Encyclopedia of interfacial chemistry: surface science and electrochemistry (vol 1 - vol 7) klaus wa

Page 1


https://ebookmass.com/product/encyclopedia-of-interfacial-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Encyclopedia of Biomedical Engineering (vol. 1-3) Min Wang

https://ebookmass.com/product/encyclopedia-of-biomedical-engineeringvol-1-3-min-wang/

ebookmass.com

Encyclopedia of Microbiology, vol.1 4th Edition Edition Thomas M. Schmidt

https://ebookmass.com/product/encyclopedia-of-microbiology-vol-1-4thedition-edition-thomas-m-schmidt/

ebookmass.com

Encyclopedia of Materials: Composites: Composites. Volume 1 1st Edition Dermot Brabazon (Editor)

https://ebookmass.com/product/encyclopedia-of-materials-compositescomposites-volume-1-1st-edition-dermot-brabazon-editor/

ebookmass.com

Netter’s Obstetrics and Gynecology-Elsevier (2017) 3rd Edition Roger Smith

https://ebookmass.com/product/netters-obstetrics-and-gynecologyelsevier-2017-3rd-edition-roger-smith/

ebookmass.com

Purchasing and Supply Management, 16e 16th Edition P. Fraser Johnson

https://ebookmass.com/product/purchasing-and-supplymanagement-16e-16th-edition-p-fraser-johnson/

ebookmass.com

Sunshine & Secrets: A Steamy Small Town Billionaire & Nanny Rockstar Romance (Welcome to Kissing Springs: The Sunshine Season Book 1) Zee Irwin & Kissing Springs Book

Babes

https://ebookmass.com/product/sunshine-secrets-a-steamy-small-townbillionaire-nanny-rockstar-romance-welcome-to-kissing-springs-thesunshine-season-book-1-zee-irwin-kissing-springs-book-babes/ ebookmass.com

The Close Relationship between Nietzsche's Two Most Important Books T. H. Brobjer

https://ebookmass.com/product/the-close-relationship-betweennietzsches-two-most-important-books-t-h-brobjer/

ebookmass.com

Multi-level drivers of tobacco use and purchasing behaviors during COVID-19 •lockdownŽ: A qualitative study in the United States Daniel P. Giovenco & Torra E. Spillane & Rachel M. Maggi & Esther Y. Lee & Morgan M. Philbin

https://ebookmass.com/product/multi-level-drivers-of-tobacco-use-andpurchasing-behaviors-during-covid-19-lockdownz-a-qualitative-study-inthe-united-states-daniel-p-giovenco-torra-e-spillane-rachel-m-maggiesth/ ebookmass.com

Nurse Practitioners and the Performance of Professional Competency : Accomplishing Patient-centered Care 1st Edition Staci Defibaugh (Auth.)

https://ebookmass.com/product/nurse-practitioners-and-the-performanceof-professional-competency-accomplishing-patient-centered-care-1stedition-staci-defibaugh-auth/

ebookmass.com

Cargo: A Scifi Alien Romance (Forgotten Cargo Series Book 2) Beva John [John

https://ebookmass.com/product/clever-cargo-a-scifi-alien-romanceforgotten-cargo-series-book-2-beva-john-john/

ebookmass.com

INTERFACIALCHEMISTRY

SURFACESCIENCEANDELECTROCHEMISTRY

Thispageintentionallyleftblank

ENCYCLOPEDIAOF INTERFACIALCHEMISTRY

SURFACESCIENCEANDELECTROCHEMISTRY

EDITORINCHIEF

KlausWandelt

InstituteofPhysicalandTheoreticalChemistry,UniversityofBonn,Bonn,Germany; andInstituteofExperimentalPhysics,UniversityofWroclaw,Wroclaw,Poland

VOLUME1

1.1EXPERIMENTALMETHODS

1.2SURFACESCIENCEUNDERENVIRONMENTALCONDITIONS

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 50HampshireStreet,5thFloor,Cambridge,MA02139,USA

Copyright 2018ElsevierInc.Allrightsreserved

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenoted herein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changesin researchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmayalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods, compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/or damagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-12-809739-7

Forinformationonallpublicationsvisitourwebsite at http://store.elsevier.com

Publisher:OliverWalter

AcquisitionEditor:RachelGerlis

ContentProjectManager:FionaPattison Designer:MatthewLimbert

PrintedandboundintheUnitedStates

EDITORIALBOARD

EDITORINCHIEF

KlausWandelt

InstituteofPhysicalandTheoreticalChemistry,UniversityofBonn,Bonn,Germany; andInstituteofExperimentalPhysics,UniversityofWroclaw,Wroclaw,Poland

SUBJECTEDITORS

ConradBecker

Aix-MarseilleUniversité,CNRS,CINaM,Marseille,France

PeterBroekmann

UniversityofBern,Bern,Switzerland

VictorCliment

InstituteofElectrochemistry,UniversityofAlicante,Alicante,Spain

FrancescoDiQuarto

DipartimentodiIngegneriaCivile,AerospazialeedeiMaterialiUniversitàdiPalermo,Palermo,Italy

JuanMFeliu

InstituteofElectrochemistry,UniversityofAlicante,Alicante,Spain

UeliHeiz

DepartmentofChemistry,TechnicalUniversityofMunich,Munich,Germany

KurtWKolasinski

WestChesterUniversity,WestChester,PA,USA

MarkusLackinger

TechnischeUniversitätMünchen&DeutschesMuseum,Munich,Germany

FalkoPNetzer

Karl-FranzensUniversityGrazInstituteofPhysics,SurfaceandInterfacePhysics,Graz,Austria

RobertoOtero

UniversidadAutónomadeMadridandIMDEANanoscience,Madrid,Spain

MiquelSalmeron

MaterialsScienceDivisionoftheLawrenceBerkeleyNationalLaboratory; andMaterialsScienceandEngineeringDepartmentoftheUniversityofCaliforniaatBerkeley,Berkeley,CA,USA

AndrewTeplyakov

DepartmentofChemistryandBiochemistry,UniversityofDelaware,Newark,DE,USA

PankajVadgama

SchoolofEngineeringandMaterialsScience,QueenMaryUniversityofLondon,London,UK

SomaVesztergom

EötvösLorándUniversity,Budapest,Hungary

KlausWandelt

InstituteofPhysicalandTheoreticalChemistry,UniversityofBonn,Bonn,Germany; andInstituteofExperimentalPhysics,UniversityofWroclaw,Wroclaw,Poland

PREFACE

ThemotivationforcompilingandpublishingthisencyclopediaonInterfacialChemistrywastopromotethe communicationbetweenchemists,electrochemists,physicochemists,aswellassolid-stateandsurfacephysicists.Thegrowingdiversi ficationandspecializationofscienceandresearchmakesmutualunderstandingmore andmoredifficult,andthereforeinterdisciplinarycommunicationimperative.Chemiststakegreatadvantageof heterogeneouscatalystsoftenwithoutknowingtheirpropertiesandoperationontheatomicscale.This knowledge,however,isnecessaryforarationaldesignandoptimizationofthecatalysts’ activity,selectivity,and stability.Electrochemistsandsurfacephysicistsworkingonasimilarproblemsuchas filmdepositionand growth,justindifferentenvironment,maynotshareknowledgeduetodistinctlydifferent “languages,” suchas “underpotentialdeposition” and “Franck-van-der-Merwegrowth” forasimilarphenomenon.Andthereare knowndifferencesbetweenthemore “practical” approachofchemistsandthemore “formal” approachof physicists,includingtheresultantcommunication “barriers”.Ontheotherhand,allmodernexperimental analyticaltoolsarebasedonphysicalphenomena,suchasinteractionofradiationwithmatterandelectron tunneling,andareimplementedbyphysicists.Interfacialchemistry,asanexcellentexampleofinterdisciplinary research,canonlyprofitfromanunbiasedcommunicationandmutualunderstandingbetweenthedifferent involveddisciplines.

