Energy sustainability: reverse and forward osmosis: principles, applications, advances dr. ibrahim d

Page 1


https://ebookmass.com/product/energy-sustainability-reverse-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Current Trends and Future Developments on (Bio-) Membranes: Reverse and Forward Osmosis Principles, Applications, Advances Angelo Basile

https://ebookmass.com/product/current-trends-and-future-developmentson-bio-membranes-reverse-and-forward-osmosis-principles-applicationsadvances-angelo-basile/ ebookmass.com

Hybrid Energy Systems for Offshore Applications Ibrahim Dincer

https://ebookmass.com/product/hybrid-energy-systems-for-offshoreapplications-ibrahim-dincer/

ebookmass.com

Geothermal Energy Systems Ibrahim Dincer

https://ebookmass.com/product/geothermal-energy-systems-ibrahimdincer/

ebookmass.com

Marriages and Families in the 21st Century: A Bioecological Approach

https://ebookmass.com/product/marriages-and-families-in-the-21stcentury-a-bioecological-approach/

ebookmass.com

North Korea and the Global Nuclear Order: When Bad Behaviour

Pays Edward Howell

https://ebookmass.com/product/north-korea-and-the-global-nuclearorder-when-bad-behaviour-pays-edward-howell/

ebookmass.com

Manias, Panics, and Crashes: A History of Financial Crisis, 8th 8th Edition Robert Z. Aliber

https://ebookmass.com/product/manias-panics-and-crashes-a-history-offinancial-crisis-8th-8th-edition-robert-z-aliber/

ebookmass.com

Hands-on Test-Driven Development: Using Ruby, Ruby on Rails, and RSpec 1 / converted Edition Greg Donald

https://ebookmass.com/product/hands-on-test-driven-development-usingruby-ruby-on-rails-and-rspec-1-converted-edition-greg-donald/

ebookmass.com

Follow Up and Close the Sale Jeff Shore

https://ebookmass.com/product/follow-up-and-close-the-sale-jeff-shore/

ebookmass.com

Artificial Intelligence for Future Generation Robotics

https://ebookmass.com/product/artificial-intelligence-for-futuregeneration-robotics-rabindra-nath-shaw/

ebookmass.com

https://ebookmass.com/product/the-aesthetic-value-of-the-world-tomcochrane/

ebookmass.com

EnergySustainability

IbrahimDincer

UniversityofOntarioInstituteofTechnology Oshawa,ON,Canada

AzzamAbu-Rayash

UniversityofOntarioInstituteofTechnology Oshawa,ON,Canada

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

EnergySustainability

Copyright © 2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).

Notices

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compoundsorexperimentsdescribed herein.Becauseofrapidadvancesinthemedicalsciences,inparticular,independent verificationofdiagnosesanddrugdosagesshouldbemade.Tothefullestextentofthe law,noresponsibilityisassumedbyElsevier,authors,editorsorcontributorsforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

ISBN:978-0-12-819556-7

Publisher: OliverWalter

AcquisitionEditor: PriscillaBraglia

EditorialProjectManager: AleksandraPackowska

ProductionProjectManager: PoulouseJoseph

CoverDesigner: AlanStudholme

3.2.4

3.2.5

3.2.6

3.3

3.4

3.5

3.3.1

3.3.2

4.1

4.3

5.7

5.8

5.9

5.10

5.11

6.2.5

6.2.6

6.2.7

6.2.8

6.2.9

6.3

6.4

6.4.1

6.4.2

6.4.3

6.5

7.1

7.2

7.1.1

7.1.2

7.1.3

7.1.4

7.1.5

7.1.6

7.2.1

7.2.2

7.2.3

7.2.4

7.2.5

7.3

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

This page intentionally left blank

Preface

Sustainabilityisrecognizedasoneofthemostcriticaltargetstoachieveintheworld today.Energysystemsarealsoanintegralcomponentofthistargetandanythingthat wedodirectlyaffectsit.Thecurrentglobalsocialnormsrelyheavilyonenergy systemstoprovidevarioususefulenergycommoditiesnecessaryforliving.Such commoditiesincludeelectricity,heating,cooling,domestichotwater,freshwater, andtransportationfuel.Theseenergysystemshavebeenevolvingfromconventional fossilfuelandnuclear-basedenergysystemstomoreenvironmentallybenignenergy systems,suchasrenewableenergysystems.Hybridizationallowsformorethanone sourceofenergytocombineallowingflexibilityandcreativityinthedesignofnew energysystemsbasedontheneedandtheavailableresources.

Thisbookisdesignedtobenefitstudents,researchers,scientists,andpracticing engineersforbetterunderstandingofsustainabilityandassessmentofenergysystemsfromasustainabilityperspective,usingvariousthermodynamicfundamentals. Thisbookfollowsthe3Sconcept(source system service),whichwasoriginally developedbytheleadauthor,IbrahimDincer,whereenergysourcesarediscussed thoroughly,followedbyadetailedinvestigationofavarietyofenergysystems andenergyservicesthatbasicallymeanusefulcommodities.Fundamentalaspects ofenergy,environment,andsustainabilityarediscussedindetailinthefirstchapter. Sustainabilitymodelingfeaturesvariousaspectsincludingeconomic,social,and environmentalaspectsinadditiontootherdomainssuchasenergy,exergy,technology,education,andsizing.Moreover,althoughcitiesareinneedofoptimizingtheir energyinfrastructureandresources,communityenergysystemsisachapterthatis dedicatedtodiscussingsystemspertainingtocommunitiesasawhole.Thisbook providesmodels,descriptions,analyses,andassessmentsofvarioussystemsand casestudies.

