EnergySustainability
IbrahimDincer
UniversityofOntarioInstituteofTechnology Oshawa,ON,Canada
AzzamAbu-Rayash
UniversityofOntarioInstituteofTechnology Oshawa,ON,Canada
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
EnergySustainability
Copyright © 2020ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailson howtoseekpermission,furtherinformationaboutthePublisher’spermissionspolicies andourarrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyright bythePublisher(otherthanasmaybenotedherein).
Notices
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compoundsorexperimentsdescribed herein.Becauseofrapidadvancesinthemedicalsciences,inparticular,independent verificationofdiagnosesanddrugdosagesshouldbemade.Tothefullestextentofthe law,noresponsibilityisassumedbyElsevier,authors,editorsorcontributorsforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.
ISBN:978-0-12-819556-7
Publisher: OliverWalter
AcquisitionEditor: PriscillaBraglia
EditorialProjectManager: AleksandraPackowska
ProductionProjectManager: PoulouseJoseph
CoverDesigner: AlanStudholme
3.2.4
3.2.5
3.2.6
3.3
3.4
3.5
3.3.1
3.3.2
4.1
4.3
5.7
5.8
5.9
5.10
5.11
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.3
6.4
6.4.1
6.4.2
6.4.3
6.5
7.1
7.2
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
This page intentionally left blank
Preface
Sustainabilityisrecognizedasoneofthemostcriticaltargetstoachieveintheworld today.Energysystemsarealsoanintegralcomponentofthistargetandanythingthat wedodirectlyaffectsit.Thecurrentglobalsocialnormsrelyheavilyonenergy systemstoprovidevarioususefulenergycommoditiesnecessaryforliving.Such commoditiesincludeelectricity,heating,cooling,domestichotwater,freshwater, andtransportationfuel.Theseenergysystemshavebeenevolvingfromconventional fossilfuelandnuclear-basedenergysystemstomoreenvironmentallybenignenergy systems,suchasrenewableenergysystems.Hybridizationallowsformorethanone sourceofenergytocombineallowingflexibilityandcreativityinthedesignofnew energysystemsbasedontheneedandtheavailableresources.
Thisbookisdesignedtobenefitstudents,researchers,scientists,andpracticing engineersforbetterunderstandingofsustainabilityandassessmentofenergysystemsfromasustainabilityperspective,usingvariousthermodynamicfundamentals. Thisbookfollowsthe3Sconcept(source system service),whichwasoriginally developedbytheleadauthor,IbrahimDincer,whereenergysourcesarediscussed thoroughly,followedbyadetailedinvestigationofavarietyofenergysystems andenergyservicesthatbasicallymeanusefulcommodities.Fundamentalaspects ofenergy,environment,andsustainabilityarediscussedindetailinthefirstchapter. Sustainabilitymodelingfeaturesvariousaspectsincludingeconomic,social,and environmentalaspectsinadditiontootherdomainssuchasenergy,exergy,technology,education,andsizing.Moreover,althoughcitiesareinneedofoptimizingtheir energyinfrastructureandresources,communityenergysystemsisachapterthatis dedicatedtodiscussingsystemspertainingtocommunitiesasawhole.Thisbook providesmodels,descriptions,analyses,andassessmentsofvarioussystemsand casestudies.
Thisbookiscomposedofeightchapters,startingwithintroductoryinformation onenergyforms,history,andessentialthermodynamicconcepts.Thischapteralso introducesenvironmentalimpact,climatechangeandglobalwarming,aswellasthe relationshipbetweenenergyandtheenvironmentfollowedbyanintroductionabout sustainability.Chapter2discussesallenergysources,includingprimary,secondary, andconvertedsourceswhereitisorganizedbydiscussingfossilfuelsfirst,followed bynuclearenergyandfinallyrenewables.Energysystemsareinvestigatedindetail inChapter3,wheretheenergysystems,particularlypowergeneratingsystems, includingalltypesofpowerplantsarepresented.Variousmodelsaredescribed andillustratedindetailinthischapter.Othertypesofenergysystemsincludeheating systemsandalltheirtypessuchasgeothermal,biomass,andheatpumps.Refrigerationsystemsarealsoexploredfollowedbyrefineries.Chapter4dwellsonenergy services,particularlyaimingtopresentusefuloutputsofthesystemsunderservices. Chapter5discussescommunityenergysystemswherecombinedheatandpower solutionsareconsidered,inadditiontomicrogrids,hybridenergymodels,district heating,cooling,andthermalenergystorage.Cogeneration,trigeneration,and
Preface
multigenerationsystemsarealsoincludedinthischapter.Chapter6focuseson sustainabilitymodels,coveringeightdifferentaspectsofsustainabilityandthe sustainabilitymethodologyusedforassessmentinthisbook.Eachaspecthasanumberofindicatorsassociatedwiththem.Chapter7includesanumberofcasestudies includingmicroandmacroenergysystemsforsmallresidentialdwellingsand communityenergyneeds.Finally,Chapter8isatypeofwrap-upchapterforthe book,focusingonfuturedirectionsandmainfindingsofthisparticularbook.
