Encyclopedia of interfacial chemistry: surface science and electrochemistry (vol 1 - vol 7) klaus wa

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Encyclopedia of Biomedical Engineering (vol. 1-3) Min Wang

https://ebookmass.com/product/encyclopedia-of-biomedical-engineeringvol-1-3-min-wang/

ebookmass.com

Encyclopedia of Microbiology, vol.1 4th Edition Edition Thomas M. Schmidt

https://ebookmass.com/product/encyclopedia-of-microbiology-vol-1-4thedition-edition-thomas-m-schmidt/

ebookmass.com

Encyclopedia of Materials: Composites: Composites. Volume 1 1st Edition Dermot Brabazon (Editor)

https://ebookmass.com/product/encyclopedia-of-materials-compositescomposites-volume-1-1st-edition-dermot-brabazon-editor/

ebookmass.com

Netter’s Obstetrics and Gynecology-Elsevier (2017) 3rd Edition Roger Smith

https://ebookmass.com/product/netters-obstetrics-and-gynecologyelsevier-2017-3rd-edition-roger-smith/

ebookmass.com

INTERFACIALCHEMISTRY

SURFACESCIENCEANDELECTROCHEMISTRY

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 50HampshireStreet,5thFloor,Cambridge,MA02139,USA

Copyright 2018ElsevierInc.Allrightsreserved

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybenoted herein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding,changesin researchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmayalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods, compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthe safetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjuryand/or damagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN978-0-12-809739-7

Forinformationonallpublicationsvisitourwebsite at http://store.elsevier.com

Publisher:OliverWalter

AcquisitionEditor:RachelGerlis

ContentProjectManager:FionaPattison Designer:MatthewLimbert

PrintedandboundintheUnitedStates

PREFACE

ThemotivationforcompilingandpublishingthisencyclopediaonInterfacialChemistrywastopromotethe communicationbetweenchemists,electrochemists,physicochemists,aswellassolid-stateandsurfacephysicists.Thegrowingdiversi ficationandspecializationofscienceandresearchmakesmutualunderstandingmore andmoredifficult,andthereforeinterdisciplinarycommunicationimperative.Chemiststakegreatadvantageof heterogeneouscatalystsoftenwithoutknowingtheirpropertiesandoperationontheatomicscale.This knowledge,however,isnecessaryforarationaldesignandoptimizationofthecatalysts’ activity,selectivity,and stability.Electrochemistsandsurfacephysicistsworkingonasimilarproblemsuchas filmdepositionand growth,justindifferentenvironment,maynotshareknowledgeduetodistinctlydifferent “languages,” suchas “underpotentialdeposition” and “Franck-van-der-Merwegrowth” forasimilarphenomenon.Andthereare knowndifferencesbetweenthemore “practical” approachofchemistsandthemore “formal” approachof physicists,includingtheresultantcommunication “barriers”.Ontheotherhand,allmodernexperimental analyticaltoolsarebasedonphysicalphenomena,suchasinteractionofradiationwithmatterandelectron tunneling,andareimplementedbyphysicists.Interfacialchemistry,asanexcellentexampleofinterdisciplinary research,canonlyprofitfromanunbiasedcommunicationandmutualunderstandingbetweenthedifferent involveddisciplines.

Interfacesarethedividesbetweenphases,e.g.,solid/gas,solid/liquid,solid/solid,liquid/gas,liquid/liquid, andthusaninherentpropertyofheterogeneoussystems. “Heterogeneous” sounds,andactuallyis,more complexthan “homogeneous” andthereforecallsforamultidisciplinaryapproach.Toinvestigateand understand “electrocatalysis,” itiscertainlyhelpfultotakeintoaccounttheexperienceandknowledgeof electrochemists and solid-stateandsurfacephysicists,twocommunitiesthatarenotknownforaclose connection.

