https://ebookmass.com/product/environmental-assessment-of-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Environmental Assessment of Renewable Energy Conversion Technologies Paris A. Fokaides
https://ebookmass.com/product/environmental-assessment-of-renewableenergy-conversion-technologies-paris-a-fokaides-2/
ebookmass.com
Renewable Energy for Sustainable Growth Assessment 1st Edition Nayan Kumar
https://ebookmass.com/product/renewable-energy-for-sustainable-growthassessment-1st-edition-nayan-kumar/
ebookmass.com
Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies Jingzheng Ren (Eds)
https://ebookmass.com/product/renewable-energy-driven-futuretechnologies-modelling-applications-sustainability-and-policiesjingzheng-ren-eds/ ebookmass.com
Postman for API Testing: A Beginner's Guide: Learn to test APIs like a pro with Postman with Real-World Examples and Step-by-Step Guidance Parvin
https://ebookmass.com/product/postman-for-api-testing-a-beginnersguide-learn-to-test-apis-like-a-pro-with-postman-with-real-worldexamples-and-step-by-step-guidance-parvin/ ebookmass.com
Clinical Cases in Paramedicine 1st Edition Sam Willis
https://ebookmass.com/product/clinical-cases-in-paramedicine-1stedition-sam-willis/
ebookmass.com
Unharmed (Harper Security Ops Book 13) A.K. Evans
https://ebookmass.com/product/unharmed-harper-security-opsbook-13-a-k-evans/
ebookmass.com
Co-Production of Public Services and Outcomes 1st ed. Edition Elke Loeffler
https://ebookmass.com/product/co-production-of-public-services-andoutcomes-1st-ed-edition-elke-loeffler/
ebookmass.com
Investment Banking Workbook : 500+ Problem Solving Exercises & Multiple Choice Questions 3rd Edition Joshua Rosenbaum & Joshua Pearl & Joseph Gasparro
https://ebookmass.com/product/investment-banking-workbook-500-problemsolving-exercises-multiple-choice-questions-3rd-edition-joshuarosenbaum-joshua-pearl-joseph-gasparro/
ebookmass.com
First Aid for the USMLE Step 1 2021 Tao Le
https://ebookmass.com/product/first-aid-for-the-usmle-step-1-2021-taole/
ebookmass.com
Overcoming the Oppressors: White and Black in Southern Africa 1st Edition Robert I. Rotberg
https://ebookmass.com/product/overcoming-the-oppressors-white-andblack-in-southern-africa-1st-edition-robert-i-rotberg/
ebookmass.com
Environmental Assessmentof RenewableEnergy Conversion Technologies
Thispageintentionallyleftblank
Environmental Assessmentof RenewableEnergy Conversion Technologies
Editedby
PARISA.FOKAIDES
SchoolofEngineering,FrederickUniversity,Nicosia, Cyprus
ANGELIKIKYLILI
DepartmentofEnvironment,MinistryofAgriculture, RuralDevelopmentandEnvironment,Cyprus
PHOEBE-ZOEGEORGALI
SchoolofEngineering,FrederickUniversity,Nicosia, Cyprus
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-12-817111-0
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: CandiceJanco
AcquisitionsEditor: JessicaMack
EditorialProjectManager: AliceGrant
ProductionProjectManager: SruthiSatheesh
CoverDesigner: MilesHitchen
TypesetbyMPSLimited,Chennai,India
Listofcontributorsxi Abouttheeditorsxiii
SectionA
1.Introduction:environmentalassessmentofrenewableenergyand storagetechnologies:currentstatus3 PanagiotaKonatziiandParisA.Fokaides References8
SectionB
2.Lifecycleanalysisofphotovoltaicsystems:areview11 EffrosyniGiamaandPhoebe-ZoeGeorgali
2.1 Introduction:EuropeanUnionroadmapforenergyandcarbonemissions11
2.2 PVsystemdescription13
2.3 Themethodology:lifecycleanalysis19
2.4 Inventoryanalysis19
2.5 Impactassessment21
2.6 Conclusions furtherresearch28 Nomenclature32 References33
3.Lifecycleassessmentreviewinsolarthermalsystems37 MariaMilousiandManolisSouliotis
