https://ebookmass.com/product/encyclopedia-of-ecology-2ndedition-fath/
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Encyclopedia of Behavioral Neuroscience, 2nd Edition
https://ebookmass.com/product/encyclopedia-of-behavioralneuroscience-2nd-edition/
ebookmass.com
Encyclopedia of Endocrine Diseases 2nd Edition Ilpo Huhtaniemi
https://ebookmass.com/product/encyclopedia-of-endocrine-diseases-2ndedition-ilpo-huhtaniemi/
ebookmass.com
International Encyclopedia of Human Geography 2nd Edition Audrey Kobayashi
https://ebookmass.com/product/international-encyclopedia-of-humangeography-2nd-edition-audrey-kobayashi/
ebookmass.com
The Black Mediterranean: Bodies, Borders and Citizenship Gabriele Proglio
https://ebookmass.com/product/the-black-mediterranean-bodies-bordersand-citizenship-gabriele-proglio/
ebookmass.com
eTextbook 978-1259546945 Management: Leading & Collaborating in a Competitive World 12th Edition
https://ebookmass.com/product/etextbook-978-1259546945-managementleading-collaborating-in-a-competitive-world-12th-edition/
ebookmass.com
L'exécuteur Aldea Hill
https://ebookmass.com/product/lexecuteur-aldea-hill/
ebookmass.com
Proper orthogonal decomposition methods for partial differential equations Chen
https://ebookmass.com/product/proper-orthogonal-decomposition-methodsfor-partial-differential-equations-chen/
ebookmass.com
Book of the Five Talismans (Wufujing) Charlie 5
https://ebookmass.com/product/book-of-the-five-talismans-wufujingcharlie-5/
ebookmass.com
Tratado de Otorrinolaringologia E Cirurgia Carvicofacial Da Aborl-Ccf Associacao Brasileira De
https://ebookmass.com/product/tratado-de-otorrinolaringologia-ecirurgia-carvicofacial-da-aborl-ccf-associacao-brasileira-de/
ebookmass.com
2nd Edition, (Ebook PDF)
https://ebookmass.com/product/conducting-research-social-andbehavioral-science-methods-2nd-edition-ebook-pdf/
ebookmass.com
AQUATICECOLOGY AbundanceBiomassComparisonMethod RMWarwick, PlymouthMarineLaboratory,Plymouth,UK
r 2008ElsevierB.V.Allrightsreserved.
Introduction
The`abundancebiomasscomparison' (ABC)methodisameansofdetectingtheeffectsofanthropogenicperturbationsonassemblages oforganismsthatisunderpinnedbythe r-and K-selectiontheory(see r-Strategist/K-Strategists).Understableconditionsofinfrequent disturbancethecompetitivedominantsintheclimaxcommunityare K-selectedorconservativespecieswithalargebodysizeandlong lifespan,andareusuallyoflowabundancesothattheyarenotdominantnumericallybutaredominantintermsofbiomass. Frequentlydisturbedassemblagesarekeptatanearlysuccessionalstageandcomprise r-selectedoropportunisticspeciescharacterized bysmallbodysize,shortlifespanandhighabundance.TheABCmethodexploitsthefactthatwhenanassemblageisperturbedthe conservativespeciesarelessfavoredincomparisonwiththeopportunists,andthedistributionofbiomassamongspeciesbehaves differentlyfromthedistributionofnumbersofindividualsamongspecies.
TheMethod TheABCmethodasoriginallyformulatedinvolvestheplottingofseparate k-dominancecurves(see k-DominanceCurves)for speciesabundancesandspeciesbiomassesonthesamegraphandcomparingtheformsofthetwocurvesrelativetoeach other.Thespeciesarerankedinorderofimportanceintermsofabundanceorbiomassonthe x-axisonalogarithmicscale, withpercentagedominanceonthe y-axisonacumulativescale.Ofcoursethespeciesorderingisunlikelytobethesamefor abundanceandbiomass.Inundisturbedassemblagesafewlargespeciesaredominantintermsofbiomassbutnotabundance,resultingintheelevationofthebiomasscurverelativetotheabundancecurvethroughoutitslength(Fig.1a). Perturbedassemblages,however,haveafewspecieswithveryhighabundancebutsmallbodysize sothattheydonot dominatethebiomassandtheabundancecurveliesabovethebiomasscurve(Fig.1c).Undermoderateperturbationthe largecompetitivedominantsareeliminatedbutthereisnopopulationexplosionofsmallopportunists,sothattheinequality insizebetweenthenumericalandbiomassdominantsisreducedandthebiomassandabundancecurvesareclosely coincidentandmaycrossovereachotheroneormoretimes(Fig.1b).
Thecontentionisthatthesethreeconditions(unperturbed,moderatelyperturbed,orgrosslyperturbed)shouldbe recognizablewithoutreferencecontrolsamplesintimeorspace,thetwocurvesactingasaninternalcontrolagainsteach otherandprovidingasnapshotoftheconditionoftheassemblageatanyonetimeorplace.Ofcourse,confirmatory comparisonswithspatialortemporalreferencesamplesarestillhighlydesirable.Aprerequisiteofthe methodisadequate samplesizeorreplicationbecausethelargebiomassdominantsareoftenrareandliabletoa highersamplingerrorthanthe numericaldominants.
TheevaluationofABCcurvesinvolvestheirvisualinspection,andcanbecumbersomeifmanysites,times,orreplicatesare involved.Insuchcasesitisconvenienttoreduceeachplottoasinglesummarystatistic.Iftheabundance(A)valuesaresubtracted fromthebiomass(B)valuesforeachspeciesrankintheABCcurve,thesumofthe B A valuesacrosstherankswillbestrongly positiveintheunperturbedcase(Fig.1a),nearzerointhecasewherethecurvesarecloselycoincident(Fig.1b),andstrongly negativewherethecurvesaretransposed(Fig.1c).Thesummationneedstobestandardizedtoacommonscalesothatcomparisonscanbemadebetweensampleswithdifferingnumbersofspecies(S),themostwidelyusedformbeingthe W (forWarwick)statistic:
Forreplicatedsamples,the W statisticalsoprovidesanobviousrouteforhypothesistesting,usingstandardunivariateANOVA.
Applications Forthemostpart,ABCcurveshavebeenusedtoindicatepollutionordisturbanceeffectsonmarineandestuarinemacrobenthic assemblages,whicharethemaintargetfordetectionandmonitoringprogramsinthesehabitats.Forexample,ABC curvesforthe
Species rank (log scale)
Fig.1 Hypothetical k-dominancecurvesforspeciesbiomassandabundance,showingunperturbed,moderatelyperturbed,andgrosslyperturbed conditions.
macrobenthosinLochLinnhe,Scotlandinresponsetoorganicpollutionbetween1963and1973aregivenin Fig.2.Thetimecourseof pollutionfromapulpmill,andchangesinspeciesdiversity(H0 ),areshowntopleft.Moderatepollutionstartedin1966,andby1968 speciesdiversitywasreduced.Priorto1968theABCcurveshadtheunpollutedconfiguration.From1968to1970theABCplots indicatedmoderatepollution.In1970therewasanincreaseinpollutantloadingsandafurtherreductioninspeciesdiversity,reachinga minimumin1972,andtheABCplotsfor1971and1972showthegrosslypollutedconfiguration.In1972pollutiondecreasedandby 1973diversityhadincreased,andtheABCplotsagainindicatedtheunpollutedcondition.Thus,theABCplotsprovideagoodsnapshot ofthepollutionstatusofthebenthiccommunityinanyoneyear,withoutreferencetothehistorical comparativedatawhichwouldbe necessaryifasinglespeciesdiversitymeasurebasedontheabundancedistributionwasusedastheonlycriterion.
MoststudiessuggestthattheABCcurvesrespondtoanthropogenicperturbationsbutarenotaffectedbylong-termnaturalstresses, sincetheorganismslivinginsuchenvironmentshaveevolvedadaptationstotheprevailingecologicalconditions.UnperturbedABC plotsmaybefound,forexample,inestuarieswheretheorganismsaresubjectedtolowand fluctuatingsalinities,providedthereareno anthropogenicdisturbances.ABCplotsindicatedthatmacrobenthiccommunitiesnearanoilrefineryinTrinidadweregrosslyto moderatelystressed,whilethoseclosetotheTrinidadPitchLake(oneofthelargestnaturaloilseepsin theworld)werenot.Thereis littleevidence,however,thatthemethodcandistinguishbetweendifferenttypesofanthropogenicdisturbances.Responsestoorganic pollutionandtophysicaldisturbancecausedbydemersaltrawl fisheries,forexample,appeartobesimilar.
Themethodhasbeenlesswellexploredwithrespecttoothercomponentsofthebiota.However,ithasbeenusedsuccessfully toindicateenvironmentalimpactsonmarinephytoplankton,thecryptofaunaandmollusksofrockyshores,invertebratesof freshwaterstreams,and fishassemblagesinbothmarineandfreshwater.
ProblemsandTheirSolutions Veryoften k-dominancecurvesapproachacumulativefrequencyof100%foralargepartoftheirlength,andinhighlydominated assemblagesthismaybeafterthe firsttwoorthreetop-rankedspecies.Thus,itmaybedifficulttodistinguishbetweentheformsof thesecurves.Thesolutiontothisproblemistotransformthe y-axissothatthecumulativevaluesareclosertolinearity,an appropriatetransformationbeingthemodifiedlogistictransformation: yi ¼ log ½ð1 þ yiÞ=ð
ApotentiallymoreseriousproblemwiththecumulativenatureofABCcurvesisthattheirformisoverdependentonthesinglemost dominantspecies.Theunpredictablepresenceoflargenumbersofaspecieswithsmallbiomass,perhapsaninfluxofthejuvenilesof onespecies,maygiveafalseimpressionofdisturbance.Withgenuinedisturbance,onemightexpectpatternsofABCcurvestobe unaffectedbysuccessiveremovaloftheoneortwomostdominantspeciesintermsofabundanceorbiomass,andasolutionistheuse ofpartialdominancecurves,whichcomputethedominanceofthesecond-rankedspecies overtheremainder(ignoringthe first-ranked species),thesamewiththethirdmostdominant,etc.Thus,if ai istheabsolute(orpercentage)abundanceofthe ithspecies,when rankedindecreasingabundanceorder,thepartialdominancecurveisaplotof pi againstlog i (i ¼ 1,2, , S 1),where
Earliervaluescanthereforeneveraffectlaterpointsonthecurve.Thepartialdominancecurves(ABC)forundisturbedmacrobenthic communitiestypicallylooklike Figs.3g and 3h,withthebiomasscurve(thinline)abovethe abundancecurve(thickline)throughout itslength.Theabundancecurveismuchsmootherthanthebiomasscurve,showingaslightandsteadydeclinebeforethe inevitable finalrise.Underpollutedconditionsthereisstillachangeinpositionofpartialdominancecurvesforabundance and biomass,withtheabundancecurvenowabovethebiomasscurveinplaces,andtheabundancecurvebecomingmuchmorevariable. Thisimpliesthatpollutioneffectsarenotjustseeninchangestoafewdominantspeciesbut areaphenomenonwhichpervadesthe
Fig.2 LochLinnhemacrofauna:Shannondiversity(H0 )andABCplotsoverthe11years,1963to1973.Abundance,thickline;biomass, thinline.
completesuiteofspeciesinthecommunity.ThetimeseriesofmacrobenthosdatafromLochLinnhe(Fig.3)showsthatinthemost pollutedyears,1971and1972,theabundancecurveisabovethebiomasscurveformostofitslength(andtheabundancecurveisvery atypicallyerratic),thecurvescrossoverinthemoderatelypollutedyears1968and1970andhave anunpollutedconfigurationpriorto thepollutionimpactin1966and1967.Althoughthesecurvesarenotsosmooth,andtherefore notsovisuallyappealing,asthe originalABCcurves,theymayprovideausefulalternativeaidtointerpretationandarecertainlymorerobusttorandom fluctuationsin theabundanceofasmall-sized,numericallydominantspecies.
Inmostcaseswherethepresenceoflargenumbersofsmall-bodiedmacrobenthicspeciesinunperturbedsituationshasgivena falseimpressionofdisturbance,thosespecieshavenotbeenpolychaetes.PriortotheAmocoCadizoilspilloffthenorthcoastof Francein1978,smallampeliscidamphipods(Crustacea)werepresentatthePierreNoirestationinrelativelyhighabundance,and theirdisappearanceafterthespillconfoundedtheABCplots.Theerraticpresenceoflargenumbersofsmallamphipods(Corophium)ormollusks(Hydrobia)alsoconfoundedtheseplotsintheWaddenSea.Thesesmallnonpolychaetousspeciesarenot indicativeofpollutedconditions.AtaxonomicbreakdownoftheABCresponsehasshownthatitresultsfrom(1)ashiftinthe proportionsofdifferentphylapresentincommunities,somephylahavinglarger-bodiedspeciesthanothers,and(2)ashiftinthe relativedistributionsofabundanceandbiomassamongspecieswithinthePolychaetabutnotwithinanyoftheothermajorphyla (Mollusca,Crustacea,Echinodermata).Theshiftwithinpolychaetesreflectsthesubstitutionoflarger-bodiedbysmaller-bodied species,andnotachangeintheaveragesizeofindividualswithinaspecies.Inmostinstancesthephyleticchangesreinforcethe trendinspeciessubstitutionswithinthepolychaetes,toproducetheoverallABCresponse,butinsomecasestheymaywork
Fig.3 LochLinnhemacrofaunainselectedyears1966–68and1970–72.(a–f)ABCcurves(logistictransform).(g–l)Partialdominancecurves forabundance(thickline)andbiomass(thinline)forthesameyears.
againsteachother.Indicationsofpollutionordisturbanceformarinemacrobenthosdetectedbythismethodshouldthereforebe viewedwithcautionifthespeciesresponsiblefortheperturbedconfigurationsarenotpolychaetes,andtherobustnessoftheplots shouldbetestedusingpartialdominancecurves.
