalNMR Centre,DepartmentofPhysicalandEnvironmentalSciences,UniversityofTorontoScarborough, Toronto,ON,Canada

ChapterOutline

1.Environmentalstressors1

1.1Contaminantstressors2

2.Ecotoxicology4

3.Metabolomics5

4.Environmentalmetabolomics6

4.1Studydesign7

4.2Collectionoforganismsandexperimentalexposure8

4.3Samplecollection,samplepreparation,andmetaboliteextraction9

4.4Analyticaltechniquesfordatacollection11

4.5Rawdatapreprocessinganddataanalysis14

4.6Biologicalinterpretationoftheresults17

5.Exposuretocontaminantmixtures18

6.Summaryandenvironmentalbiomonitoringefforts19 References20

1.Environmentalstressors

Aquaticandterrestrialecosystemsareunderconstantthreatfromvariousenvironmental stressorsthatarisefromnaturaloranthropogenicactivities.Environmentalstressors includebioticstressorssuchaspathogensandabioticstressorssuchasdrought,flood, extremetemperatures,andsalinity(No ˜ gesetal.,2016).Thereleaseofanthropogenic contaminantsintotheenvironmentfromurbanization,transportation,andindustrial activitiesisalsocontributingtoenvironmentalstress(Schaefferetal.,2016).Increasesin theamountandvarietyofsyntheticchemicalsproducedhavecausedcontaminantstoenter theenvironmentataveryquickpaceonaglobalscale(Bernhardtetal.,2017).The

EnvironmentalMetabolomics. https://doi.org/10.1016/B978-0-12-818196-6.00001-7

Copyright © 2020ElsevierInc.Allrightsreserved. 1

transportandfateofcontaminantsisgovernedbytheirphysical chemicalproperties whichincludewatersolubility, n-octanol waterpartitioncoefficients(Kow),acid dissociationconstants(pKa)orbasedissociationconstants(pKb),andvaporpressure(De Laenderetal.,2015;Pereiraetal.,2016).EnvironmentalfactorssuchaspH,sunlight intensity,temperature,andorganicmattercontentalsoinfluencethetransportandfateof contaminantsintheenvironment(DeLaenderetal.,2015;Pereiraetal.,2016).Some contaminantsmaybetransportedlongdistancestoisolatedregionsandsomecontaminants maybioaccumulateinfoodwebs(Gaoetal.,2018;Xieetal.,2017).Forinstance, althoughmetalsarenaturallyoccurring,anthropogenicactivitieshavecausedincreased metalconcentrationsintheenvironmentandmetalsoftenaccumulateinorganismsasthey cannotbebiodegraded(Pengetal.,2018a;Wiseetal.,2018).Contaminantsarefrequently detectedinallthreeenvironmentalcompartmentsofair,water,andsoil(Gavrilescuetal., 2015;Netetal.,2015).Consequently,aquaticandterrestrialorganismsareexposedto variousclassesofcontaminantssuchasmetals,persistentorganicpollutants(POPs), pharmaceuticalsandpersonalcareproducts(PPCPs),industrialchemicals,plasticizers, flameretardantssuchasorganophosphateesters,andpesticides(Pengetal.,2018b;van denBrinketal.,2016;Wilkinsonetal.,2018).

1.1Contaminantstressors

Contaminantsofemergingconcern(CECs)arenotdefinitivelydefined,andthereisno comprehensivelistofCECs.Instead,CECsarethoughttobeanynaturallyoccurringor anthropogeniccompoundswhicharenowdetectedorsuspectedtooccurinsoil,air,or waterandwhosepersistenceortoxicitymaysignificantlyalterthemetabolismofan organism(Sauve ´ andDesrosiers,2014).TheUnitedStatesEnvironmentalProtection Agency’slistofCECsincludesPOPs,PPCPs,veterinarymedicines,endocrine-disrupting chemicals(EDCs),andnanomaterials(Ankleyetal.,2008, Fig.1.1).POPsarelegacy pollutantsthathaveexistedandpersistedintheenvironmentfordecadesandinclude polychlorinatedbiphenyls,dibenzo-p-dioxins,dibenzofurans,andorganochlorine pesticidessuchasdichlorodiphenyltrichloroethane(Nadaletal.,2015).TheStockholm ConventiononPOPsisaninternationalenvironmentaltreatythatwasinitiatedin2001to protecthumanhealthandtheenvironmentfromPOPs(Lallas,2001).Thescreening criteriaforPOPsincludepersistence,bioaccumulation,potentialforlongrangetransport intheenvironment,andadverseimpactstoorganisms(McLachlan,2018).Otherorganic contaminantssuchasPPCPs,veterinarymedicines,andEDCscanmoreeasilydegradein soilandwaterdependingontheirproperties,buttheirextensiveusehasresultedintheir frequentdetectionintheenvironment(Ba ´ rtı´kova ´ etal.,2016;Ebeleetal.,2017;Song etal.,2018).Pharmaceuticalsincludeover-the-countermedicationsandprescriptiondrugs, andpersonalcareproductsareineverydayproductssuchasshampoos,hairdyes, toothpaste,anddeodorants(Boxalletal.,2012).Veterinarymedicationsinclude

Figure1.1

Namesandchemicalstructuresofsomewell-knowncontaminantsofemergingconcern(CECs): (A)persistentorganicpollutants(POPs),(B)pharmaceuticalsandpersonalcareproducts (PPCPs),(C)veterinarymedicines,(D)endocrine-disruptingchemicals(EDCs),and (E)nanomaterials.

antibiotics,hormones,anesthetics,andantiparasiticandantifungaldrugs(Ba ´ rtı´kova ´ etal., 2016).Themainentryrouteofveterinarymedicationsintotheenvironmentisfrom treatmentoflivestock,aquaculture,andcompanionanimals(Ba ´ rtı´kova ´ etal.,2016).EDCs includealkylphenolcompounds,naturalestrogens,naturalandrogens,synthetichormones, andsomepharmaceuticalsandpesticides(Omaretal.,2016).Forinstance,oneofthe