Interfacesarethedividesbetweenphases,e.g.,solid/gas,solid/liquid,solid/solid,liquid/gas,liquid/liquid, andthusaninherentpropertyofheterogeneoussystems. “Heterogeneous” sounds,andactuallyis,more complexthan “homogeneous” andthereforecallsforamultidisciplinaryapproach.Toinvestigateand understand “electrocatalysis,” itiscertainlyhelpfultotakeintoaccounttheexperienceandknowledgeof electrochemists and solid-stateandsurfacephysicists,twocommunitiesthatarenotknownforaclose connection.

Thedifferenceinpropertiesoneithersideofthedividehastwoimportantconsequences:(1)interfacesare thelocationsofgradientsthatareadrivingforceforprocessesand(2)interactionsacrosstheinterfacewill obviouslyalsoalterthepropertiesininterface-nearlayersoftheadjacentphases.Ifasolidironsurfaceis exposedtooxygengas,thesurfacewilloxidize;theresultantoxidelayerdiffersfromthepureironunderneath.If twodifferentsolids(orliquids)formacommonphaseboundary,interdiffusionwillchangethecompositionof theinterface-nearregionsonbothsides.Ifaplatinumelectrodeinsulfuricacidsolutionisnegativelypolarized, protons(hydroniumcations)areattractedwiththeconsequencethatthepHnearthePt/electrolyteinterfaceis lowerthaninthebulkofthesolution.Andifacopperelectrodeinhydrochloricacidsolutionispositively polarized,chlorideanionswillbeattracted,adsorb,andrestructurethesurface before surfaceatomsformsoluble copperchloridespecies.

Interestingly,notonlythepresenceofinteractionsacrossaninterfacecausesalterationsoneitherside,but alsothesudden absence ofinteractionsacrossaninterfacehasadecisiveinfluence:Whileanatominthebulkof asolidinequilibriumissurroundedbyandinteractswithatomsonallsides,anatomattheverysurfacein vacuumhasnoneighborstointeractwithonthevacuumside.Thisunbalancedrivesthesystemtowardanew equilibriumandcausesarepositioningofthesurfaceatoms;mostintuitivelythesurfaceatoms “relax” toward thebulkofthesolid.Butthereareevencaseswherethesurfaceatomlayerasawholeassumesatwodimensionallatticestructuredifferentfromthatofaparallelplaneinthebulk,thesurface “reconstructs.” Duetothemissingneighbors,the “unsaturatedbonds” of surface atoms(incontactwithvacuum)addtothe totalenergyofthesolid.Thesurface “relaxation” and “reconstruction” are aresponseofthesystemtolowerthis “excesssurfaceenergy.” Theverysameargumentexplainswhyinequilibriumalsothe surfacecomposition of multicomponentmaterials,e.g.,alloys,solutions,mustbeexpectedtobedifferentfromthebulkcomposition.

Inequilibriumthesurfacewillbeenrichedwiththoseatomswhoseunsaturatedbondsaddleasttotheexcess surfaceenergy.

Sinceitistheverysurfaceofasolid(orliquid),which firstinteractswiththeadjacentphase(gas,liquid,or solid),itschemicalcompositionandstructuremustbeknownindetail,i.e.,ontheatomicscale,tounderstand anddescribeitsinvolvementinchemicalprocesses.

Thisinformationisnowadaysavailablethankstothedevelopmentofabroadarsenalofincrediblysensitive high-resolutionmicroscopicandspectroscopictechniquesandtheso-called “surfacescienceapproach.” This approachstartswithstructurallyandchemicallywell-definedsurfaces,e.g.,single-crystalsurfaces,whichunder ultrahighvacuumconditionsareexposedtogasesorvaporsinaverycontrolledmanner.Inthiswayitis nowadayspossiblenotonlytocharacterizebareandadsorbatecoveredsurfacesandmonitorchangesatom-byatombutalsotomodifysurfacesbyarbitrarymanipulationofindividualatoms.Theseachievementsand abilitieshaveoccasionallymisled “insiders” tostatementssuchas “surfacesciencehasreachedcompletion.”

Apartfromthefactthatclaimslikethisinsciencehaveoftenbeenrash,thereareatleasttwoexpectationson “surfacescience” still.The firstis,duetotheubiquityanduniversalimportanceofinterfaces,todisseminatethe knowledgeabouttheirfundamentalpeculiaritiesmorewidelyto “outsiders” inotherdisciplines beyond materialssciences andinparticulartoincludeitmoreregularlyintocurricula.Thesecondistotransferand applytheconceptsandmethods,largelyresultingfromthe “surfacescienceapproach” underultrahighvacuum conditions,tomorecomplexsystemsinrealisticenvironmentsuchasambientgasesandliquids,astheyare dealtwithbyelectro-andbioelectrochemists,materialsscientists,andchemicalengineers.Thistransfer,of course,requirestoovercomethe “barriers” indicatedaboveand,sometimes,mayalsorequiretherevisionof “establishedviews.”

Thepresentencyclopediaisanattempttocontributetothistransferbyincludingpublicationsfromrather differentbutinherentlyinterface-relatedresearch fieldsunderthecommonheading “InterfacialChemistry.” WhenI firstproposedthisproject,Isuggested11subjects:(1)modelstudiesinheterogeneouscatalysis,(2) surfacescienceunderenvironmentalconditions,(3)ultrathin films,(4)clustersandnanoparticlesatsurfaces, (5)molecularself-assemblyatsurfaces,(6)surface-confinedpolymerization,(7)functionalizationandgrafting ofsurfacesandnanoparticles,(8)ultrafastsurfacedynamics,(9)generalinterfacialelectrochemistry,(10) interfacialelectrocatalysis,(11)modelstudiesoncorrosion,andlefta12thsubjectdeliberatelyopenforfurther suggestions.Thereportsof19(!)internationalreviewersofthisproposalwereunisonpositiveandledtothe suggestionofincluding(12)bioelectrochemistryasthe12thsubject.All12topicsarewellcoveredinthis encyclopediathankstotheteamofexcellentsubjecteditorswhomIaskedandwhoagreedtojointhisproject. Toaccentuate “InterfacialChemistry” asthecommonground,allcontributionsareexplicitlylinkedbycrossreferencesbetweenpapersinthevarioussections,and eventhoughpartlyverydifferentandsubject speci fic themostimportantexperimentalmethodsaregroupedinoneseparatesection “side-by-side.”

Inadditiontotheprintedversionofthisencyclopedia,allarticlesappearwithinthesection “Interfacial Chemistry” oftheoverarchingandwell-structuredelectronic-onlyReferenceModule “Chemistry,Molecular SciencesandChemicalEngineering”1,whichsupportsbothaneasyaccessibilityand,thereby,awidedisseminationamongitsreadership.

Thecomingtogetheroftherelevantdisciplinesisa “steady” process.In1995Ialreadyeditedjointlywith S.Trasatti,Milano,aspecialissue “SurfaceScienceandElectrochemistry” ofthejournal SurfaceScience2.Twenty yearslaterin2015IrepeatedthisinitiativetogetherwithA.Gross,Ulm,in SurfaceScience3,andwecametothe “disenchantinginsight” thattheprogressinbringingsolidstatesurfacephysicistsandelectrochemiststogether “wasonlymoderate” andthiseventhoughthe “interestinprocessesatelectrochemicalinterfacesinthecontext ofelectrochemicalenergyconversionandstorageplaysanenormouslyimportantroleforfutureenergy technology.”