Wehopethatthisbookprovideseye-openingtypematerialsfortheenergy communityandservesasausefulsourceforresearch,innovation,andtechnology developmentinthefieldofenergysustainability. IbrahimDincer
Fundamentalaspectsof energy,environment,and sustainability 1
1.1 Introduction
Energyplaysapivotalroleinthedevelopmentandprosperityofnations.Infact,the industrialrevolution,followedbytheoilexplorationscombined,makesupourcurrentdigitalcivilization.Furthermore,asidefrompower,energyinfluencesourlives onadailybasis.Forexample,electricityinfrastructure,thetransportation,andindustrysectorsalldependonenergy.Infact,Holdenetal.(1997)publisheda bookdiscussingthepoliticaleconomyofSouthAfricathroughitstransitionfrom minerals-energycomplextoindustrialization.Inthisbook,energyisadrivingfactor intheeconomyforSouthAfricaandtherestoftheworld,whichconsequentlybecomesamajorfactorinpoliticaldynamics.Moreover,Georgescu-Roegen(2018) dwellsindetailtohighlightthelimitationofnaturalresourcesandtheirimpacton globaleconomy.Inthischapter,theauthoranalyzesenergyoptionsanddiscusses indetailthedegreeofinfluenceeachaspecthasontheglobaleconomy.Ontheother hand,Gomez-Expositoetal.(2018)focusedontheelectricaspectofenergysystems byprovidingadeepandacomprehensiveunderstandingintomodernelectricenergy systems.Topicsofresearchinthisfieldincluderenewablepenetration,smartgrids, andactiveconsumption.Furthermore,electricalaspectsofresearchincludeharmonicanalysis,stateestimation,optimalgenerationscheduling,andelectromagnetictransients.Babuetal.(2013)havesummarizedthehydrate-basedgas separationprocessforcarbondioxideprecombustioncapture.Superhydrophobic surfacesarealsoarecenttopicofresearchforvariousenergy-relatedapplications includingheatexchangers,iceslurrygeneration,photovoltaiccell,electricpower line,andairplanes(ZhangandLv,2015).Thesedevicesbenefitfromthefreezing delayandtheavoidanceoficeaccumulationonsurfacestomaintainoperational function.Inaddition,latestresearchalsorevolvesaroundtheuseofhydrogenas anenergycarrierorsourceforvarioussystems.NastasiandLoBasso(2016)investigatedtheuseofhydrogenasalinkbetweenheatandelectricityinthetransition towardfuturesmartenergysystems.Thedualityintheuseofhydrogenasbotha fuelforcombustionandachemicalforenergystorageorchemicalconversionalong withitsabundancegivesitauniquefeatureaboveotherenergyoptions.Additionally,energystorageisalsoanotherhottopicforresearch.Luoetal.(2015)
EnergySustainability. https://doi.org/10.1016/B978-0-12-819556-7.00001-2
Copyright © 2020ElsevierInc.Allrightsreserved.
investigatedthecurrentdevelopmentinelectricalenergystoragetechnologiesand theirapplicationpotentialinpowersystemoperation.Thisfeaturesthedynamic changesofthegridsystemalongwiththemixedenergysourcesinmodernelectric gridsaswellasthereductioninnaturalresourceandtheexponentiallyincreasing populationoftheworld.Moreover,energystoragesystemsforwindpowerintegrationsupportareinvestigatedbyZhaoetal.(2015).Furthermore,smartenergysystemshavebeenanalyzedfor100%renewableenergyandtransportsolutionsby Mathiesenetal.(2015).Theyidentifiedleastcostsolutionsoftheintegrationoffluctuatingrenewableenergysources.Inadditiontorenewableenergy,utilizationof variousfossilfuelby-productssuchascarbondioxideandnaturalgashydrates arebeingresearched.Chongetal.(2016)reviewedthenaturalgashydratesasan energyresource.Moreover,darkfermentativebiohydrogenproductionfromorganic biomassincludingagriculturalresidues,agro-industrialwastes,andorganicmunicipalwastehasbeeninvestigatedbyGhimireetal.(2015).Infact,furtherresearch anddevelopmenttothistechnologyincludeimprovingthebiohydrogenyieldby optimizingsubstrateutilization,microbialcommunityenrichment,andbioreactor operationalparameterssuchaspH,temperature,andH2 partialpressure.Asfor researcharoundrenewableenergy,atechnicalandaneconomicreviewofrenewable power-to-gasprocesschainisinvestigatedbyGotzetal.(2016)andisthoughtto playasignificantroleinthefutureenergysystems.Inthisprocess,renewableelectricenergycanbetransformedintostorablemethaneviaelectrolysisandsubsequent methanation.Furthermore,thepotentialoflithium-ionbatteriesinrenewableenergy isfurtheranalyzedbyDioufandPode(2015)asamajorenergystoragemediumfor off-gridapplications.Moreover,theintegrationofrenewableenergysystemsintothe futurepowersystemsisresearchedindetailbyWeitemeyeretal.(2015).A modelingapproachtoinvestigatetheinfluenceofstoragesizeandefficiencyon thepathwaytowarda100%RESscenarioispresentedafterusingalong-termsolar andwindenergypowerproductiondataseries.Overall,themainobjectivesbehind latestenergyresearcharetodevelopenvironmentallybenignenergysolutionsas wellasimproveenergystorageoptionsformoresustainableandreliableenergysupplyfromrenewables.Furthermore,theenvironmental,social,andeconomicaspects ofenergydrivethesustainabledevelopmentofallenergysystems.Moreover,unprecedentedrecordsofhighglobaltemperaturesandtheuniversalclimatechange havebeenamajortriggertobecomingmoreenvironmentallyconscious,which eventuallydrivesenergyresearchinthisdirection.
1.2 Energy
Energyisanimportantconstantoftheuniverse.Energyistheabilitytodowork, whereasworkistheactivedisplacementofanobjectbyapplyingforce.Energy seemsneartangibletous,asitispresentindailyactivities.Thisisbecauseenergy isnotasubstanceoranelement,butratheraquantity,derivedfromamathematical relationshipwithothermorefundamentalquantities.Therefore,becauseenergyisa
conservedquantity,energycannotbecreatedordestroyed,rathercanbeconverted informaccordingtothelawofconservationofenergy.TheSIunitusedtocalculate energyisjoule,whichistheenergytransferredtoanobjectbyexertingaforceof1N againstitwhilemovingitadistanceof1m.Ontheearth,mostoflikeispoweredby acentralsourceofenergy,thesun.Radiantenergyfromthesunisemittedintospace afterthesunisheatedtohightemperaturesduetotheconversionofnuclearbinding energy.Moreover,energycomesinvariousformssuchaskinetic,potential,elastic, chemical,gravitational,electric,magnetic,radiant,andthermalenergy.Consequently,energyhasnumerousapplicationsoneverysegmentoflifearoundus. Therefore,energyisveryvaluableasitaffectsusdaily. Table1.1 summarizesthe mainintroductoryaspectsofenergy.
