https://ebookmass.com/product/emerging-applications-ofcarbon-nanotubes-in-drug-and-gene-delivery-prashant-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Combination Drug Delivery Approach as an Effective Therapy for Various Diseases 1st Edition Prashant Kesharwani
https://ebookmass.com/product/combination-drug-delivery-approach-asan-effective-therapy-for-various-diseases-1st-edition-prashantkesharwani/
ebookmass.com
Applications of Nanotechnology in Drug Discovery and Delivery Chukwuebuka Egbuna
https://ebookmass.com/product/applications-of-nanotechnology-in-drugdiscovery-and-delivery-chukwuebuka-egbuna/
ebookmass.com
Industrial Applications of Carbon Nanotubes 1st Edition Peng Huisheng (Ed.)
https://ebookmass.com/product/industrial-applications-of-carbonnanotubes-1st-edition-peng-huisheng-ed/
ebookmass.com
The Orphan of Cemetery Hill 1st Edition Hester Fox
https://ebookmass.com/product/the-orphan-of-cemetery-hill-1st-editionhester-fox/
ebookmass.com
Advanced Accounting Joe Ben Hoyle https://ebookmass.com/product/advanced-accounting-joe-ben-hoyle/ ebookmass.com
The Girls Who Stepped Out of Line: Untold Stories of the Women Who Changed the Course of World War II 1st Edition
Mari K. Eder
https://ebookmass.com/product/the-girls-who-stepped-out-of-lineuntold-stories-of-the-women-who-changed-the-course-of-world-warii-1st-edition-mari-k-eder/ ebookmass.com
Cálculo 9ª Edition James Stewart
https://ebookmass.com/product/calculo-9a-edition-james-stewart/
ebookmass.com
The Road to Luxury: The New Frontiers in Luxury Brand Management Second Edition Ashok Som
https://ebookmass.com/product/the-road-to-luxury-the-new-frontiers-inluxury-brand-management-second-edition-ashok-som/
ebookmass.com
Bibliophobia: The End and the Beginning of the Book Brian Cummings
https://ebookmass.com/product/bibliophobia-the-end-and-the-beginningof-the-book-brian-cummings/
ebookmass.com
https://ebookmass.com/product/selective-anatomy-prep-manual-forundergraduates-vol-1-2e-2nd-edition-vishram-singh/
ebookmass.com
WoodheadPublishingSeriesin Biomaterials EMERGINGAPPLICATIONS OFCARBONNANOTUBESIN DRUGANDGENEDELIVERY Editedby
PRASHANTKESHARWANI
AssistantProfessor,DepartmentofPharmaceutics, SchoolofPharmaceuticalEducationandResearch, JamiaHamdard,NewDelhi,India
WoodheadPublishingisanimprintofElsevier
50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom
Copyright © 2023ElsevierLtd.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,orany informationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions
Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).
Notices
Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearch andexperiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-85199-2
ForinformationonallWoodheadPublishingpublicationsvisitour websiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionsEditor: SabrinaWebber
EditorialProjectManager: JoshuaMearns
ProductionProjectManager: PremKumarKaliamoorthi
CoverDesigner: MarkRogers
TypesetbyTNQTechnologies
Contributors
MohammadA.S.Abourehab
DepartmentofPharmaceutics,CollegeofPharmacy,UmmAl-QuraUniversity,Makkah, SaudiArabia;DepartmentofPharmaceuticsandIndustrialPharmacy,Collegeof Pharmacy,MiniaUniversity,Minia,Egypt
MustafaA.Alheety
DepartmentofNursing,Al-HadiUniversityCollege,Baghdad,Iraq
DuyguBeduk
DepartmentofBiotechnology,GraduateSchoolofNaturalandAppliedSciences,Ege University,Bornova,Izmir,Turkey
SanghamitraChatterjee