Thedifferenceinpropertiesoneithersideofthedividehastwoimportantconsequences:(1)interfacesare thelocationsofgradientsthatareadrivingforceforprocessesand(2)interactionsacrosstheinterfacewill obviouslyalsoalterthepropertiesininterface-nearlayersoftheadjacentphases.Ifasolidironsurfaceis exposedtooxygengas,thesurfacewilloxidize;theresultantoxidelayerdiffersfromthepureironunderneath.If twodifferentsolids(orliquids)formacommonphaseboundary,interdiffusionwillchangethecompositionof theinterface-nearregionsonbothsides.Ifaplatinumelectrodeinsulfuricacidsolutionisnegativelypolarized, protons(hydroniumcations)areattractedwiththeconsequencethatthepHnearthePt/electrolyteinterfaceis lowerthaninthebulkofthesolution.Andifacopperelectrodeinhydrochloricacidsolutionispositively polarized,chlorideanionswillbeattracted,adsorb,andrestructurethesurface before surfaceatomsformsoluble copperchloridespecies.

Interestingly,notonlythepresenceofinteractionsacrossaninterfacecausesalterationsoneitherside,but alsothesudden absence ofinteractionsacrossaninterfacehasadecisiveinfluence:Whileanatominthebulkof asolidinequilibriumissurroundedbyandinteractswithatomsonallsides,anatomattheverysurfacein vacuumhasnoneighborstointeractwithonthevacuumside.Thisunbalancedrivesthesystemtowardanew equilibriumandcausesarepositioningofthesurfaceatoms;mostintuitivelythesurfaceatoms “relax” toward thebulkofthesolid.Butthereareevencaseswherethesurfaceatomlayerasawholeassumesatwodimensionallatticestructuredifferentfromthatofaparallelplaneinthebulk,thesurface “reconstructs.” Duetothemissingneighbors,the “unsaturatedbonds” of surface atoms(incontactwithvacuum)addtothe totalenergyofthesolid.Thesurface “relaxation” and “reconstruction” are aresponseofthesystemtolowerthis “excesssurfaceenergy.” Theverysameargumentexplainswhyinequilibriumalsothe surfacecomposition of multicomponentmaterials,e.g.,alloys,solutions,mustbeexpectedtobedifferentfromthebulkcomposition.

Thispageintentionallyleftblank

J-CDong

XiamenUniversity,Xiamen,China

KDuanmu

ChemicalandBiomolecularEngineeringDepartment, UniversityofCalifornia,LosAngeles,CA,UnitedStates

AKEngstfeld

TechnicalUniversityofDenmark,Lyngby,Denmark

AErbe

NorwegianUniversityofScienceandTechnology, Trondheim,Norway

BEren

WeizmannInstituteofScience,Rehovot, Israel

SFearn

ImperialCollegeLondon,London,UnitedKingdom

JMFeliu InstitutodeElectroquímica,UniversidaddeAlicante, Alicante,Spain

SFerrer

AlbaSynchrotronLightSource,Barcelona,Spain

MFilez

UtrechtUniversity,Utrecht,TheNetherlands

AFoelske-Schmitz

ViennaUniversityofTechnology,Vienna, Austria

H-JFreund

FritzHaberInstituteoftheMaxPlanckSociety,Berlin, Germany

TFukuma

KanazawaUniversity,Kanazawa,Japan

KFushimi

HokkaidoUniversity,Sapporo,Japan

HHGirault

ÉcolePolytechniqueFédéraledeLausanne(EPFLValais Wallis),Sion,Switzerland

MJGladys UniversityofNewcastle,Callaghan,NSW,Australia

CGoletti

PhysicsDepartment,UniversityofRomeTorVergata, Roma,Italy

IMNGroot

LeidenUniversity,Leiden,TheNetherlands

H-LHan

LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

ARHead

LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates

YHorowitz

LawrenceBerkeleyNationalLaboratory,Berkeley,CA, UnitedStates;andUniversityofCalifornia,Berkeley, CA,UnitedStates

