Environmental applications of microbial nanotechnology: emerging trends in environmental remediation

Page 1


EnvironmentalApplicationsofMicrobial Nanotechnology:EmergingTrendsinEnvironmental RemediationPardeepSingh

https://ebookmass.com/product/environmental-applications-ofmicrobial-nanotechnology-emerging-trends-in-environmentalremediation-pardeep-singh/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Abatement of Environmental Pollutants: Trends and Strategies Pardeep Singh (Editor)

https://ebookmass.com/product/abatement-of-environmental-pollutantstrends-and-strategies-pardeep-singh-editor/

ebookmass.com

Pesticides in the Natural Environment : Sources, Health Risks, and Remediation Pardeep Singh

https://ebookmass.com/product/pesticides-in-the-natural-environmentsources-health-risks-and-remediation-pardeep-singh/

ebookmass.com

Fundamentals of Environmental Site Assessment and Remediation 1st Edition

https://ebookmass.com/product/fundamentals-of-environmental-siteassessment-and-remediation-1st-edition/

ebookmass.com

Cowboy Fire Kim Redford

https://ebookmass.com/product/cowboy-fire-kim-redford-2/

ebookmass.com

Passionate Mind: Essays in Honor of John M. Rist Barry

David (Editor)

https://ebookmass.com/product/passionate-mind-essays-in-honor-of-johnm-rist-barry-david-editor/

ebookmass.com

Graduate (Result of Tomorrow Series, #3) Autumn Gaze

https://ebookmass.com/product/graduate-result-of-tomorrowseries-3-autumn-gaze/

ebookmass.com

Worthy Opponents Danielle Steel

https://ebookmass.com/product/worthy-opponents-danielle-steel/

ebookmass.com

Race, Ethnicity, Gender, and Class: The Sociology of Group Conflict and Change

https://ebookmass.com/product/race-ethnicity-gender-and-class-thesociology-of-group-conflict-and-change/

ebookmass.com

Bad Influence London Stefanie

https://ebookmass.com/product/bad-influence-london-stefanie/

ebookmass.com

https://ebookmass.com/product/m-business-7e-7th-edition-o-c-ferrell/

ebookmass.com

EnvironmentalApplicationsofMicrobial

Nanotechnology

EmergingTrendsinEnvironmentalRemediation

EnvironmentalApplications ofMicrobialNanotechnology EmergingTrendsinEnvironmentalRemediation

PardeepSingh

DepartmentofEnvironmentalStudies,PGDAVCollege,UniversityofDelhi, NewDelhi,India

VijayKumar

DepartmentofChemistry,IndianInstituteofTechnology(BHU),Varanasi,India

MansiBakshi

DepartmentofCivilEngineering,IndianInstituteofTechnologyDelhi,NewDelhi,India

ChaudheryMustansarHussain

DepartmentofChemistryandEnvironmentalSciences,NewJerseyInstituteof Technology(NJIT),Newark,NJ,UnitedStates

MikaSillanpa¨a ¨

DepartmentofBiologicalandChemicalEngineering,AarhusUniversity,Aarhus,Denmark

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www. elsevier.com/permissions .

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-91744-5

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnitaKoch

EditorialProjectManager: KathrineEsten

ProductionProjectManager: KumarAnbazhagan

CoverDesigner: VickyPearsonEsser

TypesetbyMPSLimited,Chennai,India

Listofcontributors

SangitaAgarwal DepartmentofAppliedScience,RCC InstituteofInformationTechnology,Beliaghata, Kolkata,WestBengal,India

GaneshKumarAgrawal ResearchLaboratoryfor BiotechnologyandBiochemistry(RLABB), Kathmandu,Nepal;GlobalResearchArchfor DevelopingEducation(GRADE)AcademyPvt.Ltd., Birgunj,Nepal

K.Anuradha DepartmentofMicrobiology,Bhavan’s VivekanandaCollegeofScience,Humanities& Commerce,Sainikpuri,Hyderabad,Telangana,India

PalakBakshi DepartmentofBotany,SchoolofLife Sciences,UniversityofKashmir,SatelliteCampus, Kargil,Ladakh,JammuandKashmir,India;Plant StressPhysiologyLab,DepartmentofBotanicaland EnvironmentalSciences,GuruNanakDevUniversity, Amritsar,Punjab,India

KritiBhardwaj DepartmentofZoology,Universityof Allahabad,Prayagraj,UttarPradesh,India

RenuBhardwaj PlantStressPhysiologyLab, DepartmentofBotanicalandEnvironmentalSciences, GuruNanakDevUniversity,Amritsar,Punjab,India

TamannaBhardwaj PlantStressPhysiologyLab, DepartmentofBotanicalandEnvironmentalSciences, GuruNanakDevUniversity,Amritsar,Punjab,India

BornitaBose AmityInstituteofBiotechnology,Amity University,Kolkata,WestBengal,India

NaliniSinghChauhan DepartmentofZoologyGuru NanakDevUniversity,Amritsar,Punjab,India;P.G DepartmentofZoology,KanyaMahaVidyalaya, Jalandhar,Punjab,India

YongChen SchoolofEnvironmentalScienceand Engineering,HuazhongUniversityofScienceand Technology,Wuhan,P.R.China

AnkitaChowdhury LaboratoryofAppliedStress Biology,DepartmentofBotany,UniversityofGour Banga,Malda,WestBengal,India

SoumendraDarbar FacultyCouncilofScience,Jadavpur University,Kolkata,WestBengal,India;Researchand

DevelopmentDivision,Dey’sMedicalStores(Mfg.) Ltd.,Ballygunge,Kolkata,WestBengal,India

SomenathDas DepartmentofBotany,BurdwanRaj College,PurbaBardhaman,WestBengal,India

KaminiDevi PlantStressPhysiologyLab,Department ofBotanicalandEnvironmentalSciences,GuruNanak DevUniversity,Amritsar,Punjab,India

VivekDhand DepartmentofMechanicalDesign Engineering,ChonnamNationalUniversity,Yeosu, Jeonnam,RepublicofKorea

ShailjaDhiman AmityInstituteofMicrobial Technology,AmityUniversityUttarPradesh,Noida, UttarPradesh,India

NehaDogra DepartmentofBotany,PunjabiUniversity, Patiala,Punjab,India

SadhanKumarGhosh InternationalSocietyofWaste Management,AirandWater(ISWMAW-IconSWM), Kolkata,WestBengal,India;Departmentof MechanicalEngineering,JadavpurUniversity, Kolkata,WestBengal,India

ArtiGoel AmityInstituteofMicrobialTechnology,Amity UniversityUttarPradesh,Noida,UttarPradesh,India

K.J.HemanthKumar VidyavardhakaCollegeof Engineering,Mysore,Karnataka,India

E.Janeeshma PlantPhysiologyandBiochemistry Division,DepartmentofBotany,Universityof Calicut,Malappuram,Kerala,India

PrajwalJayakumar BBMP,Bengaluru,Karnataka, India

SandhyaJayakumar ManagedHealthCare,MOH, BBMP,Bengaluru,Karnataka,India

R.Jyothilakshmi MSRamaiahInstituteofTechnology, Bengaluru,Karnataka,India

Kapinder DepartmentofZoology,Universityof Allahabad,Prayagraj,UttarPradesh,India

JasleenKaur DepartmentofBotany,DyalSingh College,UniversityofDelhi,Delhi,India

RupinderKaur DepartmentofBiotechnology,DAV College,Amritsar,Punjab,India

ShrutiKaushik DepartmentofBotany,Punjabi University,Patiala,Punjab,India

SuhailAyoubKhan DepartmentofChemistry,Jamia MilliaIslamia,NewDelhi,India

TabrezAlamKhan DepartmentofChemistry,Jamia MilliaIslamia,NewDelhi,India

KanikaKhanna PlantStressPhysiologyLab, DepartmentofBotanicalandEnvironmentalSciences, GuruNanakDevUniversity,Amritsar,Punjab,India; DepartmentofMicrobiology,DAVUniversity, Sarmastpur,Jalandhar,Punjab,India

SukhmeenKaurKohli PlantStressPhysiologyLab, DepartmentofBotanicalandEnvironmentalSciences, GuruNanakDevUniversity,Amritsar,Punjab,India

JaspreetKour PlantStressPhysiologyLab,Department ofBotanicalandEnvironmentalSciences,GuruNanak DevUniversity,Amritsar,Punjab,India

ShweenaKrishnani AmityInstituteofMicrobial Technology,AmityUniversityUttarPradesh,Noida, UttarPradesh,India

LawrenceKumar DepartmentofNanoscienceand Technology,CentralUniversityofJharkhand,Ranchi, Jharkhand,India

PawanKumar DepartmentofPhysics,MahatmaGandhi CentralUniversity,Motihari,Bihar,India

VikasKumar AmityInstituteofMicrobialTechnology, AmityUniversityUttarPradesh,Noida,UttarPradesh, India

S.ChaitanyaKumari DepartmentofMicrobiology, Bhavan’sVivekanandaCollegeofScience,Humanities &Commerce,Sainikpuri,Hyderabad,Telangana,India

IshaMadaan DepartmentofBotany,PunjabiUniversity, Patiala,Punjab,India

BilalAhmadMir DepartmentofBotany,SchoolofLife Sciences,UniversityofKashmir,SatelliteCampus, Kargil,Ladakh,JammuandKashmir,India

ArpanMukherjee InstituteofEnvironmentand SustainableDevelopment,BanarasHinduUniversity, Varanasi,UttarPradesh,India

PoulamiMukhopadhyay PostGraduateDepartmentof Microbiology,BarrackporeRastraguruSurendranath College(AffiliatedtoWestBengalStateUniversity), Kolkata,WestBengal,India

H.M.Navya DepartmentofStudiesinBiotechnology, DavangereUniversity,Shivagangothri,Davangere, Karnataka,India

PujaOhri DepartmentofZoology,GuruNanakDev University,Amritsar,Punjab,India

HarshataPal AmityInstituteofBiotechnology,Amity University,Kolkata,WestBengal,India

ManishaAroraPandit DepartmentofZoology,Kalindi College,UniversityofDelhi,NewDelhi,NewDelhi, India

SanjeetKumarPaswan DepartmentofNanoscienceand Technology,CentralUniversityofJharkhand,Ranchi, Jharkhand,India

SumangalaPatil M.S.EngineeringCollege,Bengaluru, Karnataka,India

Prabhurajeshwar DepartmentofStudiesin Biotechnology,DavangereUniversity,Shivagangothri, Davangere,Karnataka,India

RavindraPratapSingh DepartmentofBotany,Mata GujriCollege,FatehgarhSahib,Punjab,India

AbhayPunia DepartmentofZoologyGuruNanak DevUniversity,Amritsar,Punjab,India; DepartmentofZoology,DAVUniversityJalandhar, Punjab,India

JosT.Puthur PlantPhysiologyandBiochemistry Division,DepartmentofBotany,Universityof Calicut,Malappuram,Kerala,India

RandeepRakwal FacultyofHealthandSportSciences, UniversityofTsukuba,Ibaraki,Japan

DeekshaRanjan DepartmentofAppliedSciencesand Humanities,FacultyofEngineeringandTechnology, RamaUniversity,Kanpur,UttarPradesh,India