Thisbookiscomposedofeightchapters,startingwithintroductoryinformation onenergyforms,history,andessentialthermodynamicconcepts.Thischapteralso introducesenvironmentalimpact,climatechangeandglobalwarming,aswellasthe relationshipbetweenenergyandtheenvironmentfollowedbyanintroductionabout sustainability.Chapter2discussesallenergysources,includingprimary,secondary, andconvertedsourceswhereitisorganizedbydiscussingfossilfuelsfirst,followed bynuclearenergyandfinallyrenewables.Energysystemsareinvestigatedindetail inChapter3,wheretheenergysystems,particularlypowergeneratingsystems, includingalltypesofpowerplantsarepresented.Variousmodelsaredescribed andillustratedindetailinthischapter.Othertypesofenergysystemsincludeheating systemsandalltheirtypessuchasgeothermal,biomass,andheatpumps.Refrigerationsystemsarealsoexploredfollowedbyrefineries.Chapter4dwellsonenergy services,particularlyaimingtopresentusefuloutputsofthesystemsunderservices. Chapter5discussescommunityenergysystemswherecombinedheatandpower solutionsareconsidered,inadditiontomicrogrids,hybridenergymodels,district heating,cooling,andthermalenergystorage.Cogeneration,trigeneration,and

Preface

multigenerationsystemsarealsoincludedinthischapter.Chapter6focuseson sustainabilitymodels,coveringeightdifferentaspectsofsustainabilityandthe sustainabilitymethodologyusedforassessmentinthisbook.Eachaspecthasanumberofindicatorsassociatedwiththem.Chapter7includesanumberofcasestudies includingmicroandmacroenergysystemsforsmallresidentialdwellingsand communityenergyneeds.Finally,Chapter8isatypeofwrap-upchapterforthe book,focusingonfuturedirectionsandmainfindingsofthisparticularbook.

Wehopethatthisbookprovideseye-openingtypematerialsfortheenergy communityandservesasausefulsourceforresearch,innovation,andtechnology developmentinthefieldofenergysustainability. IbrahimDincer

Fundamentalaspectsof energy,environment,and sustainability 1

1.1 Introduction

Energyplaysapivotalroleinthedevelopmentandprosperityofnations.Infact,the industrialrevolution,followedbytheoilexplorationscombined,makesupourcurrentdigitalcivilization.Furthermore,asidefrompower,energyinfluencesourlives onadailybasis.Forexample,electricityinfrastructure,thetransportation,andindustrysectorsalldependonenergy.Infact,Holdenetal.(1997)publisheda bookdiscussingthepoliticaleconomyofSouthAfricathroughitstransitionfrom minerals-energycomplextoindustrialization.Inthisbook,energyisadrivingfactor intheeconomyforSouthAfricaandtherestoftheworld,whichconsequentlybecomesamajorfactorinpoliticaldynamics.Moreover,Georgescu-Roegen(2018) dwellsindetailtohighlightthelimitationofnaturalresourcesandtheirimpacton globaleconomy.Inthischapter,theauthoranalyzesenergyoptionsanddiscusses indetailthedegreeofinfluenceeachaspecthasontheglobaleconomy.Ontheother hand,Gomez-Expositoetal.(2018)focusedontheelectricaspectofenergysystems byprovidingadeepandacomprehensiveunderstandingintomodernelectricenergy systems.Topicsofresearchinthisfieldincluderenewablepenetration,smartgrids, andactiveconsumption.Furthermore,electricalaspectsofresearchincludeharmonicanalysis,stateestimation,optimalgenerationscheduling,andelectromagnetictransients.Babuetal.(2013)havesummarizedthehydrate-basedgas separationprocessforcarbondioxideprecombustioncapture.Superhydrophobic surfacesarealsoarecenttopicofresearchforvariousenergy-relatedapplications includingheatexchangers,iceslurrygeneration,photovoltaiccell,electricpower line,andairplanes(ZhangandLv,2015).Thesedevicesbenefitfromthefreezing delayandtheavoidanceoficeaccumulationonsurfacestomaintainoperational function.Inaddition,latestresearchalsorevolvesaroundtheuseofhydrogenas anenergycarrierorsourceforvarioussystems.NastasiandLoBasso(2016)investigatedtheuseofhydrogenasalinkbetweenheatandelectricityinthetransition towardfuturesmartenergysystems.Thedualityintheuseofhydrogenasbotha fuelforcombustionandachemicalforenergystorageorchemicalconversionalong withitsabundancegivesitauniquefeatureaboveotherenergyoptions.Additionally,energystorageisalsoanotherhottopicforresearch.Luoetal.(2015)

EnergySustainability. https://doi.org/10.1016/B978-0-12-819556-7.00001-2

Copyright © 2020ElsevierInc.Allrightsreserved.

investigatedthecurrentdevelopmentinelectricalenergystoragetechnologiesand theirapplicationpotentialinpowersystemoperation.Thisfeaturesthedynamic changesofthegridsystemalongwiththemixedenergysourcesinmodernelectric gridsaswellasthereductioninnaturalresourceandtheexponentiallyincreasing populationoftheworld.Moreover,energystoragesystemsforwindpowerintegrationsupportareinvestigatedbyZhaoetal.(2015).Furthermore,smartenergysystemshavebeenanalyzedfor100%renewableenergyandtransportsolutionsby Mathiesenetal.(2015).Theyidentifiedleastcostsolutionsoftheintegrationoffluctuatingrenewableenergysources.Inadditiontorenewableenergy,utilizationof variousfossilfuelby-productssuchascarbondioxideandnaturalgashydrates arebeingresearched.Chongetal.(2016)reviewedthenaturalgashydratesasan energyresource.Moreover,darkfermentativebiohydrogenproductionfromorganic biomassincludingagriculturalresidues,agro-industrialwastes,andorganicmunicipalwastehasbeeninvestigatedbyGhimireetal.(2015).Infact,furtherresearch anddevelopmenttothistechnologyincludeimprovingthebiohydrogenyieldby optimizingsubstrateutilization,microbialcommunityenrichment,andbioreactor operationalparameterssuchaspH,temperature,andH2 partialpressure.Asfor researcharoundrenewableenergy,atechnicalandaneconomicreviewofrenewable power-to-gasprocesschainisinvestigatedbyGotzetal.(2016)andisthoughtto playasignificantroleinthefutureenergysystems.Inthisprocess,renewableelectricenergycanbetransformedintostorablemethaneviaelectrolysisandsubsequent methanation.Furthermore,thepotentialoflithium-ionbatteriesinrenewableenergy isfurtheranalyzedbyDioufandPode(2015)asamajorenergystoragemediumfor off-gridapplications.Moreover,theintegrationofrenewableenergysystemsintothe futurepowersystemsisresearchedindetailbyWeitemeyeretal.(2015).A modelingapproachtoinvestigatetheinfluenceofstoragesizeandefficiencyon thepathwaytowarda100%RESscenarioispresentedafterusingalong-termsolar andwindenergypowerproductiondataseries.Overall,themainobjectivesbehind latestenergyresearcharetodevelopenvironmentallybenignenergysolutionsas wellasimproveenergystorageoptionsformoresustainableandreliableenergysupplyfromrenewables.Furthermore,theenvironmental,social,andeconomicaspects ofenergydrivethesustainabledevelopmentofallenergysystems.Moreover,unprecedentedrecordsofhighglobaltemperaturesandtheuniversalclimatechange havebeenamajortriggertobecomingmoreenvironmentallyconscious,which eventuallydrivesenergyresearchinthisdirection.