DepartmentofChemistry,InstituteofChemicalTechnology,Matunga,Mumbai, Maharashtra,India
PavanKumarChintamaneni
DepartmentofPharmaceutics,GITAMSchoolofPharmacy,GITAM-Hyderabad Campus,Hyderabad,Telangana,India
RambabuDandela
DepartmentofIndustrialandEngineeringChemistry,InstituteofChemicalTechnology
Mumbai-IndianOilOdishaCampus,Bhubaneswar,Odisha,India
MahdiehDarroudi
DepartmentofPhysiology,FacultyofMedicine,MashhadUniversityofMedicalScience, Mashhad,Iran
CerenDurmus
DepartmentofBiotechnology,GraduateSchoolofNaturalandAppliedSciences,Ege University,Bornova,Izmir,Turkey
LopamudraGiri
DepartmentofIndustrialandEngineeringChemistry,InstituteofChemicalTechnology Mumbai-IndianOilOdishaCampus,Bhubaneswar,Odisha,India
IsraelGonzález-Méndez
InstitutodeInvestigacionesenMateriales,UniversidadNacionalAutónomadeMéxico, CircuitoExteriorCiudadUniversitaria,MéxicoCity,Mexico
KenguvaGowtham
DepartmentofIndustrialandEngineeringChemistry,InstituteofChemicalTechnology
Mumbai-IndianOilOdishaCampus,Bhubaneswar,Odisha,India
SimgeBalabanHanoglu
DepartmentofBiotechnology,GraduateSchoolofNaturalandAppliedSciences,Ege University,Bornova,Izmir,Turkey
DuyguHarmanci
CentralResearchTestandAnalysisLaboratoryApplicationandResearchCenter,Ege University,Bornova,Izmir,Turkey
GowthamKenguva
DepartmentofIndustrialandEngineeringChemistry,InstituteofChemicalTechnology Mumbai-IndianOilOdishaCampus,Bhubaneswar,Odisha,India
PrashantKesharwani
DepartmentofPharmaceutics,SchoolofPharmaceuticalEducationandResearch,Jamia Hamdard,NewDelhi,Delhi,India;UniversityInstituteofPharmaSciences,Chandigarh University,Mohali,Punjab,India
RenatR.Khaydrov
InstituteofNuclearPhysics,UzbekistanAcademyofSciences,Tashkent,Uzbekistan
MajidKhazaei
DepartmentofPhysiology,FacultyofMedicine,MashhadUniversityofMedicalScience, Mashhad,Iran;MetabolicSyndromeResearchCentre,MashhadUniversityofMedical Science,Mashhad,Iran
PraveenT.Krishnamurthy
DepartmentofPharmacology,JSSCollegeofPharmacy(JSSAcademyofHigher Education&Research),Ooty,TamilNadu,India
G.KusumaKumari
DepartmentofPharmacology,JSSCollegeofPharmacy(JSSAcademyofHigher Education&Research),Ooty,TamilNadu,India
JavierLara-Romero
FacultaddeIngenieríaQuímica,UniversidadMichoacanadeSanNicolásdeHidalgo, Morelia,Michoacán,México
AhmedR.Mahmood
DepartmentofMedicalLaboratoryTechnology,ImamJa’afarAl-SadiqUniversity, Kirkuk,Iraq
AbdulwahhabH.Majeed DepartmentofChemistry,CollegeofScience,DiyalaUniversity,Diyala,Iraq
LeqaaA.Mohammed
DepartmentofChemistry,CollegeofScience,DiyalaUniversity,Diyala,Iraq
SeyedehElnazNazari
DepartmentofPhysiology,FacultyofMedicine,MashhadUniversityofMedicalScience, Mashhad,Iran
AmmuV.V.V.RaviKiran
DepartmentofPharmacology,JSSCollegeofPharmacy(JSSAcademyofHigher Education&Research),Ooty,TamilNadu,India
MajidRezayi
MedicalToxicologyResearchCentre,MashhadUniversityofMedicalScience,Mashhad, Iran;MetabolicSyndromeResearchCentre,MashhadUniversityofMedicalScience,
Mashhad,Iran;DepartmentofMedicalBiotechnologyandNanotechnology,Schoolof Science,MashhadUniversityofMedicalScience,Mashhad,Iran
ErnestoRivera
InstitutodeInvestigacionesenMateriales,UniversidadNacionalAutónomadeMéxico, CircuitoExteriorCiudadUniversitaria,MéxicoCity,México
SmrutiRekhaRout
DepartmentofIndustrialandEngineeringChemistry,InstituteofChemicalTechnology Mumbai-IndianOilOdishaCampus,Bhubaneswar,Odisha,India
AndreaRuiu
InstitutodeInvestigacionesenMateriales,UniversidadNacionalAutónomadeMéxico, CircuitoExteriorCiudadUniversitaria,MéxicoCity,México