3.1 Introduction37
3.2 Building-integratedsolarthermalcollectors38
3.2.1 Flatplatesolarthermalcollectors38
3.2.2 Evacuatedtubesolarthermalcollectors42
3.3 Building-addedsolarthermalsystems44
3.3.1 Flatplatesolarthermalcollectors44
3.4 Evacuatedtubesolarthermalcollectors49
3.5 Conclusions50
Nomenclature51 References51
4.Environmentalassessmentofwindturbinesandwindenergy55 AngelikiKylili
4.1 Introduction55
4.2 State-of-the-artonwindturbinesandwindenergy56
4.3 Lifecycleinventoryofwindturbinesandwindenergy62
4.4 Lifecycleassessmentofwindturbinesandwindenergy69
4.4.1 Keyparametersintheimplementationoflifecycleassessment studies69
4.4.2 Significantfindingsfrompreviouslifecycleassessmentstudies70
4.5 Criticalreviewontheenvironmentalassessmentofwindturbinesand windenergy76
4.5.1 Sharedchallengesrelatedtolifecycleassessment77
4.5.2 Technology-specificchallengesrelatedtolifecycleassessment78 References81
5.Environmentalassessmentofbiomassthermochemicalconversion routesthroughalifecycleperspective85 KyriakosPanopoulos,GiorgosKardaras,TzoulianaKraia andMichaelBampaou
5.1 Introduction85
5.2 Lifecycleassessmentofbiomassconversionroutes87
5.2.1 Goalandscopedefinition88
5.2.2 Lifecycleinventory90
5.2.3 Lifecycleimpactassessment91
5.2.4 Interpretationofresults92
5.3 Lifecycleassessmentofbiomassthermochemicalconversionroutes94
5.3.1 Conversionofbiomasstobiofuelsthroughpyrolysis94
5.3.2 Conversionofbiomasstosyngasviagasification98
5.3.3 Overviewofselectedstudies101
5.4 Issuesaffectingthecomparabilityoflifecycleassessmentstudies115
5.4.1 Keyperformanceindicators116
5.4.2 Productenvironmentalfootprintassessment120
5.5 Conclusions121 References122 Furtherreading127
6.Environmentalassessmentofbiomasstobiofuels:biochemical conversionroutes129
GuillermoGarcia-Garcia,StephenMcCordandPeterStyring
6.1 Introduction129
6.2 State-of-the-artoftheproductiontechnologies132
6.2.1 Fermentation132
6.2.2 Anaerobicdigestion136
6.3 Calculationofenvironmentalimpactsvialifecycleassessment140
6.3.1 Definitionofthegoalandscope141
6.3.2 Lifecycleinventoryanalysis142
6.3.3 Lifecycleimpactassessment142
6.3.4 Interpretation145
6.4 Keyperformanceindicatorsforlifecycleassessment145
6.4.1 Fermentation146
6.4.2 Anaerobicdigestion147
6.5 Productenvironmentalfootprint150
6.6 Conclusions152 Acknowledgements153 References153
7.Environmentalassessmentofbiomass-to-biofuelsmechanical conversionroutes(pelleting,briquetting)157
EliasChristoforou
7.1 Introduction157
7.2 Pelletingandbriquetting159
7.2.1 Pelleting/briquettingfeedbiomass159
7.2.2 Pellets/briquettesclassification160
7.2.3 Processdescription160
7.3 Lifecycleassessment162
7.3.1 Generallifecycleassessmentframework163
7.3.2 Lifecycleassessmentcomponentsinbiomassdensificationsystems166
7.3.3 Previousworkonlifecycleassessmentofbiomassdensification systems168
7.4 Conclusions178 References179
8.Lifecycleassessmentofgeothermalpowertechnologies181
AndreaPaulillo,AlbertoStrioloandPaolaLettieri
8.1 Introduction181
8.2 Technologiesforpowergeneration184
8.2.1 Dry-steamtechnology184
8.2.2 Single-flashtechnology186
8.2.3 Multistageflashtechnologies188
8.2.4 Binarycycletechnology189
8.2.5 Enhancedgeothermalsystems190
8.3 Lifecycleassessment:methodologicalaspects191
8.3.1 Goalandscopedefinition191
8.3.2 Lifecycleinventory:keyaspectsandparameters192
8.3.3 LifeCycleInventory:coremodulephasesandactivities194
8.3.4 Lifecycleinventory:handlingmultifunctionalprocesses198
8.3.5 Lifecycleimpactassessment200
8.3.6 Lifecycleinterpretation:reportingLCAresults201
8.4 Casestudies202
8.4.1 Hot-spotanalysis202
8.4.2 Comparativeanalysis204 Acknowledgments206 References207