SomaniChandrikaRath AmityInstituteofMicrobial Technology,AmityUniversityUttarPradesh,Noida, UttarPradesh,India

NiharikaRishi AmityInstituteofMicrobialTechnology, AmityUniversityUttarPradesh,Noida,UttarPradesh, India

P.P.Sameena PlantPhysiologyandBiochemistry Division,DepartmentofBotany,Universityof Calicut,Malappuram,Kerala,India

AbhijitSarkar LaboratoryofAppliedStressBiology, DepartmentofBotany,UniversityofGourBanga, Malda,WestBengal,India

SutriptaSarkar PostGraduateDepartmentofFood& Nutrition,BarrackporeRastraguruSurendranath College(AffiliatedtoWestBengalStateUniversity), Kolkata,WestBengal,India

J.PatelSeema DepartmentofStudiesinBiotechnology, DavangereUniversity,Shivagangothri,Davangere, Karnataka,India

SteplinpaulselvinSelvinsimpson SchoolofEnvironmental ScienceandEngineering,HuazhongUniversityof ScienceandTechnology,Wuhan,P.R.China

AshutoshSharma FaultyofAgriculturalSciences,DAV University,Jalandhar,Punjab,India

NandniSharma DepartmentofZoology,GuruNanak DevUniversity,Amritsar,Punjab,India

PoojaSharma DepartmentofMicrobiology,DAV University,Jalandhar,Punjab,India;PlantStress PhysiologyLab,DepartmentofBotanicaland EnvironmentalSciences,GuruNanakDevUniversity, Amritsar,Punjab,India

RamKishoreSingh DepartmentofNanoscienceand Technology,CentralUniversityofJharkhand,Ranchi, Jharkhand,India

ShobhaSingh DepartmentofNanoscienceand Technology,CentralUniversityofJharkhand,Ranchi, Jharkhand,India

VijaySingh DepartmentofBotany,MataGujriCollege, FatehgarhSahib,Punjab,India

GeetikaSirhindi DepartmentofBotany,Punjabi University,Patiala,Punjab,India

D.Srividya DepartmentofStudiesinBiotechnology, DavangereUniversity,Shivagangothri,Davangere, Karnataka,India

UnshaTabrez CheggIndiaPvt.Ltd.,Jasola,NewDelhi, India

Tarkeshwar DepartmentofZoology,KalindiCollege, UniversityofDelhi,NewDelhi,NewDelhi,India

PratikV.Tawade DepartmentofChemicalEngineering, IndianInstituteofTechnologyMadras,Chennai, TamilNadu,India

AjitVarma AmityInstituteofMicrobialTechnology, AmityUniversityUttarPradesh,Noida,UttarPradesh, India

KailasL.Wasewar AdvanceSeparationandAnalytical Laboratory(ASAL),DepartmentofChemical Engineering,VisvesvarayaNationalInstituteof Technology(VNIT),Nagpur,Maharashtra,India

RachnaYadav AmityInstituteofMicrobialTechnology, AmityUniversityUttarPradesh,Noida,UttarPradesh, India

1.Nanotechnologyassustainablestrategy forremediationofsoilcontaminants, airpollutants,andmitigationof foodbiodeterioration3

SomenathDasandArpanMukherjee

1.1Introduction3

1.2Useofnanoparticleforsoilandwater purification/remediation4

1.2.1Adsorbentprocess4

1.2.2Membranebasedprocess4

1.2.3Photocatalysisandantimicrobial NPs4

1.3Nanotechnologyinheavymetals(HMs) removal5

1.4Contaminationofstoredfoodsby fungiandmycotoxins5

1.5Essentialoils:agreenchemicalfor preservationofstoredfoods7

1.6Mechanismsinvolvingantifungaland antimycotoxigenicactivities7

1.6.1Effectonergosterolbiosynthesis7

1.6.2Effectonleakageofcellular constituents8

1.6.3Effectofessentialoilsonenergy metabolism8

1.6.4Effectofessentialoilsoncellular methylglyoxal8

1.6.5Molecularmechanismofantifungal andantimycotoxigenicactivity8

1.7Nanotechnology:novelsustainablegreen strategytoprotectfoods9

1.8Safetyassessmentofessentialoils9

1.9Conclusionandfutureprospective11 Acknowledgments11 References11

2.Microbialnanobionics: futureperspectivesandinnovative approachtonanotechnology17

ShweenaKrishnani,RachnaYadav, NiharikaRishiandArtiGoel

2.1Introduction17

2.1.1Biosynthesisofmicrobial nanoparticles17

2.1.2Typesofmicrobialnanoparticles18

2.1.3Endophyticmicrobesasnanoparticle biofactories20

2.2Futurerecommendationsandapplications ofmicrobialnanoparticles21

2.2.1Agricultureandfoodsector21

2.2.2Stemcelltherapy24

2.2.3COVID19:facemaskandgloves26

2.2.4Infectiousdiseasesandmicrobial nanotechnologyapproach26

2.2.5Actionofmicrobialnanoparticlesin dentistry28

2.3Advancementsinantimicrobialsurface coatingstrategies29

2.4Conclusions29 References30

3.Applicationofbiogenicnanoparticles intheremediationofcontaminated water33

E.Janeeshma,P.P.SameenaandJosT.Puthur

3.1Introduction33

3.2Differentwaterremediationmethods34

3.3Applicationofnanoparticlesin wastewatertreatment35

3.4Synthesisofmicrobialnanoparticles36

3.5Applicationofmicrobialnanoparticlesin wastewatermanagement37

3.6Conclusions38 References38

4.Nanotechnologyinbiological scienceandengineering43

PratikV.TawadeandKailasL.Wasewar

4.1Introduction43

4.2Nanobiotechnology44

4.3Bionanotechnology45

4.4Advantagesofnanotechnology45

4.5Biologicalapplicationsofnanotechnology47

4.5.1Nanodiagnostics47

4.5.2Therapeuticapplications49

4.5.3Nanobiosensors53

4.5.4Nanotechnologyforcancer: diagnosisandtreatment56

4.6Futureprospects59

4.7Conclusions59 References60

5.Nanomaterialsbasedsensorsfor detectingkeypathogensinfoodand water:developmentsfromrecent decades65

ShobhaSingh,SanjeetKumarPaswan, PawanKumar,RamKishoreSinghand LawrenceKumar

5.1Introduction65

5.2Variouscontaminantsinfoodand water66

5.2.1Contaminantsinfood66

5.2.2Contaminantsinwater69

5.3Designingandfabricationof nanomaterials-basedsensors71

5.4Applicationsofnanosensorsindifferent sectors72

5.4.1Agriculture72

5.4.2Pollution73

5.4.3Foodprocessing73

5.4.4Foodpackaging73

5.4.5Foodtransport73

5.5Recentdevelopmentsin nanomaterials-basedsensorsfor pathogendetection73

5.5.1Quantumdots74

5.5.2Carbonnanotubes74

5.5.3Silvernanoparticles74

5.5.4Goldnanoparticles75

5.5.5Magneticnanoparticles75

5.5.6Zincoxidenanoparticles75

5.6Futureperspectivesandchallenges76

5.7Conclusions77 References77

6.Microbialnanostructuresand theirapplicationinsoilremediation81

ManishaAroraPandit,Kapinder, JasleenKaurandTarkeshwar

6.1Introduction81

6.2Biogenicsynthesisofnanostructures81

6.2.1Biogenicsynthesisusingbacteria82

6.2.2Biogenicsynthesisusingfungiand yeast82

6.2.3Biogenicsynthesisusingplants82

6.2.4Advantagesandapplicationsof biogenicnanostructures84

6.3Environmentalbioremediation85

6.3.1Soilpollutionandbioremediation85

6.3.2Bioremediationbyengineered nanostructures85

6.3.3Bioremediationbymicrobial nanostructures(nanobioremediation)86

6.4Conclusion92 Listofabbreviations92 Acknowledgments93 Declarations93 References93

Part2

Microbesmediatedsynthesisof nanoparticles

7.Greenbiosynthesisofnanoparticles: mechanisticaspectsand applications99

KanikaKhanna,SukhmeenKaurKohli, PalakBakshi,PoojaSharma,JaspreetKour, TamannaBhardwaj,NandniSharma, NehaDogra,PujaOhri,GeetikaSirhindiand RenuBhardwaj

7.1Introduction99

7.2Microbialenzymesinnanoparticle synthesis100

7.2.1Extracellularenzymes101

7.2.2Intracellularenzymes102

7.3Microbe-mediatedbiosynthesisof nanoparticles:mechanismofaction102

7.3.1Nanoparticlebiosynthesisby bacteria103

7.3.2Nanoparticlebiosynthesisby fungi105

7.3.3Nanoparticlebiosynthesisby actinomycetes106

7.3.4Nanoparticlebiosynthesisbyyeast106

7.3.5Nanoparticlebiosynthesisbyalgae106

7.3.6Nanoparticlebiosynthesisby viruses109

7.4Applicabilityofbiologicallysynthesized nanoparticles110

7.4.1Antimicrobialagents111

7.4.2Antibiofilmagents112

7.4.3Drugdeliverysystem113

7.4.4Anticancerandmedicalpurposes113

7.4.5Diagnosticimagingandother medicalpurposes114

7.5Challengesassociatedwithmicrobial synthesisofnanoparticles:apossible pathtosolution115

7.6Conclusionandfutureperspectives116 References116

8.Microorganismassistedsynthesized metalandmetaloxidenanoparticles forremovalofheavymetalions fromthewastewatereffluents127

SangitaAgarwalandSoumendraDarbar

8.1Introduction127

8.2Metalsandtheirrequirementfor existence129

8.2.1Definitionofmetals129

8.2.2Classificationofheavymetals129

8.2.3Sourcesofheavymetals129

8.2.4Adverseeffectsofheavymetals129

8.3Nanotechnologyandenvironmental remediation133

8.3.1Advantagesofconventional treatmentmethods133

8.3.2Bacteriainnanoparticlesynthesis135

8.3.3Themechanism138

8.4Challengesinnanoparticlesynthesis140

8.4.1Bacteriaselection140

8.4.2Selectionofreducingagents140

8.4.3Optimizingtheconditionsfor growthandenzymaticreactions141

8.4.4Theprocessofextractionand purification141

8.4.5Theprocessofstabilization141

8.4.6Theprocessofscaling141

8.4.7Safetyissues141

8.5Conclusion142

8.6Futurerecommendations142 References142

9.Microbialmetallonanoparticles— analternativetotraditional nanoparticlesynthesis149 D.Srividya,J.PatelSeema,Prabhurajeshwar andH.M.Navya

9.1Introduction149

9.1.1Advantagesanddisadvantagesof nanoparticles149

9.1.2Microorganismsasanalternative tothetraditionalnanoparticle synthesis150

9.1.3Bacteriamediatedsynthesis151

9.1.4Fungus-mediatedsynthesis154

9.1.5Algae-mediatedsynthesis156

9.1.6Viralmediatedsynthesis157

9.1.7Nanoparticlesynthesisusing proteinandDNAscaffolds157

9.1.8Applicationsofnanoparticles synthesizedviamicrobialroute157

9.1.9Futureperspectives157 9.2Conclusion159 References159 Furtherreading166

10.Microbial-basedsynthesisof nanoparticlestoremovedifferent pollutantsfromwastewater167 SteplinpaulselvinSelvinsimpsonand YongChen

