Environmental assessment of renewable energy conversion technologies paris a. fokaides - Read the eb

Page 1


https://ebookmass.com/product/environmental-assessment-of-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Environmental Assessment of Renewable Energy Conversion Technologies Paris A. Fokaides

https://ebookmass.com/product/environmental-assessment-of-renewableenergy-conversion-technologies-paris-a-fokaides-2/

ebookmass.com

Renewable Energy for Sustainable Growth Assessment 1st Edition Nayan Kumar

https://ebookmass.com/product/renewable-energy-for-sustainable-growthassessment-1st-edition-nayan-kumar/

ebookmass.com

Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies Jingzheng Ren (Eds)

https://ebookmass.com/product/renewable-energy-driven-futuretechnologies-modelling-applications-sustainability-and-policiesjingzheng-ren-eds/ ebookmass.com

Postman for API Testing: A Beginner's Guide: Learn to test APIs like a pro with Postman with Real-World Examples and Step-by-Step Guidance Parvin

https://ebookmass.com/product/postman-for-api-testing-a-beginnersguide-learn-to-test-apis-like-a-pro-with-postman-with-real-worldexamples-and-step-by-step-guidance-parvin/ ebookmass.com

Clinical Cases in Paramedicine 1st Edition Sam Willis

https://ebookmass.com/product/clinical-cases-in-paramedicine-1stedition-sam-willis/

ebookmass.com

Unharmed (Harper Security Ops Book 13) A.K. Evans

https://ebookmass.com/product/unharmed-harper-security-opsbook-13-a-k-evans/

ebookmass.com

Co-Production of Public Services and Outcomes 1st ed. Edition Elke Loeffler

https://ebookmass.com/product/co-production-of-public-services-andoutcomes-1st-ed-edition-elke-loeffler/

ebookmass.com

Investment Banking Workbook : 500+ Problem Solving Exercises & Multiple Choice Questions 3rd Edition Joshua Rosenbaum & Joshua Pearl & Joseph Gasparro

https://ebookmass.com/product/investment-banking-workbook-500-problemsolving-exercises-multiple-choice-questions-3rd-edition-joshuarosenbaum-joshua-pearl-joseph-gasparro/

ebookmass.com

First Aid for the USMLE Step 1 2021 Tao Le

https://ebookmass.com/product/first-aid-for-the-usmle-step-1-2021-taole/

ebookmass.com

Overcoming the Oppressors: White and Black in Southern Africa 1st Edition Robert I. Rotberg

https://ebookmass.com/product/overcoming-the-oppressors-white-andblack-in-southern-africa-1st-edition-robert-i-rotberg/

ebookmass.com

Environmental Assessmentof RenewableEnergy Conversion Technologies

Thispageintentionallyleftblank

Environmental Assessmentof RenewableEnergy Conversion Technologies

SchoolofEngineering,FrederickUniversity,Nicosia, Cyprus

ANGELIKIKYLILI

DepartmentofEnvironment,MinistryofAgriculture, RuralDevelopmentandEnvironment,Cyprus

PHOEBE-ZOEGEORGALI

SchoolofEngineering,FrederickUniversity,Nicosia, Cyprus

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-817111-0

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: JessicaMack

EditorialProjectManager: AliceGrant

ProductionProjectManager: SruthiSatheesh

CoverDesigner: MilesHitchen

TypesetbyMPSLimited,Chennai,India

Listofcontributorsxi Abouttheeditorsxiii

SectionA

1.Introduction:environmentalassessmentofrenewableenergyand storagetechnologies:currentstatus3 PanagiotaKonatziiandParisA.Fokaides References8

SectionB

2.Lifecycleanalysisofphotovoltaicsystems:areview11 EffrosyniGiamaandPhoebe-ZoeGeorgali

2.1 Introduction:EuropeanUnionroadmapforenergyandcarbonemissions11

2.2 PVsystemdescription13

2.3 Themethodology:lifecycleanalysis19

2.4 Inventoryanalysis19

2.5 Impactassessment21

2.6 Conclusions furtherresearch28 Nomenclature32 References33

3.Lifecycleassessmentreviewinsolarthermalsystems37 MariaMilousiandManolisSouliotis

