EnvironmentalApplicationsofMicrobial Nanotechnology:EmergingTrendsinEnvironmental RemediationPardeepSingh
https://ebookmass.com/product/environmental-applications-ofmicrobial-nanotechnology-emerging-trends-in-environmentalremediation-pardeep-singh/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Abatement of Environmental Pollutants: Trends and Strategies Pardeep Singh (Editor)
https://ebookmass.com/product/abatement-of-environmental-pollutantstrends-and-strategies-pardeep-singh-editor/
ebookmass.com
Pesticides in the Natural Environment : Sources, Health Risks, and Remediation Pardeep Singh
https://ebookmass.com/product/pesticides-in-the-natural-environmentsources-health-risks-and-remediation-pardeep-singh/
ebookmass.com
Fundamentals of Environmental Site Assessment and Remediation 1st Edition
https://ebookmass.com/product/fundamentals-of-environmental-siteassessment-and-remediation-1st-edition/
ebookmass.com
Cowboy Fire Kim Redford
https://ebookmass.com/product/cowboy-fire-kim-redford-2/
ebookmass.com
Passionate Mind: Essays in Honor of John M. Rist Barry
David (Editor)
https://ebookmass.com/product/passionate-mind-essays-in-honor-of-johnm-rist-barry-david-editor/
ebookmass.com
Graduate (Result of Tomorrow Series, #3) Autumn Gaze
https://ebookmass.com/product/graduate-result-of-tomorrowseries-3-autumn-gaze/
ebookmass.com
Worthy Opponents Danielle Steel
https://ebookmass.com/product/worthy-opponents-danielle-steel/
ebookmass.com
Race, Ethnicity, Gender, and Class: The Sociology of Group Conflict and Change
https://ebookmass.com/product/race-ethnicity-gender-and-class-thesociology-of-group-conflict-and-change/
ebookmass.com
Bad Influence London Stefanie
https://ebookmass.com/product/bad-influence-london-stefanie/
ebookmass.com
https://ebookmass.com/product/m-business-7e-7th-edition-o-c-ferrell/
ebookmass.com
EnvironmentalApplicationsofMicrobial
Nanotechnology
EmergingTrendsinEnvironmentalRemediation
EnvironmentalApplications ofMicrobialNanotechnology EmergingTrendsinEnvironmentalRemediation
Editedby
PardeepSingh
DepartmentofEnvironmentalStudies,PGDAVCollege,UniversityofDelhi, NewDelhi,India
VijayKumar
DepartmentofChemistry,IndianInstituteofTechnology(BHU),Varanasi,India
MansiBakshi
DepartmentofCivilEngineering,IndianInstituteofTechnologyDelhi,NewDelhi,India
ChaudheryMustansarHussain
DepartmentofChemistryandEnvironmentalSciences,NewJerseyInstituteof Technology(NJIT),Newark,NJ,UnitedStates
MikaSillanpa¨a ¨
DepartmentofBiologicalandChemicalEngineering,AarhusUniversity,Aarhus,Denmark
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2023ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www. elsevier.com/permissions .
ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).
Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-91744-5
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: SusanDennis
AcquisitionsEditor: AnitaKoch
EditorialProjectManager: KathrineEsten
ProductionProjectManager: KumarAnbazhagan
CoverDesigner: VickyPearsonEsser
TypesetbyMPSLimited,Chennai,India
Listofcontributors
SangitaAgarwal DepartmentofAppliedScience,RCC InstituteofInformationTechnology,Beliaghata, Kolkata,WestBengal,India
GaneshKumarAgrawal ResearchLaboratoryfor BiotechnologyandBiochemistry(RLABB), Kathmandu,Nepal;GlobalResearchArchfor DevelopingEducation(GRADE)AcademyPvt.Ltd., Birgunj,Nepal
K.Anuradha DepartmentofMicrobiology,Bhavan’s VivekanandaCollegeofScience,Humanities& Commerce,Sainikpuri,Hyderabad,Telangana,India
PalakBakshi DepartmentofBotany,SchoolofLife Sciences,UniversityofKashmir,SatelliteCampus, Kargil,Ladakh,JammuandKashmir,India;Plant StressPhysiologyLab,DepartmentofBotanicaland EnvironmentalSciences,GuruNanakDevUniversity, Amritsar,Punjab,India
KritiBhardwaj DepartmentofZoology,Universityof Allahabad,Prayagraj,UttarPradesh,India
RenuBhardwaj PlantStressPhysiologyLab, DepartmentofBotanicalandEnvironmentalSciences, GuruNanakDevUniversity,Amritsar,Punjab,India
TamannaBhardwaj PlantStressPhysiologyLab, DepartmentofBotanicalandEnvironmentalSciences, GuruNanakDevUniversity,Amritsar,Punjab,India
BornitaBose AmityInstituteofBiotechnology,Amity University,Kolkata,WestBengal,India
NaliniSinghChauhan DepartmentofZoologyGuru NanakDevUniversity,Amritsar,Punjab,India;P.G DepartmentofZoology,KanyaMahaVidyalaya, Jalandhar,Punjab,India
YongChen SchoolofEnvironmentalScienceand Engineering,HuazhongUniversityofScienceand Technology,Wuhan,P.R.China
AnkitaChowdhury LaboratoryofAppliedStress Biology,DepartmentofBotany,UniversityofGour Banga,Malda,WestBengal,India
SoumendraDarbar FacultyCouncilofScience,Jadavpur University,Kolkata,WestBengal,India;Researchand
DevelopmentDivision,Dey’sMedicalStores(Mfg.) Ltd.,Ballygunge,Kolkata,WestBengal,India
SomenathDas DepartmentofBotany,BurdwanRaj College,PurbaBardhaman,WestBengal,India
KaminiDevi PlantStressPhysiologyLab,Department ofBotanicalandEnvironmentalSciences,GuruNanak DevUniversity,Amritsar,Punjab,India
VivekDhand DepartmentofMechanicalDesign Engineering,ChonnamNationalUniversity,Yeosu, Jeonnam,RepublicofKorea
ShailjaDhiman AmityInstituteofMicrobial Technology,AmityUniversityUttarPradesh,Noida, UttarPradesh,India
NehaDogra DepartmentofBotany,PunjabiUniversity, Patiala,Punjab,India
SadhanKumarGhosh InternationalSocietyofWaste Management,AirandWater(ISWMAW-IconSWM), Kolkata,WestBengal,India;Departmentof MechanicalEngineering,JadavpurUniversity, Kolkata,WestBengal,India
ArtiGoel AmityInstituteofMicrobialTechnology,Amity UniversityUttarPradesh,Noida,UttarPradesh,India
K.J.HemanthKumar VidyavardhakaCollegeof Engineering,Mysore,Karnataka,India
E.Janeeshma PlantPhysiologyandBiochemistry Division,DepartmentofBotany,Universityof Calicut,Malappuram,Kerala,India
PrajwalJayakumar BBMP,Bengaluru,Karnataka, India
SandhyaJayakumar ManagedHealthCare,MOH, BBMP,Bengaluru,Karnataka,India
R.Jyothilakshmi MSRamaiahInstituteofTechnology, Bengaluru,Karnataka,India
Kapinder DepartmentofZoology,Universityof Allahabad,Prayagraj,UttarPradesh,India
JasleenKaur DepartmentofBotany,DyalSingh College,UniversityofDelhi,Delhi,India
RupinderKaur DepartmentofBiotechnology,DAV College,Amritsar,Punjab,India
ShrutiKaushik DepartmentofBotany,Punjabi University,Patiala,Punjab,India
SuhailAyoubKhan DepartmentofChemistry,Jamia MilliaIslamia,NewDelhi,India
TabrezAlamKhan DepartmentofChemistry,Jamia MilliaIslamia,NewDelhi,India
KanikaKhanna PlantStressPhysiologyLab, DepartmentofBotanicalandEnvironmentalSciences, GuruNanakDevUniversity,Amritsar,Punjab,India; DepartmentofMicrobiology,DAVUniversity, Sarmastpur,Jalandhar,Punjab,India
SukhmeenKaurKohli PlantStressPhysiologyLab, DepartmentofBotanicalandEnvironmentalSciences, GuruNanakDevUniversity,Amritsar,Punjab,India
JaspreetKour PlantStressPhysiologyLab,Department ofBotanicalandEnvironmentalSciences,GuruNanak DevUniversity,Amritsar,Punjab,India
ShweenaKrishnani AmityInstituteofMicrobial Technology,AmityUniversityUttarPradesh,Noida, UttarPradesh,India
LawrenceKumar DepartmentofNanoscienceand Technology,CentralUniversityofJharkhand,Ranchi, Jharkhand,India
PawanKumar DepartmentofPhysics,MahatmaGandhi CentralUniversity,Motihari,Bihar,India
VikasKumar AmityInstituteofMicrobialTechnology, AmityUniversityUttarPradesh,Noida,UttarPradesh, India
S.ChaitanyaKumari DepartmentofMicrobiology, Bhavan’sVivekanandaCollegeofScience,Humanities &Commerce,Sainikpuri,Hyderabad,Telangana,India
IshaMadaan DepartmentofBotany,PunjabiUniversity, Patiala,Punjab,India
BilalAhmadMir DepartmentofBotany,SchoolofLife Sciences,UniversityofKashmir,SatelliteCampus, Kargil,Ladakh,JammuandKashmir,India
ArpanMukherjee InstituteofEnvironmentand SustainableDevelopment,BanarasHinduUniversity, Varanasi,UttarPradesh,India
PoulamiMukhopadhyay PostGraduateDepartmentof Microbiology,BarrackporeRastraguruSurendranath College(AffiliatedtoWestBengalStateUniversity), Kolkata,WestBengal,India
H.M.Navya DepartmentofStudiesinBiotechnology, DavangereUniversity,Shivagangothri,Davangere, Karnataka,India
PujaOhri DepartmentofZoology,GuruNanakDev University,Amritsar,Punjab,India
HarshataPal AmityInstituteofBiotechnology,Amity University,Kolkata,WestBengal,India
ManishaAroraPandit DepartmentofZoology,Kalindi College,UniversityofDelhi,NewDelhi,NewDelhi, India
SanjeetKumarPaswan DepartmentofNanoscienceand Technology,CentralUniversityofJharkhand,Ranchi, Jharkhand,India
SumangalaPatil M.S.EngineeringCollege,Bengaluru, Karnataka,India
Prabhurajeshwar DepartmentofStudiesin Biotechnology,DavangereUniversity,Shivagangothri, Davangere,Karnataka,India
RavindraPratapSingh DepartmentofBotany,Mata GujriCollege,FatehgarhSahib,Punjab,India
AbhayPunia DepartmentofZoologyGuruNanak DevUniversity,Amritsar,Punjab,India; DepartmentofZoology,DAVUniversityJalandhar, Punjab,India
JosT.Puthur PlantPhysiologyandBiochemistry Division,DepartmentofBotany,Universityof Calicut,Malappuram,Kerala,India
RandeepRakwal FacultyofHealthandSportSciences, UniversityofTsukuba,Ibaraki,Japan
DeekshaRanjan DepartmentofAppliedSciencesand Humanities,FacultyofEngineeringandTechnology, RamaUniversity,Kanpur,UttarPradesh,India
SomaniChandrikaRath AmityInstituteofMicrobial Technology,AmityUniversityUttarPradesh,Noida, UttarPradesh,India
NiharikaRishi AmityInstituteofMicrobialTechnology, AmityUniversityUttarPradesh,Noida,UttarPradesh, India
P.P.Sameena PlantPhysiologyandBiochemistry Division,DepartmentofBotany,Universityof Calicut,Malappuram,Kerala,India
AbhijitSarkar LaboratoryofAppliedStressBiology, DepartmentofBotany,UniversityofGourBanga, Malda,WestBengal,India
SutriptaSarkar PostGraduateDepartmentofFood& Nutrition,BarrackporeRastraguruSurendranath College(AffiliatedtoWestBengalStateUniversity), Kolkata,WestBengal,India
J.PatelSeema DepartmentofStudiesinBiotechnology, DavangereUniversity,Shivagangothri,Davangere, Karnataka,India