1.2.1 Energyforms
Energycanbeclassifiedintotwomaincategories:kineticandpotentialenergy.Kineticenergyreferstotheenergythatanobjectpossessesduetoitsmotion.Maintainingtheacceleration,theobjectskeeptheirkineticenergy.Ontheotherhand, potentialenergyreflectsthepotentialofanobjecttohavemotionanditisgenerally afunctionofitspositionrelativetothesurroundingfield.Theinteractionbetween kineticandpotentialenergiesresultsinmanytypesofenergy. Fig.1.1 illustrates varioustypesofenergythatresultfromthecombinationofkineticandpotential energies.
Therefore,energycanmanifestitselfinmanyforms.Infact,energycanbe convertedfromoneformtoanotherdependingontheneedandavailableresources. Toelaboratefurtheronthesetypesofenergy, Table1.2 presentsthedifferenttypes ofenergyalongwithashortdescriptofeachandacommonapplicationforeach type.
1.2.2 Energyhistory
Inthe17thcentury,GottfriedLeibnizdefinedthemassoftheobjectanditsvelocity squaredas visviva,orlivingforce.Laterin1807,ThomasYoungusedtheterm“energy”insteadof visviva, whichthenwasdescribedaskineticenergy Later,William Rankinedevisedthetermpotentialenergy.Shortlyafter,thelawofenergyconservationwaspostulatedintheearly19thcentury.In1845,JamesJoulediscoveredthe linkbetweenmechanicalworkandheatgeneration.Allofthesedevelopmentshave
Table1.1 Highlightedsummaryofbasicenergy properties.
Forms of Energy
FIGURE1.1
Formsofenergyemergingfromthecombinationofkineticandpotentialenergies.
Table1.2 Descriptionsofvarioustypesofenergyandexampleapplication foreachtype.
TypeDescriptionApplication
MechanicalEnergyacquiredbyobjects,where workisdoneuponthem. Usingahammertoapplyforceon anail.
ElectricKineticenergyofmovingelectrons.Electricpowerutility. MagneticEnergybymagnetinamagnetic field. Operationoftransformersand inductors.
GravitationalPotentialenergyofanobjectdueto itshighposition. Objectfallingfromtopofabuilding downtotheground.
ChemicalEnergystoredbetweenatomic bonds. Chemicalreactionssuchas burningsugarinhumanbody.
NuclearNuclearreactionsreleasingnuclear energytogenerateheat. Nuclearpowerplants.
RadiantEnergyofgravitationaland radiomagneticradiation. Solarenergy.
ThermalInternalheatwithinasystem responsibleforitstemperature. Warmingupakettle.
ledtothetheoryofconservationofenergy,whichwaslaterformalizedbyLord Kelvinasthefieldofthermodynamics.Thisemergingfieldofthermodynamics aidedtheinvestigationsofchemicalprocessesaswellasledmathematicalformulationsoftheconceptofentropy.
Magne c
Gravita onal Chemical
Energyplayedanintegralandsignificantroleinthedevelopmentofcivilizations asitinfluencedthesocial,economic,andgeopoliticalaspectsofsocietiesacrossthe globe.Thedestructionofmodernorancientsocietieswasduetoanumberoffactors thatdirectlyorindirectlyconnecttotheshortfallofenergyresources.Collapsewas acceleratedbywarsthatemergedduetocompetitionoverscarceenergyresources. Largeenergyabsorptioncanleadtothedestructionofcivilizationsaccordingtohistory.Imaginewhatcouldhappentoourmodernsocietythatisfoundedonexaggeratedenergyconsumption?
Thebasicneedsforhumansenergy-wiseremainsunchanged:heat,light, manufacturing,andtransportation.Humanityhaspassedthroughnumerousstages ofenergydevelopment.Eachhumansocietyhadreliedonenergyinitsdistinct form.However,thepasttwocenturieshavebeenunprecedentedinhumanhistory intermsofenergydevelopmentandtransformation.Theintensityandadvancement ofenergytodayisamajormilestoneinhumanhistory.Thisgreataccelerationon environmentalimpactandeconomicchangesishistoric.Modernlifestyleisradically differentfromthelifestyleofourancestors.Oursocietieshavebeenextremelydependentonenergy.Forexample,lightingatnightisconsideredanecessityandaservice thatisreadilyavailableinthe21stcentury.Inthepast,peoplestruggledwithlighting indooramenitieswithcandlesordriedstripsofvegetablesdippedintoanimalfatand thusproducingafilthysmell.Oncethesunset,theynolongerhadnightillumination orstreetlightsallovertheircities.Heatingwasonlyprovidedinextremecasesofnecessity.Evenwell-to-dofiguresstruggledwithinkfreezingintheinkpot.Now, manufacturingservicesrunatalltimes.Centralairconditioningandtemperaturecontrolhasbecomeanorminoursociety,thuscoolingindoorspaceinthehotsummer daysandheatingthemintheharshwinters.Theseservicescanbeseenasthesame servicesprovidedinthepast(i.e.,heating,lighting,etc.)torunthedailyaffairs.However,theshockisthatnoneoftheseservicescomesfromthesamesourcesastheydid inthe19thcentury.Notevenone.Suchaparadigmshifthasneverbeenwitnessed sincehumanslearnedtoharnessfire.Heat,light,andmotionnotonlyprovideus withnecessaryservicesbutalsoprovideawiderangeofnewservicesthathave becomeavailabletoussuchaspicturesthatcomefromscreenormusicfrom speakers.Asaresultofsuchremarkabletransformation,ourcommandoverresources hasgotmuchstrongerasindividualhumanbeingsandsocietieshaveexpanded. Furthermore,thedegreeofchoicesavailabletoushasimmenselyincreased.