3.1 Introduction37

3.2 Building-integratedsolarthermalcollectors38

3.2.1 Flatplatesolarthermalcollectors38

3.2.2 Evacuatedtubesolarthermalcollectors42

3.3 Building-addedsolarthermalsystems44

3.3.1 Flatplatesolarthermalcollectors44

3.4 Evacuatedtubesolarthermalcollectors49

3.5 Conclusions50

Nomenclature51 References51

4.Environmentalassessmentofwindturbinesandwindenergy55 AngelikiKylili

4.1 Introduction55

4.2 State-of-the-artonwindturbinesandwindenergy56

4.3 Lifecycleinventoryofwindturbinesandwindenergy62

4.4 Lifecycleassessmentofwindturbinesandwindenergy69

4.4.1 Keyparametersintheimplementationoflifecycleassessment studies69

4.4.2 Significantfindingsfrompreviouslifecycleassessmentstudies70

4.5 Criticalreviewontheenvironmentalassessmentofwindturbinesand windenergy76

4.5.1 Sharedchallengesrelatedtolifecycleassessment77

4.5.2 Technology-specificchallengesrelatedtolifecycleassessment78 References81

5.Environmentalassessmentofbiomassthermochemicalconversion routesthroughalifecycleperspective85 KyriakosPanopoulos,GiorgosKardaras,TzoulianaKraia andMichaelBampaou

5.1 Introduction85

5.2 Lifecycleassessmentofbiomassconversionroutes87

5.2.1 Goalandscopedefinition88

5.2.2 Lifecycleinventory90

5.2.3 Lifecycleimpactassessment91

5.2.4 Interpretationofresults92

5.3 Lifecycleassessmentofbiomassthermochemicalconversionroutes94

5.3.1 Conversionofbiomasstobiofuelsthroughpyrolysis94

5.3.2 Conversionofbiomasstosyngasviagasification98

5.3.3 Overviewofselectedstudies101

5.4 Issuesaffectingthecomparabilityoflifecycleassessmentstudies115

5.4.1 Keyperformanceindicators116

5.4.2 Productenvironmentalfootprintassessment120

5.5 Conclusions121 References122 Furtherreading127

6.Environmentalassessmentofbiomasstobiofuels:biochemical conversionroutes129

6.1 Introduction129

6.2 State-of-the-artoftheproductiontechnologies132

6.2.1 Fermentation132

6.2.2 Anaerobicdigestion136

6.3 Calculationofenvironmentalimpactsvialifecycleassessment140

6.3.1 Definitionofthegoalandscope141

6.3.2 Lifecycleinventoryanalysis142

6.3.3 Lifecycleimpactassessment142

6.3.4 Interpretation145

6.4 Keyperformanceindicatorsforlifecycleassessment145

6.4.1 Fermentation146

6.4.2 Anaerobicdigestion147

6.5 Productenvironmentalfootprint150

6.6 Conclusions152 Acknowledgements153 References153

7.Environmentalassessmentofbiomass-to-biofuelsmechanical conversionroutes(pelleting,briquetting)157

7.1 Introduction157

7.2 Pelletingandbriquetting159

7.2.1 Pelleting/briquettingfeedbiomass159

7.2.2 Pellets/briquettesclassification160

7.2.3 Processdescription160

7.3 Lifecycleassessment162

7.3.1 Generallifecycleassessmentframework163

7.3.2 Lifecycleassessmentcomponentsinbiomassdensificationsystems166

7.3.3 Previousworkonlifecycleassessmentofbiomassdensification systems168

7.4 Conclusions178 References179

8.Lifecycleassessmentofgeothermalpowertechnologies181

8.1 Introduction181

8.2 Technologiesforpowergeneration184

8.2.1 Dry-steamtechnology184

8.2.2 Single-flashtechnology186

8.2.3 Multistageflashtechnologies188

8.2.4 Binarycycletechnology189

8.2.5 Enhancedgeothermalsystems190

8.3 Lifecycleassessment:methodologicalaspects191

8.3.1 Goalandscopedefinition191

8.3.2 Lifecycleinventory:keyaspectsandparameters192

8.3.3 LifeCycleInventory:coremodulephasesandactivities194

8.3.4 Lifecycleinventory:handlingmultifunctionalprocesses198

8.3.5 Lifecycleimpactassessment200

8.3.6 Lifecycleinterpretation:reportingLCAresults201

8.4 Casestudies202

8.4.1 Hot-spotanalysis202

8.4.2 Comparativeanalysis204 Acknowledgments206 References207

SectionC

9.Environmentalimpactassessmentofhydropowerstations213 M.A.ParvezMahmudandNahinTasmin