SteplinpaulselvinSelvinsimpson SchoolofEnvironmental ScienceandEngineering,HuazhongUniversityof ScienceandTechnology,Wuhan,P.R.China
AshutoshSharma FaultyofAgriculturalSciences,DAV University,Jalandhar,Punjab,India
NandniSharma DepartmentofZoology,GuruNanak DevUniversity,Amritsar,Punjab,India
PoojaSharma DepartmentofMicrobiology,DAV University,Jalandhar,Punjab,India;PlantStress PhysiologyLab,DepartmentofBotanicaland EnvironmentalSciences,GuruNanakDevUniversity, Amritsar,Punjab,India
RamKishoreSingh DepartmentofNanoscienceand Technology,CentralUniversityofJharkhand,Ranchi, Jharkhand,India
ShobhaSingh DepartmentofNanoscienceand Technology,CentralUniversityofJharkhand,Ranchi, Jharkhand,India
VijaySingh DepartmentofBotany,MataGujriCollege, FatehgarhSahib,Punjab,India
GeetikaSirhindi DepartmentofBotany,Punjabi University,Patiala,Punjab,India
D.Srividya DepartmentofStudiesinBiotechnology, DavangereUniversity,Shivagangothri,Davangere, Karnataka,India
UnshaTabrez CheggIndiaPvt.Ltd.,Jasola,NewDelhi, India
Tarkeshwar DepartmentofZoology,KalindiCollege, UniversityofDelhi,NewDelhi,NewDelhi,India
PratikV.Tawade DepartmentofChemicalEngineering, IndianInstituteofTechnologyMadras,Chennai, TamilNadu,India
AjitVarma AmityInstituteofMicrobialTechnology, AmityUniversityUttarPradesh,Noida,UttarPradesh, India
KailasL.Wasewar AdvanceSeparationandAnalytical Laboratory(ASAL),DepartmentofChemical Engineering,VisvesvarayaNationalInstituteof Technology(VNIT),Nagpur,Maharashtra,India
RachnaYadav AmityInstituteofMicrobialTechnology, AmityUniversityUttarPradesh,Noida,UttarPradesh, India
1.Nanotechnologyassustainablestrategy forremediationofsoilcontaminants, airpollutants,andmitigationof foodbiodeterioration3
SomenathDasandArpanMukherjee
1.1Introduction3
1.2Useofnanoparticleforsoilandwater purification/remediation4
1.2.1Adsorbentprocess4
1.2.2Membranebasedprocess4
1.2.3Photocatalysisandantimicrobial NPs4
1.3Nanotechnologyinheavymetals(HMs) removal5
1.4Contaminationofstoredfoodsby fungiandmycotoxins5
1.5Essentialoils:agreenchemicalfor preservationofstoredfoods7
1.6Mechanismsinvolvingantifungaland antimycotoxigenicactivities7
1.6.1Effectonergosterolbiosynthesis7
1.6.2Effectonleakageofcellular constituents8
1.6.3Effectofessentialoilsonenergy metabolism8
1.6.4Effectofessentialoilsoncellular methylglyoxal8
1.6.5Molecularmechanismofantifungal andantimycotoxigenicactivity8
1.7Nanotechnology:novelsustainablegreen strategytoprotectfoods9
1.8Safetyassessmentofessentialoils9
1.9Conclusionandfutureprospective11 Acknowledgments11 References11
2.Microbialnanobionics: futureperspectivesandinnovative approachtonanotechnology17
ShweenaKrishnani,RachnaYadav, NiharikaRishiandArtiGoel
2.1Introduction17
2.1.1Biosynthesisofmicrobial nanoparticles17
2.1.2Typesofmicrobialnanoparticles18
2.1.3Endophyticmicrobesasnanoparticle biofactories20
2.2Futurerecommendationsandapplications ofmicrobialnanoparticles21
2.2.1Agricultureandfoodsector21
2.2.2Stemcelltherapy24
2.2.3COVID19:facemaskandgloves26
2.2.4Infectiousdiseasesandmicrobial nanotechnologyapproach26
2.2.5Actionofmicrobialnanoparticlesin dentistry28
2.3Advancementsinantimicrobialsurface coatingstrategies29
2.4Conclusions29 References30
3.Applicationofbiogenicnanoparticles intheremediationofcontaminated water33
E.Janeeshma,P.P.SameenaandJosT.Puthur
3.1Introduction33
3.2Differentwaterremediationmethods34
3.3Applicationofnanoparticlesin wastewatertreatment35
3.4Synthesisofmicrobialnanoparticles36
3.5Applicationofmicrobialnanoparticlesin wastewatermanagement37
3.6Conclusions38 References38
4.Nanotechnologyinbiological scienceandengineering43
PratikV.TawadeandKailasL.Wasewar
4.1Introduction43
4.2Nanobiotechnology44
4.3Bionanotechnology45
4.4Advantagesofnanotechnology45
4.5Biologicalapplicationsofnanotechnology47
4.5.1Nanodiagnostics47
4.5.2Therapeuticapplications49
4.5.3Nanobiosensors53
4.5.4Nanotechnologyforcancer: diagnosisandtreatment56
4.6Futureprospects59
4.7Conclusions59 References60
5.Nanomaterialsbasedsensorsfor detectingkeypathogensinfoodand water:developmentsfromrecent decades65
ShobhaSingh,SanjeetKumarPaswan, PawanKumar,RamKishoreSinghand LawrenceKumar
5.1Introduction65
5.2Variouscontaminantsinfoodand water66
5.2.1Contaminantsinfood66
5.2.2Contaminantsinwater69
5.3Designingandfabricationof nanomaterials-basedsensors71
5.4Applicationsofnanosensorsindifferent sectors72
5.4.1Agriculture72
5.4.2Pollution73
5.4.3Foodprocessing73
5.4.4Foodpackaging73
5.4.5Foodtransport73
5.5Recentdevelopmentsin nanomaterials-basedsensorsfor pathogendetection73
5.5.1Quantumdots74
5.5.2Carbonnanotubes74
5.5.3Silvernanoparticles74
5.5.4Goldnanoparticles75
5.5.5Magneticnanoparticles75
5.5.6Zincoxidenanoparticles75
5.6Futureperspectivesandchallenges76
5.7Conclusions77 References77
6.Microbialnanostructuresand theirapplicationinsoilremediation81
ManishaAroraPandit,Kapinder, JasleenKaurandTarkeshwar
6.1Introduction81
6.2Biogenicsynthesisofnanostructures81
6.2.1Biogenicsynthesisusingbacteria82
6.2.2Biogenicsynthesisusingfungiand yeast82
6.2.3Biogenicsynthesisusingplants82
6.2.4Advantagesandapplicationsof biogenicnanostructures84
6.3Environmentalbioremediation85
6.3.1Soilpollutionandbioremediation85
6.3.2Bioremediationbyengineered nanostructures85
6.3.3Bioremediationbymicrobial nanostructures(nanobioremediation)86
6.4Conclusion92 Listofabbreviations92 Acknowledgments93 Declarations93 References93
Part2
Microbesmediatedsynthesisof nanoparticles
7.Greenbiosynthesisofnanoparticles: mechanisticaspectsand applications99
KanikaKhanna,SukhmeenKaurKohli, PalakBakshi,PoojaSharma,JaspreetKour, TamannaBhardwaj,NandniSharma, NehaDogra,PujaOhri,GeetikaSirhindiand RenuBhardwaj
7.1Introduction99
7.2Microbialenzymesinnanoparticle synthesis100
7.2.1Extracellularenzymes101
7.2.2Intracellularenzymes102
7.3Microbe-mediatedbiosynthesisof nanoparticles:mechanismofaction102
7.3.1Nanoparticlebiosynthesisby bacteria103
7.3.2Nanoparticlebiosynthesisby fungi105
7.3.3Nanoparticlebiosynthesisby actinomycetes106
7.3.4Nanoparticlebiosynthesisbyyeast106
7.3.5Nanoparticlebiosynthesisbyalgae106
7.3.6Nanoparticlebiosynthesisby viruses109
7.4Applicabilityofbiologicallysynthesized nanoparticles110
7.4.1Antimicrobialagents111
7.4.2Antibiofilmagents112
7.4.3Drugdeliverysystem113
7.4.4Anticancerandmedicalpurposes113
7.4.5Diagnosticimagingandother medicalpurposes114
7.5Challengesassociatedwithmicrobial synthesisofnanoparticles:apossible pathtosolution115
7.6Conclusionandfutureperspectives116 References116
8.Microorganismassistedsynthesized metalandmetaloxidenanoparticles forremovalofheavymetalions fromthewastewatereffluents127
SangitaAgarwalandSoumendraDarbar
8.1Introduction127
8.2Metalsandtheirrequirementfor existence129
8.2.1Definitionofmetals129
8.2.2Classificationofheavymetals129
8.2.3Sourcesofheavymetals129
8.2.4Adverseeffectsofheavymetals129
8.3Nanotechnologyandenvironmental remediation133
8.3.1Advantagesofconventional treatmentmethods133
8.3.2Bacteriainnanoparticlesynthesis135
8.3.3Themechanism138
8.4Challengesinnanoparticlesynthesis140
8.4.1Bacteriaselection140
8.4.2Selectionofreducingagents140
8.4.3Optimizingtheconditionsfor growthandenzymaticreactions141
8.4.4Theprocessofextractionand purification141
8.4.5Theprocessofstabilization141
8.4.6Theprocessofscaling141
8.4.7Safetyissues141
8.5Conclusion142
8.6Futurerecommendations142 References142
9.Microbialmetallonanoparticles— analternativetotraditional nanoparticlesynthesis149 D.Srividya,J.PatelSeema,Prabhurajeshwar andH.M.Navya
9.1Introduction149
9.1.1Advantagesanddisadvantagesof nanoparticles149
9.1.2Microorganismsasanalternative tothetraditionalnanoparticle synthesis150
9.1.3Bacteriamediatedsynthesis151
9.1.4Fungus-mediatedsynthesis154
9.1.5Algae-mediatedsynthesis156
9.1.6Viralmediatedsynthesis157
9.1.7Nanoparticlesynthesisusing proteinandDNAscaffolds157
9.1.8Applicationsofnanoparticles synthesizedviamicrobialroute157
9.1.9Futureperspectives157 9.2Conclusion159 References159 Furtherreading166
10.Microbial-basedsynthesisof nanoparticlestoremovedifferent pollutantsfromwastewater167 SteplinpaulselvinSelvinsimpsonand YongChen
10.1Introduction167
10.2Preparationofnanomaterials168
10.2.1Componentsaffectingthe synthesisofgreennanoparticles169 10.2.2Mechanisticaspects170 10.3Advantagesofmicrobial-based nanomaterialsinwaterremediation171 10.4Applicationofmicrobial-based nanomaterialswastewatertreatment172 10.4.1Titaniumdioxide174 10.4.2Silicananoparticles174 10.4.3Zincoxide175 10.4.4Graphene176 10.4.5Ironnanoparticles176 10.4.6Zirconiananoparticles177 10.5Futurerecommendations178
10.6Conclusion178 References178
11.Implementationofmicrobe-based metalnanoparticlesinwater remediation183
PoulamiMukhopadhyay, SadhanKumarGhoshandSutriptaSarkar
11.1Introduction183
11.1.1Nanomaterialsusedinwater remediation188
11.2Typesofmicrobialnanoparticleusedin waterremediation190
11.2.1Nanoparticlefromfilamentous fungi190
11.2.2Nanoparticlesfromyeast190
11.2.3Nanoparticlefromalgae191
11.2.4Nanoparticlesfrombacteria191
11.2.5Nanoparticlesfrom actinobacteria191
11.2.6Nanoparticlesfrommarine microbes192
11.2.7Nanoparticlesfromvirus192
11.3Feasibilityofimplementationof microbe-basednanoinwater remediation192
11.4Conclusions193 Acknowledgments193 References193 Furtherreading197
Part3
Environmentsustainabilitywith microbialnanotechnology
12.Microbialnanoproductsin“waste compost”:a“quality-check”for sustainable“solid-waste management”201
AnkitaChowdhury,GaneshKumarAgrawal, RandeepRakwalandAbhijitSarkar
12.1Introduction201
12.2Biosynthesisofdifferentnanoparticles202
12.2.1Goldnanoparticles202
12.2.2Silvernanoparticles203
12.2.3Othernanoparticles204
12.3Effectofmicrobialenzymeon nanoparticlesynthesis206