1.2 Energy

Energyisanimportantconstantoftheuniverse.Energyistheabilitytodowork, whereasworkistheactivedisplacementofanobjectbyapplyingforce.Energy seemsneartangibletous,asitispresentindailyactivities.Thisisbecauseenergy isnotasubstanceoranelement,butratheraquantity,derivedfromamathematical relationshipwithothermorefundamentalquantities.Therefore,becauseenergyisa

conservedquantity,energycannotbecreatedordestroyed,rathercanbeconverted informaccordingtothelawofconservationofenergy.TheSIunitusedtocalculate energyisjoule,whichistheenergytransferredtoanobjectbyexertingaforceof1N againstitwhilemovingitadistanceof1m.Ontheearth,mostoflikeispoweredby acentralsourceofenergy,thesun.Radiantenergyfromthesunisemittedintospace afterthesunisheatedtohightemperaturesduetotheconversionofnuclearbinding energy.Moreover,energycomesinvariousformssuchaskinetic,potential,elastic, chemical,gravitational,electric,magnetic,radiant,andthermalenergy.Consequently,energyhasnumerousapplicationsoneverysegmentoflifearoundus. Therefore,energyisveryvaluableasitaffectsusdaily. Table1.1 summarizesthe mainintroductoryaspectsofenergy.

1.2.1 Energyforms

Energycanbeclassifiedintotwomaincategories:kineticandpotentialenergy.Kineticenergyreferstotheenergythatanobjectpossessesduetoitsmotion.Maintainingtheacceleration,theobjectskeeptheirkineticenergy.Ontheotherhand, potentialenergyreflectsthepotentialofanobjecttohavemotionanditisgenerally afunctionofitspositionrelativetothesurroundingfield.Theinteractionbetween kineticandpotentialenergiesresultsinmanytypesofenergy. Fig.1.1 illustrates varioustypesofenergythatresultfromthecombinationofkineticandpotential energies.

Therefore,energycanmanifestitselfinmanyforms.Infact,energycanbe convertedfromoneformtoanotherdependingontheneedandavailableresources. Toelaboratefurtheronthesetypesofenergy, Table1.2 presentsthedifferenttypes ofenergyalongwithashortdescriptofeachandacommonapplicationforeach type.

1.2.2 Energyhistory

Inthe17thcentury,GottfriedLeibnizdefinedthemassoftheobjectanditsvelocity squaredas visviva,orlivingforce.Laterin1807,ThomasYoungusedtheterm“energy”insteadof visviva, whichthenwasdescribedaskineticenergy Later,William Rankinedevisedthetermpotentialenergy.Shortlyafter,thelawofenergyconservationwaspostulatedintheearly19thcentury.In1845,JamesJoulediscoveredthe linkbetweenmechanicalworkandheatgeneration.Allofthesedevelopmentshave

Table1.1 Highlightedsummaryofbasicenergy properties.

Forms of Energy

FIGURE1.1

Formsofenergyemergingfromthecombinationofkineticandpotentialenergies.

Table1.2 Descriptionsofvarioustypesofenergyandexampleapplication foreachtype.

TypeDescriptionApplication

MechanicalEnergyacquiredbyobjects,where workisdoneuponthem. Usingahammertoapplyforceon anail.

ElectricKineticenergyofmovingelectrons.Electricpowerutility. MagneticEnergybymagnetinamagnetic field. Operationoftransformersand inductors.

GravitationalPotentialenergyofanobjectdueto itshighposition. Objectfallingfromtopofabuilding downtotheground.

ChemicalEnergystoredbetweenatomic bonds. Chemicalreactionssuchas burningsugarinhumanbody.

NuclearNuclearreactionsreleasingnuclear energytogenerateheat. Nuclearpowerplants.

RadiantEnergyofgravitationaland radiomagneticradiation. Solarenergy.

ThermalInternalheatwithinasystem responsibleforitstemperature. Warmingupakettle.

ledtothetheoryofconservationofenergy,whichwaslaterformalizedbyLord Kelvinasthefieldofthermodynamics.Thisemergingfieldofthermodynamics aidedtheinvestigationsofchemicalprocessesaswellasledmathematicalformulationsoftheconceptofentropy.

Magne c
Gravita onal Chemical

Energyplayedanintegralandsignificantroleinthedevelopmentofcivilizations asitinfluencedthesocial,economic,andgeopoliticalaspectsofsocietiesacrossthe globe.Thedestructionofmodernorancientsocietieswasduetoanumberoffactors thatdirectlyorindirectlyconnecttotheshortfallofenergyresources.Collapsewas acceleratedbywarsthatemergedduetocompetitionoverscarceenergyresources. Largeenergyabsorptioncanleadtothedestructionofcivilizationsaccordingtohistory.Imaginewhatcouldhappentoourmodernsocietythatisfoundedonexaggeratedenergyconsumption?