mostpotentendocrinedisruptorsisthesyntheticestrogen17a-ethynylestradiolfoundin birthcontrolpills(Laurensonetal.,2014).Therearealsocontaminantsofindustrialorigin suchasperfluorinatedcompoundswhichcanbefoundincommonproductssuchas furniture,carpets,cookware,andfirefightingmaterials(vonderTrencketal.,2018). Terrestrialandaquaticecosystemsaretypicallyexposedtoamixtureofpesticidesfrom agriculturalapplications,andrunoffwatercanhavepesticideconcentrationsthatare substantiallyabovethelegallimit(Lefrancqetal.,2017).Nanomaterialshaveelectronic andmechanicalapplicationsandarebeingincreasinglydetectedintheenvironment,most likelyfromsewagetreatmentplantsludgeandsolidwaste(Sunetal.,2016).Thecommon detectionoforganiccontaminantsinsurfacewatersismainlyduetotheinabilityof conventionalwastewatertreatmentmethodstoefficientlyremovecompoundssuchas PPCPs,veterinarymedications,andEDCs(Herna ´ ndezetal.,2015;RiceandWesterhoff, 2017;Yangetal.,2017).Organiccontaminantsalsoentersoilandgroundwaterwhensoil isirrigatedwithwastewaterorwhensoilisfertilizedwithsewagesludge,andfrom municipalsoilwastelandfills(Healyetal.,2017;ProsserandSibley,2015).Thedetection ofevenverylowconcentrationsofCECsintheenvironmenthasraisedconcernsbecause organismsareconstantlyexposedtoinputsofCECswhichmaybioaccumulateto concentrationsthatcouldcausedeleteriousimpactsinbiota(Meadoretal.,2016).The potentialharmfulimpactsofCECsonecosystemandhumanhealthhaveresultedinthe developmentoftoxicitytestsandtheassessmentandmanagementofenvironmental contamination.

2.Ecotoxicology

Ecotoxicologyhastraditionallybeendescribedasthestudyofthetoxicimpactsof pollutantstoecosystemconstituents,includinganimals,plants,andmicroorganisms (Truhaut,1977).Assuch,environmentalqualitystandardshavebeeninitiatedtopreserve ecosystemsandhumanhealthbyplacingmaximumpermissibleconcentrationsof contaminantsthatmaybedetectedinwater,soil,orbiota(Lepper,2005).Ecologicalrisk assessmentisgenerallydonebycomparingmeasuredenvironmentalconcentrations (MECs)ofacontaminanttoitspredictednoeffectconcentrations(PNECs)from ecotoxicologicaldatawhichideallyrepresentthemostsensitivespeciesoverseveral trophiclevels(Papadakisetal.,2015).IftheriskquotientcalculatedfromtheMEC/PNEC ratioisgreaterthanone,thenthecontaminantisaconcernandactionshouldbe undertakentoconfirmtheenvironmentalrisk,identifythesourcesofcontamination,and reducethereleaseofcontamination(Papadakisetal.,2015;Thomaidietal.,2016).

Toxicologistshaveestablishedandusedacutetoxicitytestsonterrestrialandaquatic organismsbasedonmortalityorimmobilizationrateswithincreasingcontaminant concentrations(Bruce,1985;Buckleretal.,2005).Mostchronictoxicitytestsalsoassess

changesindevelopment,growth,andreproductionparameterssuchasamountof offspring,timetofirstbreeding,andnumberofbroods(Thomeetal.,2017;Toumietal., 2013;Wangetal.,2006).Othertestshavestudiedbehavioralchanges,mainlywithfish, andtheseincludechangesinmotoractivityduringlightanddarkphotoperiodsaswellas theabilityandlengthoftimeneededtocatchprey(GaworeckiandKlaine,2008; Kristofcoetal.,2016).Sincetheseapproachesarenotsensitiveforverylowsublethal concentrationsofcontaminants,newtechniquesweredevelopedusingbiomarkers (Coppolaetal.,2018;Valavanidisetal.,2006).Abiomarkerisdefinedasabiological responsewhichincludesanybiochemical,physiological,histological,andmorphological changesmeasuredinsideanorganismthatarisefromcontaminantexposure(VanGestel andVanBrummelen,1996).Substantiveprogresshasbeenmadeinmeasuring biochemicalimpactsfromcontaminantexposure,andthisincludesmeasuringchangesin biomarkersofoxidativestress,endocrinedisruption,immunomodulation,xenobiotic detoxificationsystems,andDNAdamage(Jasinskaetal.,2015;Lougheryetal.,2018; Valavanidisetal.,2006).Althoughbiomarkersgiveimportantinformationaboutthe potentialdeleteriousimpactsofcontaminantsonabiochemicallevel,theyarenotcapable ofevaluatingthemolecularmechanismofactionofcontaminants(Camposetal.,2012). Thereisaneedtostudythemechanismormodeofactionofcontaminantstobetter understandthemolecularprocessesofhoworganismsrespondtocontaminantstressorsin theenvironment.Environmentalomicsresearchwasinitiatedwhichinvolvestheuseof omicstechnologiestoinvestigatethemolecular-levelresponsesoforganismstovarious environmentalstressors(MartyniukandSimmons,2016).Theomicstechniquesinclude genomicstostudythestructure,function,andexpressionofgenes,transcriptomicsto measuregeneexpression,proteomicstomeasureproteinsandpeptides,andmetabolomics tomeasuremetaboliteswhicharetheendproductsofcellularevents(Lougheryetal., 2018;Marjanetal.,2017;Reveletal.,2017).Thedatacollectedfromomicstechniques formasystemsbiologyapproach,andtheirintegrationintothefieldofecotoxicologyis referredtoasecotoxicogenomics(Snapeetal.,2004).Also,omicstechnologiesare sensitiveandcandetectchangesinorganismbiochemistryatlowercontaminant concentrationsandmorerapidlythanconventionalmoralitytests,reproductiontests,or cytotoxicevaluations(deFigueire ˆ doetal.,2019;Shinetal.,2018).

3.Metabolomics

Metabolomicsistheuseofadvancedanalyticaltechniquestoidentifyandmeasurelowmolecularweightmetabolitesthataregenerallylessthan1000Daincells,tissues, biofluids,organs,orwholeorganisms(Gaoetal.,2019;Linetal.,2006).Thisincludes primarymetaboliteswhichareinvolvedinthedevelopment,growth,andreproductionof anorganismaswellassecondarymetaboliteswhichareproducedbybacteria,fungi,and

plantsandhavevariousecologicalfunctions(Mazzeietal.,2016;PalazzottoandWeber, 2018).Metabolomicscanbeconsideredasthedownstreamprocessofgenomics, transcriptomics,andproteomics,andthechangesofmetabolitelevelsdirectlyrelateto biochemicalactivityandthephenotype(Johnsonetal.,2016).Fundamentalmetabolic pathwayssuchasthoseinvolvedinenergy,carbohydrate,aminoacid,andlipid metabolismareconservedfrombacteriatoeukaryotes(Peregrı´n-Alvarezetal.,2009). Metabolomicshasapplicationsinseveralfieldsincludingmedicine(Wishart,2016), pharmacology(Pangetal.,2018),toxicology(Ramirezetal.,2018),plantbiochemistry (Sklirosetal.,2018),andtheenvironmentalsciences(Zhangetal.,2018a).