Asstatedabove,thisencyclopediaisafurtherattempttopromotethemutualinsightintheimportanceof aclosecollaborationbetweentheinvolveddisciplines,andtheelectronicversionofthisencyclopedia embeddedinthesection “InterfacialChemistry” ofthegeneralReferenceModule “Chemistry,MolecularSciences andChemicalEngineering” evenoffersthepossibilityofacontinuousupdating.

Iamdeeplyindebtedtoallthosewhohavecontributedtothiswork,primarily,ofcourse,allauthorsofthe articles,myfellowcoeditorswhoidentifiedandmotivatedtheauthors,andlastbutnotleasttheElsevierstaffat theOxfordoffice,UK,whoorganizedandhandledthework flow.

References

1.ReferenceModuleinChemistry,MolecularSciencesandChemicalEngineering,EditorinChief,J.Reedijk.

2.Trasatti,S.;Wandelt,K.SurfaceScienceandElectrochemistry. Surf.Sci. 1995, 335, 1–447.

3.Gross,A.;Wandelt,K. SurfaceScienceandElectrochemistry-20YearsLater 2015, 631, 1–300.

Thispageintentionallyleftblank

CONTRIBUTORSTOVOLUME1

CAAngelucci

FederalUniversityofABC(UFABC),SantoAndré,São Paulo,Brazil

RArrigo

DiamondLightSourceLtd.,Oxfordshire,United Kingdom

CAscoli

IstitutoNazionalediOttica(INO)delConsiglio NazionaledelleRicerche(CNR),Pisa,Italy

ABaber

JamesMadisonUniversity,Harrisonburg,VA,United States

SBarzilai

NRCN,Beer-Sheva,Israel

PBaschieri

IstitutoNazionalediOttica(INO)delConsiglio NazionaledelleRicerche(CNR),Pisa,Italy

CBecker

AixMarseilleUniversité,CNRS,Marseille,France

HBluhm

LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

ABondarenko

ÉcolePolytechniqueFédéraledeLausanne(EPFLValais Wallis),Sion,Switzerland

JABoscoboinik

CenterforFunctionalNanomaterials,Brookhaven NationalLaboratory,Upton,NY,UnitedStates

ABraun

Empa.SwissFederalLaboratoriesforMaterialsScience andTechnology,Dübendorf,Switzerland

RKCampen

FritzHaberInstituteoftheMaxPlanckSociety,Berlin, Germany

MBCasu

UniversityofTuebingen,Tuebingen,Germany

Y-HChen

Max-Planck-InstitutfürEisenforschungGmbH, Düsseldorf,Germany

SCherevko

Helmholtz-InstituteErlangen-Nürnbergfor RenewableEnergy(IEK-11),Erlangen,Germany;and Max-Planck-InstitutfürEisenforschungGmbH, Düsseldorf,Germany

C-TChiang

Martin-Luther-UniversitätHalle-Wittenberg,Halle, Germany;andMax-Planck-Institutfür Mikrostrukturphysik,Halle,Germany

PMClawin

FreeUniversityofBerlin,Berlin,Germany

VCliment

InstitutodeElectroquímica,UniversidaddeAlicante, Alicante,Spain

ACzerwinski

UniversityofWarsaw,Warsaw,Poland;and IndustrialChemistryResearchInstitute,Warsaw, Poland

FDiFranco

UniversitàdegliStudidiPalermo,Palermo, Italy

FDinelli

IstitutoNazionalediOttica(INO)delConsiglio NazionaledelleRicerche(CNR),Pisa, Italy

FDiQuarto

UniversitàdegliStudidiPalermo,Palermo,Italy

ZDohnálek

PacificNorthwestNationalLaboratory,Richland,WA, UnitedStates;andWashingtonStateUniversity, Pullman,WA,UnitedStates

KFDomke

MaxPlanckInstituteforPolymerResearch,Mainz, Germany

J-CDong

XiamenUniversity,Xiamen,China

KDuanmu

ChemicalandBiomolecularEngineeringDepartment, UniversityofCalifornia,LosAngeles,CA,UnitedStates

AKEngstfeld

TechnicalUniversityofDenmark,Lyngby,Denmark

AErbe

NorwegianUniversityofScienceandTechnology, Trondheim,Norway

BEren

WeizmannInstituteofScience,Rehovot, Israel

SFearn

ImperialCollegeLondon,London,UnitedKingdom

JMFeliu InstitutodeElectroquímica,UniversidaddeAlicante, Alicante,Spain

SFerrer

AlbaSynchrotronLightSource,Barcelona,Spain

MFilez

UtrechtUniversity,Utrecht,TheNetherlands

AFoelske-Schmitz

ViennaUniversityofTechnology,Vienna, Austria

H-JFreund

FritzHaberInstituteoftheMaxPlanckSociety,Berlin, Germany

TFukuma

KanazawaUniversity,Kanazawa,Japan

KFushimi

HokkaidoUniversity,Sapporo,Japan

HHGirault

ÉcolePolytechniqueFédéraledeLausanne(EPFLValais Wallis),Sion,Switzerland

MJGladys UniversityofNewcastle,Callaghan,NSW,Australia

CGoletti

PhysicsDepartment,UniversityofRomeTorVergata, Roma,Italy

IMNGroot

LeidenUniversity,Leiden,TheNetherlands

H-LHan

LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

ARHead

LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

YHorowitz

LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates;andUniversityofCalifornia,Berkeley, CA,UnitedStates

KHubkowska

UniversityofWarsaw,Warsaw,Poland

TJones

Fritz-Haber-InstitutderMax-Planck-Gesellschaft, Berlin,Germany

MJurczyszyn UniversityofWrocł aw,Wrocł aw,Poland

MMKappes

KarlsruheInstituteofTechnology(KIT),Karlsruhe, Germany

MKeddam

SorbonneUniversités,Paris,France

AKlyushin

Fritz-Haber-InstitutderMax-Planck-Gesellschaft, Berlin,Germany;andHelmholtz-ZentrumBerlin fürMaterialienundEnergieGmbH,Berlin, Germany

AKnop-Gericke

Fritz-Haber-InstitutderMax-Planck-Gesellschaft, Berlin,Germany

JKnudsen

MAXIVLaboratory&LundUniversity,Lund,Sweden

FLaMantia

UniversitätBremen,Bremen,Germany

ALasia

UniversitédeSherbrooke,Sherbrooke,QC,Canada

ALesch

ÉcolePolytechniqueFédéraledeLausanne(EPFLValais Wallis),Sion,Switzerland

J-FLi

XiamenUniversity,Xiamen,China

T-ELin

ÉcolePolytechniqueFédéraledeLausanne(EPFLValais Wallis),Sion,Switzerland

M q ukaszewski UniversityofWarsaw,Warsaw,Poland

IMatsuda

TheInstituteforSolidStatePhysics,TheUniversityof Tokyo,Chiba,Japan

KJJMayrhofer

Helmholtz-InstituteErlangen-NürnbergforRenewable Energy(IEK-11),Erlangen,Germany;Max-PlanckInstitutfürEisenforschungGmbH,Düsseldorf, Germany;andFriedrich-Alexander-Universität Erlangen-Nürnberg,Erlangen,Germany

MHMintz

NRCN,Beer-Sheva,Israel;andBen-GurionUniversity oftheNegev,Beer-Sheva,Israel

AMiszczuk

UniversityofWrocł aw,Wrocł aw,Poland

IMorawski

UniversityofWrocł aw,Wrocł aw,Poland

KMudiyanselage

SABIC-CRDatKAUST,Thuwal,SaudiArabia

SNayak

UniversityofOxford,Oxford,UnitedKingdom

ANeff

LeibnizInstituteofSurfaceModi fication,Leipzig, Germany

FNiu

Max-Planck-InstitutfürEisenforschungGmbH, Düsseldorf,Germany

ZNovotny

UniversityofZürich,Zürich,Switzerland

MNowicki

UniversityofWroclaw,Wroclaw,Poland

TOhtsuka

HokkaidoUniversity,Sapporo,Japan

MEOrazem

UniversityofFlorida,Gainesville,FL,UnitedStates

DJO’Connor

UniversityofNewcastle,Callaghan,NSW,Australia

MPander

Max-Planck-InstitutfürEisenforschungGmbH, Düsseldorf,Germany

LSParreira

UniversityofSãoPaulo,SãoPaulo,Brazil

MPellegrino

IstitutoNazionalediOttica(INO)delConsiglio NazionaledelleRicerche(CNR),Pisa,Italy;and UniversitàdiPisa,Pisa,Italy