Thebasicneedsforhumansenergy-wiseremainsunchanged:heat,light, manufacturing,andtransportation.Humanityhaspassedthroughnumerousstages ofenergydevelopment.Eachhumansocietyhadreliedonenergyinitsdistinct form.However,thepasttwocenturieshavebeenunprecedentedinhumanhistory intermsofenergydevelopmentandtransformation.Theintensityandadvancement ofenergytodayisamajormilestoneinhumanhistory.Thisgreataccelerationon environmentalimpactandeconomicchangesishistoric.Modernlifestyleisradically differentfromthelifestyleofourancestors.Oursocietieshavebeenextremelydependentonenergy.Forexample,lightingatnightisconsideredanecessityandaservice thatisreadilyavailableinthe21stcentury.Inthepast,peoplestruggledwithlighting indooramenitieswithcandlesordriedstripsofvegetablesdippedintoanimalfatand thusproducingafilthysmell.Oncethesunset,theynolongerhadnightillumination orstreetlightsallovertheircities.Heatingwasonlyprovidedinextremecasesofnecessity.Evenwell-to-dofiguresstruggledwithinkfreezingintheinkpot.Now, manufacturingservicesrunatalltimes.Centralairconditioningandtemperaturecontrolhasbecomeanorminoursociety,thuscoolingindoorspaceinthehotsummer daysandheatingthemintheharshwinters.Theseservicescanbeseenasthesame servicesprovidedinthepast(i.e.,heating,lighting,etc.)torunthedailyaffairs.However,theshockisthatnoneoftheseservicescomesfromthesamesourcesastheydid inthe19thcentury.Notevenone.Suchaparadigmshifthasneverbeenwitnessed sincehumanslearnedtoharnessfire.Heat,light,andmotionnotonlyprovideus withnecessaryservicesbutalsoprovideawiderangeofnewservicesthathave becomeavailabletoussuchaspicturesthatcomefromscreenormusicfrom speakers.Asaresultofsuchremarkabletransformation,ourcommandoverresources hasgotmuchstrongerasindividualhumanbeingsandsocietieshaveexpanded. Furthermore,thedegreeofchoicesavailabletoushasimmenselyincreased.

About2millionyearsago,humanslearnedtomanufacturetoolsforhunting. Around500,000yearsagoorearlier,humansdiscoveredtheuseoffire.Firewas usedtocreateandtodestroy.Itprovidedlightandwarmthandalsowasusedasa weapontokill.Withthisnewresource,humanswereabletoshapetheirenvironmentsbyselectivelycreatingordestroyingwhatwasnecessaryfortheirsurvival. Lateon,humanslearnedtousethefireforcraft(i.e.,meltingmetalsorhardening clary),whichenabledthemtotriggermoreenvironmentalchanges.About 18,000yearsago,theanimalpowerwasamajorsourceofpower.Domestication ofanimalsenabledhumanstocaptureanewsubstantialenergysource.Sheep,goats, andcowsprovidednotonlyareliablefoodsourcebutalsoapredictablemobile

sourceofenergyfornomadpopulations.Around10,000yearsago,somenomad populationsbegantosettlenearriversandfertilelandtodevelopmorereliable andconsistentsourcesofenergy.Permanentsettlementsandthepopulationgrowth urgedhumansocietiestorelyontheresourcesaroundthemfromtrees,soil,water, andanimalstosatisfytheirneeds.Around8000yearsago,theuseofanimalstopull cartsbegan,whichcausedagriculturetoflourish.Stationarytaskssuchasmillingof grain,pumpingofwater,andothermechanicalconversionsofenergyonlyemerged inthe19thcentury.In2000BC,earlymissionariestoChinahavereportedthatcoal wasalreadybeingusedforheatingandcooking,makingtheChinesetobethefirstto usecoalforenergyuse.Thereportalsomentionsthatcoalhasbeenutilizedformore than4000years.Inanotherreport,MarcoPolohighlightsthewidespreaduseofcoal inChinainthe13thcentury.Indeed,coalmighthavebeenusedbymammoth huntersinEasternEurope.InmedievalEurope,theexistenceofcoalwasalsorecognized,yetignoredduetothesootandsmoke.Woodwasfavoredovercoaluntilthe 13thcentury.TheGreeksalsorecognizedcoalfromageologiccuriouspointofview. Aristotlementionedcoal,andthecontextimpliesthathewasreferringtoitasamineralofearthnotasanenergysource.DuringtheBronzeAge,coalwasusedinsouthernWales.TheRomansusedcoalinlargequantitiesinmultiplelocations.Afterthe Romanshaveleft,theuseofcoalstoppeduntilthesecondmillennium.Ligniteand peataregeologicprecursorstocoal,andtheywereusedinnorthernandWestern EuropeinthefirstcenturyAD.IndicationspointattheNetherlands,wherepeat wasusedasafuel.RomansburnedcoalnearSt.Etienne,whichlaterbecameamajor Frenchminingcenter.CoalmininginIndiatracesbacktothe18thcentury.However, namesandsignsintheBengal-Biharregionindicatethatcoalmayhavebeenusedin theseareasinancienttimes.Thefirstpracticaluseofnaturalgasisalsotracedback totheChinesein200BC,wheretheyusedtomakesaltfrombrineingas-firedevaporators,boringshallowwells,andconveyingthegastotheevaporatorsthrough bamboopipes.Inthesameeraof200BC,Europeansharnesswaterenergytopower mills.Theinventionofthisverticalwaterwheelpoweredmills,whichrefreshed variousindustries.Italsodecreasedthedependenceonhumanandanimalmuscle fortheproductionofpower.Furthermore,siteswithdecentwaterpowerpotential havebecomemorefavorable,andcommunitiesstartedtobeestablishedaround theseplaces,causingeconomic,industrial,andsocialgrowth.Inthefirstcentury, theChinesehaverefinedpetroleumtouseitasanenergysource.ShengKuo (1031 1095)havedocumentedthattherewasalotofoilinthesubsurfaceand thatitwasinexhaustible.Theyappliedpetroleumforlamps,aslubricantsinmedicine,andotheruses.Inthe10thcentury,windmillswerebuiltinPersiatogrindgrain andpumpwater.ThistechnologyspreadtoChinaandtheMiddleEast,where farmersusedthemtoirrigatecrops,pumpwater,andcrushsugarcane.