12.3.1Extracellularenzymes206 12.3.2Intracellularenzymes206 12.4Modelforformationofnanoparticles207 12.4.1Top-downmodel207 12.4.2Bottom-upmodel208
12.5Differentconditionsforcomposting208
12.5.1Aerobicdigestion209
12.5.2Anaerobicdigestion209 12.6Applicationofnanoparticlesin compostingsolidwaste210
12.7Conclusions212 Listofabbreviations212 Acknowledgment212 References212
13.Microbialnanotechnology: apotentialtoolforasustainable environment217
Tarkeshwar,ManishaAroraPandit,Kapinder, KritiBhardwajandJasleenKaur
13.1Introduction217
13.2Nanomaterialsasanalternativefor sustainabledevelopment218
13.3Microbialsynthesisofnanoparticles219 13.4Applicationofmicrobialnanoparticles indifferentsectors219
13.4.1Microbialnanoparticlesfor integratedpestmanagementand agriculturalpractices219
13.4.2Microbialnanoparticlesfor medicineanddrugs220
13.4.3Microbialnanoparticlesfor buildingconstructionmaterial221
13.4.4Microbialnanoparticlesin research222
13.4.5Microbialnanoparticlesin industrialuse222
13.4.6Microbialnanoparticlesin energysectors222
13.4.7Microbialnanoparticlesin environmentalprotection223
13.4.8Microbialnanoparticlesinfuel processing223
13.5Environmentalissuesassociatedwith microbialnanoparticles223 13.6Toxicityofbiogenicnanoparticlesinthe environment224
13.7Futureprospectstowardssustainable environmentandimpactofGovernment’s andNGOsinitiativestowardssustainable developmentwithgreennanotechnology225
13.8Conclusions226 References226
14.Environmentalapplicationsof microbialnanotechnologybased sustainablewetwastemanagement techniquesadoptedbyBruhat BengaluruMahanagarapalike, Bangalore—acasestudy231
R.Jyothilakshmi,SumangalaPatil, K.J.HemanthKumar,SadhanKumarGhosh, SandhyaJayakumarandPrajwalJayakumar
14.1Introduction231
14.1.1Biomethanation233
14.1.2Biocompost237
14.1.3Greenhousegasemission238 14.2Methodology240
14.2.1CaseStudy1:biomethanation plantatBELcampusBengaluru240
14.2.2Feedstock240
14.2.3Plantdataanalysis241
14.2.4Casestudy2:BioCNGplant241
14.2.5CaseStudy3:Aerobiccompost, purvankaraveneziaapartment, Bengaluru242
14.3Microbialnanotechnologyapplication androleinbiomethanationand biocomposting243
14.4DiscussiononsustainabilityoftheWM techniquesandeconomicalchallenges246
14.4.1Statisticsonwastegenerationand recycling:sustainabilityofWM techniques246
14.4.2Financialandeconomicsupport forMSWM249
14.5Conclusion250
14.6Futurescope251 Acknowledgment251 References251
15.Applicationofmicrobial nanotechnologyinsustainable agriculturethroughsoilremediation253 BornitaBoseandHarshataPal
15.1Introduction253
15.2Synthesisofnanoparticlesmediatedby microbes255
15.3Nanoparticlesasanaidtowards sustainableagriculture259
15.3.1Nanoparticle-encapsulated fertilizers259
15.3.2Nano-structuredpesticides264
15.4Conclusions269 15.5Futureperspectives269 References270
16.Greensynthesizednanonutrients forsustainablecropgrowth275
ShailjaDhiman,SomaniChandrikaRath, VikasKumar,AjitVarmaandArtiGoel
16.1Introduction275
16.2Nanoparticlesincropgrowth276
16.2.1Nanonutrientsincropgrowth278
16.2.2Nanonutrientsinstresstolerance280 16.2.3Nanonutrientsenhancessoil quality280
16.3Nanonutrientsindiseasemanagement280 16.4Conclusionandfutureperspective283 References284
17.Environmentsustainabilitywith microbialnanotechnology289 AbhayPunia,RavindraPratapSingh, VijaySinghandNaliniSinghChauhan
17.1Introduction289 17.2Microbialnanotechnology289 17.3Synthesisofnanoparticlesfrom microbes290
17.3.1Metallicnanoparticle productionassistedby filamentousfungi290
17.3.2Synthesisofmetallic nanoparticlesusingyeast293
17.3.3Synthesisofmetallic nanoparticlesusingalgae294 17.3.4Metallicnanoparticlesynthesis assistedbybacteriaand actinomycetes294 17.3.5Synthesisofmetallic nanoparticlesusingvirus295
17.4Microbial/greensynthesisof nanoparticlesandadvantagesover nonbiologicalsynthesis295 17.5Microbialnanoparticlesandsustainable agriculture296
17.5.1Applicationsinagriculture296 17.6Environmentalapplicationsofmicrobial nanoparticles297
17.6.1Applicationsinbioremediation299
17.6.2Valorizationofwaste299
17.6.3Applicationsinenvironmental management300
17.6.4Applicationinfoodand fermentation302
17.6.5Biomedicalapplicationsof microbialnanoparticles302
17.6.6Applicationinclinical diagnosticsanddrugdelivery303
17.7Limitations304
17.8Conclusionandfutureapproach305 References305
18.Nanobioremediation:anovel technologywithphenomenal cleanuppotentialforasustainable environment315
TamannaBhardwaj,KanikaKhanna, PoojaSharma,PalakBakshi,KaminiDevi, IshaMadaan,ShrutiKaushik, GeetikaSirhindi,BilalAhmadMir, RupinderKaur,AshutoshSharma, PujaOhriandRenuBhardwaj
18.1Introduction315
18.2Applicationmethodsofnano-bio technique316
18.2.1Sequentialmethod316
18.2.2Combined/concurrentmethod316
18.3Designingnewagebiogenic nanoparticles316
18.3.1Bacterialsynthesisof nanoparticles317
18.3.2Algalbasedsynthesisof nanoparticles318
18.3.3Fungalbasedsynthesisof nanoparticles321
18.4Microbemediated nanobioremediationof pollutants322
18.4.1Nanobioremediationofheavy metals322
18.4.2Nanobioremediationofdyesin textiles323
18.4.3Nanobioremediationof hydrocarbon324
18.4.4Nanobioremediationof pharmaceuticals(antibioticsand antiseptics)325
18.5Conclusions326 References326
Part4
Pollutantdegradationandadsorption usingnanomaterialsoriginatedfrom microbes
19.Applicationofmicrobially-synthesized nanoparticlesforadsorptive confiscationoftoxicpollutantsfrom waterenvironment335
SuhailAyoubKhan,UnshaTabrezand TabrezAlamKhan
19.1Introduction335
19.2Bio-mediatedsynthesisof nanoparticlesandtheircharacterization336
19.3Factorsaffectingthesynthesisof biogenicnanomaterials337
19.4ImpactofpHonthesynthesisof biogenicnanomaterials337
19.5Impactofprecursorandreducingagents’ concentrationonbiogenicnanomaterials synthesis337
19.6Impactoftemperatureonthefabrication ofbiogenicnanomaterials337
19.7Adsorptiveremovalofenvironmental contaminantsemployingbiogenic nanomaterials337
19.8Removalofinorganicpollutants338
19.9Removaloforganicpollutants339
19.10Impactofcounterionsontheadsorptive efficiencyofbiogenicnanoparticles340
19.11Reusabilitystudiesofbiogenic nanoparticles340
19.12Modelingofadsorptiondata340
19.13Environmentalproblems342
19.14Conclusionsandperspectives343 References343
20.Nanomaterialsoriginatedfrom microbesfortheremovaloftoxic pollutantsfromwater347
DeekshaRanjan
20.1Introduction347
20.2Adsorptionforremediationoftoxic pollutants348
20.2.1Bioadsorption348
20.3Nanotechnologyinwatertreatment349
20.4Adsorptionusingnanoadsorbents349
20.4.1Classificationofnanoadsorbents349 20.4.2Propertiesofnanoadsorbents350
20.4.3Characteristicsofanideal nanoadsorbent350
20.4.4Factorsaffectingoveralladsorption processesbynanoadsorbents351
20.4.5Routesofsynthesisof nanoadsorbents351
20.4.6Advantagesanddisadvantages ofphysicalandchemical methodsofnanoadsorbents synthesis352
20.5Biologicalmethodsofsynthesisof nanoadsorbents(greensynthesis)352
20.5.1Advantagesofbiologicalor greenmethodsofsynthesisof nanoadsorbents353
20.5.2Factorsinfluencinggreen synthesisofnanoadsorbents353
20.6Microorganismforthesynthesisof nanoadsorbents354
20.6.1Variousmicrobialcomponents forgreensynthesisof nanoadsorbents354
20.6.2Mechanismofmicrobemediated synthesisofnanoadsorbents354
20.6.3Characterizationof nanoadsorbentsoriginatedfrom microbes356
20.6.4Mechanismofadsorptionof toxicpollutantsbynanomaterials originatedfrommicrobes356
20.6.5Applicationofnanoadsorbents synthesizedbymicrobesfor remediationoftoxicpollutants358
20.6.6Stabilityandreusabilityof biosynthesizednanoadsorbents359
20.6.7Challengesandfutureprospects359
20.7Conclusions360 References360
21.Applicationofmicrobial nanobiotechnologyfor combatingwaterpollution365
Tarkeshwar,ManishaAroraPanditand Kapinder
21.1Introduction365
21.2Classificationofnanoparticles368
21.2.1Nanoadsorbents368
21.2.2Nanocatalysts369 21.2.3Nanomembranes369 21.3Microbialsynthesisofnanoparticles369 21.3.1IntracellularbiosynthesisofNPs370 21.3.2ExtracellularbiosynthesisofNPs370 21.4Whymicrobial-basednanotechnology?370 21.5Theimplicationofmicrobial-based nanoparticlesinbioremediationof wastewater371 21.6Degradationoforganicandinorganic contaminantsfromwastewater372 21.7Eliminationofionsofheavymetals373 21.8Othernanoparticlesuse373 21.8.1Microbial-basednanoparticlesas biosensors373 21.8.2Antimicrobialactivity374 21.9Challengesandfutureprospects375 Listofabbreviations376 References376
22.Areviewonazodyedegradationby exopolysaccharide-mediatedgreen synthesisofstabilizedsilver nanoparticles381
S.ChaitanyaKumari,VivekDhandand K.Anuradha
22.1Introduction381
22.1.1Preparationofmetalnanoparticles usingpolysaccharidesand exopolysaccharides383 22.1.2Mechanismof exopolysaccharide-mediated reductionandstabilizationof greennanoparticles384 22.1.3Applicationsofexopolysaccharide stabilizedgreensilvernanoparticle indyedegradation385 22.1.4Mechanismofdyedegradation usingexopolysaccharide stabilizedgreensilver nanoparticles388 22.2Conclusions388 References388 Index393
Preface
Nanotechnologyhasemergedasoneofthemostsignificanttechnologiesintheworld.Thelasttwodecadeshavewitnessedtremendousgrowthinnanotechnology-basedindustrial,agricultural,andenvironmentalapplications.Theapplicationsofnanomaterialsforenvironmentalremediationhavegreatlyincreasedstudiesoftheirsynthesisand manufacturingprocess.Nanomaterialsaremostlysynthesizedthroughchemicalmethods,whichcanleadtolongterm environmentalimplications.Manufacturingnanomaterialsusingagreensynthesismechanismcanencourageenvironmentalsafety.Thegreensynthesismethod,whichinvolvesplantsandmicroorganisms,isconsideredtobesaferthan chemicalsynthesisduetolowerenvironmentalimpact.Furthermore,theuseofmicroorganismsforthebiosynthesisof nanomaterialsisconsideredanewandviableprospectforthedevelopmentofasaferandgreenernano-manufacturing process.