Themainanalyticaltechniquesthatareusedtocollectmetabolomicsdatasetsarenuclear magneticresonance(NMR)spectroscopyandmassspectrometry(MS)becauseofthe abilityforsmallmoleculedetectionandtheuniqueassetsofeachanalyticalinstrument. Targetedmetabolomicsanalysisdetectsapredeterminedsetofmetabolites,usuallychosen withregardtothebiologicalsampletobeanalyzedorfrommetabolitelibrariesin softwaredatabases(Bingol,2018).Nontargetedmetabolomicsanalysisisthenonbiased analysisofasmanymetabolitesthatcanbereliablyidentifiedandassignedbythe analyticalinstrumentandmetabolomicsdatabases(Bingol,2018).Nontargeted metabolomicsanalysisfrequentlyusesNMRspectroscopyorhighresolutionMS,while targetedmetabolomicsanalysisoftenusesMSastheanalyticalmethodofchoice(Emwas, 2015;Mullardetal.,2015).Therearearound114,000metaboliteslistedintheHuman MetabolomeDatabase(Wishartetal.,2017),butonlyaround1500metabolitesare identifiedinnontargetedanalysis,200 500metabolitesareidentifiedintargetedanalysis, anditisestimatedthatlessthantwodozenmetabolitesareregularlyquantifiedinmost metabolomicsstudies(Markleyetal.,2017;Psychogiosetal.,2011).Oncemetabolitesare identifiedandquantified,onlinedatabasesandtoolsmaybeusedtoaidindata interpretationandmechanisticunderstandingbyrelatingthechangesinmetabolitelevels tometabolicpathwaysthatarelikelyimpacted(Chongetal.,2018;Kanehisaetal.,2016). Throughthisprocess,metabolomicsgivesdetailedinformationaboutthemodeof actionthatmaybeoccurringinthebiologicalsampleandmaybeusedforhighthroughputtestingofindividualcontaminantsandmixtures(Ahmedetal.,2019;Zampieri etal.,2018).

4.Environmentalmetabolomics

Environmentalmetabolomicsinvolvesapplyingmetabolomictechniquestoanalyzethe metabolicresponseoforganismsasaresultoftheirinteractionswiththeenvironment (Bundyetal.,2009).Metabolomicsisusedtostudyvariousenvironmentalstressors includingUVlight(Zhangetal.,2018b),elevatedatmosphericcarbondioxide concentration(Creydtetal.,2019),ambientfineparticulatematter(Xuetal.,2019),

drought(Lietal.,2018b),extremetemperatures(Tomonagaetal.,2018),and contaminants(Roszkowskaetal.,2018).Controlledlaboratoryexposureswithtarget speciesareperformedtoacquireknowledgeofthemodeofactionofabioticstressors, bioticstressors,orcontaminants(Garreta-Laraetal.,2016;Sivarametal.,2019;Tang etal.,2017).Furthermore,field-basedstudiesmaybeconductedtounderstandhowthe metabolomeoforganismsisimpactedwhenexposedtoanecosystemunderenvironmental stress(Gauthieretal.,2018).Oneofthegoalsofenvironmentalmetabolomicsresearchis forutilizationinenvironmentalbiomonitoringandriskassessmentbyapplying metabolomicstechniquestokeystoneorganismsthatplayimportantrolesintrophiclevels andfoodwebs(Bahamondeetal.,2016).Toachievetheseaims,environmental metabolomicsstudieshaveaworkflowthatincludesstudydesign,exposure,sample preparation,metaboliteextraction,datacollection,dataanalysis,andfinallyabiological interpretationoftheanalyzeddata.

4.1Studydesign

Theexperimentaldesignofenvironmentalmetabolomicsprojectsinvolvestheselectionof anenvironmentalstressorandthetargetorganism.Environmentalmetabolomicsstudies aredoneonavarietyoforganismswhichspanfrommicroorganismstoplantsandanimals (Sivarametal.,2019;Tianetal.,2017;Tomonagaetal.,2018).Microorganismshave beenexposedtoenvironmentalcontaminants,forinstance,theyeast Saccharomyces cerevisiae hasbeenexposedtocopper(Farre ´ setal.,2016)andtetrachlorobisphenolA (Tianetal.,2017).Plantmetabolomicshasinvestigatedtheexposuretonanoparticles (Zhangetal.,2018a),howplantsrespondtopolycyclicaromatichydrocarbonsormetals fromremediationefforts(Pidatalaetal.,2016;Sivarametal.,2019),theimpactofmineral deficiency(Sungetal.,2015),UV-Bradiation(Zhangetal.,2018b),anddrought(Khan etal.,2019).Commonterrestrialorganismsusedinenvironmentalmetabolomicsstudies includenematodes(Ratnasekharetal.,2015),earthworms(Tangetal.,2017),flies(Cox etal.,2017),andmice(Wangetal.,2018a).Thechoiceoforganismshouldreflectthe environmentalcompartmentunderconsideration,forinstance,earthwormsarecommonly usedtoassesssoilcontaminationinmetabolomicsstudiesduetotheiroccurrenceina varietyofsoilsworldwide(Heetal.,2018;Tangetal.,2017).Aquaticorganisms frequentlyusedinenvironmentalmetabolomicsstudiesincludecrustaceans(Garreta-Lara etal.,2016;Go ´ mez-Canelaetal.,2016)andfishsuchasmedaka,rainbowtrout,salmon, andfatheadminnow(Kanekoetal.,2019).Thestudiedaquaticorganismshouldalso reflecttheresearchquestion,forinstance,bivalveshaveasessilelifestyleandcan accumulatecontaminants,andthereforeananalysisofthemetabolicprofileofbivalves mayreflectthecontaminationatthesiteofcollection(Watanabeetal.,2015). Metabolomicsstudiesmayalsobeperformedonatargetedselectionoforganismsthat serveasresearchmodels.Modelorganismsmayberepresentedbytheratandmousefor

mammals,zebrafish Daniorerio foraquaticvertebrates,thewaterflea Daphniamagna for aquaticinvertebrates, Arabidopsisthaliana forplants,theyeast S.cerevisiae for eukaryotes,and Escherichiacoli forprokaryotes(Kimetal.,2015;Reedetal.,2017).