KHubkowska

UniversityofWarsaw,Warsaw,Poland

TJones

Fritz-Haber-InstitutderMax-Planck-Gesellschaft, Berlin,Germany

MJurczyszyn UniversityofWrocł aw,Wrocł aw,Poland

MMKappes

KarlsruheInstituteofTechnology(KIT),Karlsruhe, Germany

MKeddam

SorbonneUniversités,Paris,France

AKlyushin

Fritz-Haber-InstitutderMax-Planck-Gesellschaft, Berlin,Germany;andHelmholtz-ZentrumBerlin fürMaterialienundEnergieGmbH,Berlin, Germany

AKnop-Gericke

Fritz-Haber-InstitutderMax-Planck-Gesellschaft, Berlin,Germany

JKnudsen

MAXIVLaboratory&LundUniversity,Lund,Sweden

FLaMantia

UniversitätBremen,Bremen,Germany

ALasia

UniversitédeSherbrooke,Sherbrooke,QC,Canada

ALesch

ÉcolePolytechniqueFédéraledeLausanne(EPFLValais Wallis),Sion,Switzerland

J-FLi

XiamenUniversity,Xiamen,China

T-ELin

ÉcolePolytechniqueFédéraledeLausanne(EPFLValais Wallis),Sion,Switzerland

M q ukaszewski UniversityofWarsaw,Warsaw,Poland

IMatsuda

TheInstituteforSolidStatePhysics,TheUniversityof Tokyo,Chiba,Japan

CONTENTSOFVOLUME1

VOLUME1.1:EXPERIMENTALMETHODS

AReviewonInSituSumFrequencyGenerationVibrationalSpectroscopyStudies ofLiquid SolidInterfacesinElectrochemicalSystems1 H-LHan,YHorowitz,andGASomorjai

AmbientPressureX-RayPhotoelectronSpectroscopy13 ARHeadandHBluhm

Angle-ResolvedPhotoelectronSpectroscopyatSurfacesWithHigh-OrderHarmonicGeneration28 C-TChiang

AtomicScaleSTMImagingofAlloySurfacesWithChemicalResolution39 AKEngstfeld

CyclicVoltammetry

48 VClimentandJMFeliu

DifferentialCapacitanceMeasurementsonPassiveFilms75 FDiQuarto,FDiFranco,MSantamaria,andFLaMantia

EISTechniqueinPassivityStudies:DeterminationoftheDielectricPropertiesofPassiveFilms93 BTribollet,VVivier,andMEOrazem

ElectrochemicalScanningTunnelingMicroscopy108 MNowickiandKWandelt

ElectronParamagneticResonanceSpectroscopyatSurfaces129 PMClawin,NFRichter,WRiedel,HRonneburg,andTRisse

EllipsometryinPassiveFilms 143 TOhtsukaandKFushimi

ExperimentalMethodsinInterfacialandSurfaceChemistry157 KWandelt

FieldIonandFieldDesorptionMicroscopy:SurfaceChemistryApplications162 YSuchorski

High-SpeedElectrochemicalSTM180 MJRost

HowtoProbeStructure,Kinetics,andDynamicsatComplexInterfacesInSituand OperandobyOpticalSpectroscopy199 AErbe,SNayak,Y-HChen,FNiu,MPander,STecklenburg,andCToparli

ImagingChemicalReactionsOneMoleculeataTime220 ZNovotny,ZZhang,andZDohnálek

ImpedanceSpectroscopyAppliedtotheStudyofElectrocatalyticProcesses241 ALasia

InSituPhotoelectronSpectroscopy264 ABraun

InSituProbingofAdsorbatesatElectrochemicalInterfacesWithVibrational SumFrequencySpectroscopy 280 YTongandRKCampen

InSituReal-TimeLow-EnergyElectronMicroscopy287 MBCasu

IonConductanceProbeMicroscopy MolecularResolution295 YZhou,TFukuma,andYTakahashi

Micro-SpectroscopytoInterrogateSolidCatalystsatWork304 MFilez,ZRistanovic,andBMWeckhuysen