AmirhosseinSahebkar
AppliedBiomedicalResearchCenter,MashhadUniversityofMedicalScience,Mashhad, Iran;BiotechnologyResearchCenter,PharmaceuticalTechnologyInstitute,Mashhad UniversityofMedicalSciences,Mashhad,Iran;DepartmentofBiotechnology,Schoolof Pharmacy,MashhadUniversityofMedicalSciences,Mashhad,Iran
KendraSorroza-Martínez
InstitutodeInvestigacionesenMateriales,UniversidadNacionalAutónomadeMéxico, CircuitoExteriorCiudadUniversitaria,MéxicoCity,Mexico
SunaTimur
CentralResearchTestandAnalysisLaboratoryApplicationandResearchCenter,Ege University,Bornova,Izmir,Turkey;DepartmentofBiotechnology,GraduateSchoolof NaturalandAppliedSciences,EgeUniversity,Bornova,Izmir,Turkey;Departmentof Biochemistry,FacultyofScience,EgeUniversity,Bornova,Izmir,Turkey
Backgroundofcarbonnanotubes fordrugdeliverysystems MahdiehDarroudi1,SeyedehElnazNazari1,PrashantKesharwani2, MajidRezayi3, 4, 5,MajidKhazaei1, 4 andAmirhosseinSahebkar6, 7, 8 1DepartmentofPhysiology,FacultyofMedicine,MashhadUniversityofMedicalScience,Mashhad, Iran; 2DepartmentofPharmaceutics,SchoolofPharmaceuticalEducationandResearch,JamiaHamdard, NewDelhi,Delhi,India; 3MedicalToxicologyResearchCentre,MashhadUniversityofMedical Science,Mashhad,Iran; 4MetabolicSyndromeResearchCentre,MashhadUniversityofMedicalScience, Mashhad,Iran; 5DepartmentofMedicalBiotechnologyandNanotechnology,SchoolofScience, MashhadUniversityofMedicalScience,Mashhad,Iran; 6AppliedBiomedicalResearchCenter,Mashhad UniversityofMedicalScience,Mashhad,Iran; 7BiotechnologyResearchCenter,Pharmaceutical TechnologyInstitute,MashhadUniversityofMedicalSciences,Mashhad,Iran; 8Departmentof Biotechnology,SchoolofPharmacy,MashhadUniversityofMedicalSciences,Mashhad,Iran
1.1Introduction Biotechnologyresearchershavedevelopedakeeninteresttowardnanotechnologyandhavebeenfocusingonworkingwithnanomaterialsin recentdecades[1,2].Becauseoftheiruniqueproperties,nanomaterialsare particularlywell-suitedforbiomedicalapplications.Theyarefacileto synthesize,canbemodifiedinsize,containtunablesurfacechemistry, providelargesurface-to-volumeratios,andaregenerallybiocompatible[3]. Allofthesefeaturesmakenanomaterialspromisingforalmostallaspectsof biotechnology,overcomingthemanyshortcomingsinexistingconventionalmaterials[4].FollowingapioneeringstudybyHiguchietal.on albuminnanoparticles,itwassuggestedthatnanomedicinecouldbean effectivetooltotargettumorsandcancercellsastheabilitytoavoidimmunesystemclearanceisenhanced[5].Nanoparticleshaveshowntohave positiveresultsagainstcoronaryarterydisease,andcancercells,byeffectivelyavoidingclearancefromimmunesystemclearance[6 9].Nanoparticlescanbeusedtodeliveralargevarietyofpharmaceuticalsinaway thatissafer(throughtargetednanomedicinesbylimitingtheamountof drugdelivered)andmoreeffective[10].Biologicalandmedicalnanomaterialshavebeenusedforyears,includingliposomes[11],carbon nanoparticles[12 17],dendrimers[18],ceramicnanoparticles[19],iron oxidenanoparticles[20],titaniumdioxidenanoparticles[21],magnetic nanoparticles,polymernanocomposites[18],silicaandmetalnanoparticles [22].Additionally,manydifferenttypesofnanomaterialshavebeen
EmergingApplicationsofCarbonNanotubesinDrugandGeneDelivery ISBN978-0-323-85199-2
https://doi.org/10.1016/B978-0-323-85199-2.00009-1
proposedasmeansofdrug/genedeliverythatrespondtoexternalstimuli. Inaddition,drugsreleasefromwithinthesenanocarriersaretriggeredby changesinpH,redoxpotential,enzymeactivation,thermalgradients, magnetic fields,light,andultrasound[23].