10.1Introduction167

10.2Preparationofnanomaterials168

10.2.1Componentsaffectingthe synthesisofgreennanoparticles169 10.2.2Mechanisticaspects170 10.3Advantagesofmicrobial-based nanomaterialsinwaterremediation171 10.4Applicationofmicrobial-based nanomaterialswastewatertreatment172 10.4.1Titaniumdioxide174 10.4.2Silicananoparticles174 10.4.3Zincoxide175 10.4.4Graphene176 10.4.5Ironnanoparticles176 10.4.6Zirconiananoparticles177 10.5Futurerecommendations178

10.6Conclusion178 References178

11.Implementationofmicrobe-based metalnanoparticlesinwater remediation183

PoulamiMukhopadhyay, SadhanKumarGhoshandSutriptaSarkar

11.1Introduction183

11.1.1Nanomaterialsusedinwater remediation188

11.2Typesofmicrobialnanoparticleusedin waterremediation190

11.2.1Nanoparticlefromfilamentous fungi190

11.2.2Nanoparticlesfromyeast190

11.2.3Nanoparticlefromalgae191

11.2.4Nanoparticlesfrombacteria191

11.2.5Nanoparticlesfrom actinobacteria191

11.2.6Nanoparticlesfrommarine microbes192

11.2.7Nanoparticlesfromvirus192

11.3Feasibilityofimplementationof microbe-basednanoinwater remediation192

11.4Conclusions193 Acknowledgments193 References193 Furtherreading197

Part3

Environmentsustainabilitywith microbialnanotechnology

12.Microbialnanoproductsin“waste compost”:a“quality-check”for sustainable“solid-waste management”201

AnkitaChowdhury,GaneshKumarAgrawal, RandeepRakwalandAbhijitSarkar

12.1Introduction201

12.2Biosynthesisofdifferentnanoparticles202

12.2.1Goldnanoparticles202

12.2.2Silvernanoparticles203

12.2.3Othernanoparticles204

12.3Effectofmicrobialenzymeon nanoparticlesynthesis206

12.3.1Extracellularenzymes206 12.3.2Intracellularenzymes206 12.4Modelforformationofnanoparticles207 12.4.1Top-downmodel207 12.4.2Bottom-upmodel208

12.5Differentconditionsforcomposting208

12.5.1Aerobicdigestion209

12.5.2Anaerobicdigestion209 12.6Applicationofnanoparticlesin compostingsolidwaste210

12.7Conclusions212 Listofabbreviations212 Acknowledgment212 References212

13.Microbialnanotechnology: apotentialtoolforasustainable environment217

Tarkeshwar,ManishaAroraPandit,Kapinder, KritiBhardwajandJasleenKaur

13.1Introduction217

13.2Nanomaterialsasanalternativefor sustainabledevelopment218

13.3Microbialsynthesisofnanoparticles219 13.4Applicationofmicrobialnanoparticles indifferentsectors219

13.4.1Microbialnanoparticlesfor integratedpestmanagementand agriculturalpractices219

13.4.2Microbialnanoparticlesfor medicineanddrugs220

13.4.3Microbialnanoparticlesfor buildingconstructionmaterial221

13.4.4Microbialnanoparticlesin research222

13.4.5Microbialnanoparticlesin industrialuse222

13.4.6Microbialnanoparticlesin energysectors222

13.4.7Microbialnanoparticlesin environmentalprotection223

13.4.8Microbialnanoparticlesinfuel processing223

13.5Environmentalissuesassociatedwith microbialnanoparticles223 13.6Toxicityofbiogenicnanoparticlesinthe environment224

13.7Futureprospectstowardssustainable environmentandimpactofGovernment’s andNGOsinitiativestowardssustainable developmentwithgreennanotechnology225

13.8Conclusions226 References226

14.Environmentalapplicationsof microbialnanotechnologybased sustainablewetwastemanagement techniquesadoptedbyBruhat BengaluruMahanagarapalike, Bangalore—acasestudy231

R.Jyothilakshmi,SumangalaPatil, K.J.HemanthKumar,SadhanKumarGhosh, SandhyaJayakumarandPrajwalJayakumar

14.1Introduction231

14.1.1Biomethanation233

14.1.2Biocompost237

14.1.3Greenhousegasemission238 14.2Methodology240

14.2.1CaseStudy1:biomethanation plantatBELcampusBengaluru240

14.2.2Feedstock240

14.2.3Plantdataanalysis241

14.2.4Casestudy2:BioCNGplant241

14.2.5CaseStudy3:Aerobiccompost, purvankaraveneziaapartment, Bengaluru242

14.3Microbialnanotechnologyapplication androleinbiomethanationand biocomposting243

14.4DiscussiononsustainabilityoftheWM techniquesandeconomicalchallenges246

14.4.1Statisticsonwastegenerationand recycling:sustainabilityofWM techniques246

14.4.2Financialandeconomicsupport forMSWM249

14.5Conclusion250

14.6Futurescope251 Acknowledgment251 References251

15.Applicationofmicrobial nanotechnologyinsustainable agriculturethroughsoilremediation253 BornitaBoseandHarshataPal

15.1Introduction253

15.2Synthesisofnanoparticlesmediatedby microbes255

15.3Nanoparticlesasanaidtowards sustainableagriculture259

15.3.1Nanoparticle-encapsulated fertilizers259

15.3.2Nano-structuredpesticides264

15.4Conclusions269 15.5Futureperspectives269 References270

16.Greensynthesizednanonutrients forsustainablecropgrowth275

ShailjaDhiman,SomaniChandrikaRath, VikasKumar,AjitVarmaandArtiGoel

16.1Introduction275

16.2Nanoparticlesincropgrowth276

16.2.1Nanonutrientsincropgrowth278

16.2.2Nanonutrientsinstresstolerance280 16.2.3Nanonutrientsenhancessoil quality280

16.3Nanonutrientsindiseasemanagement280 16.4Conclusionandfutureperspective283 References284

17.Environmentsustainabilitywith microbialnanotechnology289 AbhayPunia,RavindraPratapSingh, VijaySinghandNaliniSinghChauhan

17.1Introduction289 17.2Microbialnanotechnology289 17.3Synthesisofnanoparticlesfrom microbes290

17.3.1Metallicnanoparticle productionassistedby filamentousfungi290

17.3.2Synthesisofmetallic nanoparticlesusingyeast293

17.3.3Synthesisofmetallic nanoparticlesusingalgae294 17.3.4Metallicnanoparticlesynthesis assistedbybacteriaand actinomycetes294 17.3.5Synthesisofmetallic nanoparticlesusingvirus295

17.4Microbial/greensynthesisof nanoparticlesandadvantagesover nonbiologicalsynthesis295 17.5Microbialnanoparticlesandsustainable agriculture296

17.5.1Applicationsinagriculture296 17.6Environmentalapplicationsofmicrobial nanoparticles297

17.6.1Applicationsinbioremediation299

17.6.2Valorizationofwaste299

17.6.3Applicationsinenvironmental management300

17.6.4Applicationinfoodand fermentation302

17.6.5Biomedicalapplicationsof microbialnanoparticles302

17.6.6Applicationinclinical diagnosticsanddrugdelivery303

17.7Limitations304

17.8Conclusionandfutureapproach305 References305

18.Nanobioremediation:anovel technologywithphenomenal cleanuppotentialforasustainable environment315

TamannaBhardwaj,KanikaKhanna, PoojaSharma,PalakBakshi,KaminiDevi, IshaMadaan,ShrutiKaushik, GeetikaSirhindi,BilalAhmadMir, RupinderKaur,AshutoshSharma, PujaOhriandRenuBhardwaj

18.1Introduction315

18.2Applicationmethodsofnano-bio technique316

18.2.1Sequentialmethod316

18.2.2Combined/concurrentmethod316

18.3Designingnewagebiogenic nanoparticles316

18.3.1Bacterialsynthesisof nanoparticles317

18.3.2Algalbasedsynthesisof nanoparticles318

18.3.3Fungalbasedsynthesisof nanoparticles321

18.4Microbemediated nanobioremediationof pollutants322

18.4.1Nanobioremediationofheavy metals322

18.4.2Nanobioremediationofdyesin textiles323

18.4.3Nanobioremediationof hydrocarbon324

18.4.4Nanobioremediationof pharmaceuticals(antibioticsand antiseptics)325

18.5Conclusions326 References326

Part4

Pollutantdegradationandadsorption usingnanomaterialsoriginatedfrom microbes

19.Applicationofmicrobially-synthesized nanoparticlesforadsorptive confiscationoftoxicpollutantsfrom waterenvironment335

SuhailAyoubKhan,UnshaTabrezand TabrezAlamKhan

19.1Introduction335

19.2Bio-mediatedsynthesisof nanoparticlesandtheircharacterization336

19.3Factorsaffectingthesynthesisof biogenicnanomaterials337

19.4ImpactofpHonthesynthesisof biogenicnanomaterials337

19.5Impactofprecursorandreducingagents’ concentrationonbiogenicnanomaterials synthesis337

19.6Impactoftemperatureonthefabrication ofbiogenicnanomaterials337

19.7Adsorptiveremovalofenvironmental contaminantsemployingbiogenic nanomaterials337

19.8Removalofinorganicpollutants338

19.9Removaloforganicpollutants339

19.10Impactofcounterionsontheadsorptive efficiencyofbiogenicnanoparticles340

19.11Reusabilitystudiesofbiogenic nanoparticles340

19.12Modelingofadsorptiondata340

19.13Environmentalproblems342

19.14Conclusionsandperspectives343 References343

20.Nanomaterialsoriginatedfrom microbesfortheremovaloftoxic pollutantsfromwater347

DeekshaRanjan

20.1Introduction347

20.2Adsorptionforremediationoftoxic pollutants348

20.2.1Bioadsorption348

20.3Nanotechnologyinwatertreatment349

20.4Adsorptionusingnanoadsorbents349

20.4.1Classificationofnanoadsorbents349 20.4.2Propertiesofnanoadsorbents350

20.4.3Characteristicsofanideal nanoadsorbent350

20.4.4Factorsaffectingoveralladsorption processesbynanoadsorbents351

20.4.5Routesofsynthesisof nanoadsorbents351

20.4.6Advantagesanddisadvantages ofphysicalandchemical methodsofnanoadsorbents synthesis352

20.5Biologicalmethodsofsynthesisof nanoadsorbents(greensynthesis)352

20.5.1Advantagesofbiologicalor greenmethodsofsynthesisof nanoadsorbents353

20.5.2Factorsinfluencinggreen synthesisofnanoadsorbents353

20.6Microorganismforthesynthesisof nanoadsorbents354

20.6.1Variousmicrobialcomponents forgreensynthesisof nanoadsorbents354

20.6.2Mechanismofmicrobemediated synthesisofnanoadsorbents354

20.6.3Characterizationof nanoadsorbentsoriginatedfrom microbes356

20.6.4Mechanismofadsorptionof toxicpollutantsbynanomaterials originatedfrommicrobes356

20.6.5Applicationofnanoadsorbents synthesizedbymicrobesfor remediationoftoxicpollutants358