Thisbook, EnvironmentalApplicationsofMicrobialNanotechnology,EmergingTrendsinEnvironmental Remediation,exploresapplicationsofmicrobialnanotechnologyforenvironmentalremediation.Thebookfocuseson theuseofmicrobialnanoparticlessynthesizedthroughmicrobesandtheirrelevantapplicationsintheremediationof environmentalcontaminants.Themainappealofthisbookisitsfocusonthefourareasofmicrobialnanotechnologyin asystematicmanner.Thebookexplorestherelevantthemethrough:(1)microbe-mediatedsynthesisofnanoparticles, (2)applicationsofmicrobialnanotechnologyforenvironmentalremediation,(3)pollutantdegradationandadsorption usingnanomaterialsoriginatedfrommicrobes,and(4)environmentalsustainabilitywithmicrobialnanotechnology.
Thebookwillappealtoresearchersworkinginthefieldsofgreennanotechnology,microbialnanotechnology,and environmentalremediation.Itwillalsobeusefulforfutureresearchandinnovativeprospectsofnanomaterialswitha microbialoriginandtheirpotentialfortheremovalofcontaminantsfromwastewater,degradationandadsorptionof pollutantsdegradation,soilremediationandpathogendetection.Itwillalsoproviderecommendationsandfutureperspectivesneededinthefieldofmicrobialnanotechnologyanditsapplications.Itwouldbegratifyingifthisworkcould contributetomicrobialnanotechnology’schallengingandemergingfield.
Abouttheeditors
Dr.PardeepSingh ispresentlyworkingasanassistantprofessor(DepartmentofEnvironmentalStudies,PGDAV College,UniversityofDelhi,NewDelhi,India).HereceivedhisdoctoratedegreefromtheIndianInstituteof Technology(BanarasHinduUniversity)Varanasi.Hehaspublishedmorethan75papersininternationaljournalsinthe areasofwater,wastewatertreatment,andwastemanagement.Hehasalsoeditedmorethan35bookswithElsevier, Wiley,CRC,andSpringer.
Dr.VijayKumar ispresentlyworkingasexecutivemember,SocietyforEnvironmentandSustainableDevelopment, NewDelhiIndia.HeobtainedhisMaster’sdegreefromtheDepartmentofEnvironmentalScienceatBanarasHindu University,Varanasi,India,in2012.HereceivedhisdoctoratefromtheIndianInstituteofTechnology(BanarasHindu University)Varanasiin2017.Hisdoctoralresearchareawasinthebiologicalsynthesisofsilverandgoldnanoparticles andtheirenvironmentalandbiologicalapplications.Hehaspublishedmorethan27papersininternationaljournalsin thefieldofenvironmentalnanotechnology.
Dr.MansiBakshi completedherPhDinenvironmentalsciencefromtheInstituteofEnvironmentandSustainable Development,BanarasHinduUniversity,Varanasi,India.HerPhDresearchinvolvedunderstandingtheimpacts,fate, andbehaviorofengineerednanoparticles(ENPs)onthesoil plantinteractivesystem.Sheispresentlyworkingasa postdoctoralfellowintheDepartmentofCivilEngineeringattheIndianInstituteofTechnologyDelhi,India.Her researchinterestsincludetheenvironmentalriskassessmentofENPsinnaturalsystems,theirsoil plantinteractions, nano-phytoremediation,nano-biotechnology,nanotechnologyapplicationsforenvironmentalandagriculturalusage.
Dr.ChaudheryMustansarHussain,PhD,isanadjunctprofessor,academicadvisor,anddirectorofchemistry& EVScLabsintheDepartmentofChemistry&EnvironmentalSciencesattheNewJerseyInstituteofTechnology (NJIT),Newark,NJ,UnitedStates.Hisresearchisfocusedonapplicationsofnanotechnology&advancedmaterials, environmentalmanagement,analyticalchemistry,andvariousindustries.Dr.Hussainistheauthorofnumerouspapers inpeer-reviewedjournalsandaprolificauthorandeditorofseveral(around50books)scientificmonographsandhandbooksinhisresearchareaspublishedbyElsevier,RoyalSocietyofChemistry,Wiley,CRC,andSpringer.
ProfessorMikaSillanpa ¨ a ¨ receivedhisMSc(Eng.)andDSc(Eng.)degreesfromtheAaltoUniversity,wherefromhe alsocompletedhisMBAdegreein2013.Hehassupervisedover50PhDsandbeenareviewerinover250academic journals,manyofwhicharehighlyrankedintheirfields.Heisalsoahighlycitedresearcherwithover900research articlesinpeer-reviewedinternationaljournals.Sillanpa ¨ a ¨ hasservedontheeditorialboardsofseveralscholarlypublications.Heiscurrentlyaneditorin InorganicChemistryLetters (Elsevier),associateeditorin EnvironmentalChemistry Letters (Springer),andfieldchiefeditorin FrontiersinEnvironmentalChemistry
Nanotechnologyassustainablestrategy forremediationofsoilcontaminants,air pollutants,andmitigationoffood biodeterioration
SomenathDas1 andArpanMukherjee2
1DepartmentofBotany,BurdwanRajCollege,PurbaBardhaman,WestBengal,India, 2InstituteofEnvironmentandSustainableDevelopment, BanarasHinduUniversity,Varanasi,UttarPradesh,India
1.1Introduction
Thetermsnanoparticleandnanomaterialrefertoverytinyinnatureinthescientificcommunitywhichhavevarietyof roleinthedifferentsectorsincludingremediationofwater,soil,heavymetalsinenvironments,andalsoinagricultural applications(Gongetal.,2018).Nanomaterialsareconsideredasprimecatalystsandadsorbentforremovalofcontaminantsbasedontheirgreatersurfacearea,lowermodificationoftemperature,maximumsitesofsorption,andshorter interparticledistance(Caietal.,2019).Nanoparticlesaremuchattractedforeliminationofheavymaterialsbasedon theirinteraction,mobilizationandadsorption(Nasiretal.,2019).Foodcommoditiesareprimarilycontaminatedby infestationofstoragefungiduringthepostharvestperiodsalongwiththeirassociatedsecondarymetabolitesespecially termedasmycotoxins(Dasetal.,2021a).Speciesof Fusarium, Penicillium and Aspergillus aremaximallyinvolvedin contaminationoffoodsbyhyphalproliferationandsporeproduction.Theysecretehazardousmycotoxins viz.aflatoxins, zearalenone,fumonisins,patulin,deoxynivalenol,andtricotheceneinfoodswhichhaveadverseimpactonhumanhealth withwidespreadcellularabnormalities,andtoxicities(Reddyetal.,2010;Chaudharietal.,2021).Mostimportantly, thesemycotoxinsareusualprecursorofreactiveoxygenspecies(ROS)production(Gauthieretal.,2020),andefficientlyinteractwithcellularproteins,carbohydrates,fattyacids,andbioactiveingredientsleadingtolossofnutritional qualities(Wuetal.,2019).Recentinvestigationof Dasetal.(2021b) demonstratedtheheavyincidenceofmethylglyoxalinfoodcommoditiesdirectlyleadtoproductionofaflatoxin,andgenerationofadvanceglycationendproducts. Onthebasisoftoxicity,InternationalAgencyforResearchonCancer(IARC)classifiedaflatoxinsasclass1carcinogen,fumonisin,andochratoxinsasclass2Bcarcinogen,andzearalenone,andtricotheceneasclass3carcinogen (Chaudharietal.,2019).Thecongenialclimaticandenvironmentalconditionsfavorinfestationoffungalfloraandproductionofmycotoxinsinstoredfoodcommodities(BhandariandSrivastava,2020).
Anumberofsyntheticfungicidesarebeingappliedformitigationoffungalproliferation,andmycotoxincontamination;however,theirindiscriminateapplicationmaycausenegativeimpactonhumanhealthandmaximumchancefor developmentofresistantfungalspecieswithmoreeffects(Badretal.,2021).Hence,inthecurrentgeneration,researchersarecompletelyfocusedonplantbasedchemicalstoavoidthedrawbackofsyntheticfungicideswithmaximum greenimageinfoodandagriculturalindustries.Amongdifferentplantbasedproducts,essentialoilsisolatedfromhigherplantsareinvolvedininhibitionofmicrobialgrowth,mycotoxinproductionandlipidperoxidationwithgreenimage infoodandagriculturalindustries(Bocateetal.,2021).