About2millionyearsago,humanslearnedtomanufacturetoolsforhunting. Around500,000yearsagoorearlier,humansdiscoveredtheuseoffire.Firewas usedtocreateandtodestroy.Itprovidedlightandwarmthandalsowasusedasa weapontokill.Withthisnewresource,humanswereabletoshapetheirenvironmentsbyselectivelycreatingordestroyingwhatwasnecessaryfortheirsurvival. Lateon,humanslearnedtousethefireforcraft(i.e.,meltingmetalsorhardening clary),whichenabledthemtotriggermoreenvironmentalchanges.About 18,000yearsago,theanimalpowerwasamajorsourceofpower.Domestication ofanimalsenabledhumanstocaptureanewsubstantialenergysource.Sheep,goats, andcowsprovidednotonlyareliablefoodsourcebutalsoapredictablemobile
sourceofenergyfornomadpopulations.Around10,000yearsago,somenomad populationsbegantosettlenearriversandfertilelandtodevelopmorereliable andconsistentsourcesofenergy.Permanentsettlementsandthepopulationgrowth urgedhumansocietiestorelyontheresourcesaroundthemfromtrees,soil,water, andanimalstosatisfytheirneeds.Around8000yearsago,theuseofanimalstopull cartsbegan,whichcausedagriculturetoflourish.Stationarytaskssuchasmillingof grain,pumpingofwater,andothermechanicalconversionsofenergyonlyemerged inthe19thcentury.In2000BC,earlymissionariestoChinahavereportedthatcoal wasalreadybeingusedforheatingandcooking,makingtheChinesetobethefirstto usecoalforenergyuse.Thereportalsomentionsthatcoalhasbeenutilizedformore than4000years.Inanotherreport,MarcoPolohighlightsthewidespreaduseofcoal inChinainthe13thcentury.Indeed,coalmighthavebeenusedbymammoth huntersinEasternEurope.InmedievalEurope,theexistenceofcoalwasalsorecognized,yetignoredduetothesootandsmoke.Woodwasfavoredovercoaluntilthe 13thcentury.TheGreeksalsorecognizedcoalfromageologiccuriouspointofview. Aristotlementionedcoal,andthecontextimpliesthathewasreferringtoitasamineralofearthnotasanenergysource.DuringtheBronzeAge,coalwasusedinsouthernWales.TheRomansusedcoalinlargequantitiesinmultiplelocations.Afterthe Romanshaveleft,theuseofcoalstoppeduntilthesecondmillennium.Ligniteand peataregeologicprecursorstocoal,andtheywereusedinnorthernandWestern EuropeinthefirstcenturyAD.IndicationspointattheNetherlands,wherepeat wasusedasafuel.RomansburnedcoalnearSt.Etienne,whichlaterbecameamajor Frenchminingcenter.CoalmininginIndiatracesbacktothe18thcentury.However, namesandsignsintheBengal-Biharregionindicatethatcoalmayhavebeenusedin theseareasinancienttimes.Thefirstpracticaluseofnaturalgasisalsotracedback totheChinesein200BC,wheretheyusedtomakesaltfrombrineingas-firedevaporators,boringshallowwells,andconveyingthegastotheevaporatorsthrough bamboopipes.Inthesameeraof200BC,Europeansharnesswaterenergytopower mills.Theinventionofthisverticalwaterwheelpoweredmills,whichrefreshed variousindustries.Italsodecreasedthedependenceonhumanandanimalmuscle fortheproductionofpower.Furthermore,siteswithdecentwaterpowerpotential havebecomemorefavorable,andcommunitiesstartedtobeestablishedaround theseplaces,causingeconomic,industrial,andsocialgrowth.Inthefirstcentury, theChinesehaverefinedpetroleumtouseitasanenergysource.ShengKuo (1031 1095)havedocumentedthattherewasalotofoilinthesubsurfaceand thatitwasinexhaustible.Theyappliedpetroleumforlamps,aslubricantsinmedicine,andotheruses.Inthe10thcentury,windmillswerebuiltinPersiatogrindgrain andpumpwater.ThistechnologyspreadtoChinaandtheMiddleEast,where farmersusedthemtoirrigatecrops,pumpwater,andcrushsugarcane.
Thehistoryofenergycontinuestoourcurrentmodernsocieties,whererenewableenergyisontheriseandfossilfuelsareinfluencingtheenvironmentsignificantly.Moreover,energyconsumptionpercapitavariesfromcountrytoanother. Fig.1.2 demonstratestheannualaverageenergyconsumptionpercapitaforthe 20largestenergy-consumingcountriesintheworldalongwiththeglobalaverage.
FIGURE1.2
Annualaverageenergyconsumptionpercapitain2016(kWh/per/yr).
(Datafrom:IESO,2016).
7,000,000,000,000
6,000,000,000,000
5,000,000,000,000
4,000,000,000,000
3,000,000,000,000
2,000,000,000,000
1,000,000,000,000
FIGURE1.3
Electricityconsumptionversuspopulationforvariouscountriesacrosstheworldforthe year2014.
DatafromOntarioEnergyReportQ12016.IndependentElectricityServiceOperator,Toronto,ON,pp.1 16, Rep.