VPfeifer

Fritz-Haber-InstitutderMax-Planck-Gesellschaft, Berlin,Germany;andHelmholtz-ZentrumBerlin fürMaterialienundEnergieGmbH,Berlin, Germany

PPuschnig UniversityofGraz,Graz,Austria

JRadnik

FederalInstituteforMaterialTestingandResearch (BAM),Berlin,Germany

MGRamsey

UniversityofGraz,Graz,Austria

NFRichter

FreeUniversityofBerlin,Berlin,Germany

WRiedel

FreeUniversityofBerlin,Berlin,Germany

TRisse FreeUniversityofBerlin,Berlin,Germany

ZRistanovic

UtrechtUniversity,Utrecht,TheNetherlands

HRonneburg FreeUniversityofBerlin,Berlin,Germany

MJRost

LeidenUniversity,Leiden,TheNetherlands

AVRudnev UniversityofBern,Bern,Switzerland;andRussian AcademyofSciences,Moscow,Russia

ERuiz-Trejo

ImperialCollegeLondon,London,UnitedKingdom

GRupprechter

TechnischeUniversitätWien,Vienna,Austria

MSalmeron UniversityofCalifornia,Berkeley,CA,UnitedStates

CMSánchez-Sánchez

SorbonneUniversités,Paris,France

MSantamaria UniversitàdegliStudidiPalermo,Palermo,Italy

PVBarbosaSantiago

FederalUniversityofABC(UFABC),SantoAndré,São Paulo,Brazil

PSautet

ChemicalandBiomolecularEngineeringDepartment, UniversityofCalifornia,LosAngeles,CA, UnitedStates

JSchnadt

MAXIVLaboratory&LundUniversity,Lund, Sweden

DSchooss

KarlsruheInstituteofTechnology(KIT),Karlsruhe, Germany

AShavorskiy

MAXIVLaboratory&LundUniversity,Lund,Sweden

KRSiefermann

LeibnizInstituteofSurfaceModi fication,Leipzig, Germany

GASomorjai

LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates;andUniversityofCalifornia,Berkeley, CA,UnitedStates

JSouzaGarcia

FederalUniversityofABC(UFABC),SantoAndré,São Paulo,Brazil

DStacchiola

CenterforFunctionalNanomaterials,Brookhaven NationalLaboratory,Upton,NY,UnitedStates

MSterrer UniversityofGraz,Graz,Austria

YSuchorski

ViennaUniversityofTechnology,Vienna,Austria

GSun

ChemicalandBiomolecularEngineeringDepartment, UniversityofCalifornia,LosAngeles,CA,UnitedStates

KSundmacher

MaxPlanckInstituteforDynamicsofComplex TechnicalSystems,Magdeburg,GermanyandOtto-vonGuerickeUniversityMagdeburg,Magdeburg,Germany

YTakahashi

KanazawaUniversity,Kanazawa,Japan;andJapan ScienceandTechnologyAgency(JST),Saitama,Japan

STecklenburg

Max-Planck-InstitutfürEisenforschungGmbH, Düsseldorf,Germany

ETognoni

IstitutoNazionalediOttica(INO)delConsiglio NazionaledelleRicerche(CNR),Pisa,Italy

YTong

FritzHaberInstituteoftheMaxPlanckSociety,Berlin, Germany

CToparli

Max-Planck-InstitutfürEisenforschungGmbH, Düsseldorf,Germany

BTribollet

UniversitéPierreetMarieCurie,CNRS,Paris, France

J-JVelasco-Velez

Max-Planck-InstitutfürChemischeEnergiekonversion, Mülheim,Germany

SVesztergom

EötvösLorándUniversity,Budapest,Hungary

TVidakovic-Koch

MaxPlanckInstituteforDynamicsofComplex TechnicalSystems,Magdeburg,Germany

VVivier

SorbonneUniversités,Paris,France;andUniversité PierreetMarieCurie,CNRS,Paris, France

KWandelt

UniversityofBonn,Bonn,Germany;andUniversityof Wroclaw,Wroclaw,Poland

BMWeckhuysen

UtrechtUniversity,Utrecht,TheNetherlands

DPWoodruff

UniversityofWarwick,Coventry,UnitedKingdom AZaffora

UniversitàdegliStudidiPalermo,Palermo, Italy

ZZhang

BaylorUniversity,Waco,TX,UnitedStates

YZhou

KanazawaUniversity,Kanazawa,Japan

UEZhumaev

MaxPlanckInstituteforPolymerResearch,Mainz, Germany

CONTENTSOFVOLUME1

VOLUME1.1:EXPERIMENTALMETHODS

AReviewonInSituSumFrequencyGenerationVibrationalSpectroscopyStudies ofLiquid SolidInterfacesinElectrochemicalSystems1 H-LHan,YHorowitz,andGASomorjai

AmbientPressureX-RayPhotoelectronSpectroscopy13 ARHeadandHBluhm

Angle-ResolvedPhotoelectronSpectroscopyatSurfacesWithHigh-OrderHarmonicGeneration28 C-TChiang

AtomicScaleSTMImagingofAlloySurfacesWithChemicalResolution39 AKEngstfeld

CyclicVoltammetry

48 VClimentandJMFeliu

DifferentialCapacitanceMeasurementsonPassiveFilms75 FDiQuarto,FDiFranco,MSantamaria,andFLaMantia

EISTechniqueinPassivityStudies:DeterminationoftheDielectricPropertiesofPassiveFilms93 BTribollet,VVivier,andMEOrazem

ElectrochemicalScanningTunnelingMicroscopy108 MNowickiandKWandelt

ElectronParamagneticResonanceSpectroscopyatSurfaces129 PMClawin,NFRichter,WRiedel,HRonneburg,andTRisse

EllipsometryinPassiveFilms 143 TOhtsukaandKFushimi

ExperimentalMethodsinInterfacialandSurfaceChemistry157 KWandelt

FieldIonandFieldDesorptionMicroscopy:SurfaceChemistryApplications162 YSuchorski

High-SpeedElectrochemicalSTM180 MJRost

HowtoProbeStructure,Kinetics,andDynamicsatComplexInterfacesInSituand OperandobyOpticalSpectroscopy199 AErbe,SNayak,Y-HChen,FNiu,MPander,STecklenburg,andCToparli

ImagingChemicalReactionsOneMoleculeataTime220 ZNovotny,ZZhang,andZDohnálek

ImpedanceSpectroscopyAppliedtotheStudyofElectrocatalyticProcesses241 ALasia

InSituPhotoelectronSpectroscopy264 ABraun

InSituProbingofAdsorbatesatElectrochemicalInterfacesWithVibrational SumFrequencySpectroscopy 280 YTongandRKCampen

InSituReal-TimeLow-EnergyElectronMicroscopy287 MBCasu

IonConductanceProbeMicroscopy MolecularResolution295 YZhou,TFukuma,andYTakahashi

Micro-SpectroscopytoInterrogateSolidCatalystsatWork304 MFilez,ZRistanovic,andBMWeckhuysen

OnlineChromatographicDetection321 AVRudnev

On-LineInductivelyCoupledPlasmaSpectrometryinElectrochemistry:BasicPrinciples andApplications 326 SCherevkoandKJJMayrhofer