Finally,apracticalratherthanaconceptualproblemwiththemethodisthatitreliesonapainstakingandtime-consuming(and hencecostly)analysisofsamplesinwhichallthespeciesmustbeseparated,counted,andweighed.Severalgroupsofmarineorganisms aretaxonomicallydifficult,forexample(inthemacrobenthos),severalfamiliesofpolychaetesandamphipods;asmuch timecanbe spentinseparatingafewofthesedifficultgroupsintospeciesastheentireremainderofthesample,eveninNorthernEurope where taxonomickeysforidentificationaremostreadilyavailable.Manytaxareallyrequiretheskillsofspecialiststoseparatetheminto species,andthisisespeciallytrueinpartsoftheworldwherefaunaispoorlydescribed.Identificationtosomehighertaxonomiclevel, forexample,familyratherthanspecies,isconsiderablyeasierandquicker,andtheABCmethodhasprovedtobeencouraginglyrobust toanalysisatthefamilylevelforbothmacrobenthosand fish;verylittleinformationappearstobelost.
Seealso: AquaticEcology: TheEstuarineQualityParadoxConcept. ConservationEcology: k-DominanceCurves;EcologicalHealth Indicators. Ecosystems: Estuaries. GeneralEcology: Abundance;Biomass;Dominance
FurtherReading Agard,J.B.R.,Gobin,J.,Warwick,R.M.,1993.Analysisofmarinemacrobenthiccommunitystructureinrelationtooilpollution,naturaloilseepage,andseasonaldisturbance inatropicalenvironment(Trinidad,WestIndies).MarineEcologyProgressSeries92,233–243.
Beukema,J.J.,1988.AnevaluationoftheABC-method(abundance/biomasscomparison)asappliedtomacrozoobenthiccommunitieslivingontidal flatsintheDutchWadden Sea.MarineBiology99,425–433.
Blanchard,F.,LeLoc'h,F.,Hily,C.,Boucher,J.,2004.Fishingeffectsondiversity,size,andcommunitystructureofthebenthicinvertebrateand fishmegafaunaontheBayof BiscaycoastofFrance.MarineEcologyProgressSeries280,249–260. Clarke,K.R.,1990.Comparisonsofdominancecurves.JournalofExperimentalMarineBiologyandEcology138,143–157.
Dauer,D.M.,Luckenbach,M.W.,Rodi,A.J.,1993.Abundancebiomasscomparison(ABCmethod) – Effectsofanestuarinegradient,anoxichypoxiceventsandcontaminated sediments.MarineBiology116,507–518.
Ismael,A.A.,Dorgham,M.M.,2003.EcologicalindicesasatoolforassessingpollutioninEl-DekhailaHarbour(Alexandria,Egypt).Oceanologia45,121–131. Jouffre,D.,Inejih,C.A.,2005.Assessingtheimpactof fisheriesondemersal fishassemblagesoftheMauritaniancontinental;shelf,1987–1999,usingdominancecurves.ICES JournalofMarineScience62,380–383. Lasiak,T.,1999.Theputativeimpactofexploitationonrockyinfratidalmacrofaunalassemblages:Amultipleareacomparison.JournaloftheMarineBiologicalAssociationof theUnitedKingdom79,23–34.
Magurran,A.E.,2004.MeasuringBiologicalDiversity.Oxford:Blackwell. Penczak,T.,Kruk,A.,1999.Applicabilityoftheabundance/biomasscomparisonmethodfordetectinghumanimpactson fishpopulationsinthePilicaRiver,Poland.Fisheries Research39,229–240.
Warwick,R.M.,1986.Anewmethodfordetectingpollutioneffectsonmarinemacrobenthiccommunities.MarineBiology92,557–562.
Warwick,R.M.,Clarke,K.R.,1994.RelearningtheABC:Taxonomicchangesandabundance/biomassrelationshipsindisturbedbenthiccommunities.MarineBiology118, 739–744.
Warwick,R.M.,Pearson,T.H.,Ruswahyuni,1987.Detectionofpollutioneffectsonmarinemacrobenthos:Furtherevaluationofthespeciesabundance/biomassmethod.Marine Biology95,193–200.
Yemane,D.,Field,J.G.,Leslie,R.W.,2005.Exploringtheeffectsof fishingon fishassemblagesusingabundancebiomasscomparison(ABC)curves.ICESJournalofMarine Science62,374–379.
AcidificationinAquaticSystems MorganaTagliarolo,Ifremer,UMSRLEEISA(CNRSUGIfremer),Cayenne,France
©2018ElsevierInc.Allrightsreserved.
Glossary
Buffer AcompoundthatlimitslargechangesinpHinasolution.Thebuffersolutionconsistsinamixtureofweakacidand bases.ThebufferingabilityisdefinedasthequantityofstrongacidorbasethatmustbeaddedtochangethepHof1Lof solutionby1pHunit.
Chemicalequilibrium Stateofareversiblechemicalreactionwhentherateoftheforwardandbackwardreactionisequal. Consequently,theconcentrationsofbothreactantandproductarestables.Thisequilibriumcanbedescribedbyaconstant (K).
Homeostasis Abiologicalprocessmaintainingastableconditioninanorganismeveniffacedwithexternalchanges.An exampleistheabilityofthehumanbodytomaintainarelativelyconstantbodytemperatureindependentofexternal temperatures.
Hypercapnia DisequilibriuminbodyfluidswithanabnormalincreaseofcarbondioxideandpHdrop.
Oligotrophic Anenvironmentpoorinorganicandinorganicnutrients.
Resilient Anecosystemororganismisdefinedasresilientwhenitisabletorespondandrecoverfromadversesituations.
Introduction
Acidificationinanaquaticsystemisatermdescribingsignificantchangestothechemistryoffreshwater,marine,andbrackish systems,mostlycausedbythedissolutionofatmosphericcarbondioxide(CO2).TheCO2 fromtheatmospherecombineswith otherdissolvedinorganiccarbonalreadypresentinthewatercausingseveralcomplexchemicalchanges.Thecharacterizationofthe physicochemicalpropertiesofthecarbonatesysteminnaturalwatersisnotstraightforwardsinceitcanbedescribedbyalarge numberoftermsandunits.However,pHisthemorecommonparameteremployedfordescribingtheacidificationphenomenain ecology.
WaterpHisanexpressionoftheconcentrationofhydrogenions(Hþ)onalogarithmicscale,whereaneutralpHof7.00is representedbypurewaterat25 C.SurfacewatersintheopenoceanareslightlyalkalinewithrelativelysmallpHvariability(average valuesrangingbetween7.9and8.3).Variabilityrangesarewiderincoastalandfreshwaterecosystemswherecomplexbiogeochemicaldynamicsplayimportantrolesonthephysicalandchemicalconditionsofthosewaters.InshallowcoastalareaspHcan varydrasticallyoverdailycyclesandsmallspatialscales( 0.3–0.5units).InnaturalfreshwaterecosystemspHhasanevenwider range(between <2and12)dependingontheregionandonthewaterbodycharacteristics.
PartofatmosphericCO2 iscontinuouslyabsorbedbytheaquaticsystemswhereitreactswiththewatermoleculestoformweak acids.TheseacidsmostlydissociateintoHþ causingpHreductions.Freshwaterandseawatercontainavarietyofacid–basespecies abletoreactwiththeadditionalHþ ions.Thepredominantionsarecarbonateandbicarbonate,butothermoleculescanalso interact.Thisabilityofnaturalwaterstoneutralizeprotonsisdescribedbyitstotalalkalinity(Fig.1).Thecarbonatechemistryis significantlyaffectedbyacidificationandtheformationofnumerouscarbonate-containingmineralssuchasaragonite,calcite,and magnesiumcalciteisdisrupted.
TheabsorptionofCO2 andthefateofhydrogenionsinwaterarethereforedependentonvariouschemicaltransformationsand equilibriumconstants.Theequilibriumconstantsareinturndependentonsalinity,temperature,andpressure.Forthisreason,fresh andseawaterareconsiderablydifferentinthedistributionofthecarbonicacidfractions.Freshandbrackishwaterhasalower bufferingcapacityandthusexperienceshigherpHfluctuationscomparedwithopenoceanwaters.
Althoughtheacidificationprocesshasmostlybeenstudiedinthemarineenvironment,declinesinpHcanalsoconsiderably affectfreshwaterecosystems.Marineandfreshwatersystemsmaybeacidifiedeitherfromnaturalorman-madeprocesses,but,while naturalprocessesareslow(geologicaltimeframes),anthropogenicactivitiesareacceleratingandamplifyingthesechanges.
TheacidificationofaquaticsystemsismostlyaresultofthecontinuousCO2 releaseintotheatmospherebyfossilfuel combustion(coal,oil,andnaturalgas),deforestation,andcementproduction.Sincethebeginningoftheindustrialera,thepH ofoceansurfacewaterhasdecreasedby0.1pHunits,correspondingtoa26%increaseinacidity.Moreover,pHofinternaland coastalareascanalsobealteredbyotheranthropogenicinputssuchasnitrogen,ammonia,andsulfur.Consequently,freshwater acidificationcanbeafasterandlargerphenomenonthanoceanacidificationinvolvingnotablepHdrops(upto2.5)during episodicevents.
TheanthropogenicCO2 inducedchangesinwatercarbonchemistryhavesomedirecteffectsonphotosynthesis,calcification, andacid–basebalanceofaquaticorganisms.TheincreasedavailabilityofCO2 canpotentiallyenhancephotosynthesiswhenlight andnutrientsareavailable.However,theabilityofmicroandmacroalgaetoutilizethisexcessofCO2 appearstovarywidelyacross taxa.Anumberofphysiologicalprocessescanbealteredinphotosyntheticorganismsandthefinalresponseisoftenacompromise betweentheantagonisticeffectofCO2 onphotosynthesisandrespirationmetabolism.LowpHoftencausesanincreaseofthe overallenergeticcosts,whichinturnleadtoanaugmentedrespirationrate.Therefore,thebenefitsofanenhancedphotosynthetic activityaregenerallyrelativelyminorrelativetothenegativeeffectsofacidificationonrespiration.Moreover,acidificationhasbeen showntopromoteseveralmetabolicpathwaysleadingtotheproductionandaccumulationoftoxiccompoundsinphytoplankton cells.
AdecreaseinpHandincarbonateionsgenerallycausesadeclineinthecalcificationratesproducingcalciumcarbonate(CaCO3) forshellsandskeletons(Fig.2).Calcifyingorganismsareextremelydiverseandincludemanytaxonomicgroupsandecological niches.Forinstance,calcificationisperformedbymanyphotosyntheticprimaryproducers,zooplankton,mollusks,andcrustaceans.Althoughthecalcificationprocesscanbeexplainedbyasimplechemicalequation,thebiologicalmechanismsaremore complexandcanvarybetweenspecies.Thecalcificationprocessrequiresanenergyinvestmentfortheorganismsandmodifications ofthechemistryoftheexternalaquaticenvironmentcancauseimportantperturbationsofcalcificationrates.Althoughcalcifying organismsaremostlynegativelyimpactedbyacidification,thegrowthrateofsomespecieshasbeenreportedasinsensitivetothis stressorpositivelyimpacted.
Shellcalcificationinmollusksisperformedintheextrapallialspacethatisisolatedfromthesurroundingambientwater(Fig.2). Manyspecieshavebeenshowntoproducetheirowncarbonateionsinthisspacewithoutanyinteractionwithseawaterions.The formationofcalciumcarbonatestructuresinthisspaceisthusnotdirectlyinhibitedbydecreasingcarbonateionsconcentrationin theexternalseawater.Theimpactofoceanacidificationonshellgrowthisthereforearesultofseveralinterlinkedphysiological processesaffectingmetabolismandinternalbodypH.Furthermore,theantagonisticprocessesofcalcificationanddissolutionsmay alsorepresentanimportantenergeticcostfortheorganisms.Forthesereasons,marinemolluskshavebeenshowntorespondvery differentlytoacidification.Inamoreacidocean,onaverage,shellsareexpectedtobesmallerandhaveamodifiedmineralogical structuretoovercometheenergeticcosts.
Similarlytomollusks,scleractiniancoralsdonotprecipitatetheircarbonateskeletondirectlyfromseawater,buttheyproduceit inanextracellularmediumwheretheanimalcanactivelymanipulatethepH.Cold-watercoralsareparticularlygoodinregulating
Fig.1 Generalschemeonhowatmosphericcarbondioxidecaninterferewiththeaquaticchemistry.
Fig.2 Crosssectionofamolluskshellshowingthecalcificationprocessintheextrapallialspace.ModifiedfromMcConnaughey,T.A.,Gillikin,D.V.(2008).Carbon isotopesinmolluskshellcarbonates. Geo-MarineLetters 28,287–299. 10.1007/S00367-008-0116-4
theirinternalpHandcancontinuetocalcifyeveninacidicandundersaturatedwaters.Thisimportantadaptivemechanismenables thesedeep-seacalcifierstooccupyuniqueniches.Incontrastwiththesehighlyadaptedorganisms,othertaxasuchasthecalcitic foraminifera,arenotabletocontroltheirinternalpHanddependentirelyonseawaterconditions.
Theshellsofmarineorganismsaregenerallymadefromeithercalciteoraragonitecalciumcarbonate.Aragoniteismoresoluble thancalciteandcandissolveeasierinundersaturatedwaters.Changesinwaterchemistrythereforeaffectcalcifyingorganismsin differentwaysdependingontheirshellscompositions.Forexample,oneofthemoreabundantandimportantplanktonicshelled grouplivinginpolarandsubpolarwaters(pteropods)areexpectedtobeparticularlyaffectedbyacidificationsincetheyareunable tomaintaintheirshellinundersaturatedwaterswithrespecttoaragonite.Ontheotherhand,arcticbivalveshavebeenshowntobe generallyresilienttodecreasingpH.