4.2Collectionoforganismsandexperimentalexposure

Environmentalmetabolomicsstudiesmaybefield-basedwhereorganismsaresampled directlyfromtheenvironmentorlaboratory-basedwhereorganismsareculturedinthe laboratoryandthenexposedundercontrolledconditions(Campilloetal.,2019;Davis etal.,2016).Bothlaboratoryandfieldresearchshouldhavecarefulplanningofthe numberandtypeofcontrolorreferencesiteexposuresandenvironmentalstressor exposures,aswellasthenumberofsamplestobetakenfromeachtreatmentgroup.This isimportantasthereisnaturalvariationinbiologicalsamplesandadequatereplicationis neededforproperstatisticalanalysis(Simmonsetal.,2015).Regardingfield-basedwork, thereistheoptionoffieldtrialswhichinvolvesthesamplingoffree-livingorganismsin theenvironment(Gauthieretal.,2018;Melvinetal.,2018,2019)orthereistheoptionof fielddeploymentwhichinvolvesdeployingorganismsintoenvironmentsthatareunder stress(Ekmanetal.,2018).Infield-basedstudies,theorganismsthatrepresentthe stressor-exposedgroupsmaybecollectedatcontaminatedlocationsandmaybecompared toorganismscollectedatmorepristinelocationswhichserveasthegroupfroma referencesite(Watanabeetal.,2015).Environmentalmetabolomicsstudiesthatsample free-livingorganismsatafieldsiteareastepforwardforvalidatingthistechniqueforuse inenvironmentalmonitoring(Melvinetal.,2018,2019).Also,usingfield-deployed organismshasagreatvalueforenvironmentalriskassessment.Forinstance,astudythat usedcage-deployedfatheadminnows(Pimephalespromelas)atsitesacrosstheGreat Lakesbasinnotedthattheprofilesofendogenouspolarmetaboliteshadcovariancewithat most49contaminants(Davisetal.,2016).Takingorganismsfromthefieldtakesinto considerationthenaturalvariationfromdifferentlocations,forexample,thereare correlationsbetweenthemetabolomeofthepinetree(Pinuspinaster)anditsoriginal geographicoriginevenwhengrowninacommongardenfor5years(Meijo ´ netal.,2016). Samplingorganismsfromthefieldalsoconsiderstheindividualvariability,whichmay stemfromgeneticdifferences,inthemetabolicprofileoftheseorganismsastheyarenot onlyonelaboratorystrain(Quinaetal.,2019).Understandingthemetabolicresponseof organismswhicharesampledfromthefieldmaybechallengingbecausefieldpopulations maybeexposedtomultiplestressorsatonce,includingbothabioticandbioticstressorsas wellascontaminantstressors(Garreta-Laraetal.,2018;Mishraetal.,2019).Thechoice oforganismsshouldbeascloseaspossibletoidenticalageandsizetominimizenatural variationinpopulations(Coppolaetal.,2018).However,whensamplingorganismsfrom thefielditmaybedifficulttodistinguishgender,differentlifestages,andspecies,for instance,DNAbarcodingisusedtodistinguishspeciesofthegenus Atlantoscia,a

terrestrialisopod(Zimmermannetal.,2018).Organismssampledfromtheenvironment havevariousfactorsthatmayimpactthemetabolomewhichshouldberecorded,suchas seasonandgeographiclocation(Weietal.,2018),climate(Gargallo-Garrigaetal.,2015), disease(Zacheretal.,2018),andhabitatsurroundings(Quinaetal.,2019).Also,itisa challengetobecertainofallthecurrentenvironmentalstressorspresentatthetimeof collectionandthehistoryoforganismexposuretoenvironmentalstressors(Olsviketal., 2018).Field-basedstudiesalsofacethedifficultlyoflocatinganidealreferencesitethat canactasacontrolwhichhasminimalabiotic,biotic,andcontaminantstressorsbut wherethenaturalsettingsareanalogoustotheimpactedsite(Martyniuk,2018).However, toaidinthemetabolomicsanalysisandinterpretationoffield-basedstudies,thereare standardreportingrequirementsformetabolomicsexperimentsofbiologicalsamplestaken fromtheenvironment(Morrisonetal.,2007).

Laboratorypopulationsarestrictlycontrolled,andtemperature,light,anddietare maintainedconstantlytolimitanyperturbationstothemetabolome.Laboratory-based studieshavethebenefitofstandardprotocolsthatareavailable,forinstance,the OrganisationforEconomicCo-operationandDevelopmentprovidesguidancedocuments foraquatictoxicitytestingandsoiltoxicitytestingthatshouldbefollowedforlaboratory work(OECD,2002,2004).Controlledlaboratoryconditionsareoptimalfordetermining themodeofactionofcontaminantsasthemetabolicperturbationscanbedirectly accreditedtothestressor(Go ´ mez-Canelaetal.,2016).Forthisreasontherearestandard reportingrequirementsformetabolomicsexperimentsofmammalian/invivo work(Griffin etal.,2007)andformetabolomicsexperimentsofmicrobialand invitro work(vander Werfetal.,2007).Therouteofexposure,suchasdosing,air-borneinhalation,aqueous exposure,andothers,shouldbecarefullyselectedanddocumented(vanderWerfetal., 2007).Althoughthemetabolicdisturbancesfromexposuretostressorsinlaboratory conditionscanbeextrapolatedtopredictthehazardinenvironmentalsettings,caremust betakenwhendoingsotoavoidanoverestimationoranunderestimationofrisk(Murphy etal.,2018).

4.3Samplecollection,samplepreparation,andmetaboliteextraction

Thedecisionofwhichbiologicalsampletoanalyzeisimportantsincedifferentmetabolic responsescanbefoundacrosscells,tissues,organs,biologicalfluids,andthewhole organism(Tavassolyetal.,2018).Thereareadvantagesofchoosingeachbiological compartment.Forinstance,usingcellculturesprovidesspecificinformationonthe metabolicpathwaysinvolvingthechangesofendogenousmetabolitesincells,anddifferent celllinesmayhavedifferentmetabolicalterations(Rodriguesetal.,2019).The metabolomicsanalysisofacertaintissuecangiveinformationaboutthestateofanorgan anddifferenttissuesofanorganismcontaindifferentbaselinemetabolicprofiles(Cappello

etal.,2018).Thecollectionofabiofluidsuchasbloodorurineisminimallyinvasiveand canprovideinformationabouttheoverallbiologicalstateofanorganism(Liaoetal.,2018).

ComparedtoDNAsequenceswhichcanbeextractedfromsamplesover100,000yearsold (Rohlandetal.,2018),metabolitesamplesarehighlyunstableandtheremaybeadditional changesinmetabolitelevelsfromresidualenzymaticactivity(Berninietal.,2011). Therefore,propersamplepreparationisimportanttoavoidanydisturbancesinthe metabolomethatmayoccurfrompreparingsamples.Samplepreparationproceduresmay needtoquicklyhaltenzymaticactivitywithfreezinginliquidnitrogenandsamplesmust bekeptcoldthroughoutanystorage(Berninietal.,2011).Somesampletypesneedto havewaterremovedforanalysisbyNMRspectroscopy,forinstance,tissuesamplesneed tobelyophilizedsoonaftercollectionandthesolventextractsofcellculturesneedtobe driedandreconstitutedinanNMRbuffer(Beckonertetal.,2007;Carrolaetal.,2018).