Indeed,theessentialoilsdisplaypromisingpreservationpotentialities,but,theirpracticalapplicationexhibitseveral challengeslikelowwatersolubility,highvolatility,andnegativeimpactonfoodorganolepticattributes(Jamalietal., 2021).Nanoentrapmentofessentialoilshasspecialadvantageforimprovementinbioefficacyinfoodsystemwithlong
termsustainedreleaseofvolatilecomponents(Zhuetal.,2020).Nanoencapsulationsimplydemonstratestheentrapmentofessentialoilsintobiodegradablepolymerssuchaschitosan,gelatin,soyprotein, β-cyclodextrin,sodiumalginate,andstarchwiththeinvolvementofseveralprocesses viz.ionicgelation,coacervation,nanoprecipitation,liposome, supercriticalsolution,freezedrying,andsolidlipidnanoparticles(Guoetal.,2021).
Hence,thepresentarticlefocusesupdateddetailsofapplicationofnanoparticlesforremovalofsoilandwaterpollutantsalongwithremediationofhazardousheavymetals.Moreimportantly,applicationofessentialoilnanoparticles againstfungalandmycotoxincontaminationoffoodshasalsobeendiscussed.Furthermore,thebiochemicalandmolecularmechanismsalsostrengthentheapplicationofnanoencapsulatedessentialoilsaseffectivegreenpreservativewith novelagro-ecologicalprospects.
1.2Useofnanoparticleforsoilandwaterpurification/remediation
Contaminationofsoilandwater(ground)areverycloselylinked.Methodsthatareusedforthetreatmentsofsoilcontaminationareindirectlyworkforgroundwaterremediation’s,andithasaviceversaeffect(MuellerandNowack 2010).Waterisoneofthemostimportantcomponentsofhumancivilization,andisabasicnecessityforhumanlife. Waterscarcityescalatesduetohighpopulation,climatechange,anditisalsothereasonofdetritionsofwater-quality (AliandAboul-Enein,2004;NemerowandDasgupta,1991).Only2.5%oftheworld’soceansandseasharnessfresh water,However,70%offreshwater(FW)isfrozenaseternalice,only , 1%ofFWcanbeusedfordrinking. Accordingto WHO(2014),globallylessthan700millionpeopledon’thaveaccesstopurepotablewater.Therefore, thewatertreatmentorimprovementwaterqualitymustbeimplementedthroughouttheworld.
Anumberoftechnologiesareavailableforwaterpurification,butthatarereachingtheirlimitsinsupplyingsufficientamountofwatertomeetpopulation,andenvironmentalneeds(Quetal.,2013).Watercontaminationoccureither byorganic,inorganic,orbybiologicalcontinents.Somewatercontaminantsaremosttoxicandcarcinogenicinnature (AliandAboul-Enein,2004;Alietal.,2009)andsomecontaminantshaveadverseeffectsonhumansandwholeenvironments(Ali,2012).Oneofthemosttoxiccomponentsanddeadliestelementsinwaterisarsenic;however,othercommonwaterpollutantsarechromium,mercury,cadmium,zinc,nickel,copperandlead(Ali,2012).Highconcentration ofphosphates,Nitrates,sulfates,chlorides,selenides,fluorides,andchromatesinwatershowedhazardouseffectsin environmentandhumanhealth(Damia ` ,2005).NPsbasedwaterpurificationisaclassictechniqueforefficientremoval ofwatercontaminants.
Majorprocessesinvolvedinwaterpurificationare:
1.2.1Adsorbentprocess
Here,nano-adsorbentsaremainlyusedforremovingofinorganicand/ororganicpollutantsfromwater.Theproperties ofthenano-adsorbentsaresmallerinsize,highlevelcatalyticpotential,reactivity,largesurfacearea,easyseparation procedure,andhugenumberofactivesitesthatcaneasilyadsorbedtoxicmaterialsofsoilandwastewater(Ali,2012). SomeexamplesofadsorbentNPsmaterialsarecarbon-basednano-adsorbents,ironoxide,zincoxide,aluminaoxide, andtitaniumdioxide.
1.2.2Membranebasedprocess
Inthisprocess,athinmembraneisplacedthroughwhichwaterispassedandcontaminantsareeasilytrappedbynanoparticle.Electrospunnanofiber,hydrophilicmetaloxideNPslikeAl2O3,TiO2,andzeolite,nano-AgandCNTs,and bimetallicNPs,TiO2 arecommonlyusednanoparticlesforremovalofpollutants(Giwaetal.,2021).
1.2.3PhotocatalysisandantimicrobialNPs
Nanoparticles(NPs)areeffectivelyusedfortheremediationorpurificationofsoilandgroundwater.Thetinyparticles (NPs)arehighlyreactiveandhavegreatadsorptioncapacity(Goyaletal.,2018).However,sometechnicalchallenges, suchasthedeliveryprocessshouldhavetosolve.Moreover,thecostofNPsishugeforpreparinglargequantitiesfor soilandwaterpurification.
1.3Nanotechnologyinheavymetals(HMs)removal
Waterandsoilarethemostimportantnaturalresourcethatrequiredforsurvival,butrandomindustrialization,cutting offorest,urbanizationcausehugeprobleminthesoilandwater.Mostlysoilandwaterarecontaminatedthroughheavy metal.ThisHMscomefromdifferentsectorslikeindustries,agriculturechemicals,miningarea,andchemicalsplants. SomeHMslikePb,Zn,Cu,andHgcauseaseverethreattohumanandenvironmentalhealthbecausethisHMcanbe accumulatedinthesoil,waterandhumanbodythroughfoodchain.Therefore,removalordetoxificationofHMisof greatconcern,tilldate,differenttechnologieshavebeenreportedanddevelopedtosolvethisHMcontaminationproblem,theseareincludedchemicalprecipitation(Gonzalez-Munozetal.,2006),ionexchange(Verbychetal.,2004), adsorptionprocess(NamasivayamandSangeetha,2006),membranefiltrationtechniques(Sudilovskiyetal.,2007) andelectrochemicaltreatment(Tranetal.,2017),andsoon.DifferentNPshavebeenusedtoremovetheHMfromthe environmentsthisincludedgrapheneoxideNanocomposites,carbonnanotubes,nanosizedmetaloxides,carbon-based nanomaterials,zero-valentmetalnanomaterials(Yangetal.,2019).ApplicationofnanotechnologytoremediateparticularHMisahighlycomplicatedtaskanddependsonanumberoffactorslikequalitystandard,efficiencyandcost (Huangetal.,2008).NanomaterialsarepotentiallyinvolvedinadsorptionandreactionforremovalofhazardousHM fromwaterandsoil(Fujishimaetal.,2000;Kamatetal.,2002;MasciangioliZhang,2003).Recentinvestigation suggestedtheapplicationofironnanoparticleforscavengingAs51,Pb21,Cr61,andCd21 (Alidokhtetal.,2011;Zhu etal.,2009;Boparaietal.,2011;Zhangetal.,2011a,b). Wuetal.(2008) demonstratedthepotentialFe3O4 nanoparticle formitigationofCrfromaquaticwaste. ChowdhuryandYanful(2010) synthesizedmaghemiteandmagnetitenanoparticlesandstudiedtheirefficacyforadsorptionofchromiumandarsenicfromaqueoussolution. Checkoletal.(2018) reportednanoparticleconsistingofpoly(3,4-ethylenedioxythiophene)/polystyrenesulfonate(PEDOT/PSS)andlignin biopolymerforremovalofPb21 fromneutralsolution. Zhangetal.(2011a,b) illustratedtheeffectofthreedifferent ZrP Cl,ZrP SandZrP Nnanocomposites(preparedbyencapsulationofzirconiumphosphatenanoparticles(nanoZrP)withinmacroporouspolystyreneresins)forremovalofPb(II)basedontheionicgroupinteraction.
1.4Contaminationofstoredfoodsbyfungiandmycotoxins
Postharvestfoodcommoditiesaremaximallyinfestedandcontaminatedbyfungi,andtheirassociatedmycotoxinsbecause ofcongenialconditionsliketemperature,wateractivity,nutritionstatus,concentrationofhydrogenions,wateractivity, pHandspecificsoluteseffects(VanLongetal.,2017).Moreover,thesestoragefungimainlydamagethestoredfood qualitybyreducingthenutrientavailability,graindiscoloration,crackingofgrainsandtoxiceffectsongermination ofseeds(Mohapatraetal.,2017;Pleadinetal.,2019).Mycotoxinsareinvolvedingenerationofreactiveoxygenspecies (ROS),leadingtoperoxidationoflipidsintofreefattyacidsandtheirnutritionalqualities(DaSilvaetal.,2018). Dwivedyetal.(2017) demonstratedcontaminationof Cucumismelo, Juglansregia, Citruluslanatus, Nelumbonucifera, Buchananialanzan,and Pistaciavera seedsby Aspergillusflavus, A.minutus, A.niger, A.sulphureus, Alternariaalternata, Curvularialunata, Moniliabrunia and Penicilliumcitrinum. Achaglinkameetal.(2017) demonstratedaflatoxincontaminationinlegumesandcerealsbytoxigenicspeciesof Aspergillusflavus inconduciblepH,nutrientcontentandwater activityofsubstrate.Fungalcontaminationofpowderedspices viz.garammasala,tandurimasala,cumin,basil,gingerand turmericby A.fumigatus, A.terreus, Penicilliumcorylophilum,and P.chrysogenum hasbeenreportedby Hammamietal. (2014).Recently, SinghandCotty(2019) illustratedthecontaminationofdriedredchiliesfromNigeriaandUSby A.parasiticus, A.aflatoxiformans, A.minisclerotigenes,and A.flavus withresultantproductionofaflatoxins.Inaninvestigationof Kumaretal.(2018),ithasbeenobservedthatstoredmillets,especially Sorghumbicolor and Pennisetumglaucum weremaximallycontaminatedwith A.flavus, A.sydowii, A.minutus, Penicilliumitalicum, P.purpurogenum,and Chaeotomiumspirale leadingtoproductionofAFB1. HashemandAlamri(2010) reportedcontaminationofcommon spicessuchascinnamon,greensaffron,fenugreek,fennel,cardamom,aniseedsandclovesby A.awamori, A.candidus, A.ochraceus,A.versicolor, A.tamari, Fennellianivea and Humicolagrisea alongwithfrequentcontaminationbyAFB1 andAFB2. Deepikaetal.(2020) reportedgrowthandproliferationofdifferentfungalspecieslike A.luchuensis, A.fumigatus, A.flavus, A.humicola, P.spinulosum and A.terreus duringpostharveststorageof Fagopyrumesculentum, Macrotylomauniflorum, Linumusitatissimum,and Salviahiapanica seeds. Kluczkovski(2019) demonstratedmaximum contaminationofchestnut,cashewnut,Brazilnut,almonds,peanuts,pecannuts,andwalnutby A.ruber, A.chevalieri, Rhizopusstolonifer, A.fumigatus, Cladosporiumcladosporoides, A.alternata and A.parasiticus duringstorage.More importantly,peanuts,Brazilnuts,andcashewnutsweremaximallycontaminatedwithaflatoxinsonthebasisofenvironmentalfactorssuchastemperatureandrelativehumidityofthestorageconditions. Table1.1 presentssomemajorfood commoditiescontaminatedwithfungiandmycotoxinsandtheirhazardouseffectsonhealth.