Itisnoticeablethatenergyconsumptionisnotequallydistributed.Infact,the UnitedStates,China,India,andRussiaarethemostconsumingcountries.Furthermore,the20largestenergyconsumersaccountfor80%oftotalprimaryenergyconsumption,withthetwolargestconsumers(theUnitedStatesandChina)accounting for40%ofthetotalglobalconsumption.Furthermore, Fig.1.3 demonstratesthe relationshipbetweenpopulationandelectricityconsumptioninthetop20countries
Popula on
Electricity Consump on
Electricity Consump on (kWh/yr) Popula on
worldwideaswellasthelowestelectricityconsumingstripontheplanet,theGaza strip.
Fig.1.3 isveryconcerningasitdemonstratesinequalityintheglobalenergyconsumptionanddistribution.Thepoorest10%accountfor0.5%oftotalglobalenergy consumption,whereasthewealthiest10%accountfor59%.Moreover,Americans constitute5%oftheworld’spopulationandyetconsume24%oftheworld’senergy.
1.2.3 Thermodynamics
Thermodynamicsisabranchofphysicalsciencesthatspecializesinheatandtemperatureandtheirrelationshipwithotherformsofenergysuchaselectrical,mechanical,andchemicalenergies.DincerandAcar(2018)proposesthatthermodynamics isthescienceofenergyandexergy.Therearefourfundamentallawsofthermodynamicthatdefinethephysicalquantitiesofathermodynamicsystem.Moreover, thermodynamicsfeaturefourbranchesincludingclassical,statistical,chemical, andequilibriumthermodynamics.Themainlawsofthermodynamicsareasfollows:
a. Zerothlawofthermodynamics:Iftwosystemsareeachinthermalequilibrium withathird,thentheyarealsointhermalequilibriumwitheachother.
b. Firstlawofthermodynamics:Theinternalenergyisconstantforisolatedsystems.Energyisneitherdestroyednorcreated.Itisalwaysconserved.
c. Secondlawofthermodynamics:Heatcannotflowspontaneouslyfromacolder locationtoahotterlocation.Exergycannotbeconserved.Itcanonlybe minimizedifthemeasuresaretakenproperly.
d. Thirdlawofthermodynamics:Asasystemapproachesabsolutezero,allprocessesceaseandthesystem’sentropyapproachesaminimumvalue.
Thefirstlawofthermodynamicsisthemainlawhighlightingconservationofenergy.Itimpliesthatalthoughenergycanchangeitsform,itcanneitherbecreated norbedestroyed.Therefore,thislawiscloselyassociatedwiththeenergyaspect ofanysystem.However,thislawdoesnotgiveinformationonthedirectionofwhich theprocessesspontaneouslyflow.Thisaspectreferstothereversibilityofthermodynamics.Thisiscoveredbythesecondlawofthermodynamics,whichembodies theabilitytoassesstheenergyqualitatively,characterizetheavailabilityofrequired energy,andspecifyreversiblereactions.Indeed,thesecondlawiscloselyassociated withtheexergyaspectofanysystem.
Therefore,thefirstandsecondlawsofthermodynamicsaretheconstitutional lawsthatdrivethedisciplineofthermodynamics,andwhereasthefirstlawisameasureofquantityonly,thesecondlawisameasureofbothquantityandquality. Exergyandthetranslationofthesecondlawofthermodynamicsisnecessary,as inrealitywefailtoidentifywastesorusefuelseffectively.Inaddition,thesecond lawofthermodynamicsandconsequentlyexergyaimtointroducebetterefficiency, cost-effectiveness,design,analysis,andimplementationaswellasbetterstrategies andpolicies.Moreover,exergypositivelyinfluencestheenvironmentandinturn sustainabilityandenergysecurity.
Inaddition,theconceptofexergyiscriticalwhenanalyzingsustainabilityaspects ofenergysystems.Theimpactofexergizationnotonlyislimitedtoenvironmental friendlinessbutexpandstoeconomicperformanceandmoreeffectiveandefficient energysystemsandsources.Forexample, Fig.1.3 showsapersonwithahugebattery, tosimplypowerhisphone.Employingexergyasatooltowardenergysustainability allowsforusinggreenenergyandcleanertechnologiesaswellasconserveenergy. Thisconflictingdilemmaisanexampleprovingthatimportanceofexergy.Largescaleimplicationsofthisfigurecanbepostulatedwhenusingvariouselectricitygenerationplantsforurbanuse,forexample,andwhichenergymixismostsuitableand practicalfortheservicesandcommoditiesneeded. Fig.1.4 alsodemonstratesa thought-provokingquestionabouttheconceptofexergyanditsroleinenergysustainability.Thisnicelyillustratestheconceptofexergybymeaningthatexergyasatool helpmakeenergysystemsmoreenvironmentallybenign.ItwaspresentedinaParliamentResearchDayEventinToronto,OntariotodisplayDr.Dincer’sresearch.
Moreover,inthermodynamics,propertiescombinetocreateastatepoint,which canconsequentlybecombinedtoformaprocess.Morethantwoprocessescanbe designedtoformulateacycle. Fig.1.5 illustratesthesix-stepapproachinthermodynamics(DincerandAcar,2018).
Thermodynamicpropertiesincludetemperature,pressure,volume,specificinternalenergy,andspecificentropy.Thesepropertiesareusedtoidentifyanyselected statepoint.Thestatepointisanidentifiedpointwithinthecyclewithdistinctproperties.Forexample,pointsaredistinctbeforeandafteragivenheatexchangerasthe temperatureand,consequently,theenthalpyaredifferentbeforeandafterafluid passesthroughaheatexchanger.Furthermore,aprocessisdefinedbyatleasttwo statepoints.Theactualchangefromonestatepointtothenextisconsideredaprocess.Infact,twomoreprocessesinaclosed-loopsequencemakeupacycle.Balance
FIGURE1.4
Significanceofexergyusingcreativethought-provokingillustrations(Dincer,2016)
FIGURE1.5
Approachtothermodynamicsusingthesix-stepapproach.
equationsarethencarriedouttoconfigurethemassbalanceequations,energybalanceequations,exergybalanceequations,andentropybalanceequations,taking intoaccountthedifferentoutputsandinputsoftheoverallsystemorcycle.After configuringthebalanceequations,thermodynamicperformanceassessmentscan beconductedbyanalyzingtheenergeticandexergeticefficienciesofthesystem aswellasexergydestructionandlossesandotherthermodynamicparameters.