SectionC
9.Environmentalimpactassessmentofhydropowerstations213 M.A.ParvezMahmudandNahinTasmin
9.1 Introduction213
9.2 Materialsandmethods216
9.3 Resultsanddiscussion219
9.3.1 Environmentalprofilesofthehydropowerplants219
9.3.2 Metal-andgas-basedemissionevaluation224
9.3.3 Greenhouse-gasemissionestimation225
9.3.4 Uncertaintyanalysis225
9.4 Conclusion227 References228
10.Astakeholderimpactanalysisoftheproductionofthe energyvectorhydrogen231
HolgerSchlörandSandraVenghaus
10.1 Introduction231
10.2 Methodologicalframeworkandbackground234
10.3 Data socialhotspotdatabase235
10.4 Hydrogenproductionsimplifiedprocesschain systemboundaries ofthehydrogenprocesschain236
10.5 Results socialrisksofthestakeholders237
10.6 Conclusion244 References245
11.Environmentalimpactassessmentsofcompressedair energystoragesystems:areview249 MdMustafizurRahman,AbayomiOlufemiOni,EskinderGemechu andAmitKumar
11.1 Introduction249
11.2 Lifecycleassessment252
11.3 State-of-the-artcompressedairenergystoragetechnologies254
11.3.1 Conventionalcompressedairenergystorage254
11.3.2 Adiabaticcompressedairenergystorage254
11.3.3 Liquidairenergystorage255
11.4 Lifecycleassessmentofcompressedairenergystoragesystems258
11.4.1 Overviewoflifecycleassessmentstudiesoncompressed airenergystoragesystems258
11.4.2 Discussiononhowlifecycleassessmentisusedin compressedairenergystoragestudies260
11.5 Comparisonofenergystoragetechnologies269
11.5.1 Greenhousegasemissions269
11.5.2 Landfootprint271
11.6 Conclusionsandrecommendations272 Acknowledgments273 References273
12.Environmentalimpactassessmentofbatterystorage277 M.A.ParvezMahmudandNahinTasmin
12.1 Introduction277
12.2 Batterystoragemarketsandproductionoverview280
12.3 Methodology283
12.4 Results288
12.4.1 ImpactsofLi-ionbatteries288
12.4.2 ImpactsofNiMHbatteries289
12.4.3 ImpactsofNaClbatteries292
12.5 Discussion294
12.5.1 Impactoutcomecomparison294
12.6 Limitations297
SectionD
13.Environmentalassessmentofrenewableenergyandstorage technologies:futurechallenges305 PanagiotaKonatziiandParisA.Fokaides
Listofcontributors
MichaelBampaou
ChemicalProcessandEnergyResourcesInstitute(CPERI),CentreforResearchand TechnologyHellas(CERTH),Thessaloniki,Greece
EliasChristoforou
SchoolofEngineeringandAppliedSciences,FrederickUniversity,Nicosia,Cyprus
ParisA.Fokaides
SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus
GuillermoGarcia-Garcia
DepartmentofChemicalandBiologicalEngineering,TheUniversityofSheffield, Sheffield,UnitedKingdom;DepartmentofAgrifoodSystemEconomics,Centre ‘Camino dePurchil’,InstituteofAgriculturalandFisheriesResearchandTraining(IFAPA), Granada,Spain
EskinderGemechu
FacultyofEngineering,DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada
Phoebe-ZoeGeorgali
SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus
EffrosyniGiama
DepartmentofMechanicalEngineering,AristotleUniversityofThessaloniki,Thessaloniki, Greece
GiorgosKardaras
ChemicalProcessandEnergyResourcesInstitute(CPERI),CentreforResearchand TechnologyHellas(CERTH),Thessaloniki,Greece;DepartmentofMechanical Engineering,UniversityofWesternMacedonia,Greece
PanagiotaKonatzii
SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus
TzoulianaKraia
ChemicalProcessandEnergyResourcesInstitute(CPERI),CentreforResearchand TechnologyHellas(CERTH),Thessaloniki,Greece
AmitKumar
FacultyofEngineering,DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada
AngelikiKylili
DepartmentofEnvironment,MinistryofAgriculture,RuralDevelopmentand Environment,Cyprus
PaolaLettieri
DepartmentofChemicalEngineering,UniversityCollegeLondon,London, UnitedKingdom