TABLE1.1 Somestoredfoodcommoditiescontaminatedwithfungalpathogensandmycotoxinswiththeiradverse healtheffects.
FoodcommoditiesFungalpathogensMycotoxins produced Hazardouseffects onhealth
Rice
Maize
Dryfruits
Spices(Redchili,Cinnamon, Clove,Cardamom,andblack pepper)
Fusariumoxysporum, F.poae, Aspergillusniger, A.flavus, A.parasiticus,and Penicillium italicum
Aspergillusflavus
Fusariumverticilloides, Fusarium proliferatum and A.flavus
Fusarium, Penicillium and Aspergillus spp.
A.flavus, A.niger, A.minutes, A.sulphureus, Alternariaalternata, Curvularialunata, Moniliabrunia and Penicilliumcitrinum
Aspergillus, Fusarium and Penicillium
CicerarietinumA.niger, F.oxysporum, P.citrinum, A.oryzae and A.flavus
Legumeseeds(Glycinemax, Lensculinaris, Vignamungo, Pisumsativum, Phaseolus vulgaris and Vignaaconitifolia)
Meats
Ediblemushroom
A.flavus, Rhizopusstolonifer, Alternariaalternata, Rhizoctonia solani, Fusariumoxysporum and A.sydowii
A.flavus, A.parasiticus, P.chrysogenum,and P.verrucosum
A.parvisclerotigenus, A.flavus, and Penicillium spp.
ArachyshypogeaA.parasiticus,and A.flavus
TriticumaestivumFusariumoxysporum
Coffeebean,grapeandvine fruits
Sorghumbicolor and Pennisetumglaucum
Penicilliumverrucosum,and A.carbonarius
A.flavus, A.sydowii, A.minutus, Penicilliumitalicum, P.purpurogenum,and Chaeotomiumspirale
AflatoxinsCarcinogenic, teratogenic, mutagenicand hepatotoxiceffects onhealth
AflatoxinsMutagenic,liver cirrhosisand cellular abnormalities
Fumonisinsand aflatoxins
Zearalenone, ochratoxinA,and3, 15-acetyl deoxynivalenol
References
Dasetal. (2020a)
Chaudhari etal. (2020a)
Mutageniceffectson body Chulze (2010)
Neurotoxicand nephrotoxic Tarazona etal.(2020)
AflatoxinsCarcinogenicand teratogeniceffects Dwivedy etal.(2017)
Citrinin,fumonisinB, nivalenol, deoxynivalenol, sterigmatocystinand ochratoxins
AFB1
AFB1
Hepatocarcinogenic symptoms Thanushree etal.(2019)
Toxiceffectson immunesystem
Aflatoxicosis, abnormalliver growthand carcinogenesis
Aflatoxinsand ochratoxins
AFB1,AFB2, deoxynivalenol, zearalenoneand T-toxin
AFB1
Shuklaetal. (2012)
Shuklaetal. (2009)
Nephrotoxic, immunotoxicand hepatotoxic Perrone etal.(2019)
Toxiceffectsoncell growth Ezekiel etal.(2013)
Mutagenicand teratogeniceffects Gotoetal. (2000)
DeoxynivalenolEstrogeniceffecton human Ferrigoetal. (2016)
OchratoxinsNeurotoxiceffects onbody Maganand Aldred (2007)
AFB1
Aflatoxicosis, abnormalliver growthand carcinogenesis
Kumaretal. (2018) (Continued )
TABLE1.1 (Continued)
FoodcommoditiesFungalpathogensMycotoxins produced Hazardouseffects onhealth
Fagopyrumesculentum, Macrotylomauniflorum, Linum usitatissimum,and Salvia hiapanica seeds
A.luchuensis, A.fumigatus, A.flavus, A.humicola, P.spinulosum and A.terreus
AFB1
References
Carcinogenic, teratogenic, mutagenicand hepatotoxiceffects onhealth
Deepika etal.(2020) chestnut,cashewnut,Brazil nut,almonds,peanuts,pecan nuts,andwalnut
A.ruber, A.chevalieri, Rhizopus stolonifer, A.fumigatus, Cladosporiumcladosporoides, A.alternata and A.parasiticus
AFB1 andAFB2
Livercirrhosis
1.5Essentialoils:agreenchemicalforpreservationofstoredfoods
Kluczkovski (2019)
Essentialoilsaresecondarymetabolitesofhigherplants,especiallyisolatedfromflowers,fruits,buds,roots,leaves, twigsandseeds(Figueiredoetal.,2008).Theycontainterpenoids,sesquiterpenoidsandphenolicsasoneofthemajor constituents(Froiioetal.,2019),leadingtoactiveinhibitionoffungalproliferationandmycotoxincontamination (Kumaretal.,2019).Moreimportantly,terpenesarebasicstructuralcomponentofessentialoilsthatcovergreaterthan 50%ofthetotalessentialoildependingonextractiontypeandutilizationofplantparts(Azizetal.,2018).Aromatic, aliphatic,alcoholic,phenols,aldehydes,heterocyclesalcoholsandmethoxyderivativesarealsotheminorcomponents ofessentialoils(Fallehetal.,2020).Theantioxidantcapacityofessentialoilsalsofacilitatesinscavengingofbiodeterioratingfreeradicalswhichcorrespondstotheirmajoreffectformitigationoffungalloadandmycotoxinbiosynthesis (Dasetal.,2021c).Thephenolicconstituentsofessentialoilsaremainlyparticipatedinantimicrobialandantifungal activities(Mandrasetal.,2016).Alterationinefficacyofessentialoilshasbeendependedongeographicalvariation, maturityofplant,timeofharvesting,plantorganandchemotypicvariation(Lawrencet,2001;Dasetal.,2021a). Therefore,beforerecommendationofessentialoilsasecofriendlyfoodpreservative,oneshouldrequirestandardizing thechemicalcompositionswiththeirrespectiveavailabilitiestoprotectfoodsfromfungalandmycotoxinmediated biodeterioration.
1.6Mechanismsinvolvingantifungalandantimycotoxigenicactivities
Majorityofessentialoilcomponentssuchasphenylpropenes,terpenoids,phenolicandaldehydecomponentstargetdifferentcellularsites viz.plasmamembrane,cellwall,mitochondria,andothercellorganelles(Hyldgaardetal.,2012). Differenttechniqueshavebeeninvolvedforelucidationofmechanismofantifungalandantimycotoxigenicactionin foodsystem.Atomicforcemicroscopy(AFM),transmissionelectronmicroscopy(TEM)andscanningelectronmicroscopy(SEM)revealthedeformitiesinplasmamembraneafterinteractionofessentialoilcomponentswithmembrane proteins(Toloueeetal.,2010;Mirietal.,2019;JafriandAhmad,2020).Reductioninergosterolcontentbyessential oilfumigationmayalsobeapossiblereasonfordisintegrationofmembraneintegrityandstabilityleadingtopremature cellulardeath(Dasetal.,2021d).Anumberoftargetsiteshavebeendemonstrated,where,essentialoilsandtheirbioactiveconstituentsareespeciallyinteractanddisturbthenormalfunctioning.
1.6.1Effectonergosterolbiosynthesis
Ergosterolisprimesterolmoleculeinfungalcellmembraneprovidingdynamicity,fluidity,permeabilityandintegrity (AbeandHiraki,2009).Recentinvestigationof daSilvaBomfimetal.(2020) demonstratedtheinhibitionofergosterol biosynthesisby Rosmarinusofficinalis essentialoilin A.flavus inadosedependentfashion.Similarreportwithactive potentialityofcinnamaldehydeforreductionofcellularergosterolin Fusariumsambucinum hasbeenillustratedby Wei etal.(2020) Tianetal.(2012a,b) reporteddosedependentretardationofergosterolcontentin A.flavus afterfumigation with Cinnamomumjensenianum essentialoil.Impairmentinsynthesisofergosterolsuggestedplasmamembraneas potentialtargetsiteofactionofessentialoilsforantifungalactivity. Wangetal.(2019a,b) investigatedtoxiceffectof
citralonergosterolbiosynthesisin A.alternata leadingtocellularapoptosis.Retardationinergosretolcontentby Curcumalonga essentialoilin Fusariumverticillioides hasbeenrecentlydemonstratedby Avanc¸oetal.(2017).They reportedconsequentreprogrammingofgenesinvolvedinergosterolsynthesisafteressentialoiltreatmentwhichcould bemarkedaspossiblemechanismofbiochemicalactionforantifungalactivity.
1.6.2Effectonleakageofcellularconstituents
Indeed,manyessentialoilcomponentsarereportedtoeffluxmajorcellularconstituents viz.Mg21,K1 andCa21 from fungalcells,suggestingimpairmentinmembranepermeabilityandfluidity. Singhetal.(2021) reportedexcessiveefflux ofCa21,Mg21 andK1 ionsfrom A.flavus cellsafterfumigationwith Cinnamomumcassia essentialoil.Effusionof Ca21,Mg21 andK1 ionsalongwithenhancedeffluxofnucleicacidsandproteinsby Apiumgraveolens essentialoil mixedlinalylacetateandgeranylacetatefumigationin A.flavus hasbeenreportedby Dasetal.(2019). Chaudhari etal.(2020a) demonstratedantifungalactivityof Pimentadioca essentialoilin A.flavus duetoleakageofMg21,K1 andCa21 ionsleadingtolossincellularhomeostasis. Zhangetal.(2019) reportedantifungalactivityofcarvacroland thymolduetoexcessiveeffusionofelectrolytesfrom Botrytiscinerea alongwithdestructionofmembranepermeability.Inananotherstudyof Helaletal.(2006) illustratedtheeffectof Cymbopogoncitratus essentialoilonleakageof Ca21,Mg21 andK1 ionsfrom A.niger cells.Moreover,leakageoflargermoleculeslikecarboxyfluoresceindiacetate, andATPandinfluxofethidiumbromideandpropidiumiodidealsorevealedthemembranedysfunctionduetoformationofporesandholesculminatingtoosmoticimbalances.RadiolabeledaminoacidsandnucleotidesdetectedthenegativeimpactofessentialoilsonfungalDNAreplicationsandproteinsynthesis(Schneideretal.,2010).
1.6.3Effectofessentialoilsonenergymetabolism
Essentialoils/bioactivecomponentsareactivelyparticipatedforinhibitionofenergymetabolismbyblockingATPsynthesis. Tianetal.(2012a,b) reporteddisruptioninmitochondrialmembranepotentialby Anethumgraveolens essential oilleadingtoinhibitionofATPsynthesisin A.flavus.InhibitionofmitochondrialATPaseanddehydrogenaseactivity culminatingintoreducedproductionATPhasbeenrecentlydemonstratedby Huetal.(2017) Tatsadjieuetal.(2009) describedimpairmentinenergymetabolismduetoinhibitionofH1-ATPasepumpanddisturbedtheactivesiteofthe enzymeleadingtodepletioninATPpool. Wangetal.(2019a,b) reportedantifungaleffectsofcinnamaldehydedue toeffectiveinhibitionofF0-F1 complexofATPaseactivity.Fumigationof Penicilliumroqueforti cellsbyeugenoland citralsynergisticformulationcollapsedmitochondrialmembranepotentialwithvaryingdegreeofdistortionsinmitochondrialinnerlayer(Juetal.,2020).ThereareseveralcomponentsofessentialoilsthathaveindirecteffectonATP synthesisleadingtoinhibitionofcellgrowthandsporulation.