MetabolicandbiochemicalprocesseswithinaquaticorganismsareinfluencedbywaterpHsincebiologicalmembranesare generallyhighlypermeabletofreeionsandpotentiallyaffectedbyacid–basedistresses.TheinternalpHofmostheterotopic organismsislowerthanthesurroundingseawater.Activemechanismsofiontransportareconstantlyworkinginlivingcellsto maintainpHfluctuationsinbodyfluidswithinatolerablerange.Forthisreason,metabolicratesarelinkedtothehomeostasisof theinternalpHandtothepHgradientbetweenthebodyandtheexternalenvironment.Underacidificationconditionssome metabolicfunctionsaredepressed,oxygentransportefficiencyisreducedandacid–baseregulationrequireshigherenergeticcosts. Theeffectivityofiontransportsystemsdiffersbetweenaquaticorganismsdependingontheirstructureandcomplexity.Some crustaceanandechinodermsseemtobeabletocompensateforacidificationbyincreasingbicarbonateconcentrationintheirbody butlittleisknownaboutthesustainabilityofthisresponseduringlongtermexposures.
AlthoughthereisageneralagreementabouttheeffectsofincreasedCO2 concentrationsontheoceanandfreshwaterchemistry, themagnitudeandseverityofthepotentialimpactondifferentorganismsandecosystemsisstilllargelyunknown.Thelarge variabilityintheresponsesoforganismstoacidificationismostlyduetothehighbioticandabioticpatchinessofnaturalhabitats andthemultipleinteractionswithotherexistingstressesliketemperaturechanges.Thisarticlewillgiveanoverviewonthedifferent mechanismsandresponsesoftheocean,coastal,andfreshwaterhabitatsandprovidesomewiderconceptontheecologicaland economicimpactofthisphenomena.
OceanAcidification OceansplayanimportantroleinmitigatingatmosphericCO2 emissionsbyabsorbingaround25%–30%oftheCO2 addedtothe atmospherebyanthropogenicactivities.Thisprocesscausesadecreaseinwater’spH,intheconcentrationofcarbonateionsandin thecarbonatesaturationstate.Thesechanges,togetherwithotherstressorssuchastemperature,aresignificantlyaffectingmarine communities.Numerousresearchprojectshavefocusedontheeffectofoceanacidificationonmarineorganisms. Negativeeffectshavebeenrecordedonmosttaxonomicgroups,andearlydevelopmentalstagesaresuspectedtobemost susceptible.Multigenerationalstudiesonmarinecopepodsshowedthatfecunditycoulddecreaseupto29%underlowerpH scenarios.Moreover,thelarvalnaupliistageofthesetaxaexhibitgreatersensitivityandmortalityrateswithincreasingCO2 comparedtotheotherlifestages.HigherconcentrationsofseawaterCO2 havebeenshowntocausemalformationsanddelaysin thelarvaldevelopmentofseveralcalcifiers.Seaurchinlarvaelosesymmetryandtheirskeletonishighlydeformedandcorroded withdecreasedpH(Fig.3).Besideinvertebrates,fishembryosandyounglarvaearealsomoresensitivethanadultstotheeffectsof oceanacidification.Eggsurvival,hatchingsize,andgrowthratearegenerallyretardeddespitesomepositiveeffectsthathavebeen
Fig.3 Seaurchinlarvaerearedincontrolandacidifiedtreatments.LowerpHcausesasymmetricalanddeformedskeletaldevelopment.
seenonfewspecies.Evenifthegrowthrateisnotaffected,otherperturbationssuchasimpairedolfactorydiscriminationand homingabilitycanstillreducefitnessinthenaturalenvironment.
Theconsequencesofoceanacidificationonthebiologyofadultmarinefishhavebeenextensivelystudied.Resultsshowa multitudeofdiverseresponsesfromthedeathoftheindividual,tonoeffectatall.Despitethis,mostadultfishescanefficiently compensateforahypercapnicacid–basedisturbance,althoughneurosensory,growth,metabolism,andmitochondrialfunctions areoftendisrupted.Therefore,thepHcompensationabilitydoesnotnecessarilymeanthattheconsequencesofoceanacidification arereduced.Nonetheless,themechanismsunderneaththisprocessarestilllargelyunknownandpredictingspeciesresponses remainsdifficult.
Anotherunexpectedconsequenceofoceanacidificationintheopenoceanisthesignificantdecreaseinoceansoundabsorption. Lowfrequencyrangeispredictedtochangesignificantlyinthenearfuture,mostlyduetopHchanges.Underwaterambientnoiseis thuspredictedtoincrease,causingpotentialproblemstohuman(scientific,commercial,andnavalacousticapplications)and naturalactivities.Disturbanceinanimal’scommunicationislikelytointerferewiththebiologyandbehaviorofwhalesandother marinemammals.
Acidificationisalsoaffectingthedeepoceanalthoughtheresponsesaredelayedbythetransporttimeofwatermassesbetween thesurfaceandthedeepareas.Inthoseareas,theacidificationcanhappenthroughawatermassmovementorfromthe decompositionoforganicmatter “raining” intothedeepoceanfromthesurface.Deep-seaecosystemshavethepotentialtobe significantlyaffectedbypHchangessincetheirinhabitantsareadaptedtoliveinextremelystableconditions.Thedeep-seaisacold anddarkenvironmentwheremetabolicactivitiesandgasexchangesaregenerallyreducedcomparedtoshallowareas.Historically exceptionalchangesinoceansbottompHhavebeendocumentedtocausesignificantspeciesextinctionsandscientistsare concernedthatthiscouldhappenagaininthenearfuture.
ThepHofmanydeep(below500m)areasisprojectedtodecreaseby0.2unitsby2100.Carbonate-basedorganismssuchas cold-watercoralsandspongereefsareunderseriousthreats.Animalslivinginthedeepoceanaregenerallycharacterizedbyslow growthandlimitedrecoveryabilities.Acidificationhasbeenshowntonegativelyaffecttissuefunctioningandmembranepumpsof deepglassspongereefscompromisingtheirfeedingefficiency.Asimilarreductioninfeedingrateshasbeenshowninseveralcoldwatercorals.ThecalcificationrateofthesecoralsisnegativelyaffectedbypHdropsinlaboratoryexperiments,butsomespecieshave beenshowntobemoreresilientthanothers.ThegeneralideaisthatthedecreaseinpHandaragonitesaturationwillcausethe dissolutionofcoralsskeleton.However,anumberofstudiessuggestedthatdeep-seacoralshavesomephysiologicalmechanismsto compensateforundersaturationandseveralnaturalscleractinianreefshavebeenfoundinareaswithlowaragonitesaturation levels.
AcidificationintheCoastalArea Intertidalareas,estuaries,coralreefs,sandy,androckyshoresarejustafewexamplesofhowdiverseandvariablecoastalareasare. Theseecosystemsaresubmittedtocontinuousfluctuationsduetotides,riversinputs,waves,currents,andanthropogenicactivities. Becauseofthisvariabilityinphysical–chemicalcharacteristics,thecarbonatesystemsandpHexperiencesignificantfluctuations. TheintensevariabilityandtheeffectofmultipledriversonwaterpHimpliesthatitismuchmoredifficulttodetectacidification trendsintheseareascomparedtotheopenocean.
Unlikeopenoceanareas,coastalecosystemsareoftendominatedbybenthiccommunitiesandthemetabolicactivityofthese organismscandriveimportantdielandseasonalpHoscillations.Coastalcommunitiescansupportintensemetabolicprocesses, includinghighprimaryproduction,respiration,andcalcificationrates.Allthoseactivitiesdirectlyinfluencethewaterchemical propertiessuchasCO2 concentration,alkalinity,andpH.Forinstance,macrophytesgrowinginshallowcoastalzoneshavethe capacitytomodifyseawaterpHandcausedielchangesdrivenbyprimaryproductivity.Bivalveshavebeenshowntobecapableof raisinglocalpHby0.3–0.5unitsduringthedaytime.ThepHofintertidalrockpoolscanvarybetweendayandnightduetothe antagonisticeffectofrespirationandphotosynthesisonthewaterchemistry.
ThepresenceofalltheselocalbiologicalprocessescreatesalargediversityofpHnichesincoastalhabitats,offeringareaswith improvedconditionsforcalcification.Forexample,calcifierslivingclosetomacrophytescanadapttoacidificationbyincreasing theircalcificationratesduringdaytimewhenCO2 isdrawndownbyprimaryproductivity.Despitethefactthatthislocaladaptation canbevaluableforadultindividuals,itispossiblethatthepelagiclarvalstage,typicalofmanycoastalcalcifiers,maybecriticalfor thespeciessurvivalinamoreacidicocean.
AnotherimportantphenomenaaffectingcoastalpHisupwelling.Upwellingisaprocessinwhichdeep,cold,andnutrientrich waterupwellsfromthebottomoftheoceantothesurface.Thiswatermovementiswinddrivenandconstantlyorperiodically affectsseveralcoastalareasaroundtheword.Inupwellingregions,thehighconcentrationinnutrientspromotesbiological activities,butCO2 concentrationsaregenerallyhighandwatersareundersaturatedwithrespecttoaragonite.Theimpactof acidificationcausedbyupwellinghasbeendemonstratedinestuarineareaswhereoysterlarvaeproductionwasgreatlyreduced duringstrongupwellingperiods.
OrganismslivingincoastalareasaregenerallytoleranttochangesinpHduetothehighnaturalvariabilityoftheirhabitats. However,theeffectofanthropogenicCO2 emissionsisnotyetfullyunderstoodforthoseorganisms.Despitetheirhighertolerance toavariableenvironment,animalscanstillbeaffectedbyoceanacidification,butinamoresubtleway.Thephysiologyand developmentofintertidalsnailsareaffectedunderacidifiedconditionscausingadecreaseinfitnessandsurvival.Juvenileoysters showareductionintheirenergystorageandaweakershell.TheimmuneresponseofintertidalmusselsisdisruptedbyhigherCO2 conditions.
Oneofthemoreemblematicecosystemaffectedbyacidificationworldwidearecoralreefs.Thereisnowabundantevidencethat acidificationandtemperaturechangesareleadingtocoralbleachingandmortality.Mostshallowwatercoralsdependonan obligaterelationshipwithaphotosymbiontmicroalgae.Thealgaeprovidesnutrientsandenergytothecoralfacilitatinghisgrowth andcalcificationeveninoligotrophicwaters.Thelossofsymbiontsincoralsisgenerallycalled “coralbleaching” duetothe impressivecolorchangeincoraltissues.Whenthecoralbleaches,itisnotdeadbutitbecomesmorevulnerabletostressandshows highermortalityrates.Oneofthemoreimportantcausesofcoralbleachingisthermalstress,butacidificationisalsoknowntofavor thisphenomenon.ThesymbioticrelationshipbetweencoralorganismsandphotosyntheticsymbiontsisoftendisruptedbypH changessincethesymbioticinteractionislimitedtoaverysmallinternalpHrange.
Thenegativeimpactofacidificationoncoralsisnotlimitedtobleaching,butitalsocausessignificantproductivityreductions andhigherratesofnetdissolutionofthecalcifiedtissues.Experimentsrestoringpreindustrialalkalinityconditionsinrestrictedcoral reefareasshowedthatnetcommunitycalcificationishighlyaffectedbyoceanchemistry.Coralcalcificationhasbeenshowntobe reducedofabout6%–7%sincethebeginningoftheindustrialera.Inadditiontocoral,severalotherorganismslivinginthese habitatshavebeenshowntobeparticularlyvulnerabletopHchanges.Coralreefinvertebraterecruitmentandabundanceare significantlylowerinelevatedCO2 areas.Theseorganismsarethekeyfoodsourceofseveralreeffishandtheirdeclinewillprobably entrainacascadeeffectalongthefoodchain.
AcidificationinFreshwaterEcosystems Infreshwaterecosystems,theacidificationprocessduetoatmosphericCO2 emissionsisoftenamplifiedbytheeffectofother anthropogenicforcessuchasacidrainandminingdrainage.CO2 concentrationinlargerlakestendstobeinequilibriumwiththe atmosphere,butthisisgenerallynotthecaseforloticsystems.Biologicalactivities,rainfalls,andstreamorderplayanimportant roleinregulatingpHoffreshwatersystems.AssumingonlyanatmosphericCO2 increaseofabout550 matm,thepHinGreatLakes isestimatedtodeclineatasimilarratecomparedtotheopenocean(about0.19/0.09units),butriversandsmalllakesarelikelyto havedifferentresponses.MiningactivitycancauseanevenhigherimpactwithpHdropsbelow4incertainsystems.Thereleaseof oxidationproductsfromthesoiltothewateriscalledacidminedrainage.Thisdrainagecausesimportantacidificationsinhundreds oflakesandriverssituatedinproximitytotheminingareas.
Theeffectsofacidrainareperhapsmoreflagrant.Sulfurandnitrogenoxidesproducedbyvolcanoes,industries,andother anthropicactivitiesreactwithatmosphericcompoundstocreatesulfuricandnitricacid.Theacidsdepositonthegroundanddrain intolakesandstreams.NorthAmericaandEuropewereparticularlyaffectedbythisphenomenonaftertheindustrialrevolutionand newdevelopingindustrialcountriessuchasChinaarenowsubjectedtothesameissue.AcidicatmosphericdepositioncancausepH dropsbelow5oreven4insomefreshwatersystems.Theeffectsontheaquaticecosystemsareoftendramaticandtheuseof bufferingcompounds(limestone)hasbeenemployedinsensitiveareastolimitthedamage.
Theimpactofacidificationonfreshwaterbiotahasbeenoftenunderestimated.Onlyrecently,someresearchersfocusedonthe effectofacidificationatthespecies/organismlevel.Asdocumentedinmarinesystems,freshwatermacrophytesandphytoplankton canbepositivelyaffectedbyhigherCO2 concentrations,buttheresponseisstronglydependentonnutrientavailabilityinthe system.StudiesperformedonlakeshistoricallyaffectedbyacidicatmosphericdepositionsshowedthatsomefreshwaterzooplanktontaxaarehighlyadaptabletoacidicconditionsandcansurviveandproliferateinawidepHrange.Followinganacidification event,communitydiversityandstructureisstronglyaffectedbutthereissomeevidencethatecosystemscanrecoverwhenlakepH levelsriseagainabove6.