OnlineChromatographicDetection321 AVRudnev

On-LineInductivelyCoupledPlasmaSpectrometryinElectrochemistry:BasicPrinciples andApplications 326 SCherevkoandKJJMayrhofer

OperandoScanningProbeMicroscopy,SurfaceX-RayDiffraction,andOptical MicroscopyforCatalysisStudies336 IMNGroot

PerspectivesofAdvancedIonBeamAnalysisofElectrochemicallyActiveSurfaces354 SFearnandERuiz-Trejo

PhotocurrentSpectroscopyinPassivityStudies361 FDiQuarto,FDiFranco,AZaffora,andMSantamaria

PhotoelectronDiffraction 372 DPWoodruff

PhotoemissionTomography:ValenceBandPhotoemissionasaQuantitativeMethod forInvestigatingMolecularFilms380 PPuschnigandMGRamsey

PorousElectrodesinBioelectrochemistry392 TVidakovic-KochandKSundmacher

QuartzCrystalNanobalanceMeasurementsinElectrocatalysis402 KHubkowska,M Łukaszewski,andACzerwinski

ReflectanceAnisotropySpectroscopy413 CGoletti

RotatingDiskandRing DiskElectrodes421 SVesztergom

ScanningElectrochemicalMicroscopyforBioimaging445 T-ELin,ABondarenko,ALesch,andHHGirault

ScanningElectrochemicalMicroscopyintheAC-Mode453 MKeddam,CMSánchez-Sánchez,andVVivier

PERMISSIONACKNOWLEDGMENTS

ThefollowingmaterialisreproducedwithkindpermissionofAmericanAssociationfortheAdvancementof Science

Figure12CatalysisforEnergyConversion

Figure3(left)BiophotovoltaicSystems

Figure1bConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure2bConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure12Silicene

Figure7AtomicScaleSTMImagingofAlloySurfacesWithChemicalResolution http://www.aaas.org/

ThefollowingmaterialisreproducedwithkindpermissionofNaturePublishingGroup

Figure8SubstrateMediatedInteractions

Figure3(middle)BiophotovoltaicSystems

Figure4BiophotovoltaicSystems

Figure12A-CBiophotovoltaicSystems

Figure14G-HBiophotovoltaicSystems

Figure3Lanthanide-Based2DCoordinationNetworks

Figure2TemperatureControlofReactionPathways:Intramolecularvs.Intermolecular

Figure3TemperatureControlofReactionPathways:Intramolecularvs.Intermolecular

Figure5TemperatureControlofReactionPathways:Intramolecularvs.Intermolecular

Figure6TemperatureControlofReactionPathways:Intramolecularvs.Intermolecular

Figure1aConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure1dConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure2dConductanceandLightEmissionFromOn-surfaceSynthesizedMolecularWires