NMR-basedmetabolomicsmostfrequentlyusesadeuteriumoxidephosphate-basedbuffer whichextractspolarmetabolites(Beckonertetal.,2007).Thephosphatebuffermaintains aconstantpHtominimizevariationsinchemicalshiftandadeuteratedsolventallowsfor alocksignalinNMRspectroscopy(Schripsema,2010).Themetaboliteextraction procedureforMSanalysistypicallyusessolventsofvaryingpolaritytoextractpolarand nonpolarmetabolitesandseveralextractionmethodsarebasedonthewidelyusedBligh andDyerextraction(BlighandDyer,1959;Wuetal.,2008).Themetaboliteextraction methodmustbedevelopedandverifiedbecauseoneextractionprotocolisusuallynotable toextractallthemetabolitesfromthesample.Also,themetaboliteextractionmethod dependsonthebiologicalmatrixchosentobeanalyzed,andtherearewell-developed protocolsformetaboliteextractionsfrommammalianandbacterialcellcultures(Dietmair etal.,2010;Winderetal.,2008),biologicalfluidssuchasbloodandurine(Beckonert etal.,2007;Bruceetal.,2009),andplant-andanimal-derivedtissues(Valledoretal., 2014;Wuetal.,2008).Toextractmetabolitesfromcells,coldsolventssuchasaqueous methanoloraqueousacetonitrileareappliedtocellculturestoquenchthemetabolismof cells(Dietmairetal.,2010;Rodriguesetal.,2019).Forbiologicalfluidssuchasblood, thereisusuallyaproteinprecipitationsteptoisolateproteinsfromthemetabolitesample bytreatmentwithasolventmixturesuchasmethanol/ethanolormethanol/acetonitrile/ acetone(Bruceetal.,2009).Urinesamplestypicallyhavesimplesamplepreparationand involvesampledilutionwithappropriatesolventsorultrafiltration(Khamisetal.,2017).

Fortissuesamplesorwholeorganismhomogenates,thereismanualgrindingor homogenizationwithprecooledextractionsolventssuchasmethanol(Ro ¨ misch-Margl etal.,2012).Tissuesamplesorsmallwholeorganismhomogenatesmaybefurther sonicatedtoenhancetheextractionefficiency(Wangetal.,2018b).Finally,centrifugation canseparatethesupernatant-containingmetabolitesfromlargemoleculessuchas precipitatedproteinsandcellularandtissuedebriswhicharepelletedfromcentrifugation

(Hamerlyetal.,2015).Besides,theorderofmetaboliteextractionanddatacollectionfrom samplesalsoshouldberandomizedtoavoidanybiasorbatchimpacts.

4.4Analyticaltechniquesfordatacollection

ThegeneralanalyticalmethodsusedinenvironmentalmetabolomicsareMSandNMR spectroscopy. Fig.1.2 illustratestheworkflowinanenvironmentalmetabolomicsstudy

Figure1.2

WorkflowIofagenericenvironmentalmetabolomicsstudy:fromstudydesigntodatacollection ontheanalyticalinstrumentofchoice.

beginningfromstudydesigntodatacollectionontheanalyticalinstrumentofchoice. BothNMRspectroscopyandMSanalyticaltechniquesencountersomechallenges,and thereisnosingleanalyticaltechniquethatcanidentifyandquantifythewhole metabolome.Severalstudiesproposedirectinfusionmassspectrometry(DIMS)coupledto highresolutionmassanalyzerssuchasOrbitrapmassanalyzersorFouriertransform ion cyclotronresonance(FT-ICR)massanalyzersbecauseoftherapidandnontargeted analysisofawiderangeofmetabolites(Ghasteetal.,2016;Southametal.,2017;Taylor etal.,2016).However,ionsuppressionandthecomplexityofthemassspectrawithout sampleseparationwithastationaryphasearedisadvantagesofDIMS(Ghasteetal., 2016).Therefore,MSisusuallycoupledtoliquidchromatography,gaschromatography,or capillaryelectrophoresisforanalyteseparationpriortomassdetection(Bealeetal.,2018; Gorrochateguietal.,2016;Sasakietal.,2018).Thestationaryphasecanaidinmetabolite identificationusingtheretentiontimeoftheanalyteofinterest(Chekmenevaetal.,2018).

Gaschromatography massspectrometry(GC-MS)ofpolarmetabolitestypicallyrequires chemicalderivatizationofmetaboliteextractsamplestoformvolatileandthermallystable analytesandtoalsoenhancetheseparationanddetectionofthesemetabolites(Miyagawa andBamba,2019).However,thequantitationofderivatizedmetabolitesbyGC-MS analysismaybedifficultasthechemicalderivatizationefficiencymayvaryandthe stabilityofthederivatizedmetabolitesmaynotbeconstant(MiyagawaandBamba,2019). MetabolomicsstudiesfrequentlyuseGC-MSwithelectronimpactorchemicalionization (Lietal.,2015).Capillaryelectrophoresis massspectrometry(CE-MS)involvesthe separationofhighlypolarandionicmetabolitesduetodifferentmigrationspeedsofthe metabolites(Ramautaretal.,2019).CE-MS basedmetabolomicsstudiesoftencouple capillaryelectrophoresistoatime-of-flight(TOF)massanalyzer(Ramautaretal.,2019). Liquidchromatography massspectrometry(LC-MS)analysisincludestheselectionofan appropriateliquidchromatographiccolumn,solventsforthemobilephases,potential additivestothemobilephase,andmobile-phasegradientsforseparationbyliquid chromatography(Wangetal.,2018b).MostMS-basedmetabolomicsstudiesuseliquid chromatographywithelectrosprayionization(ESI)thatissuitablefortheionizationofa rangeofmetabolites(Aszyketal.,2018).Nontargetedmetabolomicsstudiesforglobal profilingfrequentlyusehighresolutionandhighaccuracymassanalyzerssuchasFT-ICR massanalyzersorquadrupole-time-of-flight(QTOF)massanalyzers(Aszyketal.,2018). MS-basedmetabolomicsstudiesoftenusetriplequadrupolemassspectrometersfor targetedanalysisduetothehighsensitivityandselectivity(NaganaGowdaandDjukovic, 2014).

ThemainadvantagesofusingMSforenvironmentalmetabolomicsapplicationsisthatMS candetectandquantifymetabolitesatverylowconcentrationsinthefemtomolarto attomolarrangeandMShasahighdynamicrangeandresolution(MarshallandPowers, 2017).AdisadvantageisthatMSonlydetectsmetabolitesthatcanpromptlyionize,for

instance,upto60%ofcompoundsfromareferencechemicallibraryweredetectableby ESI-MS(Copelandetal.,2012).Ionsuppressionorionenhancementmayoccurin metabolomicssampleswithcoelutingcompoundsandacomplexmatrixand,asaresult, MShasissuesinreproducibility(Engskogetal.,2016).AnotherdownsideofMS-based metabolomicsisthatitmaybedifficulttoknowinadvancethemostoptimalionization techniqueandionizationpolaritytoselectforifthecompositionofthesampleis unknown,whichmaybeacircumstanceduringnontargetedMSanalysis(Panuwetetal., 2016).Also,metabolitesmayhaveretentiontimedriftsduringseparationinthestationary phaseandtheremaybeinstabilityinMSdetectionduetocontaminationoftheionsource ofthemassanalyzer(Zelenaetal.,2009).