9.1 Introduction213

9.2 Materialsandmethods216

9.3 Resultsanddiscussion219

9.3.1 Environmentalprofilesofthehydropowerplants219

9.3.2 Metal-andgas-basedemissionevaluation224

9.3.3 Greenhouse-gasemissionestimation225

9.3.4 Uncertaintyanalysis225

9.4 Conclusion227 References228

10.Astakeholderimpactanalysisoftheproductionofthe energyvectorhydrogen231

10.1 Introduction231

10.2 Methodologicalframeworkandbackground234

10.3 Data socialhotspotdatabase235

10.4 Hydrogenproductionsimplifiedprocesschain systemboundaries ofthehydrogenprocesschain236

10.5 Results socialrisksofthestakeholders237

10.6 Conclusion244 References245

11.Environmentalimpactassessmentsofcompressedair energystoragesystems:areview249 MdMustafizurRahman,AbayomiOlufemiOni,EskinderGemechu andAmitKumar

11.1 Introduction249

11.2 Lifecycleassessment252

11.3 State-of-the-artcompressedairenergystoragetechnologies254

11.3.1 Conventionalcompressedairenergystorage254

11.3.2 Adiabaticcompressedairenergystorage254

11.3.3 Liquidairenergystorage255

11.4 Lifecycleassessmentofcompressedairenergystoragesystems258

11.4.1 Overviewoflifecycleassessmentstudiesoncompressed airenergystoragesystems258

11.4.2 Discussiononhowlifecycleassessmentisusedin compressedairenergystoragestudies260

11.5 Comparisonofenergystoragetechnologies269

11.5.1 Greenhousegasemissions269

11.5.2 Landfootprint271

11.6 Conclusionsandrecommendations272 Acknowledgments273 References273

12.Environmentalimpactassessmentofbatterystorage277 M.A.ParvezMahmudandNahinTasmin

12.1 Introduction277

12.2 Batterystoragemarketsandproductionoverview280

12.3 Methodology283

12.4 Results288

12.4.1 ImpactsofLi-ionbatteries288

12.4.2 ImpactsofNiMHbatteries289

12.4.3 ImpactsofNaClbatteries292

12.5 Discussion294

12.5.1 Impactoutcomecomparison294

12.6 Limitations297

SectionD

13.Environmentalassessmentofrenewableenergyandstorage technologies:futurechallenges305 PanagiotaKonatziiandParisA.Fokaides

Listofcontributors

MichaelBampaou

ChemicalProcessandEnergyResourcesInstitute(CPERI),CentreforResearchand TechnologyHellas(CERTH),Thessaloniki,Greece

EliasChristoforou

SchoolofEngineeringandAppliedSciences,FrederickUniversity,Nicosia,Cyprus

ParisA.Fokaides

SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus

GuillermoGarcia-Garcia

DepartmentofChemicalandBiologicalEngineering,TheUniversityofSheffield, Sheffield,UnitedKingdom;DepartmentofAgrifoodSystemEconomics,Centre ‘Camino dePurchil’,InstituteofAgriculturalandFisheriesResearchandTraining(IFAPA), Granada,Spain

EskinderGemechu

FacultyofEngineering,DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada

Phoebe-ZoeGeorgali

SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus

EffrosyniGiama

DepartmentofMechanicalEngineering,AristotleUniversityofThessaloniki,Thessaloniki, Greece

GiorgosKardaras

ChemicalProcessandEnergyResourcesInstitute(CPERI),CentreforResearchand TechnologyHellas(CERTH),Thessaloniki,Greece;DepartmentofMechanical Engineering,UniversityofWesternMacedonia,Greece

PanagiotaKonatzii

SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus

TzoulianaKraia

ChemicalProcessandEnergyResourcesInstitute(CPERI),CentreforResearchand TechnologyHellas(CERTH),Thessaloniki,Greece

AmitKumar

FacultyofEngineering,DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada

AngelikiKylili

DepartmentofEnvironment,MinistryofAgriculture,RuralDevelopmentand Environment,Cyprus