Anotherimportantfreshwatercommunityimpactedbyacidificationisthebacterioplankton.Althoughdiversityandrichness werefoundtobegenerallysimilarbetweenacidicandmoreneutrallakes,thecommunitystructurewaschanged.Waterchemistry andacidstresshaveadirectinfluenceonabundancesandorganizationofbacterialassemblages.
Infreshwatersystems,mollusks,crustaceans,andmanyaquaticinsectsplaytheimportantroleofbreakingdowntheorganic materialtoregeneratenutrientsandserveasafoodsourceforseveralspeciesoffishandbirds.Studiesperformedonseveral EuropeanlakessuggestthatpHlessthan5mightbecriticalforinsectcommunities.VerylittleisknownontheeffectofpHdeclines onfreshwatermollusks,buttheyareusuallyabsentfromsystemswithaciditybelow5probablyduetoanexcessivelyhigh constructionandmaintenancecostoftheircalcareousstructures.Thisisparticularlytrueforfreshwaterbivalves’ shellsprimarily madeupofaragonite,sincethistypeofshellismoresolublethanthecalciteoneofmostmarineorganisms.Thedecreaseincalcium availabilityinacidifiedwatershasbeenshowntosignificantlyaffectfreshwatercrustaceansthatareparticularlysensitiveduring theirrapidpostmoltcalcificationoftheexoskeleton.Instreams,crabs,shrimps,andcrayfishdisappearedfromanthropogenic acidifiedareas.Specieslossamongdetritivorousinsectsandcrustaceansresultinalossofthelitterbreakdownprocesswith importantconsequencesfortheentireecosystem.
TheeffectoflowpHonfreshwaterinvertebratescanbeexacerbatedbyincreasedmetaltoxicity.Mercuryconcentrationsaremore elevatedincrayfishfromlowerpHlakescomparedtolessacidifiedareas.Aluminumappearstobehighlyabsorbedbyinvertebrates atlowerpH.Nonetheless,leadtoxicityisoftenspecies-specificandlittleinformationisavailableonpotentialbiomagnification alongthefoodchain.
Theeffectofacidifiedwateronhighertrophiclevelssuchasfishandamphibianshasreceivedincreasedinterestinthepastfew years.Underacidifiedconditions,thegrowthratehasbeenshowntodecreaseinseveraltaxa,mostlyduetoahigherenergeticcostof theacid–baseregulationsysteminthefluidsandtissues.Thedevelopmentofpinksalmonduringitsfreshwaterphasehasbeen showntobeaffectedbyincreasedCO2 levels.Thegrowthrateandearlyembryonicdevelopmentofthisspeciesisimpairedby elevatedfreshwaterCO2 partialpressure.Moreover,thecapacitytodetectolfactorycuesandavoidpredatorsissignificantlyreduced underprojectedincreasesofCO2.But,thisisjustanexampleofhowacidificationcaninducebehavioralchangesinfreshwaterfish. Altereddialmovement,behavioralchangesandmodifiedfeedingpatternshasbeenobservedinseveralspeciessuggestingthat acidificationlinkedbehavioralchangescouldincreasethevulnerabilityoftheseorganismstopredationandfoodcompetition.
Amphibiansareexperiencingageneraldecreaseinabundanceduetoseveralanthropogenicactivities,oneofthemostimportant beingacidification.Commonspeciesoffrogshavebeenreportedtobegraduallydecreasingandeventuallydisappearingfrom poorlybufferedandacidifiedpondsandlakes.LowerpHandcalciumconcentrationsignificantlylimitedfrogreproductionand development.Indwarfnewts,acidificationdidnotinhibitfemalesfromlayingeggsbuttheembryoswereexposedtohigher mortalitiesunderlowpH.Asimilarresponsehasbeenseenontoadswithupto100%mortalityineggsmaintainedatapHbelow5.
Allthosechangesinfreshwaterecosystemcompositionandproductivityhavedirectconsequencesonthehigherconsumerssuch asbirds.Acidifiedstreamshavebeenseentohostyoungerandlesssite-faithfulbreedingpopulationsofbirdssincetheyprovidea lowerqualityhabitat.Furthermore,potentiallytoxicmetalsconcentrationandadecreasedavailabilityofcalcium,canalso negativelyaffectbirds.Piscivorousbirdscansufferfromstrongmetalbioconcentrationintheirpreyandareductionofcalcium contentinthefoodcouldaffectbonesandeggshellsformation.
EcologicalImpact Thenegativeeffectsofaquaticacidificationonsinglespecieshavereceivedthemostattentioninrecentyears.However,the consequencesofaquaticacidificationarealsoextremelyimportantatacommunityandecosystemlevel.Allorganismsare embeddedinacomplexnetworkofinteractionbetweendifferentspeciesandpopulations.Theimpactofacidificationonaquatic ecosystemsisthereforeinextricablylinkedtotheimpactofstressorsatdifferenttropiclevels.
Predator–preyinteractionscanbeextremelyimportantinregulatingandstructuringpopulationsandcommunities.Ocean acidificationcanleadtoimportantindirectchangesinthestructure,flows,andcompositionofthefoodweb.Observationsfrom naturalCO2 enrichedareasshowthatcommunitiesdiffersubstantiallyfromnearbyareaswithhigherseawaterpH.Lowerdiversity
andhigherfoodwebspecializationaretypicallyfoundinacidifiedareas,suggestingthatacidificationcouldinduceadramatic communityshiftinvulnerablesystems.
Phytoplanktonconstitutesthefoundationofaquaticfoodwebsandregulatesmultiplebiogeochemicalprocesses.Acidification hasbeenshowntohaveagreaterimpactthanseawaterwarmingorreducednutrientsupplyonphytoplanktoncommunities.About halfoftheglobalfunctionaldiversityofmarinephytoplanktoncommunitieshasbeenestimatedtobealteredby2100andthisis mostlycausedbyoceanacidification.FreshwaterphytoplanktoncommunitiesarealsosignificantlyimpactedbyelevatedCO2 concentrationsincelessdiversepopulationsandsmallercellswerecollectedinalteredsystems.ToleranceforlowpHvaried significantlybetweenspeciesandsomeauthorssuggestedthattoxiccyanobacteriumstrainscouldbemoretolerantandableto proliferateunderweakacidificationscenarios.
Oceanacidificationcanalsoprofoundlyaffectsettlementandbenthiccommunities.Althoughawiderangeofspeciesareableto settleandsurviveunderacidifiedconditions,diversityisgenerallyreducedandfewtaxabecomedominant.Thisispartlyduetothe factthatmanybenthicinvertebratesdependoncalcifiedstructuresthatareparticularlysensitivetoacidification.Thenegative impactsonthebenthiccommunitycanhaveacascadeeffectonthetrophicchainandseveralcasesofflatfish,sharks,andrays declininghavebeenreported.Regardlessofthepreciseconformationofthelocalfoodweb,itislikelythatbottom-upchangescan beimportant.Moreover,otherrelativelyunexploredproblemssuchaschangesinbacteria,pathogens,andparasitescouldalsoalter thefunctioningoftheecosystem.
Assumingthatcalcifiedstructurescanprovideprotection,functionassubstrateandgiveawiderangeofotherbenefittoother organisms,achangeintheirabundanceanddistributioncansignificantlyaffectlocalcommunities.Coralreefs,oysters,mussels, corallinealgae,andmanyotherorganismsareconsideredasimportantecosystemengineersprovidinganumberofecosystem servicesandcreatingfavorablehabitatsbymodifyingtheenvironmentalphysicalandbiologicalconditions.Negativeimpactson theseorganismscancauseacascadingeffectoncompetitorsandconsumers.Dependingonspeciestoleranceandadaptabilityto acidificationandclimatechanges,theeffectontheecosystemcanbemoreorlessimportantandkeystonespeciesmaybereplaced bymoreresistantones.
Anotherimportantecosystemalterationrelatedtooceanacidificationisthemodificationofcarbonandnutrientsbiogeochemicaldynamics.Variationsinnutrientratioshaveimportanteffectsonphytoplanktonandmicrobialcommunitiesandthiscould leadtoadegradedfoodqualityforheterotrophicconsumers.Changesinwaterchemistrycouldalsobedirectlyresponsiblefor modificationsinelementsavailabilityandorganicmatterdegradationandcomposition.Thesechangescandirectlyaffectthebase ofthefoodwebsandconsequentlytheentireecosystem.
SocioeconomicalImpact Despitetheclearnegativeimpactofacidificationfortheaquaticcommunitiesandecosystemfunctioning,thisphenomenonalso hasanimportanteconomiccost.Thelossofeconomicallyimportantspeciessuchasfishandmollusksisaccompaniedbyadecrease inaquacultureproductivityandthelossoftouristicandvaluablehabitatssuchascoralreefs.Moreover,anynegativeeffectof aquaticacidificationisexpectedtoenhancethealreadypresentstressorssuchasoverfishingandglobalwarming.
Oneofthesocioeconomicalchallengesconnectedtooceanacidificationistheeffectthatthisphenomenonhasonseafood. DecreasedpHhasbeenshowntodecreaseappearanceandtasteofcommerciallyimportantspecieslikeshrimps.Fishandmollusks arepredictedtobesmallerundertheeffectsofacidification.Somecommerciallyindemandspeciesmightdecreasecausingashiftin marketablegoods,suchasfromfishtojellyfishandalgaethatarepredictedtobemoreresilienttoacidification.
TheUSoysterindustryhasbeendecliningsince2005withanaveragelossof$111millionperyearandoneofthecausesisthe presenceofacidifiedwatersinthearea.Theglobaleconomiccostofmollusklossfromoceanacidificationhasbeenestimatedat about$6billionannually.InEurope,theannualeconomiclossesduetooceanacidificationareestimatedtobeover$1billionin 2100.Theglobalvalueofcoralreefbasedtourismwasestimatedtobe$11.5billionin2010andtheindustryisinrapidgrowth.The consequencesofcoralreefshabitatlossareexpectedtocostabout$49–69billionbytheendofthiscentury.
Economistsestimatedthatthecostofthetotalimpactofoceanacidificationisinthesameorderofmagnitudeasclimatechange despiteahighlevelofuncertaintystillbeingpresent,duetofactthataquaticacidificationhasonlyrecentlybeguntoreceive attentionininternationaldiscussions.Oneofthemaineconomicissues,isthatoceanacidificationislikelytohaveagreaternegative impactonpoorerfishingandaquaculturecommunitiessuchasthesmalldevelopingislandstates.Theseareasareparticularly vulnerabletoclimatechangeandoceanacidificationimpacts,andtheyhavefewerpossibilitiesforalternativelivelihoods.
Forislandnations,coralreefslosscanalsoconstituteasubstantialsocioeconomiccollapse.Marinenaturaltouristicattractions suchasdiving,snorkeling,sightseeing,andrecreationalfishingwillsignificantlysufferfromoceanacidificationeffects.Moreover, coralreefsoffershorelineprotectionandsupportfisheriesforabudgetestimatedat$30billionayear.
ResponseStrategiestoAquaticAcidification Limitingtheeffectsofaquaticacidificationisnowcriticalconsideringthehighrisksofimpactonnaturalandhumansystems.An effectiveresponsetoaquaticacidificationislikelytorequirealarge-scaleinvestmentplan.Duetoastrongconnectionbetween
aquaticacidificationandtheotherclimatechangestressors,regional,national,andglobalstrategiesneedtoconsiderandmanage thoseissuestogether.
TheprimarypossibleactiontomitigateaquaticacidificationistoreduceCO2 emissionssincenolarge-scalesystemisyet availabletoremoveCO2 fromtheatmosphere.Nonetheless,evenifallCO2 emissionsweretoendnow,theCO2 alreadyreleased intotheatmospherewillcontinueacidifyingtheoceanforcenturies.Itisindeedimportanttoestablishsomemitigationand adaptationresponses.
Oceanandfreshwateracidificationwillnotleadtothedisappearanceofallaquaticorganisms.Somespecieswillbeableto toleratethenewconditionsbutecosystemsdiversityandabundancearelikelytochange.Thedisappearanceofeconomicallyand culturallyimportantspeciesmayleadtoextremesocialforcing.
Theimpactofaquaticacidificationonjuvenilefish,foodwebs,andcoastalhabitatsarelikelytoentrainimportantreductionsin fisheryresources.Improvedmanagementsandreductionoffishingpressurearejustsomeexamplesonhowwecanprotectand rebuildfishstocks.Otherpossibleactionscouldinvolvethedevelopmentofprotectionandrestorationplansforparticularly degradedandimportantareas.
Inaquaculture,theimpactofacidificationcanbelimitedbyselectingmoreresilientspeciesandemployingselectivebreeding. Theentireculturesystemscouldalsobemonitoredandcontrolledtomaintainoptimalwaterconditionsforthegrowthofthe selectedspecies.Moreover,monitoringandresponseplanscanbeorganizedtowarnandprotectaquaculturesystemsfrom acidificationandotherepisodicstressorevents.
Nevertheless,alltheseactionstomitigatetheeffectsofacidificationrequirehighfinancialcostsandpolicycommitmentand cannotfacetheextremescenariosofglobalCO2 emissions.Itisthereforefundamentaltotakeactioninreducingcarbonemissions toleaveagreaternumberofeffectivesafeguardingoptionstoprotectthemarineandfreshwatersystemsandtheirservicesto humans.