NMRspectroscopycanidentifyunknownmetabolitesunambiguously,candistinguish isomers,andisexcellentforstructureelucidationofunknowncompounds(Bingoland Bruschweiler,2015).ThemostcommonlyusedNMRmethodinenvironmental metabolomicsisone-dimensional(1D)proton(1H)NMRspectroscopy(Ambergetal., 2017).NMRspectroscopyishighlyquantitativeandreproducible,forexample,the technicalvariationwithinmetabolomicsdatasetsusing1D 1HNMRspectroscopycanbe aslowas1.6%medianspectralrelativestandarddeviation(BhartiandRoy,2012;Parsons etal.,2009).WatersuppressionisusedwithNMRspectroscopytoavoidbaseline distortionsandlargeerrorsinpeakareassincewaterisatasubstantiallyhigher concentrationthanmetabolitesinsampleextracts(Giraudeauetal.,2015).Thereare severalwatersuppressiontechniquessuchasWATERGATE(Piottoetal.,1992), excitationsculpting(HwangandShaka,1995),andpresaturationutilizingrelaxation gradientsandechoes(SimpsonandBrown,2005).NMRspectroscopyhasnoneedfor sampleseparationbychromatographyandoftenrequiresminimalsamplepreparationsuch asforurinesamples(Takisetal.,2019).Onlyasingleinternalreferenceisneededforthe absolutequantitationofmetabolitesusingNMRspectroscopy(NaganaGowdaetal., 2018).AnotheradvantageofNMRspectroscopyisthatithasnondestructivedata acquisition,forinstance,NMRmethodssuchas 1Hhighresolutionmagic-anglespinning NMR(1HHR-MASNMR)canbeperformedonintacttissues(Battinietal.,2017).

Invivo NMRspectroscopyusingflow-basedsystemswithsolution-stateNMR(Tabatabaei Anarakietal.,2018),HR-MASNMR(Bunescuetal.,2010),andcomprehensive multiphaseNMR(Mobarhanetal.,2016)isalsoemergingforenvironmental metabolomicsapplicationsoflivingorganisms.AdisadvantageofNMRspectroscopyis thatonlythemostabundantmetabolitesatconcentrationsgreaterthan1 mMaredetected (NaganaGowdaandRaftery,2015).Also,theresolutionin1D 1HNMRspectroscopyis lowandalthoughtwo-dimensional(2D)NMRmethodsincreaseresolution,theacquisition timeof2DNMRspectraislonger(NaganaGowdaandRaftery,2015).However,thereare developmentsthatcanincreasethesensitivityandresolutionofNMRspectroscopyfor metabolomicsanalysis.Theseincludetechnicalimprovementsinpulsesequencessuchas

para-H2-inducedhyperpolarization(Reileetal.,2016),cryoprobetechnology,and microprobetechnology(Saboranoetal.,2019).Samplevolumesareminimizedfrom 500 600 mLusingstandard5mmNMRprobesto25 45 mLusing1.7mmmicroprobes whichisbeneficialformass-limitedsamples,andconcentratingthesamplecanimprove thesignal-to-noiseratio(Martin,2005;Nagatoetal.,2015).Thesensitivitygaincanbeup to40-foldforsamplesofequalmasswhentransitioningfroma5mmroomtemperature probetoa1.7mmmicrocryoprobe(Saboranoetal.,2019).Inaddition,microcoilNMR hasbeenusedfortheanalysisofsingleanimaleggsofthenematode Heligmosomoides polygyrusbakeri andthetardigrade Richtersiuscoronifer (Grisietal.,2017)aswellasthe fish Cypseluruspoecilopterus andthewaterflea D.magna (Fugariuetal.,2017).

MicrocoilNMRhastheabilitytoanalyzebiologicalsampleswithavolumeof approximately0.1nL(Grisietal.,2017),andcollectinganNMRspectrumona50 mm coilgives3000timesthemasssensitivitycomparedtoa5mmNMRprobe(Fugariuetal., 2017).

4.5Rawdatapreprocessinganddataanalysis

RawdatapreprocessingofspectracollectedfromNMRspectroscopyorMSisdone beforestatisticalanalysisandpatterndetectionwithchemometricsmodels.Fourier transformationofthefreeinductiondecaysignalproducestheNMRspectrumand typicallyalinebroadeningof0.3Hzisusedfor 1HNMRspectra(Kostidisetal.,2017). EachNMRspectrumshouldbemanuallyphasedformetabolomicsstudiessincemany automaticphasingmethodsmaydistortsignalswithsmallpeakareas(Emwasetal., 2018).Next,baselinecorrectionisperformed,andchemicalshiftsarealignedtoan internalcalibrantsuchas4,4-dimethyl-4-silapentane-1-sulfonicacidor3-(trimethylsilyl)2,20 ,3,30 -tetradeuteropropionicacid(Donaetal.,2016).TheNMRspectraundergo binning,alsocalledbucketing,mostcommonlyintoequalwidthsof0.02or0.04ppmfor 1HNMRspectraandthesignalineachbinisintegrated(Vignolietal.,2018).Binningthe dataallowsmultivariatemethodstoidentifytheregionsoftheNMRspectrathataremost responsibleforthevariancewithinthedataset(Karaman,2017).With 1HNMRspectraof polarmetabolites,theregionbetween4.7and4.9ppmistypicallyexcludedfromanalysis becausethisregionmayaddvariancetothedataduetoresidualwatersignals,andthe regionsoutsideof0.5 10ppmareexcludedfromanalysisastheseregionsarecomprised ofmostlynoise(Kimetal.,2016).Datascalingtoreducesample-to-samplevariationis oftencarriedoutbynormalizationtototalNMRspectralarea,wheretheintegratedvalue ofonebinoftheNMRspectrumisdividedbythesumoftheintegratedvaluesofallthe spectralbinsinonespectrum(Zachariasetal.,2018).Next,metabolitessuchas carbohydrates,aminoacids,organicacids,alcohols,osmolytes,andnucleotidesare identifiedby1D 1Hand2DNMRspectroscopy(Everett,2015;Guetal.,2019;Watanabe etal.,2015).Therelativequantitationofmetabolitescanbecompletedasthesignal