PaolaLettieri

DepartmentofChemicalEngineering,UniversityCollegeLondon,London, UnitedKingdom

M.A.ParvezMahmud

SchoolofEngineering,DeakinUniversity,Geelong,VIC,Australia

StephenMcCord

DepartmentofChemicalandBiologicalEngineering,TheUniversityofSheffield, Sheffield,UnitedKingdom

MariaMilousi

DepartmentofChemicalEngineering,UniversityofWesternMacedonia,Koila,Greece

AbayomiOlufemiOni

FacultyofEngineering,DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada

KyriakosPanopoulos

ChemicalProcessandEnergyResourcesInstitute(CPERI),CentreforResearchand TechnologyHellas(CERTH),Thessaloniki,Greece

AndreaPaulillo

DepartmentofChemicalEngineering,UniversityCollegeLondon,London, UnitedKingdom

MdMustafizurRahman

FacultyofEngineering,DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada

HolgerSchlör

ForschungszentrumJülich,Jülich,Germany

ManolisSouliotis

DepartmentofChemicalEngineering,UniversityofWesternMacedonia,Koila,Greece

AlbertoStriolo

SchoolofChemical,BiologicalandMaterialsEngineering,UniversityofOklahoma, Norman,OK,UnitedStates

PeterStyring

DepartmentofChemicalandBiologicalEngineering,TheUniversityofSheffield, Sheffield,UnitedKingdom

NahinTasmin

DepartmentofMechanicalEngineering,RajshahiUniversityofEngineering& Technology,Kazla,Rajshahi,Bangladesh

SandraVenghaus

ForschungszentrumJülich,Jülich,Germany;SchoolofBusinessandEconomics,RWTH AachenUniversity,Aachen,Germany

Abouttheeditors

Dr.-Ing.ParisA.Fokaides isanAssociate ProfessorattheSchoolofEngineeringofFrederick University,Cyprus,andaresearchmentorat KaunasUniversityofTechnology,Lithuania.In FrederickUniversity,Parisislecturingthecourses ofFluidMechanicsandHeatTransferatthe DepartmentofMechanicalEngineering,aswellas thecoursesofSustainableEnergyResources,and EnergyDesignofBuildingsintheMasters ProgrammeofEnergyEngineering,whichhealso coordinates.ParisholdsaPhDfromtheUniversityofKarlsruhe,in GermanyinthefieldofProcessEngineeringandaDiplomain MechanicalEngineeringofAristotleUniversityinThessaloniki,Greece. ParisresearchisrelatedtothepromotionofIndustry4.0practicesforthe assessmentoftheenergyandsustainabilityperformanceofenergytechnologiesandsmartbuildings,aswellasthefieldofdigitizationandanalysisof energyrelatedprocesses.ParisleadstheSustainableEnergyResearch GroupatFrederickUniversity,anISO9001certifiedself-fundedresearch teamconsistingof10FTEresearchers,involvedinnumerousEuropean andnationalfundedR&Iactivities.ParisisalsoEditorinChiefofthe InternationalJournalofSustainableEnergy,andmemberinnumerous editorialboardsofscientificjournals.Asofmid-22,Parishasauthoredand co-authoredover125Scopusindexedstudies,andhasanh-indexof30.

Dr.AngelikiKylili isanEnvironmentOfficerat theDepartmentofEnvironmentoftheMinistryof Agriculture,RuralDevelopmentandEnvironment oftheRepublicofCyprus.ShehasstudiedBSc EnvironmentalScienceandMScEnergyand EnvironmentattheUniversityofLeeds,United Kingdom,andhasobtainedherPhDinCivil EngineeringwiththeSustainableEnergyResearch Group(SERG)atFrederickUniversity,Cyprus. HerresearchisprimarilyconcernedwithLifeCycle

Assessmentandtheexploitationofrenewableenergysources.Sheisthe authorandco-authorof37publicationsininternationalpeer-reviewed journalsand4bookchapters,withanh-indexof20.Hercurrent dutiesasanEnvironmentOfficerconcernthedevelopmentandeffective implementationofthenationalandEuropeanpolicyframeworkforthe protectionoftheenvironment.Angelikiisanationalfocalpointfor theTransport,HealthandEnvironmentPan-EuropeanProgramme (THEPEP)oftheUnitedNationsEconomicCommissionforEurope (UNECE),andsheisalsoresponsibleforfollowingthroughandproviding relevantnationalcontributionstotheworkoftheUnitedNations EnvironmentProgramme(UNEP)andtheCommitteeonEnvironmental PolicyofUNECE.