FurtherReading DanglesO,MalmqvistB,andLaudonH(2004)Naturallyacidfreshwaterecosystemsarediverseandfunctional:Evidencefromborealstreams. Oikos 104:149–155. DoneySC,FabryVJ,FeelyRA,andKleypasJA(2009)Oceanacidification:TheotherCO2 problem. AnnualReviewofMarineScience 1:169–192. DuarteCM,HendriksIE,MooreTS,OlsenYS,SteckbauerA,RamajoL,CarstensenJ,TrotterJA,andMcCullochM(2013)Isoceanacidificationanopen-oceansyndrome? UnderstandinganthropogenicimpactsonseawaterpH. EstuariesandCoasts 36:221–236. https://doi.org/10.1007/s12237-013-9594-3
HaslerCT,JeffreyJD,SchneiderEVC,HannanKD,TixJA,andSuskiCD(2018)Biologicalconsequencesofweakacidificationcausedbyelevatedcarbondioxideinfreshwater ecosystems. Hydrobiologia 806:1–12. https://doi.org/10.1007/s10750-017-3332-y
IshimatsuA,HayashiM,andKikkawaT(2008)Fishesinhigh-CO2,acidifiedoceans. MarineEcologyProgressSeries 373:295–302. MoiseenkoTI(2005)Effectsofacidificationonaquaticecosystems. RussianJournalofEcology 36:93–102. https://doi.org/10.1007/s11184-005-0017-y
MostofaKMG,LiuC-Q,ZhaiW,MinellaM,VioneD,GaoK,MinakataD,ArakakiT,YoshiokaT,HayakawaK,KonohiraE,TanoueE,AkhandA,ChandaA,WangB,andSakugawaH (2016)Reviewsandsyntheses:Oceanacidificationanditspotentialimpactsonmarineecosystems. Biogeosciences 13:1767–1786. https://doi.org/10.5194/bg13-1767-2016
NationalResearchCouncil(2010) Oceanacidification:Anationalstrategytomeetthechallengesofachangingocean.Washington,DC:NationalAcademiesPress. https://doi.org/ 10.17226/12904
PhillipsJC,McKinleyGA,BenningtonV,BootsmaHA,PilcherDJ,SternerRW,andUrbanNR(2015a)ThepotentialforCO2-inducedacidificationinfreshwater:AGreatLakescase study. Oceanography 28:136–145.
SolomonS,QinD,ManningM,MarquisM,AverytK,TignorM,MillerH,andChenZ(2007)ReportoftheIntergovernmentalPanelonclimatechange.In: Climatechange2007:The physicalsciencebasis:ContributionofWorkingGroupItothefourthassessmentreportoftheintergovernmentalpanelonclimatechange.Cambrige/NewYork,NY:Cambridge UniversityPress.
TemboR(2017)Theimpactofoceanacidificationonaquaticorganisms. JournalofEnvironmental&AnalyticalToxicology 07. https://doi.org/10.4172/2161-0525.1000469
ConstructedWetlandsforWastewaterTreatment☆ JanVymazal,CzechUniversityofLifeSciencesPrague,Praha,CzechRepublic
©2018ElsevierInc.Allrightsreserved.
Constructedwetlandtreatmentsystemsareengineeredsystemsthathavebeendesignedandconstructedtoutilizethenatural processesinvolvingwetlandvegetation,soils,andtheirassociatedmicrobialassemblagestoassistintreatingwastewater.Constructedwetlandsmustcontainwetlandvegetation,thetreatmentsystemwithnoplantsarenotconsideredconstructedwetlands. Theyaredesignedtotakeanadvantageofmanyofthesameprocessesthatoccurinnaturalwetlands,butdosowithinamore controlledenvironment.Someofthesesystemshavebeendesignedandoperatedwiththesolepurposeoftreatingwastewater, whileothershavebeenimplementedwithmultiple-useobjectivesinmind,suchasusingtreatedwastewatereffluentasawater sourceforthecreationandrestorationofwetlandhabitatforwildlifeuseandenvironmentalenhancement.Synonymoustermsto “constructed” includeman-made,engineered,andartificialwetlands.
Atpresent,therearemanydifferenttypesofconstructedwetlands(Fig.1).Constructedwetlands(CWs)forwastewatertreatment maybeclassifiedaccordingtotheflowregimeintosurfaceflow(SForfreewatersurface FWS)andsubsurfaceflow(SSF)systems. TheFWSCWscouldbefurthercategorizedaccordingtothelifeformofthedominatingmacrophyteintosystemswithfreefloating, floating-leaved,emergentandsubmergedmacrophytes.WithintheSSFCWsitispossibletodistinguishbetweensystemswith horizontal(subsurface)flow(HForHSSFCWs)andvertical(subsurface)flow(VForVSSFCWs).Asmanywastewatersaredifficult totreatinasinglestagesystem,hybridsystemsthatconsistofvarioustypesofconstructedwetlandsstagedinserieshavebeen introduced.IntheEuropeansense,hybridCWsareusuallyformedbyacombinationofHFandVFsystems.However,anytypesof CWscouldbecombinedinordertoachievebettertreatmentperformance,especiallyfortotalnitrogen.
ThefirstexperimentsaimedatthepossibilityofwastewatertreatmentbywetlandplantswereundertakenbyDr.Seidelin Germanyin1952attheMaxPlanckInstituteinPlön.However,Seidel’sconcepttoapplymacrophytestosewagetreatmentwas difficulttounderstandforsewageengineersandtherefore,itwasnosurprisethatthefirstfull-scalefreewatersurface(FWS) constructedwetland(CW)werebuiltoutsideGermany,intheNetherlands,inthelate1960s.However,thefirstsubsurfaceflow constructedwetlandwasbuiltinGermanyin1974.
Fig.1 Constructedwetlandsclassification.
☆ChangeHistory: April2018.Vymazalupdatedthetextandfiguresfromthe1stedition,allTablesarenew.
Constructed Wetlands
FreeWaterSurfaceCWs Atypicalfreewatersurfaceconstructedwetlandconsistsofashallowbasinconstructedofsoilorothermediumtosupporttheroots ofvegetation(whenrootingmacrophytesareused)andawatercontrolstructurethatmaintainsashallowdepthofwater(Fig.2). Flowisdirectedintoacellalongalinecomprisingtheinlet,upstreamembankment,andisintendedtoproceedallportionsofthe wetlandtooneormoreoutletstructures.Theshallowwaterdepth,lowflowvelocity,andpresenceoftheplantstalksandlitter regulatewaterflowand,especiallyinlong,narrowchannels,ensureplug-flowconditions.FWSCWscanbeclassifiedaccordingto thetypeofvegetationused(Fig.2).
FWSCWsfunctionasland-intensivebiologicaltreatmentsystems.Inflowwatercontainingparticulateanddissolvedpollutants slowsandspreadsthroughalargeareaofshallowwater.Particulates,typicallymeasuredastotalsuspendedsolids,tendtosettleand aretrappedduetoloweredflowvelocitiesandshelteringfromwind.Mostofthesolidsareusuallyfilteredandsettledwithinthefirst fewmetersbeyondtheinlet.WhilesettleableorganicsarerapidlyremovedinFWSCWsbyquiescentconditions,attachedand suspendedmicrobialgrowthisresponsibleforremovalofsolubleBOD(BiochemicalOxygenDemand,i.e.,organicmatter).The majoroxygensourceforthesereactionsarealgaeandcynobacteriagrowinginthewater.
NitrogenismosteffectivelyremovedinFWSsystemsbynitrification/denitrification.Ammoniaisoxidizedbynitrifyingbacteria inaerobiczones,andnitrateisconvertedtofreenitrogenornitrousoxideintheanoxiczonesnearthebottombydenitrifying bacteria.VolatilizationislikelyasbothplanktonandperiphytonalgaegrowinFWSCWsandhigherpHvaluesduringthedaymay befavorableforammonialoss.FWSCWsprovidesustainableremovalofphosphorus,butatrelativelyslowrates.Phosphorus removalinFWSsystemsoccursfromadsorption,absorption,complexationandprecipitation.However,precipitationwithAl,Fe andCaions islimitedbylittlecontactbetweenwatercolumnandthesoil.MacrophyteuptakeasaremovalmechanisminFWS CWsisrestrictedbythefactthatvegetationisnotregularlyharvested.Also,theamountofNandPsequesteredinaboveground biomassisusuallyquitelowascomparedtoinflowloading(usually <10%).TheonlyexceptionareCWswithfreefloating macrophyteswhereharvestinginnecessaryforaproperfunctionofthesystem.FWSCWshavebeenbuilttotreatvarioustypesof wastewater(Table1)aroundtheworldincludingdomesticandmunicipalwastewater,minedrainage,urban,airport,highwayand agriculturaldrainage,landfillleachateandvarietyofindustrialandagriculturalwastewaters.
ThesystemwithemergentvegetationisthemostcommonlyusedtypeofFWSCWswith Phragmitesaustralis (commonreed), Typha spp.(cattail), Scirpus spp.(bulrush), Juncus spp.(rush)and Eleocharis spp.(spikerush)beingthemostfrequentlyusedspecies. InothertypesofFWSCWsfollowingspeciesarecommonlyused:
-freefloating: Eichhorniacrassipes (waterhyacinth,tropicsandsubtropics), Pistiastratiotes (waterlettuce,subtropicsandtropics), Lemnaceae(duckweeds,worldwide)
-floating-leaved: Nupharlutea (spatterdock), Nelumbonucifera (Indianlotus)
-submerged: Ceratophyllumdemersum (coontail), Najasguadalupensis (southernwaternymph), Trapanatans (waterchestnut, sometimesclassifiedasfreefloating), Myriophyllumheterophyllum (variable-leafwatermilfoil)
-floatingmats: Phragmitesaustralis, Cyperuspapyrus (Papyrus), Alternantheraphiloxeroides (Alligatorweed), Hydrocotyleumbellata (Pennywort)
RemovaloforganicsandsuspendedsolidsinallFWSCWsisveryhighwhileremovalofnutrientsisonlymoderate.FWSCWs providelimitedcontactwithsoil(ifpresent)soadsorptionandprecipitationprocessesareverylimitedandthereforephosphorus removalmostlyproceedsviasoilaccretion.FWSCWsprovidebothaerobicandanaerobiczonesbutneithernitrificationor denitrificationprocessesarecomplete.FWSCWsalsoprovidehighremovalofentericbacteria(e.g.,fecalcoliforms,fecal streptococci, Clostridiumperfringens),usuallyintherangebetweenonetotwoordersofmagnitude.
ConstructedWetlandsWithSubsurfaceFlow HorizontalFlowCWs
ThemostwidelyusedconceptofSSFCWsisthatwithhorizontalsubsurfaceflow(HForHSSFCWs, Fig.3).Thedesigntypically consistsofarectangularbedplantedwiththemacrophytesandlinedwithanimpermeablemembrane.Mechanicallypretreated wastewaterisfedinattheinletandpassesslowlythroughthefiltrationmediumunderthesurfaceofthebedinamoreorless horizontalpathuntilitreachedtheoutletzonewhereitiscollectedbeforedischargevialevelcontrolarrangementattheoutlet. Duringthepassageofwastewaterthroughthereedbedthewastewatermakescontactwithanetworkofaerobic,anoxicand anaerobiczones.
HSSFCWsrequiregoodmechanicalpretreatmentwithsuspendedsolidsbeingthemajortarget.Excessivesuspendedsolidsmay causefiltrationbedcloggingandsubsequentsurfaceflow.Smallsystemsfordomesticsewagewithlowflowsusuallyuseathreechamberseptictank.PretreatmentinsystemsdesignedformunicipalsewagemostlycomprisescreensandImhofftank(sedimentationofparticles,bothinorganicandorganic).Whenstormwaterrunoffisalsotreated(combinedsewersystem),agritchamber (removalofinorganicparticles)isincluded.Varioustypesofwastewatermayrequiredifferenttypesofpretreatment.Forexample, landfillleachatetreatmentsystemsusuallyincludeaeratedlagoons,systemsforthetreatmentofconcentratedwastewatersfrom agriculturaloperationscommonlyincludefacultativelagoons.
Fig.2 Freewatersurfaceconstructedwetlands.(A)Withemergentvegetation,(B)withfloatingmatsofemergentvegetation,(C)withfreefloatingvegetation, (D)withsubmergedvegetation,(E)withfloating-leavedvegetation(Vymazal,2008).
Table1 ExamplesoftheuseofFWSCWsfortreatmentofvarioustypesofwastewater VegetationTypeofwastewaterLocation
FFMunicipalUnitedStates,Cameroon,Poland,Thailand,China,Taiwan FLMunicipalUnitedStates,China
SMunicipalUnitedStates,Sweden,China
AgriculturalrunoffSweden,UnitedStates UrbanrunoffCanada,UnitedStates
EMunicipalAllcontinents
UrbanstormwaterAustralia,UnitedStates,UnitedKingdom AgriculturalrunoffAustralia,NewZealand,UnitedStates,Sweden,Denmark,Italy,Korea,Taiwan,China,Norway,Finland,Spain AirportrunoffSweden,Canada
FeedlotoperationsIreland,Canada,UnitedStates
MinedrainageUnitedKingdom,UnitedStates,Spain,SouthAfrica,Canada,Australia,Germany,Ireland
RefineryUnitedStates,China,Hungary
PulpandpaperUnitedStates,China
AquacultureUnitedStates,Taiwan LandfillleachateSweden,Norway,Canada,Poland,UnitedStates FoodprocessingGreece,Kenya,UnitedStates,Canada,Thailand,Italy,NewZealand TanneryTurkey
WoodwasteCanada
FMMunicipalUnitedStates,China,Turkey,Uganda,SriLanka,Colombia,Italy,Taiwan RoadrunoffBelgium,UnitedStates,NewZealand AgriculturalrunoffChina
MinedrainageCanada
FeedlotoperationsUnitedStates
FF,freefloating; FL,floating-leaved; S,submerged; E,emergent; FM,floatingmats.
Fig.3 Constructedwetlandswithhorizontalsubsurfaceflow.1 distributionzonefilledwithlargestones,2 impermeableliner,3 filtrationmedium(gravel, crushedrock),4 vegetation,5 waterlevelinthebed,6 collectionzonefilledwithlargestones,7 collectiondrainagepipe,8 outletstructurefor maintainingofwaterlevelinthebed.Thearrowsindicateonlyageneralflowpattern.FromVymazal,J.(ed.)(2001). Transformationsofnutrientsinnaturaland constructedwetlands.Leiden,TheNetherlands:BackhuysPublishers.