Thehistoryofenergycontinuestoourcurrentmodernsocieties,whererenewableenergyisontheriseandfossilfuelsareinfluencingtheenvironmentsignificantly.Moreover,energyconsumptionpercapitavariesfromcountrytoanother. Fig.1.2 demonstratestheannualaverageenergyconsumptionpercapitaforthe 20largestenergy-consumingcountriesintheworldalongwiththeglobalaverage.

FIGURE1.2

Annualaverageenergyconsumptionpercapitain2016(kWh/per/yr).

(Datafrom:IESO,2016).

7,000,000,000,000

6,000,000,000,000

5,000,000,000,000

4,000,000,000,000

3,000,000,000,000

2,000,000,000,000

1,000,000,000,000

FIGURE1.3

Electricityconsumptionversuspopulationforvariouscountriesacrosstheworldforthe year2014.

DatafromOntarioEnergyReportQ12016.IndependentElectricityServiceOperator,Toronto,ON,pp.1 16, Rep.

Itisnoticeablethatenergyconsumptionisnotequallydistributed.Infact,the UnitedStates,China,India,andRussiaarethemostconsumingcountries.Furthermore,the20largestenergyconsumersaccountfor80%oftotalprimaryenergyconsumption,withthetwolargestconsumers(theUnitedStatesandChina)accounting for40%ofthetotalglobalconsumption.Furthermore, Fig.1.3 demonstratesthe relationshipbetweenpopulationandelectricityconsumptioninthetop20countries

Popula on
Electricity Consump on
Electricity Consump on (kWh/yr) Popula on

worldwideaswellasthelowestelectricityconsumingstripontheplanet,theGaza strip.

Fig.1.3 isveryconcerningasitdemonstratesinequalityintheglobalenergyconsumptionanddistribution.Thepoorest10%accountfor0.5%oftotalglobalenergy consumption,whereasthewealthiest10%accountfor59%.Moreover,Americans constitute5%oftheworld’spopulationandyetconsume24%oftheworld’senergy.

1.2.3 Thermodynamics

Thermodynamicsisabranchofphysicalsciencesthatspecializesinheatandtemperatureandtheirrelationshipwithotherformsofenergysuchaselectrical,mechanical,andchemicalenergies.DincerandAcar(2018)proposesthatthermodynamics isthescienceofenergyandexergy.Therearefourfundamentallawsofthermodynamicthatdefinethephysicalquantitiesofathermodynamicsystem.Moreover, thermodynamicsfeaturefourbranchesincludingclassical,statistical,chemical, andequilibriumthermodynamics.Themainlawsofthermodynamicsareasfollows:

a. Zerothlawofthermodynamics:Iftwosystemsareeachinthermalequilibrium withathird,thentheyarealsointhermalequilibriumwitheachother.

b. Firstlawofthermodynamics:Theinternalenergyisconstantforisolatedsystems.Energyisneitherdestroyednorcreated.Itisalwaysconserved.

c. Secondlawofthermodynamics:Heatcannotflowspontaneouslyfromacolder locationtoahotterlocation.Exergycannotbeconserved.Itcanonlybe minimizedifthemeasuresaretakenproperly.

d. Thirdlawofthermodynamics:Asasystemapproachesabsolutezero,allprocessesceaseandthesystem’sentropyapproachesaminimumvalue.

Thefirstlawofthermodynamicsisthemainlawhighlightingconservationofenergy.Itimpliesthatalthoughenergycanchangeitsform,itcanneitherbecreated norbedestroyed.Therefore,thislawiscloselyassociatedwiththeenergyaspect ofanysystem.However,thislawdoesnotgiveinformationonthedirectionofwhich theprocessesspontaneouslyflow.Thisaspectreferstothereversibilityofthermodynamics.Thisiscoveredbythesecondlawofthermodynamics,whichembodies theabilitytoassesstheenergyqualitatively,characterizetheavailabilityofrequired energy,andspecifyreversiblereactions.Indeed,thesecondlawiscloselyassociated withtheexergyaspectofanysystem.

Therefore,thefirstandsecondlawsofthermodynamicsaretheconstitutional lawsthatdrivethedisciplineofthermodynamics,andwhereasthefirstlawisameasureofquantityonly,thesecondlawisameasureofbothquantityandquality. Exergyandthetranslationofthesecondlawofthermodynamicsisnecessary,as inrealitywefailtoidentifywastesorusefuelseffectively.Inaddition,thesecond lawofthermodynamicsandconsequentlyexergyaimtointroducebetterefficiency, cost-effectiveness,design,analysis,andimplementationaswellasbetterstrategies andpolicies.Moreover,exergypositivelyinfluencestheenvironmentandinturn sustainabilityandenergysecurity.

Inaddition,theconceptofexergyiscriticalwhenanalyzingsustainabilityaspects ofenergysystems.Theimpactofexergizationnotonlyislimitedtoenvironmental friendlinessbutexpandstoeconomicperformanceandmoreeffectiveandefficient energysystemsandsources.Forexample, Fig.1.3 showsapersonwithahugebattery, tosimplypowerhisphone.Employingexergyasatooltowardenergysustainability allowsforusinggreenenergyandcleanertechnologiesaswellasconserveenergy. Thisconflictingdilemmaisanexampleprovingthatimportanceofexergy.Largescaleimplicationsofthisfigurecanbepostulatedwhenusingvariouselectricitygenerationplantsforurbanuse,forexample,andwhichenergymixismostsuitableand practicalfortheservicesandcommoditiesneeded. Fig.1.4 alsodemonstratesa thought-provokingquestionabouttheconceptofexergyanditsroleinenergysustainability.Thisnicelyillustratestheconceptofexergybymeaningthatexergyasatool helpmakeenergysystemsmoreenvironmentallybenign.ItwaspresentedinaParliamentResearchDayEventinToronto,OntariotodisplayDr.Dincer’sresearch.

Moreover,inthermodynamics,propertiescombinetocreateastatepoint,which canconsequentlybecombinedtoformaprocess.Morethantwoprocessescanbe designedtoformulateacycle. Fig.1.5 illustratesthesix-stepapproachinthermodynamics(DincerandAcar,2018).