Ms.Phoebe-ZoeGeorgali isaMechanical Engineer(BScMechanicalEngineering)graduate fromtheTechnologicalEducationInstituteof Chalkida,Greece,2012andEnergyEngineerpostgraduate(MScSustainableEnergySystems)at FrederickUniversity,Cyprus,2017.Since September2020,Ms.GeorgaliisaPhDCandidate atFrederickUniversityasamemberofthe SustainableEnergyResearchGroup(SERG), engagingwithstate-of-the-artresearchregarding sustainableandwasteenergytechnologies,aswell asLCAofproductsandservices.

SECTIONA

Thispageintentionallyleftblank

CHAPTER1

Introduction:environmental assessmentofrenewableenergy andstoragetechnologies:current status

Content References8

Weliveinanerawherethetermrenewableenergyhasbeenlinkedto environmental-friendlyandsustainablepracticesforconvertingnatural resourcestoendenergy.Countriesandorganizationsaroundtheworld, oneafteranother,setquantitativetargetsforpromotingenergyproductionwiththeuseofrenewableenergysources.TheEuropeanUnion (EU)isapioneerinthisfield,withambitiousgoalsdatingbacktothe early2000s,whicharecurrentlybeingremarkablyachieved.TheinfamousEUtargetofthetriple20for2020withthereferenceyearof2005, thatis,20%energysavings,20%promotionoftheuseofrenewable energysources,and20%reductionofgreenhousegases(GHG),wasnot onlyachievedbutgavewaytoamoreambitiousgoalfor2030and2050, resultingfromtheGreenDeal(EuropeanEnvironmentalAgency,2021). ThememberstatesoftheEUaremovingfasttowardsachievingthe ambitiousgoalof55%energysavingsby2030,inaccordancewiththe Fitfor55policyframework(EuropeanParliament,2021).Inadditionto theambitiousEuropeanprogram,theUnitedNationsismovingfastwith theSustainableDevelopmentGoalsprogram,aschemewithinwhich optimisticsustainabilitygoalsshouldbeachievedin17areas,including greenandsustainableenergy,aswellassustainablecitiesandsocieties (UnitedNations,2021). 3

Undertheseconditions,thepromotionofrenewableenergysources andrelatedtechnologiesconstitutesthemainstreamintheenergyproductionfield.Thecontinuousdevelopmentthatprevailsinthedesignand implementationofnewrenewableenergyprojectsworldwideisaccompaniedbybothresearchactivitiestodevelopmoreenergy-efficientapplications,butalsoenvironmentallysmartersolutions(Christoforouand Fokaides,2016).Inevitably,thepointhasbeenreachedwheretheterm renewableenergy,initself,isnotapanacea,theanswertoeverysolution, butshouldbeevaluatedandjudged,withobjectivecriteria(Kylilietal., 2016).Atechnologicalapplication,forexample,fortheconversionof solarenergyintoelectricity,whichrequireslargevolumesofrawmaterial, isnotenvironmentallypreferable,comparedtoanothersolution,which withthesamedegreeofefficiencybutwithmuchsmallerquantitiesof rawmaterial,canconvertthesameamountofsolarenergyintoanother usefulform(Souliotisetal.,2018).Therefore,thequestionofquantifying theenvironmentalimpactoftheuseofrenewableenergysourcesreaches apointwhereitcannolongerbeansweredqualitativelybutneedstobe substantiated,quantitativeanswers.

Theanswertothequestionofhowwecanquantifytheenvironmental impactofrenewableenergysourcesisfoundinlifecycleanalysis.Lifecycle analysisisawell-tested,well-establishedmethodologythatcanquantifythe environmentalimpactofanyproductorservicethroughoutitslifecycle. Fromthebeginningofthe1990s,whenthismethodappeared,untilitsfirst standardizationin1996,today,worldwide,itisconsideredthemostcomprehensivemethodologyforquantifyingtheenvironmentalimpact (Arnaoutakisetal.,2019).Since1996anditsstandardizationthroughthe ISO14040seriesstandards,lifecycleanalysishasbeenthemostwidely usedmethodofdeterminingenvironmentalimpact(Christoforouetal., 2016).ISO14040:2006describestheprinciplesandframeworkforlifecycle assessment(LCA),includingthedefinitionofthegoalandscopeofthe LCA,thelifecycleinventoryanalysis(LCI)phase,thelifecycleimpact assessment(LCIA)phase,thelifecycleinterpretationphase,reportingand criticalreviewoftheLCA,limitationsoftheLCA,therelationshipbetween theLCAphases,andconditionsfortheuseofvaluechoicesandoptional elements(ENISO14040,2006).Theenvironmentalanalysisofrenewable energysourcesisnoexceptioninrelationtotheenvironmentalburden determinationpracticesthatcanbefollowed.