Filtrationbedsarefilledwithporousmaterialwhichallowsforgoodhydraulicconductivityinordertokeepthewaterlevel belowthesurfaceaswellassupportsgrowthofmacrophytes.Themostcommonlyusedfiltrationmaterialsarewashedpeagravel andcrushedrock.Thefractionsizevariesamongcountriesbutingeneral,sizebetween5and20mmisthemostcommon.Itis recommendedtouseonlyonefractionasvariousfractionsdifferinhydraulicconductivityandshortcircuitingmayoccur.The inflowdistributionandoutflowcollectionzonesarefilledwithlargestones(ca.50–200mm).
Thefollowingequation,firstproposedbyKickuth,iswidelyusedforsizingofHSSFsystemsfordomesticsewagetreatment: Ah ¼ Qd ln Cin ln Cout ðÞ=KBOD , where Ah ¼ surfaceflowofbed(m2), Qd ¼ averageflow(m3 day 1), Cin ¼ influentBOD5 (mgL 1), Cout ¼ effluentBOD5 (mgL 1), KBOD ¼ rateconstant(mday 1).
Therewerealotofdiscussiononthe KBOD value.Formerlyproposedvalueof0.19mday 1 byKickuthresultedintoosmallarea ofthebed(about2m2 peronePE,populationequivalent)andconsequentlylowertreatmenteffect.Thefieldmeasurementsin operationalsystemsindicatedthatthevalueof KBOD isusuallylower(0.07–0.1mday 1).Thedatafrom66DanishHSSFCWs identified K-valuesfortotal-N:0.033mday 1 andtotal-P:0.025mday 1
Thedepthofvegetatedbedswithhorizontalsubsurfaceflowwasinitiallybasedontherequirementthatrootsandrhizomesof thevegetationshouldpenetratethefulldepthofthebedinordertoeliminatetotallyanaerobiczones.Astherootsofthemost frequentlyusedplant,commonreed(Phragmitesaustralis)arecapableofsuccessfulpenetrationtothedepthofabout0.6mandstart toweakenbeyondthatpoint,therecommendedbeddepthwas0.6m.Althoughithasbeenproventhatoxygentransportedfrom abovegroundorgansdiffusesonlytothethinsubstratelayeradjacenttotherootsandrhizomesthetypicaldepthoffiltrationbedis usually0.6–0.8m.
Constructedwetlandswithhorizontalsubsurfaceflowareusuallysealedinordertopreventuncontrolledwaterseepageinto groundwater.MostofthesystemsuseaplasticlinerormembranesuchasHDPE,LDPEorPVC0.5–2mmthick.Wherelocalsubsoil haslowhydraulicconductivity(approx.10 8 ms 1 orless),itisnotnecessarytouseplasticliners.Inordertopreventlinerdamage byfiltrationmaterialparticles,geotextileiscommonlyusedtocoverplasticliner.Also,geotextilecouldbealsousedbeneaththe liner.
Themacrophytesgrowinginconstructedwetlandshaveseveralpropertiesinrelationtothetreatmentprocessesthatmakethem anessentialcomponentofthedesign.ThemostimportanteffectsofthemacrophytesinHSSFCWsinrelationtowastewater treatmentprocessesarethephysicaleffectstheplanttissuesgiverisetosuchasinsulationofthebedsurfaceduringtheperiodof coldweatherorprovisionofsurfaceareaforattachedmicroorganismsinthefiltrationbed.Themetabolismofthemacrophytes (plantuptake,oxygenreleasefromtheroots)isofminorimportanceinHSSFCWs.ThemacrophytesforHSSFCWsshould(a)be tolerantofarelativelyhighorganicloadinthewastewater,(b)havehighbelowgroundandabovegroundbiomass,and(c)should growquicklyinordertocoverthefiltrationbedsurfacesoonafterplanting.
Themostfrequentlyusedplantaroundtheworldis Phragmitesaustralis,especiallyinEurope,Australia,AfricaandAsia.Insome countries, Phragmites isusedexclusively;forexample,intheUnitedKingdom,whereHSSFCWsarecalledReedBedTreatment Systems.Ontheotherhand,inNewZealandormanyareasoftheUnitesStates, Phragmites isconsideredanexoticandinvasive speciesbynaturalresourceagenciesandasaresult,useofthisspecieshasbeenlimited.Othercommonlyusedspeciesare Phalaris arundinacea (reedcanarygrass), Glyceriamaxima (sweetmannagrass)orvariouscattails(Typhalatifolia,T.angustifolia)inEurope, Cyperuspapryrus (papyrus)inAfrica, Typhadomingensis inSouthAmericaand Scirpus spp.(bulrush)inNorthAmerica.Weeds(plants thatwerenotintentionallyplanted)occurmostlywithinvegetatedbedmarginsanddonothaveanydetrimentalimpacton treatmentperformance.
DissolvedoxygensupplyisverylimitedinfiltrationbedsofHSSFCWsand,therefore,anoxicandanaerobicprocessesusually prevail.Aerobicdegradationisrestrictedtonarrowzonesadjacenttorootsandrhizomeswhereoxygenleakstotherhizosphere. Removaloforganics(BOD5,COD)isusuallyhighandexceeds85%incaseofsewage.Suspendedsolidsthatarenotremovedin pretreatmentsystemareeffectivelyremovedbyfiltrationandsettlement.Mostsuspendedsolidsarefilteredoutandsettledwithin thefirstfewmetersbeyondtheinletzone.SuspendedsolidsareremovedinHSSFCWSwereeffectively,commonly >90%.The accumulationoftrappedsolidsisamajorthreatforgoodperformanceofHSSFsystemsasthesolidsmayclogthebed.Therefore,the effectivepretreatmentisnecessaryforHSSFsystems.However,ithasbeenshownthatifHSSFCWsareappropriatelyloaded,thatis, <10gBOD5 m 2 day 1 , <20gCODm 2 day 1 , <10gTSSm 2 day 1,thepartialcloggingintheinflowzoneoccursonlyafter about15years.Inaddition,partialclogginghasnoeffectontreatmentperformanceofthesystem.
ThemajorremovalmechanismofnitrogeninHSSFconstructedwetlandsisnitrification/denitrification.Fieldmeasurements haveshownthattheoxygenationoftherhizosphereofHSSFconstructedwetlandsisinsufficientand,therefore,incomplete nitrification(i.e.,oxidationofammoniatonitrate)isthemajorcauseoflimitednitrogenremoval.Ingeneral,nitrificationwhich isperformedbystrictlyaerobicbacteriaismostlyrestrictedtoareasadjacenttorootsandrhizomeswhereoxygenleakstothe filtrationmedia.Ontheotherhandprevailinganoxicandanaerobicconditionsoffersuitableconditionsfordenitrificationbutthe supplyofnitrateislimitedasthemajorportionofnitrogeninsewageisintheformofammonia.Adsorptionandplantuptakeplay amuchlessimportantroleinnitrogenremovalinHSSFCWs.Volatilizationisnoteffectiveasthereisnofreewatersurfaceand adsorptionisgreatlylimitedbythefactthatfiltrationmedia(gravel,rock)donotprovidesuitablesorptionsites.Plantharvesting contributestoanoverallnitrogenremovalonlymarginally(usually <10%oftheinflowload)withNstandingabovegroundstocks intherangeof20–60gNm 2.Incaseofsewage,removalofammoniaandtotalnitrogenusuallydoesnotexceed50%.
Phosphorusisremovedprimarilybyadsorptionandprecipitation,however,mediausedforHSFwetlands(e.g.,peagravel, crushedstones)usuallydonotcontaingreatquantitiesofFe,AlorCaandtherefore,removalofphosphorusisgenerallylow(<40% insewage).Removalofphosphoruscouldbeenhancedbytheuseoffiltrationmediawithhighsorptioncapacitybutthesorption capacityisalwayssaturableandtherefore,themediamustbereplacedaftersaturationinordertomaintainhighPremoval.Removal viaharvestingaccountsusuallyfor <5%oftheinflowloadwiththePstandingstockintheabovegroundbiomassintherangeof 3–6gPgm 2.Theremovalofmicrobiologicalpollutionisveryseldomtheprimarytargetforconstructedtreatmentwetlands. However,HSSFCWsareknowntoactasexcellentbiofiltersthroughacomplexofphysical,chemicalandbiologicalfactorswhichall participateinthereductionofthenumberofbacteriaofanthropogenicorigin.
HSSFCWsareusedformanytypesofwastewateraroundtheworld(Table2).Indeed,themostcommonuseisformunicipal anddomesticsewage,howeverindustrialandagriculturalwastewatershavebeensuccessfullytreatedaswell.Besidesthat, applicationsforvarioustypesofstormwaterrunoff(e.g.,urban,highway,agricultural,golfcourses,nurseries,airports)andlandfill leachatehavebeenputinoperation.
Table2
ExamplesoftheuseofHFCWsforvarioustypesofwastewaters WastewaterLocation
MunicipalWorldwide PetrochemicalUnitedStates,Taiwan,China,Sudan,Oman PulpandpaperUnitedStates,Kenya,India TanneryPortugal,Tanzania TextileAustralia,Slovenia,Tanzania AbbatoirAustralia,Mexico,Ecuador,Uruguay,NewZealand FoodprocessingItaly,Spain,Slovenia,UnitedStates,France,Lithuania,Turkey Distillery,wineryItaly,Spain,UnitedStates,India,SouthAfrica,Mexico,UnitedKingdom FeedlotoperationsAustralia,China,UnitedStates,Canada,Thailand,Lithuania FishfarmsUnitedStates,Germany,Canada DairyItaly,Lithuania,Germany,UnitedStates,UnitedKingdom,NewZealand HighwayrunoffUnitedKingdom,Italy,UnitedStates AirportrunoffUnitedKingdom,Switzerland,UnitedStates,Germany AgriculturalrunoffChina,NewZealand LandfillleachateUnitedStates,Portugal,Norway,Poland,Slovenia
VerticalFlowCWs
Constructedwetlandswithverticalsubsurfaceflow(VForVSSFCWs)usuallycompriseaflatbedofcoarsesandorgravelplanted withmacrophytes(Fig.4).ThemostimportantfactorsinthedesignofaVFCWsare:(1)toproduceabedmatrixthatallowsthe passageofthewastewaterthroughthebedbeforethenextdosearriveswhilstatthesametimeholdingtheliquidbacklongenough toallowthecontactwiththebacteriagrowingonthemediaandachievetherequiredtreatment.(2)Toprovidesufficientsurface areatoallowtheoxygentransfertotakeplaceandsufficientbacteriatogrow.VFCWswereproposedduringthe1960sbutdidnot spreadasquicklyasHSSFCWs,probablybecauseofhigheroperationandmaintenancerequirements.However,theincreased demandfornitrogenandespeciallyammonia’nitrogenremovalinthe1990srevivedthistypeofconstructedwetlands.
AllVFsystemsaredosedintermittently,however,thereisnoclearrecommendationhowmanybatchesperdayareoptimal.Itis essentialtoachievequickwatercoverofthesurfaceinordertotrapairintheintersticesinthebed.InmostVFsystemsthereal distributoristhelayerofcarefullyselectedsandwhichfirstallowsfloodingofthesurfaceandthengradualseepagedownthrough thedepthofthemedia.ThevastmajorityoftheVFsystemsemployanetworkofpipeswithsmallholesacrossthesurfaceareaofthe bed.Thedistributionpipescouldbeinsulatedbya0.2mlayerofcoarsewoodchipsorseashellsonthesurfaceofthefilter.Itisalso possibletodistributewastewaterfromopen-endedpipesontothebed.Theareaoftheimmediatevicinityofthedischargeshouldbe protectedbysomepavingortilestopreventthewashawayofthesandorgravel.
ThedataonmaximumHLRvarywidelyintheliterature.However,itseemsthatVFCWscanoperateintherangeof 100–1200mmday 1 andusuallynocloggingproblemsoccurbelow800mmday 1 ofpretreatedwastewater.Theorganicloading rateshouldnotexceed25gCODm 2 day 1 inordertopreventclogging.TheareausedforVFCWsvariesbetween0.9and 5m2 PE 1 (PE ¼ populationequivalent)butmostsystemsaredesignwiththespecificarea2–3m2 PE 1 stemsareusuallydesigned asasingleunit,largersystemsmayhaveseveralbedswhicharefedwithwastewaterinrotation.Also,somelargersystemshavetwo stagesofverticalbedsinoperation.
ThesizeofVFCWsisusuallybasedonthehydraulicloadingrate(HLR).ThemaximumHLRthatcanbeachievedwithout surfacefloodingwillbeaffectedbymanyvariablesbutismoststronglyrelatedtomediasizeanddistribution,rateofbiofilmgrowth andhencetheBOD5/organicmassloadingrateandsuspendedsolidsloadingrate.TheDanishguidelinesrecommendspecificarea of3.2m2 perperson,maximumorganicloadingof18.8gBOD5 m 2 day 1 andhydraulicloadingof47mmday 1.Filtration mediumissandwithad10 between0.25and1.2mm,ad60 between1and4mm,anduniformitycoefficient(U ¼ d60/d10)should be <3.5.Thecontentsofclayandsilt(particles <0.125mm)mustbe <0.5%.Austrianguidelinesrecommendthespecificareaof 4m2 perpersonandmaximumloadingof20gCODm 2 day 1.Thefiltrationlayersshouldconsistof5–10cmofgravel(4/8or 8/16mm)ontop,followedby50cmofwashedsand(0–4mm),5–10cmtransitionlayer(gravel4/8mm)and20cmdrainage layeratthebottom(gravel8/16or16/32mm).Thisset-upguaranteesoutflowconcentrations <90mgL 1 COD,25mgL 1 BOD5 and10mgL 1 N-NH4 atwatertemperature > 12 C.InFrance,theVFsystemsconsistoftwobedsinserieswithonly1.2m2 per personinthefirststageand0.8m2 perpersoninthesecondstage.Thepretreatmentconsistsonlyofprescreening,maximum organicloadis100gCODm2 day 1 andmaximumhydraulicloadingis90cmday 1
PlantsplayaveryimportantroleinVFCWs.Theystabilizesurfaceofthebed,theirrootsandrhizomespositivelyaffectthe hydraulicconductivityofthefilterandmovementofabovegroundstemshelpstopreventclogging.Theabovegroundbiomass providesinsulationofthebedandbelowgroundorgansprovidesubstrateforattachedbacteriagrowth.Theoxygentransfertothe rhizosphereislimitedbutcreatesmicrozoneswhereaerobicbacteriacanbepresent.ThevastmajorityofVFCWsisinoperationin Europeandthemostcommonlyusedplantis Phragmitesaustralis (commonreed). VFCWsareveryeffectiveinremovaloforganics,suspendedsolidsandammonia.Theintermittentfeedingallowsforregular emptyingthefiltrationbedwhichresultsingoodoxygenationofthebedallowingfornitrification.Therefore,VFCWSareusedin
Fig.4 Layoutofaverticalflowconstructedwetlandsystemforasinglehousehold.Rawsewageispretreatedina2m3 sedimentationtank.Settledsewageis pulse-loadedontothesurfaceofthebedbyalevel-controlledpump.Treatedeffluentiscollectedinasystemofdrainagepipes,andhalfoftheeffluentisrecirculated backtothepumpingwell(ortothesedimentationtank).FromBrix,H.(2005).Theuseofverticalflowconstructedwetlandsforon-sitetreatmentofdomestic wastewater:NewDanishguidelines. EcologicalEngineering 25,491–500.