Thermodynamicpropertiesincludetemperature,pressure,volume,specificinternalenergy,andspecificentropy.Thesepropertiesareusedtoidentifyanyselected statepoint.Thestatepointisanidentifiedpointwithinthecyclewithdistinctproperties.Forexample,pointsaredistinctbeforeandafteragivenheatexchangerasthe temperatureand,consequently,theenthalpyaredifferentbeforeandafterafluid passesthroughaheatexchanger.Furthermore,aprocessisdefinedbyatleasttwo statepoints.Theactualchangefromonestatepointtothenextisconsideredaprocess.Infact,twomoreprocessesinaclosed-loopsequencemakeupacycle.Balance

FIGURE1.4

Significanceofexergyusingcreativethought-provokingillustrations(Dincer,2016)

FIGURE1.5

Approachtothermodynamicsusingthesix-stepapproach.

equationsarethencarriedouttoconfigurethemassbalanceequations,energybalanceequations,exergybalanceequations,andentropybalanceequations,taking intoaccountthedifferentoutputsandinputsoftheoverallsystemorcycle.After configuringthebalanceequations,thermodynamicperformanceassessmentscan beconductedbyanalyzingtheenergeticandexergeticefficienciesofthesystem aswellasexergydestructionandlossesandotherthermodynamicparameters.

1.3 Environment

Environmentreferstothephysicalandnaturalenvironmentsthatencompassall livingandnonlivingorganisms.Thistermcanalsorefertotheearth,orsomeparts ofit.Theconceptofenvironmentalsoencompassestheinteractionbetweenall livingspecies,climate,naturalresources,weather,andhumanactivity,whichaffect humansurvivalandeconomicprosperity.Thereasonwhytheenvironmentissignificantlyhighlightedinthebookisthecurrentphenomenon,whereearthandenvironmentalprocessesareheavilyimpactedbyhumanactivity.Infact,hundredsofyears ago,humanactivityhadlittleorinsignificantimpactonearth,andhumanneedsand lifestyleswereinharmonywithnaturalprocesses.However,modernsocietiesand currentlifestyleshaveevolvedveryrapidlytothepointwhereenvironmentalprocessesandearthitselfarechangingbecauseofvarioushumanactivities.

1.3.1 Environmentalimpact

Pollutionistheintroductionofcontaminantsintothenaturalenvironment,which causesadversechange.Pollutioncanbeofmanyformssuchaschemicalsubstances orenergy,suchasnoise,heat,orlight.Toxicantsareanytoxicsubstancesthatmay

beman-made,manufactured,orbiologicallyproduced.Pollutionandtoxicantscan beobservedintheair,soil,water,orfood.Althoughpoliciesandbillsarebeing passedtocombatpollution,theproblemremainsatpresent. Fig.1.6 showsthe differenttypesofpollution.Pollutantsarenotonlyharmfultotheenvironment, butsomemayhavehealthandsocialeffectsaswell.Infact,adverseairquality cankillmanyorganismsincludinghumans.Ozonedepletioncanalsocausevarious respiratorycomplications,cardiovascularillnesses,andthroatinflammation.Noise pollutioncanalsocausehearloss,highbloodpressure,andstress.Moreover,sulfur dioxideandnitrogenoxidesintroducedthephenomenonofacidrain,whichlowers thesoilpH,makingitinfertileandunsuitableforcrops.Carbondioxideandgreenhousegas(GHG)emissionsalsohavesignificantimpactsonoceanacidificationand globalwarming,whichadverselyaffectsmanyecosystemsonearth.Therefore, pollutionandcontaminantsaredeadlywhenitcomestothesocialandhealth aspects.

Infact,thetotalemissionsworldwi defortheyear2012havetotaled 51,840MtCO 2-eq.Theindustrialsectoraccounts foralmostone-thirdofthetotal emissions.Furthermore,coalistheenerg ysourcewiththehighestemissions.Itis primarilyburnedforelectricitygenera tioninthesteelandcementindustries. Directemissionsincludemethaneemittedbycowsandotherlivestock,logging orcuttingdowntrees,ororganicmatterinlandfills.Naturalgasisnormally usedasanenergysourceforcooking,heating,andelectricitygeneration. Furthermore,oilemissionsresultfromcombustionastransportfuelsincars, trucks,andairplanes. Fig.1.7 showstheglobalCO2 emissionsbysourceandsector fortheyear2013.

•Release of chemicals and particular contaminats into the atmosphere: •CO2, CFCs, NOx, SOx, PM, Smog.

•Dicharge of wastewater and chemicals into water bodies: •Sewage, chlorine, fertilizers, contaminants from surface runoff.

Wastes/Toxic Material

FIGURE1.6

•Chemical spills or underground leakages: •Hydrocarbons, heavy metals, MTBE, herbicides, pesticides.

•Light pollution, Roadway noise, aicraft noise, industrial and high intensity sonar noise.

Majortypesofpollutionandcontaminationsalongwithcommonpollutants.

Pollution
Pollution

1.3.2 Climatechangeandglobalwarming

Globalwarmingandclimatechangeisaglobaltrend,stemmingfromacenturyscaleriseintemperatureoftheearth’sclimate.TheincreaseoftemperatureisprimarilyduetoenergeticactivitiessuchastheGHGemissions.Thegreenhouseeffect occursaftertheburningoffossilfuelsandresultsinmassiveamountofheatandenergyintheatmosphere.ThemainGHGpollutantiscarbondioxide,andoften methodsofmeasuringtheglobalwarmingpotentialconfinetoevaluationofcarbon dioxide.However,othermajorpollutantscontributingtoglobalwarmingand climatechangeinclude,butnotlimitedtomethane,nitrogenoxides(NOx)andsulfuroxides(SOx).Althoughsomethermalradiationisemittedintospace,thebigger partofthisresidualheatisabsorbedbytheearth.Furthermore,theweakeningofthe atmospheredisablesitfromreflectingtheincomingsolarradiation.Rather,thisradiationisalsoabsorbedbytheearth’slandandoceansurfaces,causingunprecedentedwarmingoftheearth.Theseeventsaretriggerstocriticalramifications suchasarcticseaicemelting,riseofsealevels,glacierretreats,andmanyatmosphericanomalies.Tomitigatetheimpactsofglobalwarming,therehavebeen numerouseffortssocially,politically,andscientificallytoresolvethisissue.Environmentalistmovementsandconservationauthoritieshavebeenestablishedtoraise awarenessandpreservenaturalenvironments.Variousglobalsummitsandprotocols havebeenpassedtocontrolGHGemissions,andmanyalternativeenergyoptions havebeenproposedanddeployedtomitigateglobalwarmingeffects.