Decision-makingonnewinstallationsinthefieldofenergyproductionandstorageusingsustainableenergyresourcesshouldbejustifiedon

specificquantitativeparameters.Giventhegrowingrateofinstallationof renewableenergyandstorageapplications,theintegralsustainabilityaspect oftheenvironmentalassessmentshouldalsobequantifiedinasimilar mannertothetechnicalandfinancialparameters(Fokaidesand Christoforou,2016).Therecentdevelopmentofcomprehensiveenvironmentalassessmenttoolssuchasthelifecycleassessment(LCA)andthe productenvironmentalfootprint(PEF),aswellasthescientificworkconductedinthesefields,allowsforthedevelopmentofajointframeworkto evaluatedifferenttechnologiesonacommonbasisconcerningtheirenvironmentalperspectives(Pommeretetal.,2017).Despitethenumerous scientificpublicationsinthisresearchfield,acompilationofthejustified knowledgeinthistopicisstillnotavailableforthescientificandengineeringcommunity(ChristoforouandFokaides,2018).

EffortstoglobalizetheenvironmentalassessmentofservicesandproductswiththeuseofLCAdatebackto2013.Particularly,inorderto promoteandestablishLCAasthemostcommonapproachfortheenvironmentalassessmentofservicesandproducts,theUnitedNationsinitiatedin2013theGlobalGuidanceonEnvironmentalLifeCycleImpact AssessmentIndicators(GLAM)initiative(UnitedNationsEnvironment Program(UNEP),2021).TheaimofUNEPGLAM,undertheUnited NationsEnvironmentalProgrammeumbrella,istoimproveworldwide agreementonenvironmentalLCIAindicators,deliveringtangibleandspecificrecommendationsfordiverseenvironmentalindicatorsandclassificationfactorsused(LCIA).TheUNEPGLAMprojectisimplementedby aninternationalexperttaskforce,whichdraftsandannouncesrecommendationsfordifferenttopicareas.Advancementsareoverviewedonaregularbasisbyexpertconsultationworkshopsandroundtablediscussions organizedamongexpertsandstakeholdersofthefield.TheUNEP GLAMexpertsarechosenfromfivedifferentpools,whichcoverallinterestedpartiesinthefieldofLCA,includingusersoflifecycleinformation, suchasgovernmentalandintergovernmentalorganizations,industries, NGOs,andmembersoftheacademia,lifecyclethinkingstudiesconsultants,andLCIAmethodsandtoolsdevelopers.Theinitiativewasorganizedinthreephases:

• Inthefirstphase,whichlastedfrom2013until2016,specificimpact categorieswerediscussedandquantified,includingGHGemissions andimpactsofclimatechange,healthimpactsoffineparticulatematter,humanhealthimpacts,landuserelatedimpactsonbiodiversity, wateruserelatedimpacts waterscarcityaswellascross-cuttingissues.

• Thesecondphase,whichwasimplementedfrom2017until2019, analyzedspecificimpactindicators,includingacidificationandeutrophication,landuseimpactsonsoilquality,ecotoxicitynatural resourcesandmineralprimaryresources,humantoxicityaswellas cross-cuttingissues.

• Thelastphase,whichstartedin2019andisstillongoing,aimedto establishacomprehensive,consistentandglobalenvironmentalLife CycleImpactAssessmentMethod(LCIA),buildingontherecommendationsfornineimpactcategoriesfromthefirsttwophases.

TheUNEPGLAMinitiativeisalsosupportedbytheJointResearch Centre(JRC)oftheEuropeanCommission,atdifferentlevels,participatinginmeetingsandprovidingscientificinputs,documentation,andtechnicalsupport,inordertofollowpossiblealignmentwithdifferent methods’ development(JointResearchCenter,EuropeanCommission, 2021).