intensityofan 1HNMRpeakisdirectlyproportionaltotheconcentrationandnumberof protonsthatcontributetothatparticularresonancesignal(Kumaretal.,2014).Absolute quantitationof 1HNMRpeakscanbeperformedbymanuallyaddingaspecific concentrationofoneinternalstandard(NaganaGowdaetal.,2018),byaddinganexternal standardinacoaxialNMRtube(Gardneretal.,2018),orusingtheElectronicREference ToaccessIn-vivoConcentrationmethodtoproduceanartificialreferenceNMRsignal (Akokaetal.,1999).MSanalysisalsohasrawdatapreprocessingstepstosimplifyand convertaspectrumintopeaksforfurtherprocessingwithmultivariatetools.Thisincludes centroidingtochangeeachpeaktoonedatapointwithamass-to-chargeandintensity value,aswellasfilteringmethodstoremovethebaselineandmeasurementnoise (KatajamaaandOresic,2007).Peakdetectionanddeconvolutionstepsareimplementedto assigndifferentionsthatbelongtothesamemetaboliteortoseparatepeaksfrom coelutingcompounds(Nietal.,2016).ApreprocessingstepforLC-MSorGC-MSdata includesaligningthespectraalongthechromatographicruntimeasshiftsinretention timemayoccurduetocolumnaging,thesamplematrix,orchangesintemperature, pressure,orthemobilephase(Watrousetal.,2017).Peakextractionandpeak identificationmustbecompletedtoquantifymetabolites(Lietal.,2016).MS-based metabolomicsalsohasdatanormalizationmethodstoreducesample-to-samplevariability suchasMStotalusefulsignalnormalizationorprobabilisticquotientnormalization (Gagnebinetal.,2017).

Themultivariatestatisticalanalysisthatisappliedinenvironmentalmetabolomicsstudies isperformedtosimplifyandfacilitatedataanalysisintheoftenlargedatasetsfromNMR spectroscopyorMS.Thecommonlyusedmethodofprincipalcomponentanalysis(PCA) isanunsupervisedstatisticalmethodthathasnobiasorknowledgeaboutthetreatment groupofasample(Leveretal.,2017).PCAisusedtodeterminegeneralpatternsand visualdifferencesinthemetabolicprofilesofdifferenttreatmentgroups(Guetal.,2019). TheoutcomeofaPCAmodelisascoresplotwhereeachpointinatwo-dimensionalor three-dimensionalspaceisthespectrumofasinglesample(Huetal.,2017).Thefirstfew principalcomponentsexplainmostofthevariationinthedatasetandmostaccurately reflectthecontentofthedata(Leveretal.,2017).TheclusteringofsamplesinthePCA scoresplotsuggeststhatthosesampleshavesimilarfeaturesintheirmetabolome(Hu etal.,2017).Toeasilyidentifygroupmembershipandvisualizethedata,anaveraged PCAscoresplotismadewherethescoresofallthespectraofonetreatmentgroupare averagedandplottedasaveragevalueswithstandarderror(Wangetal.,2016).PCA loadingsplotsindicatetheregionsofthespectrathatcontributetothevariationineach principalcomponentandhenceindicatethemetabolitesthatcontributetothemetabolic variationbetweentreatmentgroups(Leeetal.,2016).

Supervisedstatisticalmethodssuchaspartialleastsquares(PLS),includingPLSregression (PLS-r),PLSdiscriminantanalysis(PLS-DA),andorthogonal(O)-PLS-DAmodels,

usesampleclassasafactortogeneratepredictionsaboutthedata(Davisetal.,2017; Tryggetal.,2007).Thedatafromclassifiedsamplesarethetrainingset,andthesedataare analyzedandusedtopredictthedatafromunclassifiedsampleswhicharethetestset(de CarvalhoRochaetal.,2018).PLSmodelsrequirepropervalidationbecausethese supervisedtechniquesmayoverfitthedataandresultinthefalseappearanceofgroup separation(Saccentietal.,2014).Forthisreason,validationtechniquesarerequiredto determinetheoptimalnumberofPLScomponentstoavoidoverfittingthedata(Franitza etal.,2018;Lietal.,2018a).Theseincludecross-validationmethodssuchasleave-one-out crossvalidation,K-foldcrossvalidation,MonteCarlocrossvalidation,anddoublecross validation(Lietal.,2018a).Thereisalsoanindependentvalidationwhereadifferentdata setisusedtotestthepredictiveabilityofthePLSmodel(Franitzaetal.,2018).To determinethestatisticalsignificanceofthegeneratedPLSmodel,apermutationtestis frequentlyusedwhichgivesrandomgroupassignmentstoevaluatethepredictionaccuracy (Zhangetal.,2017b).Forexample,aPLS-DAmodelwascreatedfromdatacollectedwith 1HNMRspectroscopyandunderwentsevenfoldcrossvalidationand200permutationtests todistinguishthemetabolomesofcontrolratsfromratsexposedtofineparticulatematter (Zhangetal.,2017b).

Inunivariatestatisticalanalysis,theindividualmetabolitesareidentified,andtheir absoluteorrelativequantificationiscompleted.NMRspectroscopyhasmultiplemethods formetaboliteidentification.In 1HNMR-basedmetabolomics,manymetabolitescanbe assignedfromthechemicalshiftandpeakmultiplicity(Cappelloetal.,2018).The MadisonMetabolomicsConsortiumDatabaseisachemicalshiftdatabasethatisoften usedinmetabolomicsthathasboththeoreticalandexperimentaland1Dand2DNMR dataaswellasMSdata(Cuietal.,2008).Metaboliteidentitiescanbevalidatedwith2D NMRmethodsbyusingsoftwarepackagestocompareachemicalshiftdatabaseof2D NMRspectratoregionsof2DNMRspectraofbiologicalsamples(Nagatoetal.,2015; Yuketal.,2013).The2DNMRspectrausedformetaboliteidentificationaremainly 1H-1Htotalcorrelationspectroscopyand 1H-13Cheteronuclearsinglequantumcoherence spectroscopy(HSQC)(Xiaetal.,2008).IdentificationofunknownsusingMScanbe accomplishedbymatchinghighaccuratemassexperimentaltandemmassspectraofan unknownmetabolitetothebestcorrespondingaccuratemassandtandemmassspectral fragmentationpatternofalllikelyisomericstructuresfromametabolitedatabase(Boiteau etal.,2018;Duhrkopetal.,2015).

Metabolitedatacanbedisclosedbyreportingtheabsoluteconcentrationsof metabolitesacrossalltreatmentgroupsorbyreportingthefoldchangeofmetabolites inanexposedgrouprelativetoacontrolgroup(Go ´ mez-Canelaetal.,2016).To determineifametabolitelevel thatwasobtainedfromabsolutequantificationor relativequantificationhasastatisticallysignificantchangebetweentwoindependent treatmentgroups,themainunivariatestatisticaltestsaretheStudent’s t-testfordata

withanormalitydistribution(Mosleyetal.,2018)andtheWilcoxon Mann Whitney testfordatathatarenotnormallydistributed( FayandProschan,2010;Pradhanetal., 2016).Forexample,aStudent’s t-testwasappliedtoliquidchromatographytandem massspectrometry(LC-MS/MS)datatodeterminesignificantchangesinmetabolitesof theskinmucusoffatheadminnows P promelas aftera21dayexposuretotreated wastewatereffluent(Mosleyetal.,2018).Whenmorethantwogroupsarebeing comparedunderthenormalitydistribution,ananalysisofvariance(ANOVA)testwith posthocanalysiscanbeusedtodeterminesignificantlydifferentmetabolitesfor multiplegroupmeans(Fuetal.,2019;Kokushietal.,2017;Renetal.,2015).For instance,one-wayANOVAwithTukey’sandFisher’sleastsignificantdifferencetests wereusedtodeterminethestatisticaldifferencesofmetabolitechangesinzebrafish D.rerio embryosfromexposuretofiveconcentrationsoftriclosan( Fuetal.,2019).