OperandoScanningProbeMicroscopy,SurfaceX-RayDiffraction,andOptical MicroscopyforCatalysisStudies336 IMNGroot

PerspectivesofAdvancedIonBeamAnalysisofElectrochemicallyActiveSurfaces354 SFearnandERuiz-Trejo

PhotocurrentSpectroscopyinPassivityStudies361 FDiQuarto,FDiFranco,AZaffora,andMSantamaria

PhotoelectronDiffraction 372 DPWoodruff

PhotoemissionTomography:ValenceBandPhotoemissionasaQuantitativeMethod forInvestigatingMolecularFilms380 PPuschnigandMGRamsey

PorousElectrodesinBioelectrochemistry392 TVidakovic-KochandKSundmacher

QuartzCrystalNanobalanceMeasurementsinElectrocatalysis402 KHubkowska,M Łukaszewski,andACzerwinski

ReflectanceAnisotropySpectroscopy413 CGoletti

RotatingDiskandRing DiskElectrodes421 SVesztergom

ScanningElectrochemicalMicroscopyforBioimaging445 T-ELin,ABondarenko,ALesch,andHHGirault

ScanningElectrochemicalMicroscopyintheAC-Mode453 MKeddam,CMSánchez-Sánchez,andVVivier

ScanningIonConductanceMicroscopy MorphologyandMechanics465 ETognoni,PBaschieri,FDinelli,CAscoli,andMPellegrino

Shell-IsolatedNanoparticles-EnhancedRamanSpectroscopy475 J-FLiandJ-CDong

SpectroelectrochemistryAppliedtoElectrocatalyticProcesses486 JSouzaGarcia,CAAngelucci,LSParreira,andPVBarbosaSantiago

StructuralInvestigationsbyMeansofDirectionalElasticPeakElectronSpectroscopy496 MJurczyszyn,AMiszczuk,IMorawski,andMNowicki

SumFrequencyGenerationSpectroscopyandSecondHarmonicsGeneration509 GRupprechter

SurfaceCharacterizationbyIonScatteringSpectroscopy521 DJO’ConnorandMJGladys

SurfaceX-RayDiffractionUnderGases532 SFerrer

Surface-EnhancedInfraredAbsorptionSpectroscopy542 UEZhumaevandKFDomke

Time-ResolvedPhotoelectronSpectroscopy549 IMatsuda

Time-ResolvedPhotoemissionElectronMicroscopy557 KRSiefermannandANeff

TrappedIonElectronDiffractionofMetalClusterIons567 DSchoossandMMKappes

UHVSurfacePreparationMethods580 CBecker

X-RayPhotoelectronSpectroscopyinElectrochemistryResearch591 AFoelske-Schmitz

X-RayPhotoelectronSpectroscopyforInvestigationofHeterogeneousCatalyticProcess607 JRadnik

VOLUME1.2:SURFACESCIENCEUNDERENVIRONMENTALCONDITIONS

CatalystElectronicSurfaceStructureUnderGasandLiquidEnvironments615 AKlyushin,RArrigo,VPfeifer,TJones,J-JVelasco-Velez,andAKnop-Gericke

SurfaceScienceApproachtoCatalystPreparationUsingThinOxideFilmsasSubstrates632 MSterrerandH-JFreund

SurfaceScienceattheDawnofthe21stCentury:FromUHVtoAmbientConditions inGasandLiquidEnvironments643 MSalmeron

SurfaceStructureandModificationsUnderAmbientPressure:ACaseStudyWithCopperSurfaces645 BEren

TheDynamicStructureofModelCatalystSurfacesUnderAmbientConditions658 ABaber,JABoscoboinik,KMudiyanselage,andDStacchiola

TheInitialStepsofHydrogen MetalReactions:TheGd H2 asaModelSystem676 MHMintzandSBarzilai

TheoreticalTreatmentofSurfacesinEquilibriumwithGases684 KDuanmu,GSun,andPSautet

Thin-FilmGrowthandOxidationofSurfacesUnderRelevantPressureConditions699 JSchnadt,JKnudsen,andAShavorskiy

PERMISSIONACKNOWLEDGMENTS

ThefollowingmaterialisreproducedwithkindpermissionofAmericanAssociationfortheAdvancementof Science

Figure12CatalysisforEnergyConversion

Figure3(left)BiophotovoltaicSystems

Figure1bConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure2bConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure12Silicene

Figure7AtomicScaleSTMImagingofAlloySurfacesWithChemicalResolution http://www.aaas.org/

ThefollowingmaterialisreproducedwithkindpermissionofNaturePublishingGroup

Figure8SubstrateMediatedInteractions

Figure3(middle)BiophotovoltaicSystems

Figure4BiophotovoltaicSystems

Figure12A-CBiophotovoltaicSystems

Figure14G-HBiophotovoltaicSystems

Figure3Lanthanide-Based2DCoordinationNetworks

Figure2TemperatureControlofReactionPathways:Intramolecularvs.Intermolecular

Figure3TemperatureControlofReactionPathways:Intramolecularvs.Intermolecular

Figure5TemperatureControlofReactionPathways:Intramolecularvs.Intermolecular

Figure6TemperatureControlofReactionPathways:Intramolecularvs.Intermolecular

Figure1aConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure1dConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure2dConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure1On-surfaceSynthesisofGrapheneNanoribbons

Figure2bOn-surfaceSynthesisofGrapheneNanoribbons

Figure2cOn-surfaceSynthesisofGrapheneNanoribbons

Figure2dOn-surfaceSynthesisofGrapheneNanoribbons

Figure3aOn-surfaceSynthesisofGrapheneNanoribbons

Figure3bOn-surfaceSynthesisofGrapheneNanoribbons

Figure3cOn-surfaceSynthesisofGrapheneNanoribbons

Figure3dOn-surfaceSynthesisofGrapheneNanoribbons

Figure6aOn-surfaceSynthesisofGrapheneNanoribbons

Figure8aOn-surfaceSynthesisofGrapheneNanoribbons

Figure8bOn-surfaceSynthesisofGrapheneNanoribbons

Figure8dOn-surfaceSynthesisofGrapheneNanoribbons

Figure8eOn-surfaceSynthesisofGrapheneNanoribbons

Figure9bOn-surfaceSynthesisofGrapheneNanoribbons

Figure9cOn-surfaceSynthesisofGrapheneNanoribbons

Figure9dOn-surfaceSynthesisofGrapheneNanoribbons

Figure11aOn-surfaceSynthesisofGrapheneNanoribbons

Figure11bOn-surfaceSynthesisofGrapheneNanoribbons

Figure11cOn-surfaceSynthesisofGrapheneNanoribbons

Figure11dOn-surfaceSynthesisofGrapheneNanoribbons

Figure11abSilicene

Figure14Silicene

Figure2OxideThinFilmsforMemristiveDevices

Figure2SteeringMolecularAssembliesandReactionsonSurface

Figure5SteeringMolecularAssembliesandReactionsonSurface

Figure10SteeringMolecularAssembliesandReactionsonSurface

Figure3UllmannCouplingofPorphyrins

Figure4UllmannCouplingofPorphyrins

http://www.nature.com

H-LHan, LawrenceBerkeleyNationalLaboratory,Berkeley,CA,UnitedStates

YHorowitzandGASomorjai, LawrenceBerkeleyNationalLaboratory,Berkeley,CA,UnitedStates;andUniversityofCalifornia, Berkeley,CA,UnitedStates

©2018ElsevierInc.Allrightsreserved.