Figure1On-surfaceSynthesisofGrapheneNanoribbons

Figure2bOn-surfaceSynthesisofGrapheneNanoribbons

Figure2cOn-surfaceSynthesisofGrapheneNanoribbons

Figure2dOn-surfaceSynthesisofGrapheneNanoribbons

Figure3aOn-surfaceSynthesisofGrapheneNanoribbons

Figure3bOn-surfaceSynthesisofGrapheneNanoribbons

Figure3cOn-surfaceSynthesisofGrapheneNanoribbons

Figure3dOn-surfaceSynthesisofGrapheneNanoribbons

Figure6aOn-surfaceSynthesisofGrapheneNanoribbons

Figure8aOn-surfaceSynthesisofGrapheneNanoribbons

Figure8bOn-surfaceSynthesisofGrapheneNanoribbons

Figure8dOn-surfaceSynthesisofGrapheneNanoribbons

Figure8eOn-surfaceSynthesisofGrapheneNanoribbons

Figure9bOn-surfaceSynthesisofGrapheneNanoribbons

Figure9cOn-surfaceSynthesisofGrapheneNanoribbons

Figure9dOn-surfaceSynthesisofGrapheneNanoribbons

Figure11aOn-surfaceSynthesisofGrapheneNanoribbons

Figure11bOn-surfaceSynthesisofGrapheneNanoribbons

Figure11cOn-surfaceSynthesisofGrapheneNanoribbons

Figure11dOn-surfaceSynthesisofGrapheneNanoribbons

Figure11abSilicene

Figure14Silicene

Figure2OxideThinFilmsforMemristiveDevices

Figure2SteeringMolecularAssembliesandReactionsonSurface

Figure5SteeringMolecularAssembliesandReactionsonSurface

Figure10SteeringMolecularAssembliesandReactionsonSurface

Figure3UllmannCouplingofPorphyrins

Figure4UllmannCouplingofPorphyrins

http://www.nature.com

Fig.1 (A)AschematicofaSFGprocessataninterface.(B)EnergydiagramsanddescriptionofresonantSFGVSwith(1) u2 inresonancewith avibrationaltransition,(2) uS inresonancewithanelectronictransition,and(3)both u2 and uS areinresonances.

conditionsandphase-matchingrequirements, k1jj þ k2jj ¼ ksjj .Eq. (1) describestheemittedSFGdirectionbasedonthewavelength oftheinputbeamsandthegeometryofthesetup:

where n istherefractiveindexofthemediuminwhichtheSFGispresent.

Fig.1B showstheenergylevelsfortheexcitationsinaSFGprocess.IntheSFGVS, u1 istypicallyinthevisiblespectralregionand u2 isintheinfrared(IR)spectralregion.Whenevereither u1 or u2 or/and uS areinresonancewiththeelectronicorvibrational modeattheinterface,theSFGintensityincreasesseveralordersofmagnitudes.5 ByscanningtheIRfrequencyandmonitoring theSFGintensity,weobtainthevibrationalspectrumofsurfacemoleculesandthestructuralinformationfromthemolecules presentattheinterface.TheoutputintensityofthereflectedSFGisgivenbythesquareofthesumofthesecond-ordernonlinear susceptibilityandtheintensitiesoftheinputbeams,asshowninEq. (2)

denotetheFresnelfactorsfortheoutputandinputbeams.InSFGVS,inordertocharacterizethe vibrationalmodesofadsorbates,onewouldusetheexpressioninEq. (3) to fittheobservedspectrum.

where Aq ! , uq, Gq aretheamplitude,frequency,anddampingcoefficientofthe qthvibrationmode,respectively, cNR (2) isthesecondordernonlinearsusceptibilityfromthenonresonantbackground. Lu ! istheFresnelfactorat u,andtheselocal fieldfactorscanbe calculatedbasedonthephysicalandgeometricalpropertiesoftheSFGapparatusandexperiment:thebeamangles,therefractive indexofthemedium,etc.TheSFGdatahastobeprocessedsothatonecandeducethesurfacenonlinearsusceptibility, x ! 2 ðÞ s j from theSFGsignalamplitude.Usually,thisiscarriedoutbyremovingthegeometricfactorsandFresnelcoefficientsandsoweareleft withthesignal’samplitudethatinturngives x ! 2 ðÞ s j.Thenonlinearsusceptibilityholdstheinformationoftheadsorbate’ s molecularorientationandtheadsorbatelayerorderingdegree,6 ofwhichwegiveexampleslaterinthissection.