Theresultofallthesestatisticaltestsisa P -value,andifthis P-valueisbelowa significancelevelthatisgenerallytakentobe0.05,thenthealternativehypothesisthat thereisadifferencebetweentwoormoregroupmeansisaccepted(Saccentietal., 2014).Likewise,ifthe P-valueisbelowtheselectedsignificancelevelof0.05,thenthe nullhypothesisthatthereisnosignificantdifferencebetweentwogroupsisrejected (Saccentietal.,2014).

4.6Biologicalinterpretationoftheresults

Understandingtheimplicationsofmetabolitechangesischallengingbecausemetabolites areinterconnectedandcanbepartofseveralmetabolicpathways(Caspietal.,2015). OnlinedatabasesofmetabolicdataincludetheKyotoEncyclopediaofGenesand Genomes(KEGG)PathwayDatabasewhichshowsmanymetabolicpathwaysandthe individualmetabolitesineachstepofapathway(Kanehisaetal.,2016).Theonline databaseMetaboAnalyst4.0hasseveraldatainterpretationtoolsforbothNMR spectroscopyandMSdata,suchasmetabolitepathwayanalysis(MetPA)wherethe changesoftheindividualmetabolitesarecorrelatedtometabolicpathwayinformation (Chongetal.,2018).Theuserinputsalistofmetabolitesandtheirabundancesfromtwo treatmentgroupsandselectsoneofthe21modelorganismswhichMetaboAnalyst4.0has metabolitepathwaylibraryinformationfromadatabasesuchastheKEGG(Xiaand Wishart,2010).Next,theparametersforpathwayanalysisarespecified,whichincludes thealgorithmforpathwayenrichmentanalysisandthealgorithmfortopologicalanalysis (XiaandWishart,2010).Theoutputispresentedasamap-stylenetworkvisualization systemandasalistofmetabolicpathwaysinorderoftheirstatisticalsignificancebetween thetwotreatmentgroups(XiaandWishart,2011).Forinstance,metabolicpathway analysisperformedusingMetPAdeterminedthatninemetabolicpathwayswere significantlyalteredinthesoilnematode Caenorhabditiselegans fromexposureto sublethalconcentrationsoftitaniumdioxidenanoparticles(Ratnasekharetal.,2015).

Figure1.3

WorkflowIIofagenericenvironmentalmetabolomicsstudy:fromdatapreprocessingto biologicalinterpretationwithmetabolitepathwayanalysis.

Fig.1.3 illustratestheworkflowinvolvedinanenvironmentalmetabolomicsstudy, beginningfromdatapreprocessingtobiologicalinterpretationofthedatausingmetabolite pathwayanalysistools.

5.Exposuretocontaminantmixtures

Contaminantsexistintheenvironmentascomplexmixtures,andthereforeefforts arebeingmadetoapplyenvironmentalmetabolomicstechniquestostudyexposures tocontaminantmixturesorenvironmentalsamplessuchaswastewatertreatment

Fundamentalsofenvironmentalmetabolomics19

planteffluent(VanMeteretal.,2018;Wagneretal.,2019;Zhenetal.,2018).

Environmentalmetabolomicsstudiesofcontaminantmixturesinvestigatethemetabolic responsefromthecombinedsublethalexposureofcontaminants(Ahmedetal.,2019; VanMeteretal.,2018).Itisbeneficialtoevaluatethemodeofactionoftheindividual contaminantsthatcomposeamixtureoftwoormorecontaminantstomoreeffectively assessanyinteractiveimpactsonthemetabolome(Altenburgeretal.,2018).For example,thejuvenilegreenfrogs Lithobatesclamitans wereexposedtofivepesticides assingle,double,ortriplepesticidemixtures,andmetabolomicsanalysiswithGC-MS revealeddifferentchangesinmetabolitesandmetabolicpathwaysbetweenthe treatments(VanMeteretal.,2018).Theriskassessmentofacomplexmixturethatmay haveunknownconstituentsorthathastensorhundredsofcontaminantsislikelybetter achievedbyevaluatingthetoxicityofthemixtureasawhole(Kienzleretal.,2016).

Forthisreasonenvironmentalmetabolomicsstudieshaveexaminedthetoxicityof environmentalsamplessuchaswastewatertreatmentplanteffluent,ambientfine particulatematter,andcontaminatedsediments,andthisisconsideredtobeawhole mixtureapproach(Berlioz-Barbieretal.,2018;Chiuetal.,2017;Mosleyetal.,2018; Songetal.,2019;Zhenetal.,2018 ).Forexample,nanoliquidchromatographycoupled toquadrupole-time-of-flight-massspectrometry(QTOF-MS)showedthatthe metabolomeofthebenthicinvertebrate Chironomusriparius wasimpactedwithmostly changesinlipidmetabolismfrombothfieldandlaboratoryexposuretowastewater treatmentplanteffluents(Berlioz-Barbieretal.,2018).Understandinganorganism’s metabolicresponseafterexposuretocomplexenvironmentalsamplesisachallenge becausethemolecular-levelresponsestotheindividualcontaminantsarenot alwaysknown.Also,thereareotherenvironmentalfactorsthatmayimpactthe metabolicresponseandthebioavailabilityofcontaminantssuchasdissolved oxygenconcentration,food,temperature,salinity,pH,andorganicmattercontent (Campilloetal.,2019;Garreta-Laraetal.,2018;Kovacevicetal.,2019;Mishra etal.,2019 ).

6.Summaryandenvironmentalbiomonitoringefforts

Environmentalmetabolomicshasmadegreatprogresssinceoneofitsfirst applicationsin1997using 1HNMRspectroscopytoanalyzechangesinendogenous metabolitesofearthwormexposedtocopper(Gibbetal.,1997).Sincethen,there havebeendetailedcharacterizationsofthemodeofactionofindividualcontaminants intargetspeciesusingadvancedanalyticaltechniquessuchas2Dgaschromatography coupledtotime-of-flight-massspectrometry(TOF-MS)(Liuetal.,2018)and2D 1H-13CHSQCNMR(Yuketal.,2013 ).Metabolomicstechniquesarenowbeingused todetectmolecular-levelchangesintargetorganismsfromexposureto environmentallyrelevantconcentrationsofcontaminantsintheng/Ltolow mg/L

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.