Introduction:TheSignificanceofProbingElectrifiedInterfacesforRenewableEnergyProductionandStorage1 BasicConceptsofSFGVSforStudiesofElectri fiedSolid –LiquidInterfaces1 ProbingSolid –LiquidInterfacesUnderReactionCondition4 Li-IonBatteries

Introduction:TheSignificanceofProbingElectrifiedInterfacesforRenewableEnergyProductionandStorage

Asanenergy-drivensocietywearefacingsustainabilitychallenges1 andthereforeareconstantlylookingforbetterwaystodesign, manufacture,anduseenergystoragedevices,includingrechargeablebatteries,fuelcells,andlarge-scalegridenergystorage.Regardlessofthetechnology,thefundamentalelectrochemicalprocessismostlikelyoccurringonthenanoscale2 ataninterfaceoftwo phases(e.g.,solid–liquid)underappliedpotentials.Toimproveourenergyproductionandstoragedevices,wehavetogain insitu,real-timeinformationoftheelectri fiedinterfaceonthenanoscalelevel,suchasthesolidsurfacegeometricstructureand theelectronicpropertiesofthesolid –liquidinterface.Inaddition,weneedtoobtainaclearunderstandingoftheelectrochemical mechanismbyrevealingthemolecularstructuresofthereactants,intermediates,andproducts.3 Overtheyears,differentspectroscopytechniqueshavebeenadaptedtoprobeelectrochemicalinterfacessuchasinfraredreflectionadsorptionspectroscopy(IRRAS), Ramanspectroscopy,andX-rayspectroscopy.WhiletheIRRASandRamanspectroscopiesallowinsituprobing,noneofthemis highlysurface-speci fic.X-rayspectroscopyissurface-specificbutcannotyetbeappliedtosolid –liquidsystems,thoughsomeconsiderableadvanceswerereported.4 Hence,ourunderstandingofmanyaspectsofinterfacesinelectrochemicalsystemsisstilllacking, andtheneedforareal-timeanalyticaltoolthatcanaccesssolid –liquidinterfacesiscrucial.

Thedevelopmentofsumfrequencygenerationvibrationalspectroscopy(SFGVS)hasenabledsurface-speci ficstudiesofvarious surfacesandinterfaces.SFGVSisanondestructive,insitunonlinearopticalmethodthatdoesnotrequireanyphotoactivelabeling orhasanyrestrictionstothesample’spreparation.SFGVSisanonlinearopticalmethodthatyieldsvibrationalspectraofmolecules atburiedinterfaceswithhigh-interfaceselectivityandsensitivity.Vibrationalspectraareknowntobethe fingerprintsofmolecules. Consequently,SFGVScanbeusedtoidentifyinterfacial(adsorbed)speciesonasurface,probetheirdynamics,andsinceitisalaserbasedtechniquebypolarizingthelaserbeams,itcanprovidetheinterfacialspeciesorientationwithrespecttothesurfaceplane.

Inthisarticle,wepresentrecentapplicationsofSFGVSinstudiesofresearchgroupsthattookontheendeavortounderstand interfacialprocessesonthemolecularlevelofsystemsrelevanttoenergygenerationandstoragelikelithiumionbatteriesand fuelcells.

BasicConceptsofSFGVSforStudiesofElectrifiedSolid–LiquidInterfaces

Vibrationalsum-frequencygeneration(VSFG)spectroscopyisasecond-ordernonlinearopticaltechniquethatisintrinsicallysensitivetoprobingvibrationalspectrumofmoleculeswithinafewmolecularlayers(Angstroms)ofaninterface.Thissectiondescribes thegeneralandbasictheoryofSFG,whichprovidesguidelinesforapplyingSFGforinterfacialcharacterization.

Briefly,theSFGprocessfromaninterfacialsystem(anytwomediumsincontact)comprisestwoincidentlaserbeamswith frequenciesof u1 and u2,overlappingontheinterfacebothspatiallyandtemporarytoinduceanonlinearpolarizationhaving thesumoftheincominglaserfrequencies us ¼ u1 þ u2.Theoutcomeofasumfrequencyradiation(beam)isinboththereflected andtransmitteddirections.Basedontheelectric-dipoleapproximation,SFGisforbiddeninthebulksinceithasaninversion symmetrybutisallowedattheinterfacewheretheinversionsymmetryisbroken.Ifthehigherorderelectricquadrupoleresponse fromabulkisnegligible,theSFGisdominatedbythesurfaceresponseandthereforeintrinsicallyinterfacesensitive. Fig.1A shows theSFGprocessinaninterfacialsystem.ThegeneratedSFGbeamisbothinthereflectedandthetransmitteddirections.In Fig.1A, thetwoincidentbeamscopropagatewithrespecttotheplanenormaltothesurfaceincidentontheinterfaceatangles q1 and q2, andtheresultedSFGreflectedandtransmittedbeamsexitatangles qSR and qST.Wecancalculate qSR and qST,basedonboundary

Fig.1 (A)AschematicofaSFGprocessataninterface.(B)EnergydiagramsanddescriptionofresonantSFGVSwith(1) u2 inresonancewith avibrationaltransition,(2) uS inresonancewithanelectronictransition,and(3)both u2 and uS areinresonances.

conditionsandphase-matchingrequirements, k1jj þ k2jj ¼ ksjj .Eq. (1) describestheemittedSFGdirectionbasedonthewavelength oftheinputbeamsandthegeometryofthesetup:

where n istherefractiveindexofthemediuminwhichtheSFGispresent.

Fig.1B showstheenergylevelsfortheexcitationsinaSFGprocess.IntheSFGVS, u1 istypicallyinthevisiblespectralregionand u2 isintheinfrared(IR)spectralregion.Whenevereither u1 or u2 or/and uS areinresonancewiththeelectronicorvibrational modeattheinterface,theSFGintensityincreasesseveralordersofmagnitudes.5 ByscanningtheIRfrequencyandmonitoring theSFGintensity,weobtainthevibrationalspectrumofsurfacemoleculesandthestructuralinformationfromthemolecules presentattheinterface.TheoutputintensityofthereflectedSFGisgivenbythesquareofthesumofthesecond-ordernonlinear susceptibilityandtheintensitiesoftheinputbeams,asshowninEq. (2)

denotetheFresnelfactorsfortheoutputandinputbeams.InSFGVS,inordertocharacterizethe vibrationalmodesofadsorbates,onewouldusetheexpressioninEq. (3) to fittheobservedspectrum.

where Aq ! , uq, Gq aretheamplitude,frequency,anddampingcoefficientofthe qthvibrationmode,respectively, cNR (2) isthesecondordernonlinearsusceptibilityfromthenonresonantbackground. Lu ! istheFresnelfactorat u,andtheselocal fieldfactorscanbe calculatedbasedonthephysicalandgeometricalpropertiesoftheSFGapparatusandexperiment:thebeamangles,therefractive indexofthemedium,etc.TheSFGdatahastobeprocessedsothatonecandeducethesurfacenonlinearsusceptibility, x ! 2 ðÞ s j from theSFGsignalamplitude.Usually,thisiscarriedoutbyremovingthegeometricfactorsandFresnelcoefficientsandsoweareleft withthesignal’samplitudethatinturngives x ! 2 ðÞ s j.Thenonlinearsusceptibilityholdstheinformationoftheadsorbate’ s molecularorientationandtheadsorbatelayerorderingdegree,6 ofwhichwegiveexampleslaterinthissection.