1.3 Environment
Environmentreferstothephysicalandnaturalenvironmentsthatencompassall livingandnonlivingorganisms.Thistermcanalsorefertotheearth,orsomeparts ofit.Theconceptofenvironmentalsoencompassestheinteractionbetweenall livingspecies,climate,naturalresources,weather,andhumanactivity,whichaffect humansurvivalandeconomicprosperity.Thereasonwhytheenvironmentissignificantlyhighlightedinthebookisthecurrentphenomenon,whereearthandenvironmentalprocessesareheavilyimpactedbyhumanactivity.Infact,hundredsofyears ago,humanactivityhadlittleorinsignificantimpactonearth,andhumanneedsand lifestyleswereinharmonywithnaturalprocesses.However,modernsocietiesand currentlifestyleshaveevolvedveryrapidlytothepointwhereenvironmentalprocessesandearthitselfarechangingbecauseofvarioushumanactivities.
1.3.1 Environmentalimpact
Pollutionistheintroductionofcontaminantsintothenaturalenvironment,which causesadversechange.Pollutioncanbeofmanyformssuchaschemicalsubstances orenergy,suchasnoise,heat,orlight.Toxicantsareanytoxicsubstancesthatmay
beman-made,manufactured,orbiologicallyproduced.Pollutionandtoxicantscan beobservedintheair,soil,water,orfood.Althoughpoliciesandbillsarebeing passedtocombatpollution,theproblemremainsatpresent. Fig.1.6 showsthe differenttypesofpollution.Pollutantsarenotonlyharmfultotheenvironment, butsomemayhavehealthandsocialeffectsaswell.Infact,adverseairquality cankillmanyorganismsincludinghumans.Ozonedepletioncanalsocausevarious respiratorycomplications,cardiovascularillnesses,andthroatinflammation.Noise pollutioncanalsocausehearloss,highbloodpressure,andstress.Moreover,sulfur dioxideandnitrogenoxidesintroducedthephenomenonofacidrain,whichlowers thesoilpH,makingitinfertileandunsuitableforcrops.Carbondioxideandgreenhousegas(GHG)emissionsalsohavesignificantimpactsonoceanacidificationand globalwarming,whichadverselyaffectsmanyecosystemsonearth.Therefore, pollutionandcontaminantsaredeadlywhenitcomestothesocialandhealth aspects.
Infact,thetotalemissionsworldwi defortheyear2012havetotaled 51,840MtCO 2-eq.Theindustrialsectoraccounts foralmostone-thirdofthetotal emissions.Furthermore,coalistheenerg ysourcewiththehighestemissions.Itis primarilyburnedforelectricitygenera tioninthesteelandcementindustries. Directemissionsincludemethaneemittedbycowsandotherlivestock,logging orcuttingdowntrees,ororganicmatterinlandfills.Naturalgasisnormally usedasanenergysourceforcooking,heating,andelectricitygeneration. Furthermore,oilemissionsresultfromcombustionastransportfuelsincars, trucks,andairplanes. Fig.1.7 showstheglobalCO2 emissionsbysourceandsector fortheyear2013.
•Release of chemicals and particular contaminats into the atmosphere: •CO2, CFCs, NOx, SOx, PM, Smog.
•Dicharge of wastewater and chemicals into water bodies: •Sewage, chlorine, fertilizers, contaminants from surface runoff.
Wastes/Toxic Material
FIGURE1.6
•Chemical spills or underground leakages: •Hydrocarbons, heavy metals, MTBE, herbicides, pesticides.
•Light pollution, Roadway noise, aicraft noise, industrial and high intensity sonar noise.
Majortypesofpollutionandcontaminationsalongwithcommonpollutants.
Pollution
Pollution
1.3.2 Climatechangeandglobalwarming
Globalwarmingandclimatechangeisaglobaltrend,stemmingfromacenturyscaleriseintemperatureoftheearth’sclimate.TheincreaseoftemperatureisprimarilyduetoenergeticactivitiessuchastheGHGemissions.Thegreenhouseeffect occursaftertheburningoffossilfuelsandresultsinmassiveamountofheatandenergyintheatmosphere.ThemainGHGpollutantiscarbondioxide,andoften methodsofmeasuringtheglobalwarmingpotentialconfinetoevaluationofcarbon dioxide.However,othermajorpollutantscontributingtoglobalwarmingand climatechangeinclude,butnotlimitedtomethane,nitrogenoxides(NOx)andsulfuroxides(SOx).Althoughsomethermalradiationisemittedintospace,thebigger partofthisresidualheatisabsorbedbytheearth.Furthermore,theweakeningofthe atmospheredisablesitfromreflectingtheincomingsolarradiation.Rather,thisradiationisalsoabsorbedbytheearth’slandandoceansurfaces,causingunprecedentedwarmingoftheearth.Theseeventsaretriggerstocriticalramifications suchasarcticseaicemelting,riseofsealevels,glacierretreats,andmanyatmosphericanomalies.Tomitigatetheimpactsofglobalwarming,therehavebeen numerouseffortssocially,politically,andscientificallytoresolvethisissue.Environmentalistmovementsandconservationauthoritieshavebeenestablishedtoraise awarenessandpreservenaturalenvironments.Variousglobalsummitsandprotocols havebeenpassedtocontrolGHGemissions,andmanyalternativeenergyoptions havebeenproposedanddeployedtomitigateglobalwarmingeffects.