M.A.ParvezMahmud
SchoolofEngineering,DeakinUniversity,Geelong,VIC,Australia
StephenMcCord
DepartmentofChemicalandBiologicalEngineering,TheUniversityofSheffield, Sheffield,UnitedKingdom
MariaMilousi
DepartmentofChemicalEngineering,UniversityofWesternMacedonia,Koila,Greece
AbayomiOlufemiOni
FacultyofEngineering,DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada
KyriakosPanopoulos
ChemicalProcessandEnergyResourcesInstitute(CPERI),CentreforResearchand TechnologyHellas(CERTH),Thessaloniki,Greece
AndreaPaulillo
DepartmentofChemicalEngineering,UniversityCollegeLondon,London, UnitedKingdom
MdMustafizurRahman
FacultyofEngineering,DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada
HolgerSchlör
ForschungszentrumJülich,Jülich,Germany
ManolisSouliotis
DepartmentofChemicalEngineering,UniversityofWesternMacedonia,Koila,Greece
AlbertoStriolo
SchoolofChemical,BiologicalandMaterialsEngineering,UniversityofOklahoma, Norman,OK,UnitedStates
PeterStyring
DepartmentofChemicalandBiologicalEngineering,TheUniversityofSheffield, Sheffield,UnitedKingdom
NahinTasmin
DepartmentofMechanicalEngineering,RajshahiUniversityofEngineering& Technology,Kazla,Rajshahi,Bangladesh
SandraVenghaus
ForschungszentrumJülich,Jülich,Germany;SchoolofBusinessandEconomics,RWTH AachenUniversity,Aachen,Germany
Abouttheeditors
Dr.-Ing.ParisA.Fokaides isanAssociate ProfessorattheSchoolofEngineeringofFrederick University,Cyprus,andaresearchmentorat KaunasUniversityofTechnology,Lithuania.In FrederickUniversity,Parisislecturingthecourses ofFluidMechanicsandHeatTransferatthe DepartmentofMechanicalEngineering,aswellas thecoursesofSustainableEnergyResources,and EnergyDesignofBuildingsintheMasters ProgrammeofEnergyEngineering,whichhealso coordinates.ParisholdsaPhDfromtheUniversityofKarlsruhe,in GermanyinthefieldofProcessEngineeringandaDiplomain MechanicalEngineeringofAristotleUniversityinThessaloniki,Greece. ParisresearchisrelatedtothepromotionofIndustry4.0practicesforthe assessmentoftheenergyandsustainabilityperformanceofenergytechnologiesandsmartbuildings,aswellasthefieldofdigitizationandanalysisof energyrelatedprocesses.ParisleadstheSustainableEnergyResearch GroupatFrederickUniversity,anISO9001certifiedself-fundedresearch teamconsistingof10FTEresearchers,involvedinnumerousEuropean andnationalfundedR&Iactivities.ParisisalsoEditorinChiefofthe InternationalJournalofSustainableEnergy,andmemberinnumerous editorialboardsofscientificjournals.Asofmid-22,Parishasauthoredand co-authoredover125Scopusindexedstudies,andhasanh-indexof30.
Dr.AngelikiKylili isanEnvironmentOfficerat theDepartmentofEnvironmentoftheMinistryof Agriculture,RuralDevelopmentandEnvironment oftheRepublicofCyprus.ShehasstudiedBSc EnvironmentalScienceandMScEnergyand EnvironmentattheUniversityofLeeds,United Kingdom,andhasobtainedherPhDinCivil EngineeringwiththeSustainableEnergyResearch Group(SERG)atFrederickUniversity,Cyprus. HerresearchisprimarilyconcernedwithLifeCycle


Assessmentandtheexploitationofrenewableenergysources.Sheisthe authorandco-authorof37publicationsininternationalpeer-reviewed journalsand4bookchapters,withanh-indexof20.Hercurrent dutiesasanEnvironmentOfficerconcernthedevelopmentandeffective implementationofthenationalandEuropeanpolicyframeworkforthe protectionoftheenvironment.Angelikiisanationalfocalpointfor theTransport,HealthandEnvironmentPan-EuropeanProgramme (THEPEP)oftheUnitedNationsEconomicCommissionforEurope (UNECE),andsheisalsoresponsibleforfollowingthroughandproviding relevantnationalcontributionstotheworkoftheUnitedNations EnvironmentProgramme(UNEP)andtheCommitteeonEnvironmental PolicyofUNECE.