Whenstudyingelectrifiedinterfaces,theeffectfromanelectric fieldorso-calledelectricdoublelayer(EDL)ontheSFGsignal needstobeconsideredduetotheadditionalcontributionfromthesecond-orderbulknonlinearsusceptibilityinsidetheEDL. Thispotential-inducedcontributionoriginatesfromtheelectric-dipole-allowedthird-orderbulknonlinearsusceptibilityandthe fieldintheEDL.7–9 Theintensityofapotential-dependentreflectedSFGbeaminthepresenceofanEDLcanbeexpressedas7:

ISFG uVIS þ uIR ; f ðÞfI uIR ðÞI uVIS ðÞ c 2 ðÞ eff uIR ; f ðÞþ Z N 0 dzc 3 ðÞ uIR ; z; f ðÞEDC z ðÞ 2 (4)

where f ispotentialand EDC(z)isthestaticelectric fieldfromtheelectrodethatisadecayingfunctionof z.Thethird-order susceptibility, c(3)(uIR, z, f),varieswiththedistance z fromtheelectrodesurfacestartingat z ¼ 0.Ifweassumethatthe field EDC(z)isconstantinthedoublelayerandequalstozerointhebulkelectrolyte,theequationcanbeexpressedasfollows:

ISFG uVIS þ uIR ; f ðÞfI uIR ðÞI uVIS ðÞ c 2 ðÞ eff uIR ; f ðÞ 2 þ 2Re c 2 ðÞ eff uIR ; f ðÞc 3 ðÞ DL uIR ; f ðÞeid hi þ c 3 ðÞ DL uIR ; f ðÞ 2 ðÞ f2 (5) where cDL (3)(uIR, f)isthethird-orderpotential-dependentsusceptibilityofthedoublelayer.Thethird-ordersusceptibilityinthe doublelayeristhesumofthethird-orderhyperpolarizabilitiesofallthemoleculesinthedoublelayer.10 d isaphasefactorthatis

difficulttodetermineinthehomodyne(i.e., c ! 2 ðÞ eff 2 )detectionscheme.ThistermalsoimpliesthatSFGVSofmetalinterfacescan sufferfromaninterferenceduetoastrongbackgroundinthespectrumthatcomesfromthemetalor/andelectrolyteanddepends ontheelectrode’spotential.Inreality,thepresenceofastrongdispersivebackgroundthatdependsonthepotentialoftheelectrode needstobeconsideredintheSFGspectraanalysis,asitmayalsocausetheSFGspectratobeconvolutedandreducetheaccuracyof fitting.11 BycarefullyevaluatingtheSFGspectrumdependenceintheapplied field,onecanconstructthemolecularstructureofthe electrifiedinterface.

OneofSFGVSgreatestadvantagesistheabilitytocarryoutorientationanalysisoftheadsorbates.Wecandeducetheorientation ofmoleculesatinterfacesbyanalyzingsetsofSFGspectratakenunderdifferentpolarizationcombinationsoftheincidentincoming lightsandtheresultingSFGlight.Forexample,spectraacquiredatSSP(wheres-,s-,p-arethevisible,IR,andSFGpolarized fields, respectively)polarizationissensitivetodipolemomentsthatareorientedperpendiculartothesample’ssurfaceplaneforan isotropicsurface.Generally,themolecularorientationofanadsorbatecanbededucedfromtheratiobetweensymmetricandasymmetricstretchingvibrationsofaspecificgroup(e.g.,C]Oor –CH2–)byspeci ficpolarizationcombinations.Forexample,inthe caseofamonolayerofC]Ostretchingmodeonanazimuthallyisotropicsurfacehavinga CNv symmetry.Weconsiderthe Z axistobealongthesurfacenormalandthe X and Y axis,tolieinparalleltothesurface.ForaSFGmeasurementwiththeSSP andSPSpolarizationcombinations, xijk(2) canbereducedtononzerocomponent x 2 ðÞ yyz ¼ x 2 ðÞ xxz and x 2 ðÞ yzy ¼ x 2 ðÞ xzx respectively,where x 2 ðÞ ijk ¼ Ns P abc b i ∙ b a b j ∙ b b b k ∙ b c DEa 2 ðÞ abc a, b,and c representthemolecularcoordinatesasdescribedin Fig.2A, aabc(2) isthemolecular hyperpolarizabilityandisrelatedtotheIRdipoleandRamanpolarizabilityofavibrationalmode.ForthestretchingmodeofC]O:

with q denotingthetiltangleofC]Owithrespecttothe z-axis. R ishyperpolarizabilityratioof aacc and accc.Theanglebrackets representtheensembleaverageover f(q),withapolarorientationdistributionoftheC]Obondsinthetiltangle q,attherangeof 0 q p/2fromthesurfacenormal. Fig.2B showsasimulationfortheratioof xyzy (2) to xyyz (2) andtheorientationanglefordifferent angledistributionof0and10degrees.Wecancalculatetheaverage q fromthenormalizedintensityratiooftheSSPandSPSspectra. AnotherorientationanalysisexampleistheCH2 stretchingintensitiesofanazimuthallyisotropicsample.TheSSPmeasurementsof theCH2 stretchesyieldthat x 2 ðÞ xxz ¼ x 2 ðÞ yyz .TheexplicitexpressionforthesymmetricstretchingmodeofCH2 is:

andfortheasymmetricstretching:

with q denotingthepolarangleofthesymmetryaxis c withrespecttothe z-axis.Fromtheratiodeducedfromthes-CH2 andas-CH2 spectra,theaverage q canbedetermined.

Inpractice,whenappliedtometallicinterfaces,thedeterminationofthemolecularorientationischallengingasthes-polarized componentofthereflectedlightfrommetalsurfacesisusuallyweak.SFGwithallpolarizationcombinationscontainingan

Fig.2 (A)Themolecularcoordinatesofacarbonyl(C]O)groupandamethylene(CH2)group.(B)Theratioof xyzy (2) to xyyz (2) inregardtoaverage angle q ofacarbonylgroup. Black and red linesarefortheratioof xyzy (2) to xyyz (2) whichiscalculatedwiththeGaussiandistributionfunctionandangle distributionof0and10degrees,respectively.

s-component(exceptforPPP)hasshownlowsignal-to-noiseratio.Hence,mostSFGVSstudiesonmetalelectrochemicalinterfaces applythePPPpolarizationcombination.ThePPPcombinationinturnalsolimitstheaccuracyoforientationdeterminationsinceit hascontributionsfromallpossiblepolarizations.

ProbingSolid–LiquidInterfacesUnderReactionCondition Li-IonBatteries

Sincethebirthofthecommerciallithiumionbatteryinthe1990swhenSonyInc.engineersclampedtogetheracarbonationsanode withadischargedoxidecathode,asenvisionedbyGoodenough,12,13 significanttechnologicaladvanceshadoccurredinthe fieldof energystorage,specificallyinthelithium(Li)ionbattery.Generally,theLi-ionbatteryiscomposedoftwoelectrodes,aseparator membranedesignedtoensureelectricalinsulationofthetwoelectrodesandamediumthatallowstheLi-ionstodiffusethroughit betweenthetwoelectrodes.ManyaspectsoftheLi-ionbatteryhavebeendesignedtoachievethemaximalefficiencywithout compromisingsafety,capacity,andpowerdemands.14,15 Thelithiumionbatteryisadynamicsystemevenatopencircuitpotential (OCP)whennoexternalpotentialisapplied.ThedifferenceoftheGibb’sfreeenergybetweentheorganicmoleculestotheelectrode energylevelsisenoughtoinitiateredoxreactionsuponmerecontactoftheelectrolyte/electrode16;thus,insitumethodologies shouldbeemployedfortheirstudy.Moreover,itwassuggestedthattheoverallbehavioroftheLi-ionbatteryisdefinedatthe electrode –electrolyteinterface.17 SFGVSisthebestoptionasitcanbeusedtoprobethelithiumionbatterycomponents(mainly electrodesurface,theeffectofsurfacetermination,andtheelectrode –electrolyteinterface)under “asprepared” andreactionconditions.Forexample,byapplyingSFGonecandeducethesurfaceconcentrationandorientationofthevariouselectrolytemolecules onacathodematerial.18 Yuetal.havedemonstratedthatatOCP,thereisapreferentialadsorptionofcycliccarbonates,mainly ethylenecarbonate(EC)overlinearcarbonatessuchasdiethylcarbonate(DEC)anddimethylcarbonate(DMC).19 ECwasfound tobethedominatingadsorbateontheLiCoO2 (cathodematerial)regardlessofitsmolecularproportioninthesolutionbulk.Refer to Fig.3