1.3.3 Energyandtheenvironment
Thecombustionoffossilfuelssuchascoalandoilaretheprimaryproducesof GHGs.Therefore,energyconsumptionisthemaincauseofclimatechange.In fact,beforethediscoveryoffossilfuelsandbeforetheirdeploymentinindustrial
FIGURE1.7
andcommercialuses,humanactivityandlifestylehadlittleorinsignificantimpact onearthandthenaturalprocesses.However,theindustrialrevolutionandlaterthe discoveryofoilhaverevolutionizedthehumancivilization,assuchenergysources playavitalroleineconomicgrowth,energysecurity,andpoliticalstrength.Furthermore,advancementsinenergyresearchsuchasthedevelopmentofalternativefuels andrenewableenergysystemswereprimarilytriggeredbytherelationshipbetween energyandtheenvironment.Infact,theconcernofglobalwarmingandclimate changeurgedthedevelopmentofenergythroughalternativemeansandthrough renewablesources.Furthermore,therelationshipbetweenenergyandtheenvironmentisverycloselylinked,asallenergyiseitherderivedorcapturedfromtheenvironmentaroundus.Onceenergyhasbeenused,italsoreturnstotheenvironment, eitherasaharmlessby-productorasaharmfulwaste.Insummary,energyandthe environmenthavebeenalwayscloselylinkedandwillremainassuchinthefuture.
1.4 Sustainability
Sustainabilityhasbecomeamajorhighlightinmoderncivilization.Infact,acrucial phenomenon,sustainability,whichisalwayspresentinpoliticaldebates,educationalprograms,socialtrends,andscientificadvancements,hasbecomemultidisciplinary.However,theconceptofsustainabilityhasalwaysbeenpresentthroughout humancivilizations.Indeed,humansalwaysplanned,andtheirconcernforresource availabilitywasonthetopoftheirprioritylist.Thiswasthereasonforhumansto shiftfromhuntingintofarming. Nachhaltigkeit, aGermancointhatreferredto“sustainedyield,”wastheoriginaltermforsustainability,whichwasfoundinaforestry bookin1713.Sustainabilitydoesnothaveastandarddefinition.Scientistsdefined sustainabilityinavarietyofways,dependingonthecontextandthescientificfield ofuse.IntheOxforddictionary,sustainabilityisdefinedastheavoidanceofthe depletionofnaturalresourcestomaintainanecologicalbalance.EncyclopediaBritannicadefinessustainabilityasthelong-termviabilityofacommunity,setofsocial institutions,orsocietalpractice. Table1.3 providesalistofdefinitionsthatareused forsustainability.Sustainabilityandsustainabledevelopmentcanbeusedinterchangeably,asthelattercouldalsomeanacontinuousorsustaineddevelopment. Developmentindeedisaqualitativeimprovementtoasystem,whichisdistinct fromgrowth.Growthdenotestoquantitativeincreaseinphysicalscale.
Theconceptofsustainabilityhascloselybeenassociatedwithenergyconsumption.Theearlyhumansstartedtousethefireforspecificfoods,whichmayhave alteredthenaturalcompositionoftheplanetandanimalspecies(Scholes,2003). Civilizationsthentransformedfromhuntingtomoresustainablesocietiesbyintroducingagriculture.Infact,agrariancommunitiesdependedlargelyontheirenvironment(ClarkeandScruton,1977).Thelongevityofsocietiesandanimportantfactor thatdetermineditsflourishmentordestructionwassustainabledevelopment.Energy isacriticalelement,whicheffectstheinteractionbetweennatureandsocieties.In thepast,increasesinenergydemandswereassociatedwitheconomicand
Table1.3 Selecteddefinitionsofsustainability,sustainabledevelopment, orsustainabilitysciences.
SourceDefinition
(BrundtlandCommissionofthe UnitedNations,1987)
Sustainabledevelopmentisdevelopmentthatmeets theneedsofthepresentwithoutcompromisingthe abilityoffuturegenerationstomeettheirownneeds.
PearceandMarkandya(1989)Sustainabledevelopmentinvolvesdevisingasocial andeconomicsystem,whichensuresthatthesegoals aresustained,i.e.,thatrealincomesrise;that educationalstandardsincreasethatthehealthofthe nationimproves;thatthegeneralqualityoflifeis advanced.
Harwood(1990)Sustainableagricultureisasystemthatcanevolve indefinitelytowardgreaterhumanutility,greater efficiencyofresourceuse,andabalancewiththe environment,whichisfavorabletohumansandmost otherspecies.
Morelli(2011)Meetingtheresourceandservicesneedsofcurrent andfuturegenerationswithoutcompromisingthe healthoftheecosystemsthatprovidethem.Inspecific, sustainabilityisaconditionofbalance,resilience,and interconnectednessthatallowshumansocietyto satisfyitsneedswhileneitherexceedingthecapacityof itssupportingecosystemstocontinuetoregenerate theservicesnecessarytomeetthoseneedsnorbyour actionsdiminishingbiologicaldiversity.
(Forumforthefuture,2008)Sustainabledevelopmentisadynamicprocessthat enablespeopletorealizetheirpotentialandimprove theirqualityoflifeinways,whichsimultaneously protectandenhancetheearth’slifesupportsystems
technologicaladvancements.However,currently,theriseinenergyconsumption maybedetrimentalsocial,environmental,andeveneconomiceffects.Theseeffects couldincludelocalandglobalhealthimpacts.Thedevelopmentofcivilizationsand theintroductionofvariousenergysourcesevolvedtheconceptofsustainability. Althoughearlycivilizationsutilizedlimitedamountsofenergy,industrialsocieties relyonabundantenergysources.Transportation,heating,andelectricitycompose themainneedsofhumans.However,withtheindustrialrevolutionandthetechnologicaladvancements,novelenergyresourceshaveshapedthemodernhumancivilization.Coal,oil,naturalgas,andotherconventionalenergysourceshavecausedan exponentialincreaseinhumanconsumptionofresources.