1.3.3 Energyandtheenvironment

Thecombustionoffossilfuelssuchascoalandoilaretheprimaryproducesof GHGs.Therefore,energyconsumptionisthemaincauseofclimatechange.In fact,beforethediscoveryoffossilfuelsandbeforetheirdeploymentinindustrial

FIGURE1.7

andcommercialuses,humanactivityandlifestylehadlittleorinsignificantimpact onearthandthenaturalprocesses.However,theindustrialrevolutionandlaterthe discoveryofoilhaverevolutionizedthehumancivilization,assuchenergysources playavitalroleineconomicgrowth,energysecurity,andpoliticalstrength.Furthermore,advancementsinenergyresearchsuchasthedevelopmentofalternativefuels andrenewableenergysystemswereprimarilytriggeredbytherelationshipbetween energyandtheenvironment.Infact,theconcernofglobalwarmingandclimate changeurgedthedevelopmentofenergythroughalternativemeansandthrough renewablesources.Furthermore,therelationshipbetweenenergyandtheenvironmentisverycloselylinked,asallenergyiseitherderivedorcapturedfromtheenvironmentaroundus.Onceenergyhasbeenused,italsoreturnstotheenvironment, eitherasaharmlessby-productorasaharmfulwaste.Insummary,energyandthe environmenthavebeenalwayscloselylinkedandwillremainassuchinthefuture.

1.4 Sustainability

Sustainabilityhasbecomeamajorhighlightinmoderncivilization.Infact,acrucial phenomenon,sustainability,whichisalwayspresentinpoliticaldebates,educationalprograms,socialtrends,andscientificadvancements,hasbecomemultidisciplinary.However,theconceptofsustainabilityhasalwaysbeenpresentthroughout humancivilizations.Indeed,humansalwaysplanned,andtheirconcernforresource availabilitywasonthetopoftheirprioritylist.Thiswasthereasonforhumansto shiftfromhuntingintofarming. Nachhaltigkeit, aGermancointhatreferredto“sustainedyield,”wastheoriginaltermforsustainability,whichwasfoundinaforestry bookin1713.Sustainabilitydoesnothaveastandarddefinition.Scientistsdefined sustainabilityinavarietyofways,dependingonthecontextandthescientificfield ofuse.IntheOxforddictionary,sustainabilityisdefinedastheavoidanceofthe depletionofnaturalresourcestomaintainanecologicalbalance.EncyclopediaBritannicadefinessustainabilityasthelong-termviabilityofacommunity,setofsocial institutions,orsocietalpractice. Table1.3 providesalistofdefinitionsthatareused forsustainability.Sustainabilityandsustainabledevelopmentcanbeusedinterchangeably,asthelattercouldalsomeanacontinuousorsustaineddevelopment. Developmentindeedisaqualitativeimprovementtoasystem,whichisdistinct fromgrowth.Growthdenotestoquantitativeincreaseinphysicalscale.

Theconceptofsustainabilityhascloselybeenassociatedwithenergyconsumption.Theearlyhumansstartedtousethefireforspecificfoods,whichmayhave alteredthenaturalcompositionoftheplanetandanimalspecies(Scholes,2003). Civilizationsthentransformedfromhuntingtomoresustainablesocietiesbyintroducingagriculture.Infact,agrariancommunitiesdependedlargelyontheirenvironment(ClarkeandScruton,1977).Thelongevityofsocietiesandanimportantfactor thatdetermineditsflourishmentordestructionwassustainabledevelopment.Energy isacriticalelement,whicheffectstheinteractionbetweennatureandsocieties.In thepast,increasesinenergydemandswereassociatedwitheconomicand

Table1.3 Selecteddefinitionsofsustainability,sustainabledevelopment, orsustainabilitysciences.

SourceDefinition

(BrundtlandCommissionofthe UnitedNations,1987)

Sustainabledevelopmentisdevelopmentthatmeets theneedsofthepresentwithoutcompromisingthe abilityoffuturegenerationstomeettheirownneeds.

PearceandMarkandya(1989)Sustainabledevelopmentinvolvesdevisingasocial andeconomicsystem,whichensuresthatthesegoals aresustained,i.e.,thatrealincomesrise;that educationalstandardsincreasethatthehealthofthe nationimproves;thatthegeneralqualityoflifeis advanced.

Harwood(1990)Sustainableagricultureisasystemthatcanevolve indefinitelytowardgreaterhumanutility,greater efficiencyofresourceuse,andabalancewiththe environment,whichisfavorabletohumansandmost otherspecies.

Morelli(2011)Meetingtheresourceandservicesneedsofcurrent andfuturegenerationswithoutcompromisingthe healthoftheecosystemsthatprovidethem.Inspecific, sustainabilityisaconditionofbalance,resilience,and interconnectednessthatallowshumansocietyto satisfyitsneedswhileneitherexceedingthecapacityof itssupportingecosystemstocontinuetoregenerate theservicesnecessarytomeetthoseneedsnorbyour actionsdiminishingbiologicaldiversity.