TheinterpretationofSFGspectraofsolid –liquidinterfacesischallengingandattimesambiguous;therefore,computational modelingcangreatlyimproveourunderstandinganddeciphertheresultingnonlinearvibrationalspectra.Asageneralcase,we canexaminethedifferencesbetweenprobingthe[c2]2 (absolutesquare)versusprobingtheimaginarypart Im[c2].Aswehave notedinourexplanationforEq. (3), c 2 holdsthechemicalandphysicalinformationoftheadsorbatesthatweprobebySFGVS. Eq. (3) canberearrangedsothat:

Fig.3 TheSPSpolarizedSFGspectraofLiCoO2 incontactwithEC:DMC(1:1involume)atopencircuitpotential.Toppanels:SFGspectrawhere thenonresonantbackgroundisremoved.Middlepanels:SFGspectra(circle)andtheir fittingresults(solidtraces).Bottompanels:deconvoluted bandsfortheSFGspectra.Theupwardanddownwardpeaksrepresentmodeswithreversedphases.Allthespectra(exceptforthemiddlepanels) areoffsetforclarity.AdaptedwithpermissionfromYu,L.;Liu,H.;Wang,Y.;etal.PreferentialAdsorptionofSolventsontheCathodeSurfaceof LithiumIonBatteries. Angew.Chem.Int.Ed.Engl. 2013, 52,5753–5756.

where fq isaphaseanglewithrespecttothenonresonantsignal cNR 2 .Whileobtaining[c2]2 iswellestablishedandisbasedon astraightforwarddesignoftheSFGapparatus,thereisafundamentalshortcomingofthistechnique,wherebyallinformationon thecomplexnatureof c 2 islost.Forexample,foragivenvibrationassociatedwithaspeci ficbond,wecandeducetheangle distributionofthedipolemomentbycalculatingtheintensityratiobetweenSSPandSPS.However,justfromthe c2 2 ssp c2 2 sps ratio,wecannotpredictifthedipolemomentispointingawayfromthesurfaceorpointingtothesurface.Probingthecomplex representationof c2,speci ficallyitsimaginarycomponent, Im[c2]readilyrevealsthedipoleorientation.Nevertheless,itrequires eitheraphase-modulationoraheterodyneSFGsetuptogetherwithsolidmathematicalmodeling.

Inordertosimplifytheinterpretationofphase-sensitiveSFGVS,thatis, Im[c2],MoritaandHynes,begunbymodelingtheSFG spectraaccordingtotheenergyrepresentationofthenonlinearsusceptibility, c2,inmoleculardynamics(MD)calculations.20 They havepioneeredthecomputationalanalysisofSFGspectroscopyingeneralandsuggestedanalternativeMDmodelbasedonthe timecorrelationfunction.21 Recently,Moritaetal.haveincorporatedthechargeresponsekernel(CRK)modelintheirworkbringing thecomputationalmodeltobetterinterprettheexperimentalSFGspectra.22,23 TheCRKwassuccessfullyimplementedininvestigatingthevapor –liquidinterfacestructureofDMCandpropylenecarbonate(PC),bothcommonsolventsinLi-ionelectrolytesolutions.22 ThestudyprobedtheC]Ostretchanditsorientationattheliquid –gasinterface.In Fig.4,wecanseethatthesimulatedMD SFG(A,C)andexperimentalSFG(B,D)spectraofPCandDMCatthesolid –gasinterfacecorrespondwell.However,theimportanceoftheMDsimulationwasdemonstratedbyrevealingthatthereasonfortheC]ObipolarbandslieswithDMChavingan almostisotropicorientationwhilePChasanorderedstructureduetoPCdimersasdiscussedinRef.[23].

TheadvantagesofSFGvibrationalspectroscopyasasurfacespeci ficspectroscopyaredemonstratedinthestudyofthesolid (electrode) –liquid(electrolyte)interfaceandevenmoresoinexaminingthesolidelectrolyteinterphase(SEI).24 TheSEI25,26 is atermandconceptthathasbeenwidelyacceptedforthereductionproductsformedonananodeoftheliquidhydrocarbonelectrolytemoleculesinteractingwithLi-ionsduringthechargingprocess.TheSEIservesasaphysicalbarrierandachemicallyinert coatingthathindersfurtherelectrolytereductiononthesurfaceoftheanode.Meanwhile,itallowslithiumionsdiffusion,at areasonablerate,throughittothelithiumionhost(anode)uponchargingandbacktotheelectrolytesolutiononcethedischarge oftheLi-ionbatterytakesplace.

OneofthekeystepsforamajorimprovementoftheLi-ionbatteryisunderstandingtheSEI’sstructure-relateddiffusioninenergy storagematerials.TheSEIformationisacrucialstepaschargeanddischargeratesofLi-ionbatteriesarediffusion-limited.The fundamentalunderstandingoftheiontransportanddiffusionmechanismwillultimatelyleadtofastercharging,longerlasting, andsaferLi-ionbatteries.Severalgroupshavesettoexplorethecomposition,structure,andformation/degradationmechanisms ofthesolidelectrolyteinterfaceonthesurfacesofelectrodesatOCPandduringcharge/dischargecyclesbyapplyingadvanced insituSFGvibrationalspectroscopy.

TheSEI’sbehaviorwasalsoinvestigatedunderappliedpotentials.Dlottetal.carefullychoseanelectrochemicalsystemto produceasingleSEIproduct.24 Theycycledlithiumperchlorate(LiClO4)saltdissolvedinanECdilutedwithtetrahydrofuran (THF)incontactwitheithergoldorcopperanodesbetween2.0and0.2V(vs.Li/Liþ).Thesinglereductionproductwaslithium ethylenedicarbonatewithatraceamountofethylenehavingtwoC]Odistinctvibrationalfrequenciesat1782and1800cm 1 , referto Fig.5.Theyhadreportedtwomain findings.The firstisthattheSEI “breaths” asafunctionofappliedpotentialonly whenreducedonacopperelectrode.ThisincreaseanddecreaseoftheSEIwidthisnotapparentwhenagoldelectrodeisused eventhoughthesameelectrolyteandthesameelectrochemicalconditionsasintheCucasearemaintained.Thesecond,presented in Fig.6,wasthattheappliedexternalpotentialaffectstheSFGprofile27 andsooneshouldcarefullyexaminetheSFGpro file obtainedunderpotentiodynamicconditions.

Fig.4 ThesimulatedMDSFG(A,C)andexperimentalSFG(B,D)spectraofpropylenecarbonate(PC)anddimethylcarbonate(DMC)solid–gas interface.Left TheSSP-polarizedSFGspectraareshownin red andSPSspectrain blue.Right TheSSPpolarizedimaginarycomponent,Im[c2], calculatedSFGspectraofPC(up)andDMC(bottom)solid–gasinterface.TheMDsimulationsshowthattheSFGbipolarbandoriginatesfrom differentmolecularinteractions,dimerizationforPC(up)andrandomforDMC(bottom).ReprintedwithpermissionfromWang,L.;Peng,Q.L.;Ye, S.;Morita,A.SurfaceStructureofOrganicCarbonateLiquidsInvestigatedbyMolecularDynamicsSimulationandSumFrequencyGenerationSpectroscopy. J.Phys.Chem.C 2016, 120,15185–15197;Ishiyama,T.;Morita,A.ComputationalAnalysisofVibrationalSumFrequencyGenerationSpectroscopy. Annu.Rev.Phys.Chem. 2017, 68,355–377.Copyright(2017)AmericanChemicalSociety.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.