Whenstudyingelectrifiedinterfaces,theeffectfromanelectric fieldorso-calledelectricdoublelayer(EDL)ontheSFGsignal needstobeconsideredduetotheadditionalcontributionfromthesecond-orderbulknonlinearsusceptibilityinsidetheEDL. Thispotential-inducedcontributionoriginatesfromtheelectric-dipole-allowedthird-orderbulknonlinearsusceptibilityandthe fieldintheEDL.7–9 Theintensityofapotential-dependentreflectedSFGbeaminthepresenceofanEDLcanbeexpressedas7:

ISFG uVIS þ uIR ; f ðÞfI uIR ðÞI uVIS ðÞ c 2 ðÞ eff uIR ; f ðÞþ Z N 0 dzc 3 ðÞ uIR ; z; f ðÞEDC z ðÞ 2 (4)

where f ispotentialand EDC(z)isthestaticelectric fieldfromtheelectrodethatisadecayingfunctionof z.Thethird-order susceptibility, c(3)(uIR, z, f),varieswiththedistance z fromtheelectrodesurfacestartingat z ¼ 0.Ifweassumethatthe field EDC(z)isconstantinthedoublelayerandequalstozerointhebulkelectrolyte,theequationcanbeexpressedasfollows:

ISFG uVIS þ uIR ; f ðÞfI uIR ðÞI uVIS ðÞ c 2 ðÞ eff uIR ; f ðÞ 2 þ 2Re c 2 ðÞ eff uIR ; f ðÞc 3 ðÞ DL uIR ; f ðÞeid hi þ c 3 ðÞ DL uIR ; f ðÞ 2 ðÞ f2 (5) where cDL (3)(uIR, f)isthethird-orderpotential-dependentsusceptibilityofthedoublelayer.Thethird-ordersusceptibilityinthe doublelayeristhesumofthethird-orderhyperpolarizabilitiesofallthemoleculesinthedoublelayer.10 d isaphasefactorthatis

where fq isaphaseanglewithrespecttothenonresonantsignal cNR 2 .Whileobtaining[c2]2 iswellestablishedandisbasedon astraightforwarddesignoftheSFGapparatus,thereisafundamentalshortcomingofthistechnique,wherebyallinformationon thecomplexnatureof c 2 islost.Forexample,foragivenvibrationassociatedwithaspeci ficbond,wecandeducetheangle distributionofthedipolemomentbycalculatingtheintensityratiobetweenSSPandSPS.However,justfromthe c2 2 ssp c2 2 sps ratio,wecannotpredictifthedipolemomentispointingawayfromthesurfaceorpointingtothesurface.Probingthecomplex representationof c2,speci ficallyitsimaginarycomponent, Im[c2]readilyrevealsthedipoleorientation.Nevertheless,itrequires eitheraphase-modulationoraheterodyneSFGsetuptogetherwithsolidmathematicalmodeling.

Inordertosimplifytheinterpretationofphase-sensitiveSFGVS,thatis, Im[c2],MoritaandHynes,begunbymodelingtheSFG spectraaccordingtotheenergyrepresentationofthenonlinearsusceptibility, c2,inmoleculardynamics(MD)calculations.20 They havepioneeredthecomputationalanalysisofSFGspectroscopyingeneralandsuggestedanalternativeMDmodelbasedonthe timecorrelationfunction.21 Recently,Moritaetal.haveincorporatedthechargeresponsekernel(CRK)modelintheirworkbringing thecomputationalmodeltobetterinterprettheexperimentalSFGspectra.22,23 TheCRKwassuccessfullyimplementedininvestigatingthevapor –liquidinterfacestructureofDMCandpropylenecarbonate(PC),bothcommonsolventsinLi-ionelectrolytesolutions.22 ThestudyprobedtheC]Ostretchanditsorientationattheliquid –gasinterface.In Fig.4,wecanseethatthesimulatedMD SFG(A,C)andexperimentalSFG(B,D)spectraofPCandDMCatthesolid –gasinterfacecorrespondwell.However,theimportanceoftheMDsimulationwasdemonstratedbyrevealingthatthereasonfortheC]ObipolarbandslieswithDMChavingan almostisotropicorientationwhilePChasanorderedstructureduetoPCdimersasdiscussedinRef.[23].