Thisinturntriggeredenvironmentalismandtheintroductionofnewfieldssuch asecologyandenvironmentalsciences.Theunprecedentedincreaseinenergydemand,population,andeconomyledtheworldtorealizetheimpactsofenergyuse ontheeconomy,environment,andsocially.Energyconservation,sustainableenergy
options,andrenewableenergysourceswerethereforeexploredfurther.Indeed,this concernhasbeenwidelyaddressedglobally.Theunitedsustainabilityinitsmodern contextreferstoarelativelycomplextopicthatismultidisciplinary.Themeaning couldvarydependingonthecontextandthefield.Indicatorsofdevelopmenttoward sustainabilityprovidemeaningfuldatathatcouldcharacterizesystems’sustainabilitylevel.Sustainabilityassessmentreliesonanumberofindicators.Theseindicators coulddifferfromonestudytoanother.Concernedabouteconomy,energy,society, andenvironment,governmentshavebeenintroducingregulationsandlocal/regional bylawsthataimtoenhancesustainabilitymeasures.However,theseeffortsoften includenonrigorousassessmentmethodsthataremainlyqualitativeinnature.
Sustainabilityisacomplexandinterdisciplinaryconcept,whichrelatestoeach ofthepresenteddomainsin Fig.1.8.Toassessthesustainabledevelopmentofenergysystems,resources,energy,andtheeconomymustbetakenintodetailed consideration.Furthermore,theenvironmentalfootprint,socialimpact,culturalparadigmssurroundingtheseprogramsaswellaspublicpolicyandpoliticalaspects needtobestudiedthoroughlytocomprehensivelyandobjectivelyunderstand sustainability.
Moreover,someoftheseconceptsareinterdependent.Forexample,theeconomicdomaincouldinfluencethesocialandpublicpolicydomains.Overall,the roadtowardanobjectiveunderstandingandassessmentofsustainabilitysprings
Thebackboneofsustainabledevelopmentandthemajordomainsthatcontributetothe understandingofthesustainabilityconcept.
FIGURE1.8
fromsoundanddeepanalysisofallfactorsandelementsthatcontributetothis conceptwhetherdirectlyorindirectly.Thesubjectivitysurroundingsustainability makeposesasadisadvantagetoitsessenceaswellasanopportunityforcreativity andinnovation.Infact,sustainabilitycanbeappliedtovariousdisciplinesandconceptsfromenergysystemstocorporatehumanresources.Asforenergysustainability,varioustechnicalparametersmustbeclearlydefinedtoprovidemeaningful resultsalongwiththeconsiderationofotherimportantaspectssuchaspublicpolicy, culture,education,andethics.Theuseofsustainabilityanditsapplicationsin variousdisciplinescanbebetterunderstoodthroughtheillustrationin Fig.1.9
Moreover,energysustainabilitycanbeillustratedbyusingthe3Sapproach developedbyDincerandAcar(2017).The3Sapproachpresentssustainabilityby breakingthevariousaspectsofenergyincludingsource,system,andserviceand furthermoreintroducingemphasizingstorageoptioninbetweeneachaspect.The 3Sapproachasillustratedin Fig.1.10 stressesthattheenergysourcemustbeclean, abundant,cheap,andavailabletoachieveoverallenergysustainability.Onceenergy isharvested,itseffectivestoragesolutionsareproposedbeforemovingtothenext aspectofenergy,whichistheutilizationofenergyusingvariousenergysystems.
Moreover,tomaintainenergysustainability,systemsneedtobehighlyefficient, effective,andreliableaswellasbeabletorecoverlossesandwastes.Oncemore, storagesolutionsareimportantbeforedispatchingtheenergydirectlytotheservice.
Heat Production
Hydrogen and Alternative Fuels Production
Desalination
Renewable Energy Production
FIGURE1.9
Energy Sustainability
Conventional Energy Production
Energy Storage Applications
Steam and Power Generation
Electrochemical Applications
Illustrationthathighlightstheuseofsustainabilityinvariousenergyproductiondisciplines andapplications.
FIGURE1.10
The3SconceptthatwasoriginallyintroducedbyDincer(2015)toachieveenergy sustainability. 1.5 Closingremarks
Finally,sustainabilityisachievedbyprovidingclean,practical,andefficientservices.The3Sruleiscriticalwhenanalyzinganyenergysystem.Theflowofenergy fromthesourcetothesystemandfinallytotheserviceandtheintegrationofstorage solutionsisbothlogicalandpractical.Energysustainabilitycanbeachievedateach stepinthisprocess.Forinstance,sustainabilityattheenergysourcelevelcanbereflectedbyutilizingclean,cheap,andavailableenergyresourcesversustheopposite. Ontheotherhand,sustainabilityatthesystemlevelisachievedbywastelessand efficientenergysystems.Multigenerationalenergysystemsalwaysyieldinhigher efficienciesandlessenergeticandexergeticlosses.Lastly,theservicesustainability isbyprovidingareliableandcleanenergyservice.Thisenergyequationforsustainabilitythereforeisdenotedbyfivesmall(s)thatrepresentsource,system,service, andtheintermediatestorages,allyieldingtotheultimateresultofalarge(S)that denotesSustainabilityorenergysustainability.
1.5 Closingremarks
Thefundamentalaspectsofenergy,environment,andsustainabilityhavebeenoutlinedinthischapter.Asindicated,environmentalimpactsofenergysolutionshave driventheresearcharoundenergysources,storage,andenergyutilization.Furthermore,detailsaroundenvironmentalpollution,climatechange,andtheconceptof