Amongthenanomaterials,carbonnanotubes(CNTs)havedrawn tremendousinterestinthebiomedical fieldbecauseofboththeirpromising properties,includinghighdrugloadingcapacity[24],highstability[25], needle-likestructure,highsurfacearea[25],biocompatibility[26], flexible interactionwithcargo,considerablestrength,outstandingmechanicaland electricalproperties[27],andtheabilitytodeliverdrugstospecifictissues [28].Despitetheadvantages,italsohassomedisadvantagesrelatedto toxicityandlowbiodegradability[29,30].AlthoughCNTsexhibitsome undesirableproperties,theyarestillbeingutilizedinmedicineininnovative ways,suchasindrugdeliverysystems,genedelivery,genetherapy,diagnosticapplications,aswellasbiosensorsandvaccinedelivery[29].CNTs haveavarietyofappealingpropertiesinbiomedicalapplications,asshown in Table1.1.
ThoughCNTshaveseveraldesirablebiologicalproperties,their biosafetyisoftenanissueofconcern,particularlyinregardstotheiruseand theirbiomedicalapplications.Therefore,acomprehensiveassessmentofthe invivoimpactofCNTsisrequiredbeforewide-scalecommercial biomedicalapplicationsareundertaken.StudiesonCNTshavebeencriticizedfortheirinaccuraciesandincompleteness,rangingfromanimal modelsthataren’trepresentativeofhumanexposureroutestostudiesthat lackevenathoroughdescriptionoftheimpurities,chemistry,charge,and dimensionsofthestudiedCNTs[37].Graphenesheetsarerolledseamlessly asacylindricaltubetoformsingle-wallcarbonnanotubes(SWCNT),as wellasmulti-walledcarbonnanotubes(MWCNTs),whicharecomposed oflayersofgraphenesheetsstackedononeanother.Moreover,thereare threemainmethodsforthemanufactureofCNTs:chemicalvapordeposition(CVD),laserablation,andarcdischarge[38].Inthecurrentchapter book,wesummarizepromisingandnot-so-promisingstudiesshowingthe importanceofCNTsinavarietyofbiomedicalapplications.Manyresearch studies,particularlyperformedinyear2016 2022,areassessedwithcritical insightintowhatthesestudiesconclude.Herein,theuptakeofCNTs,the deliveryofpharmaceuticalagentsusingCNTshasbeencovered.Wealso discussconcernsraisedaboutthetoxicologyofCNTsattheendofthis studyandoutlinewhatandwherethe fieldurgentlyneedstogrow.
Table1.1 Variousapplicationsofcarbonnanotubes.
ApplicationDescriptionReferences
Diagnosingapplication
Bioimaging andbiosensing
Carbonnanotube’soptical,electronicand mechanicalpropertiesmakeitapromising materialfortheproductionof electrochemicalandopticalbiosensorsand someotherapplicationsderivingfrom CNTsbecauseoftheirhighphotostability andlackofquenching
Therapeuticalapplication
Photothermal therapy
Drugdelivery
Tissue engineering
Lab-on-chipdevices
CNTswouldproduceheatbyconverting near-infraredradiation(NIR).