20.6.6Stabilityandreusabilityof biosynthesizednanoadsorbents359

20.6.7Challengesandfutureprospects359

20.7Conclusions360 References360

21.Applicationofmicrobial nanobiotechnologyfor combatingwaterpollution365

Tarkeshwar,ManishaAroraPanditand Kapinder

21.1Introduction365

21.2Classificationofnanoparticles368

21.2.1Nanoadsorbents368

21.2.2Nanocatalysts369 21.2.3Nanomembranes369 21.3Microbialsynthesisofnanoparticles369 21.3.1IntracellularbiosynthesisofNPs370 21.3.2ExtracellularbiosynthesisofNPs370 21.4Whymicrobial-basednanotechnology?370 21.5Theimplicationofmicrobial-based nanoparticlesinbioremediationof wastewater371 21.6Degradationoforganicandinorganic contaminantsfromwastewater372 21.7Eliminationofionsofheavymetals373 21.8Othernanoparticlesuse373 21.8.1Microbial-basednanoparticlesas biosensors373 21.8.2Antimicrobialactivity374 21.9Challengesandfutureprospects375 Listofabbreviations376 References376

22.Areviewonazodyedegradationby exopolysaccharide-mediatedgreen synthesisofstabilizedsilver nanoparticles381

S.ChaitanyaKumari,VivekDhandand K.Anuradha

22.1Introduction381

22.1.1Preparationofmetalnanoparticles usingpolysaccharidesand exopolysaccharides383 22.1.2Mechanismof exopolysaccharide-mediated reductionandstabilizationof greennanoparticles384 22.1.3Applicationsofexopolysaccharide stabilizedgreensilvernanoparticle indyedegradation385 22.1.4Mechanismofdyedegradation usingexopolysaccharide stabilizedgreensilver nanoparticles388 22.2Conclusions388 References388 Index393

Preface

Nanotechnologyhasemergedasoneofthemostsignificanttechnologiesintheworld.Thelasttwodecadeshavewitnessedtremendousgrowthinnanotechnology-basedindustrial,agricultural,andenvironmentalapplications.Theapplicationsofnanomaterialsforenvironmentalremediationhavegreatlyincreasedstudiesoftheirsynthesisand manufacturingprocess.Nanomaterialsaremostlysynthesizedthroughchemicalmethods,whichcanleadtolongterm environmentalimplications.Manufacturingnanomaterialsusingagreensynthesismechanismcanencourageenvironmentalsafety.Thegreensynthesismethod,whichinvolvesplantsandmicroorganisms,isconsideredtobesaferthan chemicalsynthesisduetolowerenvironmentalimpact.Furthermore,theuseofmicroorganismsforthebiosynthesisof nanomaterialsisconsideredanewandviableprospectforthedevelopmentofasaferandgreenernano-manufacturing process.

Thisbook, EnvironmentalApplicationsofMicrobialNanotechnology,EmergingTrendsinEnvironmental Remediation,exploresapplicationsofmicrobialnanotechnologyforenvironmentalremediation.Thebookfocuseson theuseofmicrobialnanoparticlessynthesizedthroughmicrobesandtheirrelevantapplicationsintheremediationof environmentalcontaminants.Themainappealofthisbookisitsfocusonthefourareasofmicrobialnanotechnologyin asystematicmanner.Thebookexplorestherelevantthemethrough:(1)microbe-mediatedsynthesisofnanoparticles, (2)applicationsofmicrobialnanotechnologyforenvironmentalremediation,(3)pollutantdegradationandadsorption usingnanomaterialsoriginatedfrommicrobes,and(4)environmentalsustainabilitywithmicrobialnanotechnology.

Thebookwillappealtoresearchersworkinginthefieldsofgreennanotechnology,microbialnanotechnology,and environmentalremediation.Itwillalsobeusefulforfutureresearchandinnovativeprospectsofnanomaterialswitha microbialoriginandtheirpotentialfortheremovalofcontaminantsfromwastewater,degradationandadsorptionof pollutantsdegradation,soilremediationandpathogendetection.Itwillalsoproviderecommendationsandfutureperspectivesneededinthefieldofmicrobialnanotechnologyanditsapplications.Itwouldbegratifyingifthisworkcould contributetomicrobialnanotechnology’schallengingandemergingfield.

Abouttheeditors

Dr.PardeepSingh ispresentlyworkingasanassistantprofessor(DepartmentofEnvironmentalStudies,PGDAV College,UniversityofDelhi,NewDelhi,India).HereceivedhisdoctoratedegreefromtheIndianInstituteof Technology(BanarasHinduUniversity)Varanasi.Hehaspublishedmorethan75papersininternationaljournalsinthe areasofwater,wastewatertreatment,andwastemanagement.Hehasalsoeditedmorethan35bookswithElsevier, Wiley,CRC,andSpringer.

Dr.VijayKumar ispresentlyworkingasexecutivemember,SocietyforEnvironmentandSustainableDevelopment, NewDelhiIndia.HeobtainedhisMaster’sdegreefromtheDepartmentofEnvironmentalScienceatBanarasHindu University,Varanasi,India,in2012.HereceivedhisdoctoratefromtheIndianInstituteofTechnology(BanarasHindu University)Varanasiin2017.Hisdoctoralresearchareawasinthebiologicalsynthesisofsilverandgoldnanoparticles andtheirenvironmentalandbiologicalapplications.Hehaspublishedmorethan27papersininternationaljournalsin thefieldofenvironmentalnanotechnology.

Dr.MansiBakshi completedherPhDinenvironmentalsciencefromtheInstituteofEnvironmentandSustainable Development,BanarasHinduUniversity,Varanasi,India.HerPhDresearchinvolvedunderstandingtheimpacts,fate, andbehaviorofengineerednanoparticles(ENPs)onthesoil plantinteractivesystem.Sheispresentlyworkingasa postdoctoralfellowintheDepartmentofCivilEngineeringattheIndianInstituteofTechnologyDelhi,India.Her researchinterestsincludetheenvironmentalriskassessmentofENPsinnaturalsystems,theirsoil plantinteractions, nano-phytoremediation,nano-biotechnology,nanotechnologyapplicationsforenvironmentalandagriculturalusage.

Dr.ChaudheryMustansarHussain,PhD,isanadjunctprofessor,academicadvisor,anddirectorofchemistry& EVScLabsintheDepartmentofChemistry&EnvironmentalSciencesattheNewJerseyInstituteofTechnology (NJIT),Newark,NJ,UnitedStates.Hisresearchisfocusedonapplicationsofnanotechnology&advancedmaterials, environmentalmanagement,analyticalchemistry,andvariousindustries.Dr.Hussainistheauthorofnumerouspapers inpeer-reviewedjournalsandaprolificauthorandeditorofseveral(around50books)scientificmonographsandhandbooksinhisresearchareaspublishedbyElsevier,RoyalSocietyofChemistry,Wiley,CRC,andSpringer.

ProfessorMikaSillanpa ¨ a ¨ receivedhisMSc(Eng.)andDSc(Eng.)degreesfromtheAaltoUniversity,wherefromhe alsocompletedhisMBAdegreein2013.Hehassupervisedover50PhDsandbeenareviewerinover250academic journals,manyofwhicharehighlyrankedintheirfields.Heisalsoahighlycitedresearcherwithover900research articlesinpeer-reviewedinternationaljournals.Sillanpa ¨ a ¨ hasservedontheeditorialboardsofseveralscholarlypublications.Heiscurrentlyaneditorin InorganicChemistryLetters (Elsevier),associateeditorin EnvironmentalChemistry Letters (Springer),andfieldchiefeditorin FrontiersinEnvironmentalChemistry

Nanotechnologyassustainablestrategy forremediationofsoilcontaminants,air pollutants,andmitigationoffood biodeterioration

SomenathDas1 andArpanMukherjee2

1DepartmentofBotany,BurdwanRajCollege,PurbaBardhaman,WestBengal,India, 2InstituteofEnvironmentandSustainableDevelopment, BanarasHinduUniversity,Varanasi,UttarPradesh,India

1.1Introduction

Thetermsnanoparticleandnanomaterialrefertoverytinyinnatureinthescientificcommunitywhichhavevarietyof roleinthedifferentsectorsincludingremediationofwater,soil,heavymetalsinenvironments,andalsoinagricultural applications(Gongetal.,2018).Nanomaterialsareconsideredasprimecatalystsandadsorbentforremovalofcontaminantsbasedontheirgreatersurfacearea,lowermodificationoftemperature,maximumsitesofsorption,andshorter interparticledistance(Caietal.,2019).Nanoparticlesaremuchattractedforeliminationofheavymaterialsbasedon theirinteraction,mobilizationandadsorption(Nasiretal.,2019).Foodcommoditiesareprimarilycontaminatedby infestationofstoragefungiduringthepostharvestperiodsalongwiththeirassociatedsecondarymetabolitesespecially termedasmycotoxins(Dasetal.,2021a).Speciesof Fusarium, Penicillium and Aspergillus aremaximallyinvolvedin contaminationoffoodsbyhyphalproliferationandsporeproduction.Theysecretehazardousmycotoxins viz.aflatoxins, zearalenone,fumonisins,patulin,deoxynivalenol,andtricotheceneinfoodswhichhaveadverseimpactonhumanhealth withwidespreadcellularabnormalities,andtoxicities(Reddyetal.,2010;Chaudharietal.,2021).Mostimportantly, thesemycotoxinsareusualprecursorofreactiveoxygenspecies(ROS)production(Gauthieretal.,2020),andefficientlyinteractwithcellularproteins,carbohydrates,fattyacids,andbioactiveingredientsleadingtolossofnutritional qualities(Wuetal.,2019).Recentinvestigationof Dasetal.(2021b) demonstratedtheheavyincidenceofmethylglyoxalinfoodcommoditiesdirectlyleadtoproductionofaflatoxin,andgenerationofadvanceglycationendproducts. Onthebasisoftoxicity,InternationalAgencyforResearchonCancer(IARC)classifiedaflatoxinsasclass1carcinogen,fumonisin,andochratoxinsasclass2Bcarcinogen,andzearalenone,andtricotheceneasclass3carcinogen (Chaudharietal.,2019).Thecongenialclimaticandenvironmentalconditionsfavorinfestationoffungalfloraandproductionofmycotoxinsinstoredfoodcommodities(BhandariandSrivastava,2020).

Anumberofsyntheticfungicidesarebeingappliedformitigationoffungalproliferation,andmycotoxincontamination;however,theirindiscriminateapplicationmaycausenegativeimpactonhumanhealthandmaximumchancefor developmentofresistantfungalspecieswithmoreeffects(Badretal.,2021).Hence,inthecurrentgeneration,researchersarecompletelyfocusedonplantbasedchemicalstoavoidthedrawbackofsyntheticfungicideswithmaximum greenimageinfoodandagriculturalindustries.Amongdifferentplantbasedproducts,essentialoilsisolatedfromhigherplantsareinvolvedininhibitionofmicrobialgrowth,mycotoxinproductionandlipidperoxidationwithgreenimage infoodandagriculturalindustries(Bocateetal.,2021).