Ms.Phoebe-ZoeGeorgali isaMechanical Engineer(BScMechanicalEngineering)graduate fromtheTechnologicalEducationInstituteof Chalkida,Greece,2012andEnergyEngineerpostgraduate(MScSustainableEnergySystems)at FrederickUniversity,Cyprus,2017.Since September2020,Ms.GeorgaliisaPhDCandidate atFrederickUniversityasamemberofthe SustainableEnergyResearchGroup(SERG), engagingwithstate-of-the-artresearchregarding sustainableandwasteenergytechnologies,aswell asLCAofproductsandservices.
SECTIONA
Thispageintentionallyleftblank
CHAPTER1
Introduction:environmental assessmentofrenewableenergy andstoragetechnologies:current status
PanagiotaKonatziiandParisA.Fokaides SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus
Content References8
Weliveinanerawherethetermrenewableenergyhasbeenlinkedto environmental-friendlyandsustainablepracticesforconvertingnatural resourcestoendenergy.Countriesandorganizationsaroundtheworld, oneafteranother,setquantitativetargetsforpromotingenergyproductionwiththeuseofrenewableenergysources.TheEuropeanUnion (EU)isapioneerinthisfield,withambitiousgoalsdatingbacktothe early2000s,whicharecurrentlybeingremarkablyachieved.TheinfamousEUtargetofthetriple20for2020withthereferenceyearof2005, thatis,20%energysavings,20%promotionoftheuseofrenewable energysources,and20%reductionofgreenhousegases(GHG),wasnot onlyachievedbutgavewaytoamoreambitiousgoalfor2030and2050, resultingfromtheGreenDeal(EuropeanEnvironmentalAgency,2021). ThememberstatesoftheEUaremovingfasttowardsachievingthe ambitiousgoalof55%energysavingsby2030,inaccordancewiththe Fitfor55policyframework(EuropeanParliament,2021).Inadditionto theambitiousEuropeanprogram,theUnitedNationsismovingfastwith theSustainableDevelopmentGoalsprogram,aschemewithinwhich optimisticsustainabilitygoalsshouldbeachievedin17areas,including greenandsustainableenergy,aswellassustainablecitiesandsocieties (UnitedNations,2021). 3
Undertheseconditions,thepromotionofrenewableenergysources andrelatedtechnologiesconstitutesthemainstreamintheenergyproductionfield.Thecontinuousdevelopmentthatprevailsinthedesignand implementationofnewrenewableenergyprojectsworldwideisaccompaniedbybothresearchactivitiestodevelopmoreenergy-efficientapplications,butalsoenvironmentallysmartersolutions(Christoforouand Fokaides,2016).Inevitably,thepointhasbeenreachedwheretheterm renewableenergy,initself,isnotapanacea,theanswertoeverysolution, butshouldbeevaluatedandjudged,withobjectivecriteria(Kylilietal., 2016).Atechnologicalapplication,forexample,fortheconversionof solarenergyintoelectricity,whichrequireslargevolumesofrawmaterial, isnotenvironmentallypreferable,comparedtoanothersolution,which withthesamedegreeofefficiencybutwithmuchsmallerquantitiesof rawmaterial,canconvertthesameamountofsolarenergyintoanother usefulform(Souliotisetal.,2018).Therefore,thequestionofquantifying theenvironmentalimpactoftheuseofrenewableenergysourcesreaches apointwhereitcannolongerbeansweredqualitativelybutneedstobe substantiated,quantitativeanswers.
Theanswertothequestionofhowwecanquantifytheenvironmental impactofrenewableenergysourcesisfoundinlifecycleanalysis.Lifecycle analysisisawell-tested,well-establishedmethodologythatcanquantifythe environmentalimpactofanyproductorservicethroughoutitslifecycle. Fromthebeginningofthe1990s,whenthismethodappeared,untilitsfirst standardizationin1996,today,worldwide,itisconsideredthemostcomprehensivemethodologyforquantifyingtheenvironmentalimpact (Arnaoutakisetal.,2019).Since1996anditsstandardizationthroughthe ISO14040seriesstandards,lifecycleanalysishasbeenthemostwidely usedmethodofdeterminingenvironmentalimpact(Christoforouetal., 2016).ISO14040:2006describestheprinciplesandframeworkforlifecycle assessment(LCA),includingthedefinitionofthegoalandscopeofthe LCA,thelifecycleinventoryanalysis(LCI)phase,thelifecycleimpact assessment(LCIA)phase,thelifecycleinterpretationphase,reportingand criticalreviewoftheLCA,limitationsoftheLCA,therelationshipbetween theLCAphases,andconditionsfortheuseofvaluechoicesandoptional elements(ENISO14040,2006).Theenvironmentalanalysisofrenewable energysourcesisnoexceptioninrelationtotheenvironmentalburden determinationpracticesthatcanbefollowed.