Table3 ExamplesoftheuseofVFCWsforvarioustypesofwastewater WastewaterLocation Municipal,domesticFrance,Belgium,Austria,Poland,CzechRepublic,Italy LandfillleachateNorway,NewZealand AbbatoirCanada RefineryPakistan AirportrunoffUnitedStates,Canada Textile UnitedKingdom,Portugal,Japan AquacultureUnitedStates,China,Canada,Vietnam Winery Germany OlivemillTurkey,Greece ChemicalindustryPortugal SteelindustryChina
casewhenammoniaisthetargetofthetreatment.Ontheotherhand,duetooxicconditionsinthebed,thedenitrificationislimited andoftenmissinginthesystem.VFCWsarecommonlyusedfortreatmentofdomesticandmunicipalsewagebuttheuseforother typesofwastewateriscommon(Table3).
HybridConstructedWetlands Inhybridconstructedwetlands(CWs),theadvantagesofvarioussystemscanbecombinedtocomplementeachother.Hybrid constructedwetlandswerefirstintroducedbySeidelinGermanyasearlyasinthe1960s.Thedesignconsistedoftwostagesof severalparallelverticalflow(VF)bedsfollowedbytwoorthreehorizontalflow(HF)bedsinseries.TheVFstageswereusually plantedwith Phragmitesaustralis,whereastheHFstagescontainedanumberofotheremergentmacrophytes,including Iris, Schoenoplectus (Scirpus),Sparganium,Carex,Typha and Acorus.TheVFbedswereloadedwithpretreatedwastewaterfor1–2days, andwerethenallowedtodryoutfor4–8days.Inthissystem,nitrification,thatis,oxidationofammoniatonitrate,takesplacein theVFstageanddenitrificationofnitrate,thatis,reductionofnitratedoN2OandN2,proceedsintheHFstage.Theoxidationof ammoniainintermittentlyloadedVFstageisveryhighbuttheconcentrationoforganicsinthesecondstagemaynotbehigh enoughtosupportfulldenitrification.Intheearly1980s,severalhybridsystemsofSeidel’stypewerebuiltinFranceandsimilar systemwasbuiltin1987intheUnitedKingdom.Duringthe1990sandtheearly2000s,VF–HFsystemswerebuiltinmany countriesinEurope,forexample,Austria,Slovenia,NorwayorIreland.TheVF–HFhybridconstructedwetlandsweremostly designedtotreatdomesticormunicipalwastewaterwherenitrifiedeffluentswererequiredbuttherewerealsoapplicationforother typesofwastewater(Table4).
Table4 Examplesofhybridconstructedwetlandsusedforvarioustypesofwastewaters
TypeofhybridsystemLocation Wastewater
VF–HF
HF–VF
VF–VF–HF
VF–VF–HF–VF
Belgium,Estonia,Tunisia,Spain,China,Italy,Brazil,FranceSewage
Italy Cheeseproduction
Slovenia Landfillleachate
Spain Winery
Mexico,Poland,France,Italy,Nepal,China,TurkeySewage
Poland Slaughter
France Cheeseproduction
Japan Milkingparlor
Japan Milkingparlor
VF–VF–VF–HF–VFJapan Starchproduction
VF–HF–VF
HF–VF–HF
VFd–VFu
Japan Pigurine
Morocco,Turkey Sewage
Bangladesh Tannery
Poland,NewZealand Sewage
Korea Greenhouse
Slovenia Mixedindustrial
China Sewage
China Aquaculture
FWSincombinationwithHFandVFChina.Italy,Thailand,Mexico,Taiwan Sewage
Italy Winery
Taiwan Aquaculture
Thailand Fishindustry
Canada Landfillleachate
Kenya Flowerplant
Inthelate1990s,alsoHF–VFconstructedwetlandswereintroduced.ThissystemconsistedofalargeHFbedplacedfirstanda smallVFbedasthesecondstage.Inthissystem,nitrificationtakesplaceintheverticalflowstageattheendoftheprocesssequence. Ifnitrateremovalisneededitisthennecessarytorecirculatetheeffluentbacktothefrontendofthesystemwheredenitrification cantakeplaceinthelessaerobichorizontalflowbedusingtherawfeedasasourceofcarbonneededfordenitrification.TheHF–VF CWshasbeenusedexclusivelyfortreatmentofsewagesofar(Table4).BesidesVF–HFandHF–VFsystemsothercombinationsof subsurfaceflowCWsandalsocombinationsincludingFWSCWswereusedinthe1990sandtheearly2000sfortreatmentof varioustypesofwastewater(Table4).
Conclusions Constructedwetlandsrepresentanalternativetreatmentsystemtoconventionaltreatmentsystemssuchasactivatedsludgeprocess. Alltypesofconstructedwetlandsexhibithightreatmentefficiencyfororganicsandsuspendedsolids.Theremovalofthese parametersiscomparablewithconventionalsystems.Removalofnitrogendependsonthetypeofconstructedwetlandsand nitrogenspeciesinvolved.AmmoniaisefficientlyremovedinverticalflowCWswhilenitrateisremovedefficientlyinHFCWs. However,combinationofvarioustypesofCWs(usuallyVFandHFCWs)canenhanceremovaloftotalnitrogenandthenthe efficiencyiscomparablewithconventionalsystems.Removalofphosphorusisvariabledependingonthefiltrationmaterial, however,commonlyusedmaterialsdonotsupporthighphosphorusremoval.Theadvantageofconstructedwetlandsascompared toconventionaltreatmentsystemsislowoperationandmaintenancecost,insomecountriesalsotheinvestmentcostis substantiallylowerthanofconventionalsystems,abilitytotreatlowstrengthwastewatersandnorequirementofcontinuous feedingandoperation.
FurtherReading BrixH(2005)Theuseofverticalflowconstructedwetlandsforon-sitetreatmentofdomesticwastewater:NewDanishguidelines. EcologicalEngineering 25:491–500. HammerDA(ed.)(1989) Constructedwetlandsforwastewatertreatment,Chelsea,Michigan:LewisPublishers. Kadlec,R.H.,Wallace,S.D. Treatmentwetlands,2ndedn.BocaRaton,Florida:CRCPress. Kadlec,R.H.,Knight,R.L.,Vymazal,J.,Brix,H.,Cooper,P.F.andHaberl,R.(2000). Constructedwetlandsforpollutioncontrol.Processes,performance,designandoperation.IWA scientificandtechnicalreportno.8.London:IWAPublishing. MoshiriGA(ed.)(1993) Constructedwetlandsforwaterqualityimprovement,BocaRaton,Florida:CRCPress/LewisPublishers. MulamoottilG,McBeanEA,andRoversF(eds.)(1999) Constructedwetlandsforthetreatmentoflandfillleachates.BocaRaton,Florida:CRCPress/LewisPublishers. ReddyKRandSmithWH(eds.)(1987) Aquaticplantsforwatertreatmentandresourcerecovery,Orlando,Florida:MagnoliaPublishing.
ReedSC,MiddlebrooksEJ,andCritesRW(1988) Naturalsystemsforwastemanagementandtreatment.NewYork:McGraw-Hill. SeidelK(1965)NeueWegezurGrundwasseranreicherunginKrefeld,Vol.II.HydrobotanischeReinigungsmethode. GWFWasser/Abwasser 30:831–833. VymazalJ(ed.)(2001) Transformationsofnutrientsinnaturalandconstructedwetlands.Leiden,TheNetherlands:BackhuysPublishers. VymazalJ(2007)Removalofnutrientsinvarioustypesofconstructedwetlands. ScienceoftheTotalEnvironment 380:48–65. VymazalJ(2008)Constructedwetlands,subsurfaceflow.In:JørgensenSEandFathBD(eds.) Encyclopediaofecology,1stedn,pp.749–764.Amsterdam:ElsevierB.V. VymazalJ(2008)Constructedwetlands,surfaceflow.In:JørgensenSEandFathBD(eds.) Encyclopediaofecology,1stedn,pp.765–777.Amsterdam:ElsevierB.V. VymazalJ(2011)Constructedwetlandsforwastewatertreatment:Fivedecadesofexperience. EnvironmentalScienceandTechnology 45(1):61–69. VymazalJ(2014)Constructedwetlandsfortreatmentofindustrialwastewaters:Areview. EcologicalEngineering 73:724–751. VymazalJandKröpfelováL(2008) Wastewatertreatmentinconstructedwetlandswithhorizontalsub-surfaceflow.Dordrecht:Springer. VymazalJ,BrixH,CooperPF,GreenMB,andHaberlR(eds.)(1998) ConstructedwetlandsforwastewatertreatmentinEurope,Leiden,TheNetherlands:BackhuysPublishers.
DeadZones:LowOxygeninCoastalWaters AndrewAltieri,
UniversityofFlorida,Gainesville,FL,UnitedStates
r 2019ElsevierB.V.Allrightsreserved.
Glossary
Anoxia Absenceofdissolvedoxygen.
Benthos/benthic Thecommunityoforganismsinornear thebottomoftheocean.
Deadzone Oxygen-depletedcoastalwatersthatare hypoxicwithcompromisedbiologicalcommunities.
Eutrophication Excessnutrientsinabodyofwater.
Hypoxia Lowdissolvedoxygen.Theexactthresholdiscontext dependent,butistypicallyregardedasaconcentration o2.8mg/L.
Hysteresis Theexistenceofmultipleecologicalstates underagivensetofenvironmentalconditions,where thresholdsbetweenstatesdifferdependingonpriorstate.
Introduction Residencetime Theaveragetimeforthewaterinabody ofwatertoberenewed.
Stratification Layeringofthewatercolumnintowater masseswithdifferentproperties.
Suspensionfeeders Organismsthatthatfeedby filtering foodfromwater.
Watercolumn Asectionofwaterextendingfromthe surfacetobottom.
Oxygendepletionincoastalwatersisregardedbymanymarinebiologistsandoceanographersasthemostpressingwater pollutionproblemintheworldbecauseofitssevereimpactsandacceleratingspreadworldwide.Inextremecases,thishypoxia createsareasknownas “deadzones” thatarelargelydevoidofmacrofaunabecauseofmortalityandemigration.Concentrationsof dissolvedoxygenarenaturallyvariable,andthisvariationcanleadtoareaswithlowoxygenconcentrations(hypoxia)thatare stressfultomarinelife.However,theduration,severity,andnumberofecosystemswithhypoxiahasincreasedduetoanthropogenicfactorsincludinginputsofexcessnutrientsandorganicmatter,aswellasclimatechange,andtherearenowhundredsof coastalecosystemsaffectedbyhypoxiaworldwide(Fig.1).
Thisarticlebeginsbydescribinganddefiningdeadzones,andthenprovidesbackgroundonfactorsthatdrivetheformationof hypoxicwatersincludinganthropogenicinputsandnaturalprocesses.Organismalresponsestolowoxygenarethenpresentedasabasis forunderstandingcommunityandecosystemimpactsofhypoxia.Therelevanceofdeadzonestohumanwelfareareprovidedinthe contextofecosystemservices,andfollowedbyevidencefortheincreasingspreadofdeadzonesworldwide.Finally,thearticleprovides backgroundonemergingareasofhypoxiaresearchandpossiblesolutionstoaddressthethreatofdeadzones.
Globalmapofhypoxicecosystems.Deadzonesaretypicallyassociatedwithareasofintensehumanactivity(or “humanfootprint”)inthe coastalzone.Mostknowndeadzonesarelocatedinthetemperateregions,butrecentresearchsuggeststhenumberofhypoxicecosystemsinthe tropicsaregreatlyunderestimated.FromDiaz,R.J.andRosenberg,R.(2008).Spreadingdeadzonesandconsequencesformarineecosystems. Science 321,926–929.
Fig.1
DeadZonesDefined Thedepletionofoxygenincoastalwaters,suchasestuaries,continentalshelfareas,andcoastalseas,isnowawidespread phenomenon.Lowoxygentypicallyoccursclosetothesea floorandindeeperportionsofstratifiedwatercolumnswhereratesof oxygenconsumptionarelikelytobehighestandreplenishmentlowest.Deadzonescanrangeinsizefromasmallcanalorchannel tothebasinofinlandseassuchastheBalticSeawhichcommonlycovers 460,000km2 (Fig.2).Deadzonesalsovaryinduration. Somehavebecomepermanentfeatures,asfoundintheBalticSea,whereasothersoccurseasonally,suchastheChesapeakeBay, UnitedStates.Theycanalsovaryinspatialextentandseverityyear-to-yearbasedonfreshwaterinputsandexternalconditionsasin theGulfofMexico.