Indeed,theessentialoilsdisplaypromisingpreservationpotentialities,but,theirpracticalapplicationexhibitseveral challengeslikelowwatersolubility,highvolatility,andnegativeimpactonfoodorganolepticattributes(Jamalietal., 2021).Nanoentrapmentofessentialoilshasspecialadvantageforimprovementinbioefficacyinfoodsystemwithlong

termsustainedreleaseofvolatilecomponents(Zhuetal.,2020).Nanoencapsulationsimplydemonstratestheentrapmentofessentialoilsintobiodegradablepolymerssuchaschitosan,gelatin,soyprotein, β-cyclodextrin,sodiumalginate,andstarchwiththeinvolvementofseveralprocesses viz.ionicgelation,coacervation,nanoprecipitation,liposome, supercriticalsolution,freezedrying,andsolidlipidnanoparticles(Guoetal.,2021).

Hence,thepresentarticlefocusesupdateddetailsofapplicationofnanoparticlesforremovalofsoilandwaterpollutantsalongwithremediationofhazardousheavymetals.Moreimportantly,applicationofessentialoilnanoparticles againstfungalandmycotoxincontaminationoffoodshasalsobeendiscussed.Furthermore,thebiochemicalandmolecularmechanismsalsostrengthentheapplicationofnanoencapsulatedessentialoilsaseffectivegreenpreservativewith novelagro-ecologicalprospects.

1.2Useofnanoparticleforsoilandwaterpurification/remediation

Contaminationofsoilandwater(ground)areverycloselylinked.Methodsthatareusedforthetreatmentsofsoilcontaminationareindirectlyworkforgroundwaterremediation’s,andithasaviceversaeffect(MuellerandNowack 2010).Waterisoneofthemostimportantcomponentsofhumancivilization,andisabasicnecessityforhumanlife. Waterscarcityescalatesduetohighpopulation,climatechange,anditisalsothereasonofdetritionsofwater-quality (AliandAboul-Enein,2004;NemerowandDasgupta,1991).Only2.5%oftheworld’soceansandseasharnessfresh water,However,70%offreshwater(FW)isfrozenaseternalice,only , 1%ofFWcanbeusedfordrinking. Accordingto WHO(2014),globallylessthan700millionpeopledon’thaveaccesstopurepotablewater.Therefore, thewatertreatmentorimprovementwaterqualitymustbeimplementedthroughouttheworld.

Anumberoftechnologiesareavailableforwaterpurification,butthatarereachingtheirlimitsinsupplyingsufficientamountofwatertomeetpopulation,andenvironmentalneeds(Quetal.,2013).Watercontaminationoccureither byorganic,inorganic,orbybiologicalcontinents.Somewatercontaminantsaremosttoxicandcarcinogenicinnature (AliandAboul-Enein,2004;Alietal.,2009)andsomecontaminantshaveadverseeffectsonhumansandwholeenvironments(Ali,2012).Oneofthemosttoxiccomponentsanddeadliestelementsinwaterisarsenic;however,othercommonwaterpollutantsarechromium,mercury,cadmium,zinc,nickel,copperandlead(Ali,2012).Highconcentration ofphosphates,Nitrates,sulfates,chlorides,selenides,fluorides,andchromatesinwatershowedhazardouseffectsin environmentandhumanhealth(Damia ` ,2005).NPsbasedwaterpurificationisaclassictechniqueforefficientremoval ofwatercontaminants.

Majorprocessesinvolvedinwaterpurificationare:

1.2.1Adsorbentprocess

Here,nano-adsorbentsaremainlyusedforremovingofinorganicand/ororganicpollutantsfromwater.Theproperties ofthenano-adsorbentsaresmallerinsize,highlevelcatalyticpotential,reactivity,largesurfacearea,easyseparation procedure,andhugenumberofactivesitesthatcaneasilyadsorbedtoxicmaterialsofsoilandwastewater(Ali,2012). SomeexamplesofadsorbentNPsmaterialsarecarbon-basednano-adsorbents,ironoxide,zincoxide,aluminaoxide, andtitaniumdioxide.

1.2.2Membranebasedprocess

Inthisprocess,athinmembraneisplacedthroughwhichwaterispassedandcontaminantsareeasilytrappedbynanoparticle.Electrospunnanofiber,hydrophilicmetaloxideNPslikeAl2O3,TiO2,andzeolite,nano-AgandCNTs,and bimetallicNPs,TiO2 arecommonlyusednanoparticlesforremovalofpollutants(Giwaetal.,2021).

1.2.3PhotocatalysisandantimicrobialNPs

Nanoparticles(NPs)areeffectivelyusedfortheremediationorpurificationofsoilandgroundwater.Thetinyparticles (NPs)arehighlyreactiveandhavegreatadsorptioncapacity(Goyaletal.,2018).However,sometechnicalchallenges, suchasthedeliveryprocessshouldhavetosolve.Moreover,thecostofNPsishugeforpreparinglargequantitiesfor soilandwaterpurification.

1.3Nanotechnologyinheavymetals(HMs)removal

Waterandsoilarethemostimportantnaturalresourcethatrequiredforsurvival,butrandomindustrialization,cutting offorest,urbanizationcausehugeprobleminthesoilandwater.Mostlysoilandwaterarecontaminatedthroughheavy metal.ThisHMscomefromdifferentsectorslikeindustries,agriculturechemicals,miningarea,andchemicalsplants. SomeHMslikePb,Zn,Cu,andHgcauseaseverethreattohumanandenvironmentalhealthbecausethisHMcanbe accumulatedinthesoil,waterandhumanbodythroughfoodchain.Therefore,removalordetoxificationofHMisof greatconcern,tilldate,differenttechnologieshavebeenreportedanddevelopedtosolvethisHMcontaminationproblem,theseareincludedchemicalprecipitation(Gonzalez-Munozetal.,2006),ionexchange(Verbychetal.,2004), adsorptionprocess(NamasivayamandSangeetha,2006),membranefiltrationtechniques(Sudilovskiyetal.,2007) andelectrochemicaltreatment(Tranetal.,2017),andsoon.DifferentNPshavebeenusedtoremovetheHMfromthe environmentsthisincludedgrapheneoxideNanocomposites,carbonnanotubes,nanosizedmetaloxides,carbon-based nanomaterials,zero-valentmetalnanomaterials(Yangetal.,2019).ApplicationofnanotechnologytoremediateparticularHMisahighlycomplicatedtaskanddependsonanumberoffactorslikequalitystandard,efficiencyandcost (Huangetal.,2008).NanomaterialsarepotentiallyinvolvedinadsorptionandreactionforremovalofhazardousHM fromwaterandsoil(Fujishimaetal.,2000;Kamatetal.,2002;MasciangioliZhang,2003).Recentinvestigation suggestedtheapplicationofironnanoparticleforscavengingAs51,Pb21,Cr61,andCd21 (Alidokhtetal.,2011;Zhu etal.,2009;Boparaietal.,2011;Zhangetal.,2011a,b). Wuetal.(2008) demonstratedthepotentialFe3O4 nanoparticle formitigationofCrfromaquaticwaste. ChowdhuryandYanful(2010) synthesizedmaghemiteandmagnetitenanoparticlesandstudiedtheirefficacyforadsorptionofchromiumandarsenicfromaqueoussolution. Checkoletal.(2018) reportednanoparticleconsistingofpoly(3,4-ethylenedioxythiophene)/polystyrenesulfonate(PEDOT/PSS)andlignin biopolymerforremovalofPb21 fromneutralsolution. Zhangetal.(2011a,b) illustratedtheeffectofthreedifferent ZrP Cl,ZrP SandZrP Nnanocomposites(preparedbyencapsulationofzirconiumphosphatenanoparticles(nanoZrP)withinmacroporouspolystyreneresins)forremovalofPb(II)basedontheionicgroupinteraction.

1.4Contaminationofstoredfoodsbyfungiandmycotoxins

Postharvestfoodcommoditiesaremaximallyinfestedandcontaminatedbyfungi,andtheirassociatedmycotoxinsbecause ofcongenialconditionsliketemperature,wateractivity,nutritionstatus,concentrationofhydrogenions,wateractivity, pHandspecificsoluteseffects(VanLongetal.,2017).Moreover,thesestoragefungimainlydamagethestoredfood qualitybyreducingthenutrientavailability,graindiscoloration,crackingofgrainsandtoxiceffectsongermination ofseeds(Mohapatraetal.,2017;Pleadinetal.,2019).Mycotoxinsareinvolvedingenerationofreactiveoxygenspecies (ROS),leadingtoperoxidationoflipidsintofreefattyacidsandtheirnutritionalqualities(DaSilvaetal.,2018). Dwivedyetal.(2017) demonstratedcontaminationof Cucumismelo, Juglansregia, Citruluslanatus, Nelumbonucifera, Buchananialanzan,and Pistaciavera seedsby Aspergillusflavus, A.minutus, A.niger, A.sulphureus, Alternariaalternata, Curvularialunata, Moniliabrunia and Penicilliumcitrinum. Achaglinkameetal.(2017) demonstratedaflatoxincontaminationinlegumesandcerealsbytoxigenicspeciesof Aspergillusflavus inconduciblepH,nutrientcontentandwater activityofsubstrate.Fungalcontaminationofpowderedspices viz.garammasala,tandurimasala,cumin,basil,gingerand turmericby A.fumigatus, A.terreus, Penicilliumcorylophilum,and P.chrysogenum hasbeenreportedby Hammamietal. (2014).Recently, SinghandCotty(2019) illustratedthecontaminationofdriedredchiliesfromNigeriaandUSby A.parasiticus, A.aflatoxiformans, A.minisclerotigenes,and A.flavus withresultantproductionofaflatoxins.Inaninvestigationof Kumaretal.(2018),ithasbeenobservedthatstoredmillets,especially Sorghumbicolor and Pennisetumglaucum weremaximallycontaminatedwith A.flavus, A.sydowii, A.minutus, Penicilliumitalicum, P.purpurogenum,and Chaeotomiumspirale leadingtoproductionofAFB1. HashemandAlamri(2010) reportedcontaminationofcommon spicessuchascinnamon,greensaffron,fenugreek,fennel,cardamom,aniseedsandclovesby A.awamori, A.candidus, A.ochraceus,A.versicolor, A.tamari, Fennellianivea and Humicolagrisea alongwithfrequentcontaminationbyAFB1 andAFB2. Deepikaetal.(2020) reportedgrowthandproliferationofdifferentfungalspecieslike A.luchuensis, A.fumigatus, A.flavus, A.humicola, P.spinulosum and A.terreus duringpostharveststorageof Fagopyrumesculentum, Macrotylomauniflorum, Linumusitatissimum,and Salviahiapanica seeds. Kluczkovski(2019) demonstratedmaximum contaminationofchestnut,cashewnut,Brazilnut,almonds,peanuts,pecannuts,andwalnutby A.ruber, A.chevalieri, Rhizopusstolonifer, A.fumigatus, Cladosporiumcladosporoides, A.alternata and A.parasiticus duringstorage.More importantly,peanuts,Brazilnuts,andcashewnutsweremaximallycontaminatedwithaflatoxinsonthebasisofenvironmentalfactorssuchastemperatureandrelativehumidityofthestorageconditions. Table1.1 presentssomemajorfood commoditiescontaminatedwithfungiandmycotoxinsandtheirhazardouseffectsonhealth.