Decision-makingonnewinstallationsinthefieldofenergyproductionandstorageusingsustainableenergyresourcesshouldbejustifiedon
specificquantitativeparameters.Giventhegrowingrateofinstallationof renewableenergyandstorageapplications,theintegralsustainabilityaspect oftheenvironmentalassessmentshouldalsobequantifiedinasimilar mannertothetechnicalandfinancialparameters(Fokaidesand Christoforou,2016).Therecentdevelopmentofcomprehensiveenvironmentalassessmenttoolssuchasthelifecycleassessment(LCA)andthe productenvironmentalfootprint(PEF),aswellasthescientificworkconductedinthesefields,allowsforthedevelopmentofajointframeworkto evaluatedifferenttechnologiesonacommonbasisconcerningtheirenvironmentalperspectives(Pommeretetal.,2017).Despitethenumerous scientificpublicationsinthisresearchfield,acompilationofthejustified knowledgeinthistopicisstillnotavailableforthescientificandengineeringcommunity(ChristoforouandFokaides,2018).
EffortstoglobalizetheenvironmentalassessmentofservicesandproductswiththeuseofLCAdatebackto2013.Particularly,inorderto promoteandestablishLCAasthemostcommonapproachfortheenvironmentalassessmentofservicesandproducts,theUnitedNationsinitiatedin2013theGlobalGuidanceonEnvironmentalLifeCycleImpact AssessmentIndicators(GLAM)initiative(UnitedNationsEnvironment Program(UNEP),2021).TheaimofUNEPGLAM,undertheUnited NationsEnvironmentalProgrammeumbrella,istoimproveworldwide agreementonenvironmentalLCIAindicators,deliveringtangibleandspecificrecommendationsfordiverseenvironmentalindicatorsandclassificationfactorsused(LCIA).TheUNEPGLAMprojectisimplementedby aninternationalexperttaskforce,whichdraftsandannouncesrecommendationsfordifferenttopicareas.Advancementsareoverviewedonaregularbasisbyexpertconsultationworkshopsandroundtablediscussions organizedamongexpertsandstakeholdersofthefield.TheUNEP GLAMexpertsarechosenfromfivedifferentpools,whichcoverallinterestedpartiesinthefieldofLCA,includingusersoflifecycleinformation, suchasgovernmentalandintergovernmentalorganizations,industries, NGOs,andmembersoftheacademia,lifecyclethinkingstudiesconsultants,andLCIAmethodsandtoolsdevelopers.Theinitiativewasorganizedinthreephases:
• Inthefirstphase,whichlastedfrom2013until2016,specificimpact categorieswerediscussedandquantified,includingGHGemissions andimpactsofclimatechange,healthimpactsoffineparticulatematter,humanhealthimpacts,landuserelatedimpactsonbiodiversity, wateruserelatedimpacts waterscarcityaswellascross-cuttingissues.
• Thesecondphase,whichwasimplementedfrom2017until2019, analyzedspecificimpactindicators,includingacidificationandeutrophication,landuseimpactsonsoilquality,ecotoxicitynatural resourcesandmineralprimaryresources,humantoxicityaswellas cross-cuttingissues.
• Thelastphase,whichstartedin2019andisstillongoing,aimedto establishacomprehensive,consistentandglobalenvironmentalLife CycleImpactAssessmentMethod(LCIA),buildingontherecommendationsfornineimpactcategoriesfromthefirsttwophases.
TheUNEPGLAMinitiativeisalsosupportedbytheJointResearch Centre(JRC)oftheEuropeanCommission,atdifferentlevels,participatinginmeetingsandprovidingscientificinputs,documentation,andtechnicalsupport,inordertofollowpossiblealignmentwithdifferent methods’ development(JointResearchCenter,EuropeanCommission, 2021).