Inthiscontext,thisbookattemptstopresentthestate-of-the-artin thefieldofenvironmentalvaluationofrenewableenergysources.By gatheringtheopinionoftheselectedacademicsinthefieldofenvironmentalvaluationofrenewableenergysources,thisvolumewishestopresentthelatestdevelopmentsinthefield.Specifically,thisbookhosts eleven(11)chapters,whichdealwiththefollowingareas:

• Photovoltaicsystems.

• Solarthermalsystemsforheatproduction.

• Windgenerators.

• Thermochemicalconversionofbiomassintobiofuels.

• Biochemicalconversionofbiomassintobiofuels.

• Mechanicalbiomassprocessing.

• Geothermalsystems.

• Hydroelectricsystems.

• Hydrogensystems.

• Storagesystemsusingbatteries.

Thepurposeofthisvolumeistopresentacomprehensiveoverviewof theenvironmentalassessmentofrenewableenergyconversionandstorage technologies.Thisbookaspirestocompilethestate-of-the-artinthefield oftheenvironmentalassessmentofrenewableenergyconversionandstoragetechnologiesandtodeliveracommongroundbasedonthekeyperformanceindicatorsforthecomparativeenvironmentalevaluationof nonfossilenergysourcesapplications.Thereadershipofthisbookwill haveaccesstojustifiedfigures,approaches,andtechniquesforthe

7 Introduction:environmentalassessmentofrenewableenergyandstoragetechnologies

comprehensiveenvironmentalassessmentforasignificantrangeofapplicationsofindividualsustainableenergyconversionandstoragetechnologies.

Theauthorsofthevolumemostlytriedtomaintainacommonstructureforallthechapters.Specifically,allthechapterspresentthetheoreticalbackgroundofthetechnology,whichisexamined,aswellasthe developmentsinthefield.Themainfindingsfromlifecycleinventories andlifecycleimpactassessmentsarethensummarized,andthechapters areconcludedwiththemainfindingsandfuturetrendsinthefield.The volumeisenrichedwithseveraldiagrams,whichaimatabetterunderstandingofboththephysicalfindingsandthetrendsofthesector,aswell aswithtablesthatsummarizethemainfindingsofdifferentstudiesinthe sector.

Thisvolumeprovidesthestate-of-the-artinbothnonfossilenergy conversionandstoragetechniquesaswellasintheirenvironmentalassessment.Thereadershipwillbeinformedaboutthegoalandscope,the analysisboundaries,theinventory,andtheimpactassessmentemployed fortheevaluationoftheseapplications.Also,thereadershipwillhavean overviewoftheenvironmentalfootprintofthesaidtechnologies.This volumeassemblesandcompilesinformationcurrentlyavailableindifferent sourcesconcerningtheenvironmentalassessmentofsustainableenergy technologies.Thisfeatureisofimportantsignificance,asitwillallowfor thecomparativeassessmentsofdifferenttechnologies,givenspecific boundaryconditionssuchastherenewablepotentialandotherspecific featuresofthediscussedtechnologies.Thechapterofthisvolumealso providestothereadershipamorecomprehensiveoverviewoftheentire energysupplychain,namelyfromproductiontostorage,byallowingthe considerationofdifferentproductionandstoragecombinationsbasedon theirenvironmentalassessment.Thebookaimstoexpandtheboundaries oftheenvironmentalanalysisofenergytechnologies.

Thisvolumeisintendedfornotonlybothresearchersinthefieldof environmentalassessmentofrenewableenergysourcesandforengineers inthefieldbutalsoforstudentsinthefieldsofenvironmentalengineering andotherrelevantfieldsofengineering.Specifically,anonexhaustivelist oftheaudiencetowhichthisvolumeisaddressedincludesenvironmental scientists,environmentalengineers,energyengineers,mechanicalengineers,electricalengineers,chemicalengineers,architects,andurbanplannersTheaimoftheauthorsofthevolumewastogivethegeneralpicture ofthefield,butalsotogivetheimpetusfornewworksaswellasfurther researchdevelopment.

References

Arnaoutakis,N.,Milousi,M.,Papaefthimiou,S.,Fokaides,P.A.,Caouris,Y.G.,Souliotis, M.,2019.Lifecycleassessmentasamethodologicaltoolfortheoptimumdesignof integratedcollectorstoragesolarwaterheaters.Energy182,1084 1099.