TABLE1.1 Somestoredfoodcommoditiescontaminatedwithfungalpathogensandmycotoxinswiththeiradverse healtheffects.

FoodcommoditiesFungalpathogensMycotoxins produced Hazardouseffects onhealth

Rice

Maize

Dryfruits

Spices(Redchili,Cinnamon, Clove,Cardamom,andblack pepper)

Fusariumoxysporum, F.poae, Aspergillusniger, A.flavus, A.parasiticus,and Penicillium italicum

Aspergillusflavus

Fusariumverticilloides, Fusarium proliferatum and A.flavus

Fusarium, Penicillium and Aspergillus spp.

A.flavus, A.niger, A.minutes, A.sulphureus, Alternariaalternata, Curvularialunata, Moniliabrunia and Penicilliumcitrinum

Aspergillus, Fusarium and Penicillium

CicerarietinumA.niger, F.oxysporum, P.citrinum, A.oryzae and A.flavus

Legumeseeds(Glycinemax, Lensculinaris, Vignamungo, Pisumsativum, Phaseolus vulgaris and Vignaaconitifolia)

Meats

Ediblemushroom

A.flavus, Rhizopusstolonifer, Alternariaalternata, Rhizoctonia solani, Fusariumoxysporum and A.sydowii

A.flavus, A.parasiticus, P.chrysogenum,and P.verrucosum

A.parvisclerotigenus, A.flavus, and Penicillium spp.

ArachyshypogeaA.parasiticus,and A.flavus

TriticumaestivumFusariumoxysporum

Coffeebean,grapeandvine fruits

Sorghumbicolor and Pennisetumglaucum

Penicilliumverrucosum,and A.carbonarius

A.flavus, A.sydowii, A.minutus, Penicilliumitalicum, P.purpurogenum,and Chaeotomiumspirale

AflatoxinsCarcinogenic, teratogenic, mutagenicand hepatotoxiceffects onhealth

AflatoxinsMutagenic,liver cirrhosisand cellular abnormalities

Fumonisinsand aflatoxins

Zearalenone, ochratoxinA,and3, 15-acetyl deoxynivalenol

References

Dasetal. (2020a)

Chaudhari etal. (2020a)

Mutageniceffectson body Chulze (2010)

Neurotoxicand nephrotoxic Tarazona etal.(2020)

AflatoxinsCarcinogenicand teratogeniceffects Dwivedy etal.(2017)

Citrinin,fumonisinB, nivalenol, deoxynivalenol, sterigmatocystinand ochratoxins

AFB1

AFB1

Hepatocarcinogenic symptoms Thanushree etal.(2019)

Toxiceffectson immunesystem

Aflatoxicosis, abnormalliver growthand carcinogenesis

Aflatoxinsand ochratoxins

AFB1,AFB2, deoxynivalenol, zearalenoneand T-toxin

AFB1

Shuklaetal. (2012)

Shuklaetal. (2009)

Nephrotoxic, immunotoxicand hepatotoxic Perrone etal.(2019)

Toxiceffectsoncell growth Ezekiel etal.(2013)

Mutagenicand teratogeniceffects Gotoetal. (2000)

DeoxynivalenolEstrogeniceffecton human Ferrigoetal. (2016)

OchratoxinsNeurotoxiceffects onbody Maganand Aldred (2007)

AFB1

Aflatoxicosis, abnormalliver growthand carcinogenesis

Kumaretal. (2018) (Continued )

TABLE1.1 (Continued)

FoodcommoditiesFungalpathogensMycotoxins produced Hazardouseffects onhealth

Fagopyrumesculentum, Macrotylomauniflorum, Linum usitatissimum,and Salvia hiapanica seeds

A.luchuensis, A.fumigatus, A.flavus, A.humicola, P.spinulosum and A.terreus

AFB1

References

Carcinogenic, teratogenic, mutagenicand hepatotoxiceffects onhealth

Deepika etal.(2020) chestnut,cashewnut,Brazil nut,almonds,peanuts,pecan nuts,andwalnut

A.ruber, A.chevalieri, Rhizopus stolonifer, A.fumigatus, Cladosporiumcladosporoides, A.alternata and A.parasiticus

AFB1 andAFB2

Livercirrhosis

1.5Essentialoils:agreenchemicalforpreservationofstoredfoods

Kluczkovski (2019)

Essentialoilsaresecondarymetabolitesofhigherplants,especiallyisolatedfromflowers,fruits,buds,roots,leaves, twigsandseeds(Figueiredoetal.,2008).Theycontainterpenoids,sesquiterpenoidsandphenolicsasoneofthemajor constituents(Froiioetal.,2019),leadingtoactiveinhibitionoffungalproliferationandmycotoxincontamination (Kumaretal.,2019).Moreimportantly,terpenesarebasicstructuralcomponentofessentialoilsthatcovergreaterthan 50%ofthetotalessentialoildependingonextractiontypeandutilizationofplantparts(Azizetal.,2018).Aromatic, aliphatic,alcoholic,phenols,aldehydes,heterocyclesalcoholsandmethoxyderivativesarealsotheminorcomponents ofessentialoils(Fallehetal.,2020).Theantioxidantcapacityofessentialoilsalsofacilitatesinscavengingofbiodeterioratingfreeradicalswhichcorrespondstotheirmajoreffectformitigationoffungalloadandmycotoxinbiosynthesis (Dasetal.,2021c).Thephenolicconstituentsofessentialoilsaremainlyparticipatedinantimicrobialandantifungal activities(Mandrasetal.,2016).Alterationinefficacyofessentialoilshasbeendependedongeographicalvariation, maturityofplant,timeofharvesting,plantorganandchemotypicvariation(Lawrencet,2001;Dasetal.,2021a). Therefore,beforerecommendationofessentialoilsasecofriendlyfoodpreservative,oneshouldrequirestandardizing thechemicalcompositionswiththeirrespectiveavailabilitiestoprotectfoodsfromfungalandmycotoxinmediated biodeterioration.

1.6Mechanismsinvolvingantifungalandantimycotoxigenicactivities

Majorityofessentialoilcomponentssuchasphenylpropenes,terpenoids,phenolicandaldehydecomponentstargetdifferentcellularsites viz.plasmamembrane,cellwall,mitochondria,andothercellorganelles(Hyldgaardetal.,2012). Differenttechniqueshavebeeninvolvedforelucidationofmechanismofantifungalandantimycotoxigenicactionin foodsystem.Atomicforcemicroscopy(AFM),transmissionelectronmicroscopy(TEM)andscanningelectronmicroscopy(SEM)revealthedeformitiesinplasmamembraneafterinteractionofessentialoilcomponentswithmembrane proteins(Toloueeetal.,2010;Mirietal.,2019;JafriandAhmad,2020).Reductioninergosterolcontentbyessential oilfumigationmayalsobeapossiblereasonfordisintegrationofmembraneintegrityandstabilityleadingtopremature cellulardeath(Dasetal.,2021d).Anumberoftargetsiteshavebeendemonstrated,where,essentialoilsandtheirbioactiveconstituentsareespeciallyinteractanddisturbthenormalfunctioning.

1.6.1Effectonergosterolbiosynthesis

Ergosterolisprimesterolmoleculeinfungalcellmembraneprovidingdynamicity,fluidity,permeabilityandintegrity (AbeandHiraki,2009).Recentinvestigationof daSilvaBomfimetal.(2020) demonstratedtheinhibitionofergosterol biosynthesisby Rosmarinusofficinalis essentialoilin A.flavus inadosedependentfashion.Similarreportwithactive potentialityofcinnamaldehydeforreductionofcellularergosterolin Fusariumsambucinum hasbeenillustratedby Wei etal.(2020) Tianetal.(2012a,b) reporteddosedependentretardationofergosterolcontentin A.flavus afterfumigation with Cinnamomumjensenianum essentialoil.Impairmentinsynthesisofergosterolsuggestedplasmamembraneas potentialtargetsiteofactionofessentialoilsforantifungalactivity. Wangetal.(2019a,b) investigatedtoxiceffectof

citralonergosterolbiosynthesisin A.alternata leadingtocellularapoptosis.Retardationinergosretolcontentby Curcumalonga essentialoilin Fusariumverticillioides hasbeenrecentlydemonstratedby Avanc¸oetal.(2017).They reportedconsequentreprogrammingofgenesinvolvedinergosterolsynthesisafteressentialoiltreatmentwhichcould bemarkedaspossiblemechanismofbiochemicalactionforantifungalactivity.

1.6.2Effectonleakageofcellularconstituents

Indeed,manyessentialoilcomponentsarereportedtoeffluxmajorcellularconstituents viz.Mg21,K1 andCa21 from fungalcells,suggestingimpairmentinmembranepermeabilityandfluidity. Singhetal.(2021) reportedexcessiveefflux ofCa21,Mg21 andK1 ionsfrom A.flavus cellsafterfumigationwith Cinnamomumcassia essentialoil.Effusionof Ca21,Mg21 andK1 ionsalongwithenhancedeffluxofnucleicacidsandproteinsby Apiumgraveolens essentialoil mixedlinalylacetateandgeranylacetatefumigationin A.flavus hasbeenreportedby Dasetal.(2019). Chaudhari etal.(2020a) demonstratedantifungalactivityof Pimentadioca essentialoilin A.flavus duetoleakageofMg21,K1 andCa21 ionsleadingtolossincellularhomeostasis. Zhangetal.(2019) reportedantifungalactivityofcarvacroland thymolduetoexcessiveeffusionofelectrolytesfrom Botrytiscinerea alongwithdestructionofmembranepermeability.Inananotherstudyof Helaletal.(2006) illustratedtheeffectof Cymbopogoncitratus essentialoilonleakageof Ca21,Mg21 andK1 ionsfrom A.niger cells.Moreover,leakageoflargermoleculeslikecarboxyfluoresceindiacetate, andATPandinfluxofethidiumbromideandpropidiumiodidealsorevealedthemembranedysfunctionduetoformationofporesandholesculminatingtoosmoticimbalances.RadiolabeledaminoacidsandnucleotidesdetectedthenegativeimpactofessentialoilsonfungalDNAreplicationsandproteinsynthesis(Schneideretal.,2010).

1.6.3Effectofessentialoilsonenergymetabolism

Essentialoils/bioactivecomponentsareactivelyparticipatedforinhibitionofenergymetabolismbyblockingATPsynthesis. Tianetal.(2012a,b) reporteddisruptioninmitochondrialmembranepotentialby Anethumgraveolens essential oilleadingtoinhibitionofATPsynthesisin A.flavus.InhibitionofmitochondrialATPaseanddehydrogenaseactivity culminatingintoreducedproductionATPhasbeenrecentlydemonstratedby Huetal.(2017) Tatsadjieuetal.(2009) describedimpairmentinenergymetabolismduetoinhibitionofH1-ATPasepumpanddisturbedtheactivesiteofthe enzymeleadingtodepletioninATPpool. Wangetal.(2019a,b) reportedantifungaleffectsofcinnamaldehydedue toeffectiveinhibitionofF0-F1 complexofATPaseactivity.Fumigationof Penicilliumroqueforti cellsbyeugenoland citralsynergisticformulationcollapsedmitochondrialmembranepotentialwithvaryingdegreeofdistortionsinmitochondrialinnerlayer(Juetal.,2020).ThereareseveralcomponentsofessentialoilsthathaveindirecteffectonATP synthesisleadingtoinhibitionofcellgrowthandsporulation.