TheadvantagesofSFGvibrationalspectroscopyasasurfacespeci ficspectroscopyaredemonstratedinthestudyofthesolid (electrode) –liquid(electrolyte)interfaceandevenmoresoinexaminingthesolidelectrolyteinterphase(SEI).24 TheSEI25,26 is atermandconceptthathasbeenwidelyacceptedforthereductionproductsformedonananodeoftheliquidhydrocarbonelectrolytemoleculesinteractingwithLi-ionsduringthechargingprocess.TheSEIservesasaphysicalbarrierandachemicallyinert coatingthathindersfurtherelectrolytereductiononthesurfaceoftheanode.Meanwhile,itallowslithiumionsdiffusion,at areasonablerate,throughittothelithiumionhost(anode)uponchargingandbacktotheelectrolytesolutiononcethedischarge oftheLi-ionbatterytakesplace.

OneofthekeystepsforamajorimprovementoftheLi-ionbatteryisunderstandingtheSEI’sstructure-relateddiffusioninenergy storagematerials.TheSEIformationisacrucialstepaschargeanddischargeratesofLi-ionbatteriesarediffusion-limited.The fundamentalunderstandingoftheiontransportanddiffusionmechanismwillultimatelyleadtofastercharging,longerlasting, andsaferLi-ionbatteries.Severalgroupshavesettoexplorethecomposition,structure,andformation/degradationmechanisms ofthesolidelectrolyteinterfaceonthesurfacesofelectrodesatOCPandduringcharge/dischargecyclesbyapplyingadvanced insituSFGvibrationalspectroscopy.

TheSEI’sbehaviorwasalsoinvestigatedunderappliedpotentials.Dlottetal.carefullychoseanelectrochemicalsystemto produceasingleSEIproduct.24 Theycycledlithiumperchlorate(LiClO4)saltdissolvedinanECdilutedwithtetrahydrofuran (THF)incontactwitheithergoldorcopperanodesbetween2.0and0.2V(vs.Li/Liþ).Thesinglereductionproductwaslithium ethylenedicarbonatewithatraceamountofethylenehavingtwoC]Odistinctvibrationalfrequenciesat1782and1800cm 1 , referto Fig.5.Theyhadreportedtwomain findings.The firstisthattheSEI “breaths” asafunctionofappliedpotentialonly whenreducedonacopperelectrode.ThisincreaseanddecreaseoftheSEIwidthisnotapparentwhenagoldelectrodeisused eventhoughthesameelectrolyteandthesameelectrochemicalconditionsasintheCucasearemaintained.Thesecond,presented in Fig.6,wasthattheappliedexternalpotentialaffectstheSFGprofile27 andsooneshouldcarefullyexaminetheSFGpro file obtainedunderpotentiodynamicconditions.

Fig.4 ThesimulatedMDSFG(A,C)andexperimentalSFG(B,D)spectraofpropylenecarbonate(PC)anddimethylcarbonate(DMC)solid–gas interface.Left TheSSP-polarizedSFGspectraareshownin red andSPSspectrain blue.Right TheSSPpolarizedimaginarycomponent,Im[c2], calculatedSFGspectraofPC(up)andDMC(bottom)solid–gasinterface.TheMDsimulationsshowthattheSFGbipolarbandoriginatesfrom differentmolecularinteractions,dimerizationforPC(up)andrandomforDMC(bottom).ReprintedwithpermissionfromWang,L.;Peng,Q.L.;Ye, S.;Morita,A.SurfaceStructureofOrganicCarbonateLiquidsInvestigatedbyMolecularDynamicsSimulationandSumFrequencyGenerationSpectroscopy. J.Phys.Chem.C 2016, 120,15185–15197;Ishiyama,T.;Morita,A.ComputationalAnalysisofVibrationalSumFrequencyGenerationSpectroscopy. Annu.Rev.Phys.Chem. 2017, 68,355–377.Copyright(2017)AmericanChemicalSociety.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.