1.6.4Effectofessentialoilsoncellularmethylglyoxal
Methylglyoxal,acytotoxiccomponentproducedasrespiratorybyproductactasinducerofcellularaflatoxinbiosynthesisin A.flavus.Methylglyoxalmostlyup-regulatetheaflRandver-1genesforproductionofexcessiveaflatoxins. Recentinvestigationof Dasetal.(2021e) reportedprominentinhibitionofmethylglyoxalbiosynthesisbyeugenolin A.flavus,whichdirectlycorrelatedwithreductioninAFB1.Dosedependentretardationinmethylglyoxalproductionby α-terpenolin A.flavus hasbeeninvestigatedby Chaudharietal.(2020b).Recentstudyof Singhetal.(2019) suggested inhibitionofmethylglyoxalsynthesisby Ocimumsanctum essentialoilin A.flavus
1.6.5Molecularmechanismofantifungalandantimycotoxigenicactivity
Molecularmechanismsrevealbetterunderstandingofantifungalandantimycotoxigeniceffectivenesswithpropermechanismofactionandbindingaffinities. Oliveiraetal.(2020) demonstrateddown-regulationoflaeA,metPandlipA genesleadingtoinhibitionoffungalgrowth. Dasetal.(2021d) reportedinsilicointeractionofelemicine,p-cymene, α-pinene,apiolandfenchonewithlanosterol14-α-demethylaseculminatingintoreductionofergosterolbiosynthesis andinhibitionofver-1andpolyketidesynthaseleadingtoreducedsynthesisofAFB1 Muruganetal.(2013) demonstratedinteractivebindingof13bioactivecomponents(isolatedfrom Murrayakoenigii essentialoil)withver-1protein whichmaycauseinterferenceinAFB1 biosynthesis. Badawyetal.(2019) reportedmaximumantifungalactivityof camphor,menthone,linalool,thymol,andcitronellylagainst A.flavus duetohydrogenbondandhydrophobicinteractionwithoxysterolbindingprotein(Osh4). Dasetal.(2020b) observedinteractionofthujanol,elemicineand
FIGURE1.1 Mechanismsrelatedtoantifungalandantimycotoxigenicactivityofessentialoils.
myristicinewithver-1andomtAproteinsof A.flavus byhydrogenbonds(withaminoacidsGly22,Lys252,Trp190 andGly227)leadingtoinhibitionofAFB1 synthesis. Fig.1.1 presentstheantifungalandantimycotoxigenicmechanismsofactionofessentialoils.
1.7Nanotechnology:novelsustainablegreenstrategytoprotectfoods
Nanoencapsulationofessentialoilsintoanybiodegradableandbiocompatiblecarriermatriximprovethebioefficacyin foodsystem.Thecontrolledreleaseofessentialoilcomponentsfacilitatesthelongtermstabilityandaffectivitywithout alteringtheorganolepticpropertiesoffood(Chaemsanitetal.,2019).Differentformsofnanoencapsulatedessentialoils viz.nanoemulsion,nanocapsule,nanoparticle,nanogel,nanotubes,nanoliposomes,nanosponge,andnanofibrehave beensynthesizedafterproperentrapmentwithinanybiocompatibleandbiodegradablepolymermatrix(Bahramietal., 2020). Antoniolietal.(2020) demonstratedantifungalaffectivityoflemongrassessentialoilloadedpolylacticacid nanocapsulesagainstpathogenic Colletotrichumacutatum.Effectiveinhibitionofstoragefungialongwithmitigationof AFB1 contaminationinmaizebyanetholeloadedchitosannanoemulsionhasbeenreportedby Chaudharietal.(2020c) Singhetal.(2020a,b) illustratedretardationingrowthoffoodbiodeterioratingfungiandAFB1 secretioninmasticatoriesby Buniumpersicum essentialoilnanoemulsion.Nanoencapsulated Zatariamultiflora essentialoilimprovedthe fungitoxicpotentialityagainst Botrytiscinerea causinggraymolddiseaseinstrawberries(Mohammadietal.,2015). Hasheminejadetal.(2019) reportedcontrolleddeliveryofcloveessentialoilfromchitosannanoemulsionwithinhibitoryactivityagainst A.flavus infestationinstrawberriesover56daysofstorage.Enhancementinantifungalactivityof cloveandcinnamonessentialoilagainst A.niger, P.roqueforti,and Candidaalbicans afterencapsulationintochitosan nanocapsuleshasbeenreportedby Mahdietal.(2021) Table1.2 presentsnanoencapsulatedessentialoils/components withantifungalandantimycotoxigenicefficacyinfoodsystem.
1.8Safetyassessmentofessentialoils
Beforebroadscalerecommendationofessentialoilsandnanoencapsulatedgreenproductsinagri-foodindustries,one shouldassessthesafetyprofileofessentialoilinmodelmammaliansystem. Delimaetal.(2013) investigatedsafety assayof Crotonargyrophylloides and C.sonderianus essentialoilsthroughoraltoxicitymethodandfoundtheLD50
TABLE1.2 Nanoencapsulatedessentialoils/componentswithantifungalandantimycotoxigenicefficacyinfood system.
Essentialoils/ component BiopolymerEfficacyinfoodsystemReferences
Pimpinellaanisum ChitosanPreservationofstoredriceagainstfungalandAFB1 contamination Dasetal.(2021b)
Anethum graveolens Chitosan Dasetal.(2021a)
Coriandrum sativum Chitosan Dasetal.(2019)
AnetholeChitosanEffectiveantifungalandantiaflatoxigenicagentinstoredmaize Chaudharietal. (2020b)
EugenolChitosanEffectiveinhibitorof A.flavus infestationandAFB1 secretion Dasetal.(2021e)
Cuminumcyminum ChitosanQualitycontrolofsardinefilletbyreducinglipidperoxidation andimprovedsensorialcharacters Homayonpour etal.(2021)
Satureja khuzestanica
Artemisia dracunculus
Monardacitriodora
ChitosanReducedmicrobialgrowth,lipidperoxidationandsensorial charactersinlambmeat Pabastetal. (2018)
Gelatin-chitosanPreservationofporkslicesagainstmicrobialcontaminationand lipidperoxidation Zhangetal. (2020)
ChitosanProtectionofstoredfunctionalfoodsagainstfungalinfestation andAFB1 contamination Deepikaetal. (2020)
CloveessentialoilChitosanQualityimprovementofstrawberryfruitsbyinhibitionof A.niger infestation Hasheminejad etal.(2019)
Zatariamultiflora ChitosanInhibitionof Botrytiscinerea growthinstrawberries Mohammadi etal.(2015)
Petroselinum crispum
Pogostemoncablin
Cinnamodendron dinisii
ChitosanProtectionofstoredchiaseedsfromfungalinvasionandAFB1 contamination Deepikaetal. (2021)
ChitosanAntifungalandAFB1 inhibitioninstoredmaizekernel Roshanetal. (2021)
ChitosanPreservationofgroundbeefagainstmicrobialdeterioration Xavieretal. (2021)
Myristicafragrans ChitosanProtectionofstoredriceagainstfungalandAFB1 contamination Dasetal.(2020b)
Cinnamonessential oil PullulanShelflifeenhancerofstoredstrawberriesbymaintainingthe physico-chemicalparameters Chuetal.(2020)
Oreganoessential oil
LecithinPostharvestqualitymaintenanceandenhancementofshelflifeof tomatoes Pirozzietal. (2020)
EugenolTween-80, Tween-20and sesameoil
Illiciumverum
Inhibitionofmicrobialinfestationinorangejuice Ghoshetal. (2014)
ChitosanMitigationoffungalgrowthandAFB1 secretionindryfruits Dwivedyetal. (2018)
Menthapiperata ChitosanBetterantifungalactivityagainst Aspergillusflavus intomatoes Beykietal.(2014)
Cuminumcyminum ChitosanSuperiorantifungalactivityagainst Aspergillusflavus Zhavehetal. (2015)
Zatariamultiflora Glyceryl monostearate andTween-80
D-limoneneSoylecithinand starch
Strongantifungalactivityagainst Aspergillusochraceus, Aspergillusniger, Aspergillusflavus, Alternariasolani, Rhizoctonia solani,and Rhizopusstolonifer Nasserietal. (2016)
Preservationofpearandorangejuicesagainstmicrobial deterioration Donsı`etal. (2011)
valuehigherthan6000mg/kgconsideringsafeforpracticalutilizationasfoodpreservative. Jemaaetal.(2018) reported higherLD50 valueof Thymuscapitatus essentialoilinmicewithoutabdominalcontortion,piloerectionandmuscle tones. Dwivedyetal.(2018) demonstratedveryhighLD50 valueof Illiciumverum essentialoil(11,257.14 μL/kgbody weight)inmice. Upadhyayetal.(2019) demonstratedhighLD50 (13,956.87 μL/kgbodyweight)inmicesuggesting non-toxiceffecttomammaliansystem.Indifferentstudies,ithasbeenobservedthatnanoencapsulationreducedthe LD50 value,however,thevalueswerefoundhigherthanOECDguideline(cutoffvalue 5 2000mg/kg),hencethey havebeencategorizedassafewithgreeninsighttopreservefoodcommodities.Inastudyof Dasetal.(2021a),LD50 valueof Anethumgraveolens essentialoilinmicewasreported18,714 μL/kg,whilenanoencapsulationretarded theLD50 valueto15,987 μL/kg.AuthorsalsosuggestedthereductionofLD50 valueduetolargesurface/arearatio innanoemulsionsystemandbetterbindingaffinitywithincells. Ribeiroetal.(2014) demonstratedreductioninLD10 andLD50 valuesof Eucalyptuscitriodora essentialoilafterencapsulationintochitosannanomatrixwithoutcausing anyvitaltoxicityinmice. Ragavanetal.(2017) illustratednon-toxiceffectofgarlicessentialoilnanoemulsioninrats withimprovementindyslipidemiatreatment.LD50 valueof Origanummajorana essentialoilwasfound14,117 μL/kg bodyweightofmice,whilenanoencapsulationreducedtheLD50 valueto11,889 μL/kgbodyweight(Chaudharietal., 2020d).