Christoforou,E.A.,Fokaides,P.A.,2016.Lifecycleassessment(LCA)ofolivehusktorrefaction.RenewableEnergy90,257 266.

Christoforou,E.,Fokaides,P.A.,2018.AdvancesinSolidBiofuels.Springer.

Christoforou,E.,Fokaides,P.A.,Koroneos,C.J.,Recchia,L.,2016.LifeCycle Assessmentoffirstgenerationenergycropsinaridisolatedislandstates:thecaseof Cyprus.SustainableEnergyTechnologiesandAssessments14,1 8. ENISO14040(2006).Environmentalmanagement.Lifecycleassessment.Principlesand framework.

EuropeanEnvironmentalAgency(2021).TrendsandProjectionsinEurope2021.EEA ReportNo.13/2021.Copenhagen:EuropeanEnvironmentAgency. EuropeanParliament(2021).Legislativetrainschedule.Fitfor55packagesunderthe EuropeanGreenDeal. , https://www.europarl.europa.eu/legislative-train/theme-aeuropean-green-deal/package-fit-for-55 . (accessed01.11.21.).

Fokaides,P.A.,Christoforou,E.,2016.Lifecyclesustainabilityassessmentofbiofuels. HandbookofBiofuelsProduction.WoodheadPublishing,pp.41 60. JointResearchCenter,EuropeanCommission(2021).Europeanplatformonlifecycle assessment. , https://eplca.jrc.ec.europa.eu/glam.html . (accessed01.11.21.).

Kylili,A.,Christoforou,E.,Fokaides,P.A.,2016.Environmentalevaluationofbiomass pelletingusinglifecycleassessment.BiomassandBioenergy84,107 117. Pommeret,A.,Yang,X.,Kwan,T.H.,Christoforou,E.A.,Fokaides,P.A.,Lin,C.S.K., 2017.Techno-economicstudyandenvironmentalassessmentoffoodwaste-based biorefinery.FoodWasteReductionandValorisation.Springer,Cham,pp.121 146. Souliotis,M.,Panaras,G.,Fokaides,P.A.,Papaefthimiou,S.,Kalogirou,S.A.,2018.Solar waterheatingforsocialhousing:energyanalysisandLifeCycleAssessment.Energy andBuildings169,157 171.

UnitedNations(2021).Sustainabledevelopment.Departmentofeconomicandsocial affairs. https://sdgs.un.org/goals (accessed01.11.21.).

UnitedNationsEnvironmentProgram(UNEP)(2021).Lifecycleinitiative. https://www. lifecycleinitiative.org/ (accessed01.11.21.).

SECTIONB

Thispageintentionallyleftblank

CHAPTER2

Lifecycleanalysisofphotovoltaic systems:areview

EffrosyniGiama1 andPhoebe-ZoeGeorgali2 1DepartmentofMechanicalEngineering,AristotleUniversityofThessaloniki,Thessaloniki,Greece 2SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus

Contents

2.1 Introduction:EuropeanUnionroadmapforenergyandcarbonemissions11

2.2 PVsystemdescription13

2.3 Themethodology:lifecycleanalysis19

2.4 Inventoryanalysis19

2.5 Impactassessment21

2.6 Conclusions furtherresearch28

Nomenclature32 References33

2.1Introduction:EuropeanUnionroadmapforenergyand carbonemissions

Oneofthemajordevelopmentsofthelastdecadeistheexistenceofa quiteexplicitregulatoryframework,settingspecificgoalsandproviding supportivelaws,directives,standards,methodologies,focusingonclean energy,minimizingenergyconsumption,andreducingCO2 emissions. ThemaintargetssetbytheEuropeanCommissioninchronologicalorder are(Giamaetal.,2020):

’ Targetof20 20 20(20%improvementinenergyefficiency,20% reductionofgreenhousegas(GHG)emissionscomparedwiththe 1990slevels,and20%increaseintheshareofrenewableenergytoat least20%oftheconsumption)

’ Revisedtargetfor2030(atleast40%reductioninGHGgasemissions comparedto1990slevels,atleast32%shareforrenewableenergy,at least32.5%improvementinenergyefficiency)

’ Nexttargetfor2050(85% 90%reductionofGHGgasemissions comparedto1990slevels)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.