1.6.4Effectofessentialoilsoncellularmethylglyoxal

Methylglyoxal,acytotoxiccomponentproducedasrespiratorybyproductactasinducerofcellularaflatoxinbiosynthesisin A.flavus.Methylglyoxalmostlyup-regulatetheaflRandver-1genesforproductionofexcessiveaflatoxins. Recentinvestigationof Dasetal.(2021e) reportedprominentinhibitionofmethylglyoxalbiosynthesisbyeugenolin A.flavus,whichdirectlycorrelatedwithreductioninAFB1.Dosedependentretardationinmethylglyoxalproductionby α-terpenolin A.flavus hasbeeninvestigatedby Chaudharietal.(2020b).Recentstudyof Singhetal.(2019) suggested inhibitionofmethylglyoxalsynthesisby Ocimumsanctum essentialoilin A.flavus

1.6.5Molecularmechanismofantifungalandantimycotoxigenicactivity

Molecularmechanismsrevealbetterunderstandingofantifungalandantimycotoxigeniceffectivenesswithpropermechanismofactionandbindingaffinities. Oliveiraetal.(2020) demonstrateddown-regulationoflaeA,metPandlipA genesleadingtoinhibitionoffungalgrowth. Dasetal.(2021d) reportedinsilicointeractionofelemicine,p-cymene, α-pinene,apiolandfenchonewithlanosterol14-α-demethylaseculminatingintoreductionofergosterolbiosynthesis andinhibitionofver-1andpolyketidesynthaseleadingtoreducedsynthesisofAFB1 Muruganetal.(2013) demonstratedinteractivebindingof13bioactivecomponents(isolatedfrom Murrayakoenigii essentialoil)withver-1protein whichmaycauseinterferenceinAFB1 biosynthesis. Badawyetal.(2019) reportedmaximumantifungalactivityof camphor,menthone,linalool,thymol,andcitronellylagainst A.flavus duetohydrogenbondandhydrophobicinteractionwithoxysterolbindingprotein(Osh4). Dasetal.(2020b) observedinteractionofthujanol,elemicineand

FIGURE1.1 Mechanismsrelatedtoantifungalandantimycotoxigenicactivityofessentialoils.

myristicinewithver-1andomtAproteinsof A.flavus byhydrogenbonds(withaminoacidsGly22,Lys252,Trp190 andGly227)leadingtoinhibitionofAFB1 synthesis. Fig.1.1 presentstheantifungalandantimycotoxigenicmechanismsofactionofessentialoils.

1.7Nanotechnology:novelsustainablegreenstrategytoprotectfoods

Nanoencapsulationofessentialoilsintoanybiodegradableandbiocompatiblecarriermatriximprovethebioefficacyin foodsystem.Thecontrolledreleaseofessentialoilcomponentsfacilitatesthelongtermstabilityandaffectivitywithout alteringtheorganolepticpropertiesoffood(Chaemsanitetal.,2019).Differentformsofnanoencapsulatedessentialoils viz.nanoemulsion,nanocapsule,nanoparticle,nanogel,nanotubes,nanoliposomes,nanosponge,andnanofibrehave beensynthesizedafterproperentrapmentwithinanybiocompatibleandbiodegradablepolymermatrix(Bahramietal., 2020). Antoniolietal.(2020) demonstratedantifungalaffectivityoflemongrassessentialoilloadedpolylacticacid nanocapsulesagainstpathogenic Colletotrichumacutatum.Effectiveinhibitionofstoragefungialongwithmitigationof AFB1 contaminationinmaizebyanetholeloadedchitosannanoemulsionhasbeenreportedby Chaudharietal.(2020c) Singhetal.(2020a,b) illustratedretardationingrowthoffoodbiodeterioratingfungiandAFB1 secretioninmasticatoriesby Buniumpersicum essentialoilnanoemulsion.Nanoencapsulated Zatariamultiflora essentialoilimprovedthe fungitoxicpotentialityagainst Botrytiscinerea causinggraymolddiseaseinstrawberries(Mohammadietal.,2015). Hasheminejadetal.(2019) reportedcontrolleddeliveryofcloveessentialoilfromchitosannanoemulsionwithinhibitoryactivityagainst A.flavus infestationinstrawberriesover56daysofstorage.Enhancementinantifungalactivityof cloveandcinnamonessentialoilagainst A.niger, P.roqueforti,and Candidaalbicans afterencapsulationintochitosan nanocapsuleshasbeenreportedby Mahdietal.(2021) Table1.2 presentsnanoencapsulatedessentialoils/components withantifungalandantimycotoxigenicefficacyinfoodsystem.

1.8Safetyassessmentofessentialoils

Beforebroadscalerecommendationofessentialoilsandnanoencapsulatedgreenproductsinagri-foodindustries,one shouldassessthesafetyprofileofessentialoilinmodelmammaliansystem. Delimaetal.(2013) investigatedsafety assayof Crotonargyrophylloides and C.sonderianus essentialoilsthroughoraltoxicitymethodandfoundtheLD50

TABLE1.2 Nanoencapsulatedessentialoils/componentswithantifungalandantimycotoxigenicefficacyinfood system.

Essentialoils/ component BiopolymerEfficacyinfoodsystemReferences

Pimpinellaanisum ChitosanPreservationofstoredriceagainstfungalandAFB1 contamination Dasetal.(2021b)

Anethum graveolens Chitosan Dasetal.(2021a)

Coriandrum sativum Chitosan Dasetal.(2019)

AnetholeChitosanEffectiveantifungalandantiaflatoxigenicagentinstoredmaize Chaudharietal. (2020b)

EugenolChitosanEffectiveinhibitorof A.flavus infestationandAFB1 secretion Dasetal.(2021e)

Cuminumcyminum ChitosanQualitycontrolofsardinefilletbyreducinglipidperoxidation andimprovedsensorialcharacters Homayonpour etal.(2021)

Satureja khuzestanica

Artemisia dracunculus

Monardacitriodora

ChitosanReducedmicrobialgrowth,lipidperoxidationandsensorial charactersinlambmeat Pabastetal. (2018)

Gelatin-chitosanPreservationofporkslicesagainstmicrobialcontaminationand lipidperoxidation Zhangetal. (2020)

ChitosanProtectionofstoredfunctionalfoodsagainstfungalinfestation andAFB1 contamination Deepikaetal. (2020)

CloveessentialoilChitosanQualityimprovementofstrawberryfruitsbyinhibitionof A.niger infestation Hasheminejad etal.(2019)

Zatariamultiflora ChitosanInhibitionof Botrytiscinerea growthinstrawberries Mohammadi etal.(2015)

Petroselinum crispum

Pogostemoncablin

Cinnamodendron dinisii

ChitosanProtectionofstoredchiaseedsfromfungalinvasionandAFB1 contamination Deepikaetal. (2021)

ChitosanAntifungalandAFB1 inhibitioninstoredmaizekernel Roshanetal. (2021)

ChitosanPreservationofgroundbeefagainstmicrobialdeterioration Xavieretal. (2021)

Myristicafragrans ChitosanProtectionofstoredriceagainstfungalandAFB1 contamination Dasetal.(2020b)

Cinnamonessential oil PullulanShelflifeenhancerofstoredstrawberriesbymaintainingthe physico-chemicalparameters Chuetal.(2020)

Oreganoessential oil

LecithinPostharvestqualitymaintenanceandenhancementofshelflifeof tomatoes Pirozzietal. (2020)

EugenolTween-80, Tween-20and sesameoil

Illiciumverum

Inhibitionofmicrobialinfestationinorangejuice Ghoshetal. (2014)

ChitosanMitigationoffungalgrowthandAFB1 secretionindryfruits Dwivedyetal. (2018)

Menthapiperata ChitosanBetterantifungalactivityagainst Aspergillusflavus intomatoes Beykietal.(2014)

Cuminumcyminum ChitosanSuperiorantifungalactivityagainst Aspergillusflavus Zhavehetal. (2015)

Zatariamultiflora Glyceryl monostearate andTween-80

D-limoneneSoylecithinand starch

Strongantifungalactivityagainst Aspergillusochraceus, Aspergillusniger, Aspergillusflavus, Alternariasolani, Rhizoctonia solani,and Rhizopusstolonifer Nasserietal. (2016)

Preservationofpearandorangejuicesagainstmicrobial deterioration Donsı`etal. (2011)

valuehigherthan6000mg/kgconsideringsafeforpracticalutilizationasfoodpreservative. Jemaaetal.(2018) reported higherLD50 valueof Thymuscapitatus essentialoilinmicewithoutabdominalcontortion,piloerectionandmuscle tones. Dwivedyetal.(2018) demonstratedveryhighLD50 valueof Illiciumverum essentialoil(11,257.14 μL/kgbody weight)inmice. Upadhyayetal.(2019) demonstratedhighLD50 (13,956.87 μL/kgbodyweight)inmicesuggesting non-toxiceffecttomammaliansystem.Indifferentstudies,ithasbeenobservedthatnanoencapsulationreducedthe LD50 value,however,thevalueswerefoundhigherthanOECDguideline(cutoffvalue 5 2000mg/kg),hencethey havebeencategorizedassafewithgreeninsighttopreservefoodcommodities.Inastudyof Dasetal.(2021a),LD50 valueof Anethumgraveolens essentialoilinmicewasreported18,714 μL/kg,whilenanoencapsulationretarded theLD50 valueto15,987 μL/kg.AuthorsalsosuggestedthereductionofLD50 valueduetolargesurface/arearatio innanoemulsionsystemandbetterbindingaffinitywithincells. Ribeiroetal.(2014) demonstratedreductioninLD10 andLD50 valuesof Eucalyptuscitriodora essentialoilafterencapsulationintochitosannanomatrixwithoutcausing anyvitaltoxicityinmice. Ragavanetal.(2017) illustratednon-toxiceffectofgarlicessentialoilnanoemulsioninrats withimprovementindyslipidemiatreatment.LD50 valueof Origanummajorana essentialoilwasfound14,117 μL/kg bodyweightofmice,whilenanoencapsulationreducedtheLD50 valueto11,889 μL/kgbodyweight(Chaudharietal., 2020d).