1.9Conclusionandfutureprospective
Remarkableefficacyofnanoparticleforremovalofwater,soilandheavymetalpollutantsfacilitatetheirapplicationin cleanenvironmentswithoutanyenvironmentalhazards.Theadsorbent,membraneandphotocatalystbasedmethodsare beingusuallyusedforremovalofcontaminantsbasedonionicinteractionsandbonding.Moreover,antifungal,antimycotoxigenicandantioxidantpotentialitiesessentialoilsstrengthentheirutilizationasgreensubstitutetosyntheticfood preservativetoavoidthehazardouseffectsonhuman,animalsandsurroundingenvironments.Thebiochemicaland molecularmechanismsstronglysupportthebindingmechanismandtoxicityofessentialoilsintofungalcells.Theefficacyofessentialoilshasbeenincreasedthroughsustainablenanoencapsulationstrategywithbroadscaleagro-prospects infoodindustriestodevelopthenano-greensmartfoodpreservative.Additionally,themammaliannon-toxicityof essentialoilsandtheirnanoformulationcouldbehelpfulforlargescaleindustrialcommercializationwithnovelagroecologicalprospects.Althoughnanoparticlesareofmuchinterestinremovingenvironmentalcontaminantsbuttoxicity ofnanoparticlesinenvironmentshouldalsobefocused.Effectivenanomaterialswithoutharmingtheenvironmental integrityshouldbepracticallyusedforcreatinggreenandcleanenvironment.Essentialoilsandtheirnanoformulation showedprominentantifungalandantimycotoxigenicefficacy,however,mostofthestudieshavebeenfocusedon invitroinvestigation;thefuturedirectionshouldneedtofocusoninvivostudiesinfoodsystem.Moreover,commercializationofnanoencapsulatedplantessentialoilasgreenfoodpreservativeisstillnotsopopular,hencedesignof compositematerialssuitableforfoodapplicationcouldfacilitatethedevelopmentofcosteffectivenanoformulations.
Acknowledgments
SomenathDasisthankfultoHead,DepartmentofBotanyandPrincipal,BurdwanRajCollegefornecessarysupports.AuthorsarealsogratefultoInstituteofEnvironmentandSustainableDevelopment,BanarasHinduUniversity,Varanasi,India.
References
Abe,F.,Hiraki,T.,2009.Mechanisticroleofergosterolinmembranerigidityandcycloheximideresistancein Saccharomycescerevisiae.Biochimica etBiophysicaActa(BBA)-Biomembranes1788(3),743 752.
Achaglinkame,M.A.,Opoku,N.,Amagloh,F.K.,2017.Aflatoxincontaminationincerealsandlegumestoreconsiderusageascomplementaryfood ingredientsforGhanaianinfants:Areview.JournalofNutrition&IntermediaryMetabolism10,1 7.
Ali,I.,Aboul-Enein,H.Y.,2004.ChiralPollutants:Distribution,ToxicityandAnalysisbyChromatographyandCapillaryElectrophoresis. JohnWiley &Sons
Ali,I.,2012.Newgenerationadsorbentsforwatertreatment.ChemicalReviews112,5073 5091.
Ali,I.,Aboul-Enein,H.Y.,Gupta,V.K.,2009.NanoChromatographyandCapillaryElectrophoresis:PharmaceuticalandEnvironmentalAnalyses. JohnWiley&Sons,Hoboken,NJ.
Alidokht,L.,Khataee,A.R.,Reyhanitabar,A.,Oustan,S.,2011.ReductiveremovalofCr(VI)bystarch-stabilizedFe0nanoparticlesinaqueoussolution.Desalination270(1 3),105 110.
Antonioli,G.,Fontanella,G.,Echeverrigaray,S.,Delamare,A.P.L.,Pauletti,G.F.,Barcellos,T.,2020.Poly(lacticacid)nanocapsulescontaininglemongrassessentialoilforpostharvestdecaycontrol:Invitroandinvivoevaluationagainstphytopathogenicfungi.FoodChemistry326,126997.
Avanc¸o,G.B.,Ferreira,F.D.,Bomfim,N.S.,Peralta,R.M.,Brugnari,T.,Mallmann,C.A.,etal.,2017. Curcumalonga L.essentialoilcomposition, antioxidanteffect,andeffectonFusariumverticillioidesandfumonisinproduction.FoodControl73,806 813.
Aziz,Z.A.,Ahmad,A.,Setapar,S.H.M.,Karakucuk,A.,Azim,M.M.,Lokhat,D.,etal.,2018.Essentialoils:extractiontechniques,pharmaceutical andtherapeuticpotential-areview.CurrentDrugMetabolism19(13),1100 1110.
Badawy,M.E.,Marei,G.I.K.,Rabea,E.I.,Taktak,N.E.,2019.Antimicrobialandantioxidantactivitiesofhydrocarbonandoxygenatedmonoterpenes againstsomefoodbornepathogensthroughinvitroandinsilicostudies.PesticideBiochemistryandPhysiology158,185 200.
Badr,A.N.,Abdel-Razek,A.G.,Youssef,M.M.,Shehata,M.G.,Hassanein,M.M.,Amra,H.A.,2021.Naturalantioxidants:preservationrolesand mycotoxicologicalsafetyoffood.EgyptianJournalofChemistry64(1),4 5.
Bahrami,A.,Delshadi,R.,Assadpour,E.,Jafari,S.M.,Williams,L.,2020.Antimicrobial-loadednanocarriersforfoodpackagingapplications. AdvancesinColloidandInterfaceScience278,102140.
Beyki,M.,Zhaveh,S.,Khalili,S.T.,Rahmani-Cherati,T.,Abollahi,A.,Bayat,M.,etal.,2014.Encapsulationof Menthapiperita essentialoilsinchitosan cinnamicacidnanogelwithenhancedantimicrobialactivityagainst Aspergillusflavus.IndustrialCropsandProducts54,310 319.
Bhandari,A.S.,Srivastava,M.P.,2020.Decontaminationofmycotoxigenicfungibyphytochemicals.Bio-ManagementofPostharvestDiseasesand MycotoxigenicFungi.CRCPress,pp.203 222.
Bocate,K.P.,Evangelista,A.G.,Luciano,F.B.,2021.Garlicessentialoilasanantifungalandanti-mycotoxinagentinstoredcorn.LWT147,111600
Boparai,H.K.,Joseph,M.,O’Carroll,D.M.,2011.Kineticsandthermodynamicsofcadmiumionremovalbyadsorptionontonanozerovalentironparticles.JournalofHazardousMaterials186(1),458 465.
Cai,C.,Zhao,M.,Yu,Z.,Rong,H.,Zhang,C.,2019.Utilizationofnanomaterialsforin-situremediationofheavymetal(loid)contaminatedsediments:areview.ScienceofTheTotalEnvironment662,205 217.
Chaemsanit,S.,Sukmas,S.,Matan,N.,Matan,N.,2019.Controlledreleaseofpeppermintoilfromparaffin-coatedactivatedcarboncontainedin sachetstoinhibitmoldgrowthduringlongtermstorageofbrownrice.JournalofFoodScience84(4),832 841.
Chaudhari,A.K.,Dwivedy,A.K.,Singh,V.K.,Das,S.,Singh,A.,Dubey,N.K.,2019.Essentialoilsandtheirbioactivecompoundsasgreenpreservativesagainstfungalandmycotoxincontaminationoffoodcommoditieswithspecialreferencetotheirnanoencapsulation.EnvironmentalScience andPollutionResearch26(25),25414 25431.
Chaudhari,A.K.,Singh,A.,Singh,V.K.,Dwivedy,A.K.,Das,S.,Ramsdam,M.G.,etal.,2020b.Assessmentofchitosanbiopolymerencapsulated α-Terpineolagainstfungal,aflatoxinB1(AFB1)andfreeradicalsmediateddeteriorationofstoredmaizeandpossiblemodeofaction.Food Chemistry311,126010.
Chaudhari,A.K.,Singh,V.K.,Das,S.,Dubey,N.K.,2021.Nanoencapsulationofessentialoilsandtheirbioactiveconstituents:Anovelstrategyto controlmycotoxincontaminationinfoodsystem.FoodandChemicalToxicology149,112019.
Chaudhari,A.K.,Singh,V.K.,Das,S.,Prasad,J.,Dwivedy,A.K.,Dubey,N.K.,2020d.Improvementofinvitroandinsituantifungal,AFB1inhibitoryandantioxidantactivityof Origanummajorana L.essentialoilthroughnanoemulsionandrecommendingasnovelfoodpreservative.Food andChemicalToxicology143,111536.
Chaudhari,A.K.,Singh,V.K.,Das,S.,Singh,B.K.,Dubey,N.K.,2020c.Antimicrobial,AflatoxinB1inhibitoryandlipidoxidationsuppressing potentialofanethole-basedchitosannanoemulsionasnovelpreservativeforprotectionofstoredmaize.FoodandBioprocessTechnology13(8), 1462 1477.
Chaudhari,A.K.,Singh,V.K.,Dwivedy,A.K.,Das,S.,Upadhyay,N.,Singh,A.,etal.,2020a.Chemicallycharacterised Pimentadioica (L.)Merr. essentialoilasanovelplantbasedantimicrobialagainstfungalandaflatoxinB1 contaminationofstoredmaizeanditspossiblemodeofaction. NaturalProductResearch34(5),745 749.
Checkol,F.,Elfwing,A.,Greczynski,G.,Mehretie,S.,Inganas,O.,Admassie,S.,2018.Highlystableandefficientlignin-PEDOT/PSScompositesfor removaloftoxicmetals.AdvancedSustainableSystems2(1),1700114.
Chowdhury,S.R.,Yanful,E.K.,2010.Arsenicandchromiumremovalbymixedmagnetite maghemitenanoparticlesandtheeffectofphosphateon removal.JournalofEnvironmentalManagement91(11),2238 2247.
Chu,Y.,Gao,C.,Liu,X.,Zhang,N.,Xu,T.,Feng,X.,etal.,2020.Improvementofstoragequalityofstrawberriesbypullulancoatingsincorporated withcinnamonessentialoilnanoemulsion.LWT122,109054.
Chulze,S.N.,2010.Strategiestoreducemycotoxinlevelsinmaizeduringstorage:areview.FoodAdditivesandContaminants27(5),651 657.
daSilvaBomfim,N.,Kohiyama,C.Y.,Nakasugi,L.P.,Nerilo,S.B.,Mossini,S.A.G.,Romoli,J.C.Z.,etal.,2020.Antifungalandantiaflatoxigenic activityofrosemaryessentialoil(Rosmarinusofficinalis L.)against Aspergillusflavus.FoodAdditives&Contaminants:PartA37(1),153 161. DaSilva,E.O.,Bracarense,A.P.,Oswald,I.P.,2018.Mycotoxinsandoxidativestress:wherearewe?WorldMycotoxinJournal11(1),113 134. Damia ` ,B.,2005.EmergingOrganicPollutantsinWasteWatersandSludge.Springer,NewYork.
Das,S.,Singh,V.K.,Dwivedy,A.K.,Chaudhari,A.K.,Upadhyay,N.,Singh,A.,etal.,2020a.AssessmentofchemicallycharacterisedMyristicafragransessentialoilagainstfungicontaminatingstoredscentedriceanditsmodeofactionasnovelaflatoxininhibitor.NaturalProductResearch34 (11),1611 1615.
Das,S.,Singh,V.K.,Chaudhari,A.K.,Dwivedy,A.K.,Dubey,N.K.,2021c.Fabrication,physico-chemicalcharacterization,andbioactivityevaluation ofchitosan-linaloolcompositenano-matrixasinnovativecontrolledreleasedeliverysystemforfoodpreservation.InternationalJournalof BiologicalMacromolecules188,751 763.
Das,S.,Singh,V.K.,Dwivedy,A.K.,Chaudhari,A.K.,Dubey,N.K.,2020b.Myristicafragransessentialoilnanoemulsionasnovelgreenpreservative againstfungalandaflatoxincontaminationoffoodcommoditieswithemphasisonbiochemicalmodeofactionandmoleculardockingofmajor components.LWT130,109495.