Theuniqueneedle-likeshapeofcarbon nanotubeswiththeabilitytoquickly penetratecellmembranesmakesthemideal carriersofdrugs/genesduetotheirhigh surfacearea,multifunctionalsurface chemistry,lackofimmunogenicity,andhigh surfacearea.
Carbonnanotubescanbeusedintissue engineeringbecauseoftheir biocompatibility,stiffness,mimickingof naturaltissuenano fibers,celladhesionand proliferationstimulation,andabilitytoform 3Dstructures.
Miniaturizedsystemssuchaslab-on-a-chip devicesareusedtoexaminedrugs,grow cells,andmodeldiseasesusingtinyvolumes of fluid flowinginvariouschannels.The CNTswouldbeusedinLOCdevicesas membranechannels,sensors,andchannels walls.
1.2Quantitativeapproaches [31,32]
[33]
[34]
[35]
[36]
Asignificantapplicationofnanoparticlesisthedeliveryofdrugs;becauseof theirlargesurfaceareas,nanoparticlesarecapableofdeliveringlargequantities ofdrugsorothermedicalcargos[39,40].Therefore,developingefficientdrug deliverysystemsisvitaltohumanhealth[41].Theranosticwithnanotechnologyforcancerhasemergedasapromising fieldthatcouldintegratethe
treatmentanddiagnosisofcancerbycombiningnanotechnologieswith therapeuticagentstoenabletargeteddrugaccumulationincancer-specific cellswithoutaffectingnormalcells[42].Drugdeliveryproceduresshould besignificantlyimprovedtoensuresustainability,lowdisruptions,andprecise andaccuratecontrolleddeliveryofdrugs[43].Nanomaterial-baseddrug deliverysystemshaverecentlybeenstudied,andanumberofbreakthroughs havebeennotedthereafter.Therehavebeennumerousstudiesondrug deliverysystemsinrecentyears[44,45].Thebibliometricisinsufficientto assessaresearchareaoutputs;itshouldincludeotherinputssuchasliterature reviewstodiscovertheinsightofpublicationstrends[46].Thisresearchaims toexploretheresearchstatusdoneinthis fieldofstudyfrompasttothecurrent yearbyabibliometricapproachandqualitativeliteraturereview.Toensure thereliabilityoftheanalysisandinputdataforthesoftware,scientometric studiesutilizingrecognizeddatabasesuchasGoogleScholar,ISIWebof Science,andScopushavebeenaccessed.ThisstudyusedtheScopusdatabase foritsextensivecoverageandcomprehensivecontent.
From1965to2021,bibliometricsearcheswereconductedinGoogle Scholar,Scopus,PubMed,andWebofScienceCoreCollections (n ¼ 70,300).Datawereobtainedfromtheonlineversionofthecore collectioninWebofScienceonJanuary15,2022[47].The “Carbon nanotube*” OR “CNT*” OR “SWCNT*” OR “MWCNT*” toidentify allarticlesrelatedtotreatmentfrom1990to2022thatcontainthekeyword inthetitlelist,and189,358publicationswereencountered.Also,articles usingthekeyword “DrugDelivery*” AND “Carbonnanotube*” OR “CNT*” OR “SWCNT*” OR “MWCNT*” toidentifyallarticlesfrom 1990to2022thatcontainthekeywordinthetitlewhich,4748publicationsmettheselectioncriteria.Uponfurtherscreening,only3137publicationswerecategorizedthrough “DrugDelivery*” AND “Carbon Nanotube*” OR “CNT*” OR “MWCNT*” OR “SWCNT*” keywordsthatwereutilizedforfurtheranalysis.Moreover,moredataforthis studybasedontitlesearchwerederivedfromSCOPUS,andthetimespan wasfrom1985to7rdFebruary7,2022.Also,bibliometricstudieswere carriedoutontheGoogleScholarandPubMeddatabases,resultingin 70,300publicationsand1353publications.Thisdatacollectionwithan initialtitlesearch “DrugDelivery*” inthe “TitleofArticle” hasbeendone onanotherwell-knowndatabaseScopus[47].Therewerealmost38,996 documentswiththetitleof “DrugDelivery*”;andnearly125,277documentswiththetitleof “CarbonNanotube*” whilethe “CNT*” OR “MWCNT*” titlesearchtermswereusedtoretrievethedata.Thesearch
returned3571documentsfromSCOPUSdatabase.Aftercarefulinspection,atotalof1846publicationswereidentifiedassuitableforsubsequent analysisfromSCOPUSdatabase.Thesearchreturned1230reviewpapers, 201letters,and149conferencepapers(Fig.1.1).Besides,IndexKeywords captureanarticle’scontentwithgreaterdepthandvariety[46].