Inthiscontext,thisbookattemptstopresentthestate-of-the-artin thefieldofenvironmentalvaluationofrenewableenergysources.By gatheringtheopinionoftheselectedacademicsinthefieldofenvironmentalvaluationofrenewableenergysources,thisvolumewishestopresentthelatestdevelopmentsinthefield.Specifically,thisbookhosts eleven(11)chapters,whichdealwiththefollowingareas:
• Photovoltaicsystems.
• Solarthermalsystemsforheatproduction.
• Windgenerators.
• Thermochemicalconversionofbiomassintobiofuels.
• Biochemicalconversionofbiomassintobiofuels.
• Mechanicalbiomassprocessing.
• Geothermalsystems.
• Hydroelectricsystems.
• Hydrogensystems.
• Storagesystemsusingbatteries.
Thepurposeofthisvolumeistopresentacomprehensiveoverviewof theenvironmentalassessmentofrenewableenergyconversionandstorage technologies.Thisbookaspirestocompilethestate-of-the-artinthefield oftheenvironmentalassessmentofrenewableenergyconversionandstoragetechnologiesandtodeliveracommongroundbasedonthekeyperformanceindicatorsforthecomparativeenvironmentalevaluationof nonfossilenergysourcesapplications.Thereadershipofthisbookwill haveaccesstojustifiedfigures,approaches,andtechniquesforthe
7 Introduction:environmentalassessmentofrenewableenergyandstoragetechnologies
comprehensiveenvironmentalassessmentforasignificantrangeofapplicationsofindividualsustainableenergyconversionandstoragetechnologies.
Theauthorsofthevolumemostlytriedtomaintainacommonstructureforallthechapters.Specifically,allthechapterspresentthetheoreticalbackgroundofthetechnology,whichisexamined,aswellasthe developmentsinthefield.Themainfindingsfromlifecycleinventories andlifecycleimpactassessmentsarethensummarized,andthechapters areconcludedwiththemainfindingsandfuturetrendsinthefield.The volumeisenrichedwithseveraldiagrams,whichaimatabetterunderstandingofboththephysicalfindingsandthetrendsofthesector,aswell aswithtablesthatsummarizethemainfindingsofdifferentstudiesinthe sector.
Thisvolumeprovidesthestate-of-the-artinbothnonfossilenergy conversionandstoragetechniquesaswellasintheirenvironmentalassessment.Thereadershipwillbeinformedaboutthegoalandscope,the analysisboundaries,theinventory,andtheimpactassessmentemployed fortheevaluationoftheseapplications.Also,thereadershipwillhavean overviewoftheenvironmentalfootprintofthesaidtechnologies.This volumeassemblesandcompilesinformationcurrentlyavailableindifferent sourcesconcerningtheenvironmentalassessmentofsustainableenergy technologies.Thisfeatureisofimportantsignificance,asitwillallowfor thecomparativeassessmentsofdifferenttechnologies,givenspecific boundaryconditionssuchastherenewablepotentialandotherspecific featuresofthediscussedtechnologies.Thechapterofthisvolumealso providestothereadershipamorecomprehensiveoverviewoftheentire energysupplychain,namelyfromproductiontostorage,byallowingthe considerationofdifferentproductionandstoragecombinationsbasedon theirenvironmentalassessment.Thebookaimstoexpandtheboundaries oftheenvironmentalanalysisofenergytechnologies.
Thisvolumeisintendedfornotonlybothresearchersinthefieldof environmentalassessmentofrenewableenergysourcesandforengineers inthefieldbutalsoforstudentsinthefieldsofenvironmentalengineering andotherrelevantfieldsofengineering.Specifically,anonexhaustivelist oftheaudiencetowhichthisvolumeisaddressedincludesenvironmental scientists,environmentalengineers,energyengineers,mechanicalengineers,electricalengineers,chemicalengineers,architects,andurbanplannersTheaimoftheauthorsofthevolumewastogivethegeneralpicture ofthefield,butalsotogivetheimpetusfornewworksaswellasfurther researchdevelopment.
References
Arnaoutakis,N.,Milousi,M.,Papaefthimiou,S.,Fokaides,P.A.,Caouris,Y.G.,Souliotis, M.,2019.Lifecycleassessmentasamethodologicaltoolfortheoptimumdesignof integratedcollectorstoragesolarwaterheaters.Energy182,1084 1099.