(Forumforthefuture,2008)Sustainabledevelopmentisadynamicprocessthat enablespeopletorealizetheirpotentialandimprove theirqualityoflifeinways,whichsimultaneously protectandenhancetheearth’slifesupportsystems

technologicaladvancements.However,currently,theriseinenergyconsumption maybedetrimentalsocial,environmental,andeveneconomiceffects.Theseeffects couldincludelocalandglobalhealthimpacts.Thedevelopmentofcivilizationsand theintroductionofvariousenergysourcesevolvedtheconceptofsustainability. Althoughearlycivilizationsutilizedlimitedamountsofenergy,industrialsocieties relyonabundantenergysources.Transportation,heating,andelectricitycompose themainneedsofhumans.However,withtheindustrialrevolutionandthetechnologicaladvancements,novelenergyresourceshaveshapedthemodernhumancivilization.Coal,oil,naturalgas,andotherconventionalenergysourceshavecausedan exponentialincreaseinhumanconsumptionofresources.

Thisinturntriggeredenvironmentalismandtheintroductionofnewfieldssuch asecologyandenvironmentalsciences.Theunprecedentedincreaseinenergydemand,population,andeconomyledtheworldtorealizetheimpactsofenergyuse ontheeconomy,environment,andsocially.Energyconservation,sustainableenergy

options,andrenewableenergysourceswerethereforeexploredfurther.Indeed,this concernhasbeenwidelyaddressedglobally.Theunitedsustainabilityinitsmodern contextreferstoarelativelycomplextopicthatismultidisciplinary.Themeaning couldvarydependingonthecontextandthefield.Indicatorsofdevelopmenttoward sustainabilityprovidemeaningfuldatathatcouldcharacterizesystems’sustainabilitylevel.Sustainabilityassessmentreliesonanumberofindicators.Theseindicators coulddifferfromonestudytoanother.Concernedabouteconomy,energy,society, andenvironment,governmentshavebeenintroducingregulationsandlocal/regional bylawsthataimtoenhancesustainabilitymeasures.However,theseeffortsoften includenonrigorousassessmentmethodsthataremainlyqualitativeinnature.

Sustainabilityisacomplexandinterdisciplinaryconcept,whichrelatestoeach ofthepresenteddomainsin Fig.1.8.Toassessthesustainabledevelopmentofenergysystems,resources,energy,andtheeconomymustbetakenintodetailed consideration.Furthermore,theenvironmentalfootprint,socialimpact,culturalparadigmssurroundingtheseprogramsaswellaspublicpolicyandpoliticalaspects needtobestudiedthoroughlytocomprehensivelyandobjectivelyunderstand sustainability.

Moreover,someoftheseconceptsareinterdependent.Forexample,theeconomicdomaincouldinfluencethesocialandpublicpolicydomains.Overall,the roadtowardanobjectiveunderstandingandassessmentofsustainabilitysprings

Thebackboneofsustainabledevelopmentandthemajordomainsthatcontributetothe understandingofthesustainabilityconcept.

FIGURE1.8

fromsoundanddeepanalysisofallfactorsandelementsthatcontributetothis conceptwhetherdirectlyorindirectly.Thesubjectivitysurroundingsustainability makeposesasadisadvantagetoitsessenceaswellasanopportunityforcreativity andinnovation.Infact,sustainabilitycanbeappliedtovariousdisciplinesandconceptsfromenergysystemstocorporatehumanresources.Asforenergysustainability,varioustechnicalparametersmustbeclearlydefinedtoprovidemeaningful resultsalongwiththeconsiderationofotherimportantaspectssuchaspublicpolicy, culture,education,andethics.Theuseofsustainabilityanditsapplicationsin variousdisciplinescanbebetterunderstoodthroughtheillustrationin Fig.1.9

Moreover,energysustainabilitycanbeillustratedbyusingthe3Sapproach developedbyDincerandAcar(2017).The3Sapproachpresentssustainabilityby breakingthevariousaspectsofenergyincludingsource,system,andserviceand furthermoreintroducingemphasizingstorageoptioninbetweeneachaspect.The 3Sapproachasillustratedin Fig.1.10 stressesthattheenergysourcemustbeclean, abundant,cheap,andavailabletoachieveoverallenergysustainability.Onceenergy isharvested,itseffectivestoragesolutionsareproposedbeforemovingtothenext aspectofenergy,whichistheutilizationofenergyusingvariousenergysystems.

Moreover,tomaintainenergysustainability,systemsneedtobehighlyefficient, effective,andreliableaswellasbeabletorecoverlossesandwastes.Oncemore, storagesolutionsareimportantbeforedispatchingtheenergydirectlytotheservice.

Heat Production

Hydrogen and Alternative Fuels Production

Desalination

Renewable Energy Production

FIGURE1.9

Energy Sustainability

Conventional Energy Production

Energy Storage Applications

Steam and Power Generation

Electrochemical Applications

Illustrationthathighlightstheuseofsustainabilityinvariousenergyproductiondisciplines andapplications.

FIGURE1.10

The3SconceptthatwasoriginallyintroducedbyDincer(2015)toachieveenergy sustainability. 1.5 Closingremarks

Finally,sustainabilityisachievedbyprovidingclean,practical,andefficientservices.The3Sruleiscriticalwhenanalyzinganyenergysystem.Theflowofenergy fromthesourcetothesystemandfinallytotheserviceandtheintegrationofstorage solutionsisbothlogicalandpractical.Energysustainabilitycanbeachievedateach stepinthisprocess.Forinstance,sustainabilityattheenergysourcelevelcanbereflectedbyutilizingclean,cheap,andavailableenergyresourcesversustheopposite. Ontheotherhand,sustainabilityatthesystemlevelisachievedbywastelessand efficientenergysystems.Multigenerationalenergysystemsalwaysyieldinhigher efficienciesandlessenergeticandexergeticlosses.Lastly,theservicesustainability isbyprovidingareliableandcleanenergyservice.Thisenergyequationforsustainabilitythereforeisdenotedbyfivesmall(s)thatrepresentsource,system,service, andtheintermediatestorages,allyieldingtotheultimateresultofalarge(S)that denotesSustainabilityorenergysustainability.

1.5 Closingremarks

Thefundamentalaspectsofenergy,environment,andsustainabilityhavebeenoutlinedinthischapter.Asindicated,environmentalimpactsofenergysolutionshave driventheresearcharoundenergysources,storage,andenergyutilization.Furthermore,detailsaroundenvironmentalpollution,climatechange,andtheconceptof

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.