Fishkills,inwhichdead fishandothermarineorganismsaccumulateonthewater'ssurfaceandonbeaches,areoneofthe mostvisiblesignsofhypoxia.Anotherconspicuousphenomenonisthe “jubilees” inMobileBay,UnitedStateswherehypoxic bottomwatersdrive fishandcrabsintotheshallowswheretheyarecollectedbylocalresidentsinaseafoodbonanza.However, theseeventsrepresentjustahintofhypoxia'simpactsandprevalenceincoastalecosystemssinceoxygenmeasurementsrequire specializedsensors,andtheassociatedbiologicaleffectstypicallyoccuroutofsightbelowtheocean'ssurface.
Oxygendepletionisastressforaerobicorganismsthatcanleadtophysiologicalchanges,behaviorsresponses,andeventually mortality.Hypoxiacan,therefore,haveavarietyofdirectandcascadingeffectsoncommunitystructureandecosystemfunction.In themostextremecases,hypoxicecosystemsbecomelargelydevoidoflivingmacrofauna,hencethename “deadzone.” Thisterm originatedinthepopularpresswhichreportedonhypoxicareasthat fishersreferredtoas “deadwater” forlackofany finfishor shellfishtocatch.Inthedecadessincetheterm “deadzone” was firstcoined,ithasbecomemoregenerallyappliedtoanyhypoxic ecosystem,andthetermisusedassuchinthisarticle.Whilethereissomedisagreementaboutwhethertheterm “deadzone” is appropriatesincemicrobesandafewothertolerantfunctionalgroupscanpersistinseverelyhypoxiawaters,itdoesserveasa usefulnontechnicalshorthandthatconveystheseriousnessofthephenomenonforthelivingsystemsonwhichhumansareso dependent.
HypoxiainOtherEcosystems Thescopeofthisarticleislimitedtohypoxiaincoastalwatersincludingbays,estuaries,coastalandinlandseas,andsomeshelf systems.However,hypoxiaalsooccursinotherbodiesofwaterwithimportantconsequencesfortheecologyofthosesystems.For
Fig.2 Schematicrepresentingthegeneralrelationshipbetweenecosystemsizeanddurationofhypoxia.Therelativecontributionofhuman factorsindrivingoxygendynamicsisrepresentedin red, whereasnaturalfactorsarein green.Thisarticlefocusesonthosesystemsin red.From Rabalais,N.N.,Diaz,R.J.,Levin,L.A.,Turner,R.E.,Gilbert,D.andZhang,J.(2010).Dynamicsanddistributionofnaturalandhuman-caused hypoxia. Biogeosciences 7,585–619.
example,freshwaterlakesandpondscommonlybecomehypoxicbecauseofeutrophicationand/orseasonalstratificationofthe watercolumn.Therearealsolargepermanentlyhypoxicareasindeeperoceanbasinsknownasoxygenminimumzones(OMZ) thatareanaturalphenomenonwithdiverseadaptedcommunities(Fig.2).Attimes,hypoxicwatersfromtheOMZcanbe upwelledontotheshelfintoshallowcoastalwaterssuchasalongthewesterncoastsoftheUnitedStatesandSouthAfrica.There areimportantdistinctionsbetweenOMZsanddeadzones:OMZsaregenerallyconsiderednaturalandpermanentfeatures (althoughtheirexpansionappearslinkedtolarge-scaleclimateandoceanographicprocesses),whereascoastaldeadzonescanvary indurationandareoftenassociatedwitheutrophicationandotheranthropogenicfactors.
QuantifyingHypoxia Hypoxiaisgenerallydefinedasanoxygenconcentrationinwaterthatislowrelativetoeithertheoxygensaturationatequilibriumwith atmosphericconcentrationsorthemetabolicneedsofaerobicorganisms.Assuch,dissolvedoxygen levelsaretypicallyreportedaseither percentsaturationorconcentration(mgormLofoxygenperliterofseawater).Percentsaturationisoftenusefulforunderstandingthe driversofhypoxiabecauseitindicatestheseverityofoxygendepletionrelativetothatexpectedatequilibriumconcentrations.Absolute oxygenconcentrations(mg/LormL/L)aremorefrequentlyusedinstudiesofbiologicalresponsesto hypoxia.Saturationand concentrationunitsarenotdirectlyinterchangeablebecausetemperature,barometricpressure,andsalinityaffectthesaturationof oxygeninwaterandmustbeknowntoderivepercentsaturationfromabsoluteoxygenconcentration.
Concentrationsofdissolvedoxygenvarycontinuously,andthresholdsoftolerancetohypoxiavaryamongspecies.Nevertheless,2.8mg/L(equivalentto2.0mL/L)hasbeenwidelyadoptedastheoxygenconcentrationbelowwhichabodyofwateris consideredhypoxic.Belowthatthreshold,negativeeffectsofoxygenlimitationincludingmortalityarelikelytobeobservedacross mosttaxa.Thereareproponentsforelevatingthethresholdsince fishoftenshowsensitivitiestooxygenatthe5–6mg/Lrange,and manymacrofaunaexhibitbehavioralchangeswhenoxygenlevelsdroptothe3–4mg/Lrange.Forcomparison,100%oxygen saturationinwaterat251Cand1atmofpressureis8.2mg/L.
Theoxygendynamicsandecologicaleffectsofoxygenlimitationindeadzonesareoftenmeasuredanddescribedinthewater columnandinthebenthos.Thebenthosinmanydeadzonesiscomprisedofsoftsediments,andthechemicalproperties (includingoxygenconcentrations)andbiologicalactivityofthosesedimentsarecloselylinkedtopropertiesofthewatercolumn. Acomprehensiveunderstandingofdeadzones,therefore,incorporatescharacteristicsofthesediments,includingirrigationby burrowingorganismsandthedepthoftheredoxpotentialdiscontinuitywhichindicatesthedepthwithinthesedimentthat transitionsfromoxictoanoxiclayers.
CausesofDeadZones Oxygenconcentrationsdeclineindeadzonesbecauseratesofoxygendepletionoutpaceratesofoxygenreplenishment.This sectionofthearticlediscussestheoriginsoflowoxygenwaters.First,thegeneralprocessesthatdepleteoxygenaredescribedwitha distinctionbetweennaturalandanthropogenicfactors.Second,thefactorsthatlimitoxygenreplenishmentareoutlined.Finally,a discussionispresentedastowhysomecoastalwatersareespeciallysusceptibletooxygendepletion.
OxygenDepletion Decompositionandrespiration
Oxygenconsumptionbyaerobicorganismsisthedominantcauseofoxygendepletionincoastaldeadzones.Therearetwomain processesofbiologicaloxygenconsumptionthatcanleadtolowoxygenconcentrationsincoastalwaters.
Decompositionbymicrobesistheprimaryprocessofoxygenconsumptionthatleadstotheformationofdeadzones.Assuch, factorsthatincreasetheamountoforganicmatteravailablefordecompositionand/orincreaseratesofmicrobialactivityare ultimatelyresponsibleforhypoxia.Manydeadzonesarelinkedtophytoplanktonblooms.Thebiomassofplanktonthatdiesand sinkstothebottomfuelsaerobicmicrobialdecomposition.Macroalgalbloomscanalsogenerateorganicmatterthatfuelshypoxic conditions.Moreover,macroalgaecanfurtherincreaseoxygenstressbysmotheringthebottom.
Allochthonousorganicmatter,suchasdetritus,sediments,andsewage,deliveredtocoastalwaterscanbypasstheroleofalgal bloomsandleadtomicrobialoxygendepletion.Ifoxygenlevelsdropsufficientlytocausemortality,thenthebiomassofdead organismsbecomesasupplementarysourceoforganicmatterthatcanfuelfurtherdecompositioninalocalizedfeedbackloop.
Asecondprocessofoxygendepletionisrespiratoryoxygenconsumptionbyprimaryproducerssuchasphytoplanktonand macroalgae.Oxygenconsumptionbyprimaryproducerswilloutpacetheiroxygenproductioninlightlimitedconditionssuchas thoseproducedbyself-shadingoratnight,leadingtotemporaryorlocalizedoxygendepletion.Oneofthemostconspicuous indicatorsofoxygenconsumptionbyprimaryproducersisdielcyclinginwhichoxygenconcentrationsexhibitasawtoothpattern asasystemoscillatesbetweennetphotosyntheticoxygenproductionduringthedayandnetrespiratoryoxygenconsumption duringthenight.
Anadditionalfactorleadingtooxygendepletionincoastalwatersisoxygenconsumptionbymacrofauna.Thisgenerallydoes notleadtolargeorsustaineddeadzoneformationperse,butcanexacerbatetheeffectsofexistinglowoxygenconditions.For
example, fishthathavebeenshoaledbylowoxygenconditionsintoasemienclosedareacanbecometrappedandrapidlyconsume remainingoxygen,resultingina fishkill.
Nutrients Manystudieshaveidentifiedexcessnutrientsasthefactormostresponsiblefortheformationofdeadzonesworldwide.Asa consequence,hypoxiaisviewedasoneofthemostsignificantlynegativeimpactsofeutrophication.Sinceprimaryproductivityby phytoplanktonistypicallynutrientlimited,inputsofnutrientscansupporttheexcessphytoplanktonbiomassresponsiblefor hypoxia.Typically,primaryproductivityinmarineecosystemsisnitrogenlimited,andinlowersalinityecosystemsisphosphorus limited.
Thereareseveralpathwaysthatdelivernutrientsandorganicmattertocoastalwaters.Riversandterrestrialrun-offarethe dominantsourcesofnutrientsandorganicmatterformanycoastalecosystems,butatmosphericdeposition,upwelledocean water,andsewagesystemsplaysignificantrolesinsomecoastalwaters.Theavailabilityofnitrogenandphosphorusisalsobe modifiedwithinadeadzonebymicrobialactivityandbioturbatorsinthesediment.Thebalancebetweensequestrationand releaseofnutrientsfromthesedimentisdependentontheoxygenconcentration,withthepotentialforfeedbacksbetweenoxygen, nutrients,andprimaryproducers.
Inputsofnutrientsandorganicmatterthatfueldeadzoneformationincoastalwatersareoftenelevatedabovenaturalratesby humanactivity.Whiletherearenaturalsourcessuchaserosionalprocessesandrun-offfromterrestrialecosystems,anthropogenic sourceshavedramaticallyincreasednutrientsabovenaturalbackgroundlevelsandcontributedtotheprevalenceofhypoxia.For example,overthepastcenturytherewasa20-foldincreaseinnitrogeninputsfromtheMississippiRiverthatfuelstheGulfof Mexicodeadzone.Muchofthesenutrientsandorganicmatteroriginatefromagriculturalsourcesincludingexcessfertilizerfrom fieldsandlivestockwaste.Additionalanthropogenicsourcesincludeeffluentfromsewagetreatmentplantsandhouseholdseptic systems,urbanrun-off,papermills,seafoodprocessingplants,andaquaculturepens.Therelativeimportanceofthesevarious sourcesofnutrientsandorganicmatterislocationspecific,varyingwithland-usepractices,regulations,andhumandensitiesinthe watershed.
Therearetwooveralltrendsthathelpestablishthecontributionofhumanactivitytotheincreaseindeadzoneprevalence.First, hypoxiaismoreprevalentnearmajorpopulationcentersandwatershedswithintensiveinputsofnutrientsandorganicmaterial. Second,thereisatemporaltrendinwhichsewageandindustrialpollutionweredominantdriversofhypoxiathroughthemid20thcenturyfollowedbyashifttowardgreaterrun-off/riverineinputsandatmosphericdepositionofnutrientsThatcoincidedwith intensificationofagriculturalpracticesandanoverallincreasingrateofnutrientdeliverythatcausedthenumberofnewhypoxic ecosystemstoincreaseatanacceleratedrate.
Warming
Temperaturehasadirecteffectonoxygenconcentrationssincewarmerwaterhasalowercapacityfordissolvedgassesincluding oxygen.Temperaturealsohasindirecteffectsonoxygendepletionsincephytoplanktonbloomsandmicrobialactivityaretemperaturedependent.Thisexplainswhyhypoxiaismostlikelytooccurinthesummer,whentemperatureandlightlevelspeak,and whyclimatechangeissuchaconcernfordeadzones(asdetailedbelow).
LimitedOxygenReplenishment Replenishmentofoxygeninhypoxicwatersoccursthroughtwoprimarymechanisms:verticalexchangewithsurfacewatersthatare oxygenatedthroughdiffusionandwindmixing,andlateralexchangewiththemoreoxygenatedopenocean.Therefore,hypoxia anddeadzonestypicallyoccurinbodiesofwaterthatareisolatedbyshorelinefeaturesand/orstratification.
Stratificationandverticalmixing
Hypoxiatypicallydevelopsatornearthebottomwheretheorganicmatterthatfuelsdecompositionaccumulates.Stratificationof thewatercolumnisolateshypoxicbottomwatersandpreventssurfacewatersfromre-oxygenatingtheentirewatercolumn. Stratificationreferstolayeringofthewatercolumnintodiscretewatermasseswithdifferentdensitiesduetovariationin temperatureand/orsalinity.Oftenstratificationindeadzonesresultsintwolayers:ashallowlow-densitysurfacelayerthatmaybe welloxygenatedfromdiffusionandwind-mixingofatmosphericoxygen,andasecond,deeper,high-densitylayerwhereorganic mattersettlesandoxygenisdepletedbymicrobialrespiration.
Stratification,andthepotentialforhypoxiatooccur,isstrongestwhenthereareprocessesthatestablishorreinforcethedensity differencebetweensurfaceandbottomwaters.Freshwaterinputsfromriversand/orraincancreateasurfacelensoffreshwater whichislessdensethandeeper,saltierwater.Thesunandwarmaircanalsoheatsurfacewatersandcontributetostratification. Processesthatpromotemixingofsurfaceandbottomwaterssuchasstrongwinds,tidalcurrents,andoceanswellcandisrupt stratification.
Flushingtimeandhorizontalmixing
Oxygenismorelikelytoreachastateofseveredepletioninbodiesofwaterthataresemienclosed.Openoceanwatersadjacentto coastalareasaregenerallywelloxygenatedduetolowerlevelsofproductivityandgreatermixingbywindandwaves.Limited