Christoforou,E.A.,Fokaides,P.A.,2016.Lifecycleassessment(LCA)ofolivehusktorrefaction.RenewableEnergy90,257 266.
Christoforou,E.,Fokaides,P.A.,2018.AdvancesinSolidBiofuels.Springer.
Christoforou,E.,Fokaides,P.A.,Koroneos,C.J.,Recchia,L.,2016.LifeCycle Assessmentoffirstgenerationenergycropsinaridisolatedislandstates:thecaseof Cyprus.SustainableEnergyTechnologiesandAssessments14,1 8. ENISO14040(2006).Environmentalmanagement.Lifecycleassessment.Principlesand framework.
EuropeanEnvironmentalAgency(2021).TrendsandProjectionsinEurope2021.EEA ReportNo.13/2021.Copenhagen:EuropeanEnvironmentAgency. EuropeanParliament(2021).Legislativetrainschedule.Fitfor55packagesunderthe EuropeanGreenDeal. , https://www.europarl.europa.eu/legislative-train/theme-aeuropean-green-deal/package-fit-for-55 . (accessed01.11.21.).
Fokaides,P.A.,Christoforou,E.,2016.Lifecyclesustainabilityassessmentofbiofuels. HandbookofBiofuelsProduction.WoodheadPublishing,pp.41 60. JointResearchCenter,EuropeanCommission(2021).Europeanplatformonlifecycle assessment. , https://eplca.jrc.ec.europa.eu/glam.html . (accessed01.11.21.).
Kylili,A.,Christoforou,E.,Fokaides,P.A.,2016.Environmentalevaluationofbiomass pelletingusinglifecycleassessment.BiomassandBioenergy84,107 117. Pommeret,A.,Yang,X.,Kwan,T.H.,Christoforou,E.A.,Fokaides,P.A.,Lin,C.S.K., 2017.Techno-economicstudyandenvironmentalassessmentoffoodwaste-based biorefinery.FoodWasteReductionandValorisation.Springer,Cham,pp.121 146. Souliotis,M.,Panaras,G.,Fokaides,P.A.,Papaefthimiou,S.,Kalogirou,S.A.,2018.Solar waterheatingforsocialhousing:energyanalysisandLifeCycleAssessment.Energy andBuildings169,157 171.
UnitedNations(2021).Sustainabledevelopment.Departmentofeconomicandsocial affairs. https://sdgs.un.org/goals (accessed01.11.21.).
UnitedNationsEnvironmentProgram(UNEP)(2021).Lifecycleinitiative. https://www. lifecycleinitiative.org/ (accessed01.11.21.).
SECTIONB
Thispageintentionallyleftblank
CHAPTER2
Lifecycleanalysisofphotovoltaic systems:areview
EffrosyniGiama1 andPhoebe-ZoeGeorgali2 1DepartmentofMechanicalEngineering,AristotleUniversityofThessaloniki,Thessaloniki,Greece 2SchoolofEngineering,FrederickUniversity,Nicosia,Cyprus
Contents
2.1 Introduction:EuropeanUnionroadmapforenergyandcarbonemissions11
2.2 PVsystemdescription13
2.3 Themethodology:lifecycleanalysis19
2.4 Inventoryanalysis19
2.5 Impactassessment21
2.6 Conclusions furtherresearch28
Nomenclature32 References33
2.1Introduction:EuropeanUnionroadmapforenergyand carbonemissions
Oneofthemajordevelopmentsofthelastdecadeistheexistenceofa quiteexplicitregulatoryframework,settingspecificgoalsandproviding supportivelaws,directives,standards,methodologies,focusingonclean energy,minimizingenergyconsumption,andreducingCO2 emissions. ThemaintargetssetbytheEuropeanCommissioninchronologicalorder are(Giamaetal.,2020):
’ Targetof20 20 20(20%improvementinenergyefficiency,20% reductionofgreenhousegas(GHG)emissionscomparedwiththe 1990slevels,and20%increaseintheshareofrenewableenergytoat least20%oftheconsumption)
’ Revisedtargetfor2030(atleast40%reductioninGHGgasemissions comparedto1990slevels,atleast32%shareforrenewableenergy,at least32.5%improvementinenergyefficiency)
’ Nexttargetfor2050(85% 90%reductionofGHGgasemissions comparedto1990slevels)