1.9Conclusionandfutureprospective

Remarkableefficacyofnanoparticleforremovalofwater,soilandheavymetalpollutantsfacilitatetheirapplicationin cleanenvironmentswithoutanyenvironmentalhazards.Theadsorbent,membraneandphotocatalystbasedmethodsare beingusuallyusedforremovalofcontaminantsbasedonionicinteractionsandbonding.Moreover,antifungal,antimycotoxigenicandantioxidantpotentialitiesessentialoilsstrengthentheirutilizationasgreensubstitutetosyntheticfood preservativetoavoidthehazardouseffectsonhuman,animalsandsurroundingenvironments.Thebiochemicaland molecularmechanismsstronglysupportthebindingmechanismandtoxicityofessentialoilsintofungalcells.Theefficacyofessentialoilshasbeenincreasedthroughsustainablenanoencapsulationstrategywithbroadscaleagro-prospects infoodindustriestodevelopthenano-greensmartfoodpreservative.Additionally,themammaliannon-toxicityof essentialoilsandtheirnanoformulationcouldbehelpfulforlargescaleindustrialcommercializationwithnovelagroecologicalprospects.Althoughnanoparticlesareofmuchinterestinremovingenvironmentalcontaminantsbuttoxicity ofnanoparticlesinenvironmentshouldalsobefocused.Effectivenanomaterialswithoutharmingtheenvironmental integrityshouldbepracticallyusedforcreatinggreenandcleanenvironment.Essentialoilsandtheirnanoformulation showedprominentantifungalandantimycotoxigenicefficacy,however,mostofthestudieshavebeenfocusedon invitroinvestigation;thefuturedirectionshouldneedtofocusoninvivostudiesinfoodsystem.Moreover,commercializationofnanoencapsulatedplantessentialoilasgreenfoodpreservativeisstillnotsopopular,hencedesignof compositematerialssuitableforfoodapplicationcouldfacilitatethedevelopmentofcosteffectivenanoformulations.

Acknowledgments

SomenathDasisthankfultoHead,DepartmentofBotanyandPrincipal,BurdwanRajCollegefornecessarysupports.AuthorsarealsogratefultoInstituteofEnvironmentandSustainableDevelopment,BanarasHinduUniversity,Varanasi,India.

References

Abe,F.,Hiraki,T.,2009.Mechanisticroleofergosterolinmembranerigidityandcycloheximideresistancein Saccharomycescerevisiae.Biochimica etBiophysicaActa(BBA)-Biomembranes1788(3),743 752.

Achaglinkame,M.A.,Opoku,N.,Amagloh,F.K.,2017.Aflatoxincontaminationincerealsandlegumestoreconsiderusageascomplementaryfood ingredientsforGhanaianinfants:Areview.JournalofNutrition&IntermediaryMetabolism10,1 7.

Ali,I.,Aboul-Enein,H.Y.,2004.ChiralPollutants:Distribution,ToxicityandAnalysisbyChromatographyandCapillaryElectrophoresis. JohnWiley &Sons

Ali,I.,2012.Newgenerationadsorbentsforwatertreatment.ChemicalReviews112,5073 5091.

Ali,I.,Aboul-Enein,H.Y.,Gupta,V.K.,2009.NanoChromatographyandCapillaryElectrophoresis:PharmaceuticalandEnvironmentalAnalyses. JohnWiley&Sons,Hoboken,NJ.

Alidokht,L.,Khataee,A.R.,Reyhanitabar,A.,Oustan,S.,2011.ReductiveremovalofCr(VI)bystarch-stabilizedFe0nanoparticlesinaqueoussolution.Desalination270(1 3),105 110.

Antonioli,G.,Fontanella,G.,Echeverrigaray,S.,Delamare,A.P.L.,Pauletti,G.F.,Barcellos,T.,2020.Poly(lacticacid)nanocapsulescontaininglemongrassessentialoilforpostharvestdecaycontrol:Invitroandinvivoevaluationagainstphytopathogenicfungi.FoodChemistry326,126997.

Avanc¸o,G.B.,Ferreira,F.D.,Bomfim,N.S.,Peralta,R.M.,Brugnari,T.,Mallmann,C.A.,etal.,2017. Curcumalonga L.essentialoilcomposition, antioxidanteffect,andeffectonFusariumverticillioidesandfumonisinproduction.FoodControl73,806 813.

Aziz,Z.A.,Ahmad,A.,Setapar,S.H.M.,Karakucuk,A.,Azim,M.M.,Lokhat,D.,etal.,2018.Essentialoils:extractiontechniques,pharmaceutical andtherapeuticpotential-areview.CurrentDrugMetabolism19(13),1100 1110.

Badawy,M.E.,Marei,G.I.K.,Rabea,E.I.,Taktak,N.E.,2019.Antimicrobialandantioxidantactivitiesofhydrocarbonandoxygenatedmonoterpenes againstsomefoodbornepathogensthroughinvitroandinsilicostudies.PesticideBiochemistryandPhysiology158,185 200.

Badr,A.N.,Abdel-Razek,A.G.,Youssef,M.M.,Shehata,M.G.,Hassanein,M.M.,Amra,H.A.,2021.Naturalantioxidants:preservationrolesand mycotoxicologicalsafetyoffood.EgyptianJournalofChemistry64(1),4 5.

Bahrami,A.,Delshadi,R.,Assadpour,E.,Jafari,S.M.,Williams,L.,2020.Antimicrobial-loadednanocarriersforfoodpackagingapplications. AdvancesinColloidandInterfaceScience278,102140.

Beyki,M.,Zhaveh,S.,Khalili,S.T.,Rahmani-Cherati,T.,Abollahi,A.,Bayat,M.,etal.,2014.Encapsulationof Menthapiperita essentialoilsinchitosan cinnamicacidnanogelwithenhancedantimicrobialactivityagainst Aspergillusflavus.IndustrialCropsandProducts54,310 319.

Bhandari,A.S.,Srivastava,M.P.,2020.Decontaminationofmycotoxigenicfungibyphytochemicals.Bio-ManagementofPostharvestDiseasesand MycotoxigenicFungi.CRCPress,pp.203 222.

Bocate,K.P.,Evangelista,A.G.,Luciano,F.B.,2021.Garlicessentialoilasanantifungalandanti-mycotoxinagentinstoredcorn.LWT147,111600

Boparai,H.K.,Joseph,M.,O’Carroll,D.M.,2011.Kineticsandthermodynamicsofcadmiumionremovalbyadsorptionontonanozerovalentironparticles.JournalofHazardousMaterials186(1),458 465.

Cai,C.,Zhao,M.,Yu,Z.,Rong,H.,Zhang,C.,2019.Utilizationofnanomaterialsforin-situremediationofheavymetal(loid)contaminatedsediments:areview.ScienceofTheTotalEnvironment662,205 217.

Chaemsanit,S.,Sukmas,S.,Matan,N.,Matan,N.,2019.Controlledreleaseofpeppermintoilfromparaffin-coatedactivatedcarboncontainedin sachetstoinhibitmoldgrowthduringlongtermstorageofbrownrice.JournalofFoodScience84(4),832 841.

Chaudhari,A.K.,Dwivedy,A.K.,Singh,V.K.,Das,S.,Singh,A.,Dubey,N.K.,2019.Essentialoilsandtheirbioactivecompoundsasgreenpreservativesagainstfungalandmycotoxincontaminationoffoodcommoditieswithspecialreferencetotheirnanoencapsulation.EnvironmentalScience andPollutionResearch26(25),25414 25431.

Chaudhari,A.K.,Singh,A.,Singh,V.K.,Dwivedy,A.K.,Das,S.,Ramsdam,M.G.,etal.,2020b.Assessmentofchitosanbiopolymerencapsulated α-Terpineolagainstfungal,aflatoxinB1(AFB1)andfreeradicalsmediateddeteriorationofstoredmaizeandpossiblemodeofaction.Food Chemistry311,126010.

Chaudhari,A.K.,Singh,V.K.,Das,S.,Dubey,N.K.,2021.Nanoencapsulationofessentialoilsandtheirbioactiveconstituents:Anovelstrategyto controlmycotoxincontaminationinfoodsystem.FoodandChemicalToxicology149,112019.

Chaudhari,A.K.,Singh,V.K.,Das,S.,Prasad,J.,Dwivedy,A.K.,Dubey,N.K.,2020d.Improvementofinvitroandinsituantifungal,AFB1inhibitoryandantioxidantactivityof Origanummajorana L.essentialoilthroughnanoemulsionandrecommendingasnovelfoodpreservative.Food andChemicalToxicology143,111536.

Chaudhari,A.K.,Singh,V.K.,Das,S.,Singh,B.K.,Dubey,N.K.,2020c.Antimicrobial,AflatoxinB1inhibitoryandlipidoxidationsuppressing potentialofanethole-basedchitosannanoemulsionasnovelpreservativeforprotectionofstoredmaize.FoodandBioprocessTechnology13(8), 1462 1477.

Chaudhari,A.K.,Singh,V.K.,Dwivedy,A.K.,Das,S.,Upadhyay,N.,Singh,A.,etal.,2020a.Chemicallycharacterised Pimentadioica (L.)Merr. essentialoilasanovelplantbasedantimicrobialagainstfungalandaflatoxinB1 contaminationofstoredmaizeanditspossiblemodeofaction. NaturalProductResearch34(5),745 749.

Checkol,F.,Elfwing,A.,Greczynski,G.,Mehretie,S.,Inganas,O.,Admassie,S.,2018.Highlystableandefficientlignin-PEDOT/PSScompositesfor removaloftoxicmetals.AdvancedSustainableSystems2(1),1700114.

Chowdhury,S.R.,Yanful,E.K.,2010.Arsenicandchromiumremovalbymixedmagnetite maghemitenanoparticlesandtheeffectofphosphateon removal.JournalofEnvironmentalManagement91(11),2238 2247.

Chu,Y.,Gao,C.,Liu,X.,Zhang,N.,Xu,T.,Feng,X.,etal.,2020.Improvementofstoragequalityofstrawberriesbypullulancoatingsincorporated withcinnamonessentialoilnanoemulsion.LWT122,109054.

Chulze,S.N.,2010.Strategiestoreducemycotoxinlevelsinmaizeduringstorage:areview.FoodAdditivesandContaminants27(5),651 657.

daSilvaBomfim,N.,Kohiyama,C.Y.,Nakasugi,L.P.,Nerilo,S.B.,Mossini,S.A.G.,Romoli,J.C.Z.,etal.,2020.Antifungalandantiaflatoxigenic activityofrosemaryessentialoil(Rosmarinusofficinalis L.)against Aspergillusflavus.FoodAdditives&Contaminants:PartA37(1),153 161. DaSilva,E.O.,Bracarense,A.P.,Oswald,I.P.,2018.Mycotoxinsandoxidativestress:wherearewe?WorldMycotoxinJournal11(1),113 134. Damia ` ,B.,2005.EmergingOrganicPollutantsinWasteWatersandSludge.Springer,NewYork.

Das,S.,Singh,V.K.,Dwivedy,A.K.,Chaudhari,A.K.,Upadhyay,N.,Singh,A.,etal.,2020a.AssessmentofchemicallycharacterisedMyristicafragransessentialoilagainstfungicontaminatingstoredscentedriceanditsmodeofactionasnovelaflatoxininhibitor.NaturalProductResearch34 (11),1611 1615.

Das,S.,Singh,V.K.,Chaudhari,A.K.,Dwivedy,A.K.,Dubey,N.K.,2021c.Fabrication,physico-chemicalcharacterization,andbioactivityevaluation ofchitosan-linaloolcompositenano-matrixasinnovativecontrolledreleasedeliverysystemforfoodpreservation.InternationalJournalof BiologicalMacromolecules188,751 763.

Das,S.,Singh,V.K.,Dwivedy,A.K.,Chaudhari,A.K.,Dubey,N.K.,2020b.Myristicafragransessentialoilnanoemulsionasnovelgreenpreservative againstfungalandaflatoxincontaminationoffoodcommoditieswithemphasisonbiochemicalmodeofactionandmoleculardockingofmajor components.LWT130,109495.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.