Thetotalnumberofrecordsis1846,andthetotalnumberofarticlesis 1332inthesampleperiodfrom2012to2022.Thereare160author contributionsin160journalsand10sub-divisionsinthepublications.4637 wordswereidentifiedasfrequentlyusedinthisliterature,and1457institutionscontributedtheirarticlesfrom62countries(Fig.1.2).
In Fig.1.2c (inset),documentsarecategorizedaccordingtotypeina detailedclassification.Thearticleswith52%and1441recordsrepresenta significantportionofthetotal.Reviewdocumentsaccountedfor36%of thetotalrecords,with993records.Totaldocumentsnumbered1332in7 categoriesaccounted,duetotheircredibilityandacceptanceinscientific communities,articlesarestronglypreferredasthedocumenttypebythe authors.
Figure1.1 Prisma flowdiagram.
Figure1.2 (a)Thenetworkofkeywords,(b)clusteringofkeywords,and(c)categories ofthesubjectarea,andinsetcategoriesbyarticletype.
Keywordsarehighlyinfluentialonthemechanismandeffectivenessof documentsearches.Keywordsserveascriticallinksamongtherangeof availabledocumentstobeidentifiedasinformationsources.In Fig.1.2a,the toptwokeywordsarecarbonnanotubesanddrugdelivery,with459and 337occurrences,respectively.Inordertoidentifythedocumentimmediatelyandinatimelymanner,itisobviousthattheexactlinkwordsor phrasesshouldbeused.Basedonthescreeningofthe25topkeywords,we foundthatthemostpopularkeywordsfallintotwocategories:thecompoundnameandtheapplicationofthecompound.Anothereffective keywordwithmorethan50occurrencesiscarbonnanotube,walled
carbon,single-walled,multi-walled,moleculardynamic,deliverysystem, multi-walledcarbon,drugrelease,wallcarbon,andcancertherapy.These keywordswillbehelpfulinidentifyingthedocumentthatbestdescribes carbonnanotubesandtheirapplicationsforfutureresearchers. Fig.1.3 displaystheoccurrencesofthekeywords.
Tounderstandthedifferentphasesofgrowthofthepublication numbers,thecollecteddatawasorganizedchronologically. Fig.1.3 depicts
Figure1.3 (a)Trendtopicgrowthbetween2012and2022,and(b)averagearticle publishedperyeartimespan2012 22.
theschematicrepresentationofyearlyincreasesinrecordnumbers. Researchoncarbonnanotubeanddrugdeliveryshowsaslowonsetwith fewpublicationsbetween2012and2016.Thetrendwasdownwardfrom 2016to2017.Asexhibitedinthetrendtopicgrowth,anincreasewas depictedin2017basedonbothkeywordscarbonnanotube,anddrug deliverysystem,whichthereisagoodconsolidationwithpublication trends.By2022,therewillbeanincreasingtrendinpublications.The recordsshowedgrowthbetween2017and2020from9%to14%.There were135,164,and178recordspublishedin2019,2020,and2021, respectively,andapercentageof10%,12%,and14%wasrecorded.New developmentsandapplicationindrugdeliveryandcarbonnanotubes relatedmaterialsexplainstheincreaseinpublicationssince2017.
Fig.1.4 presentsarankingofthecountriesinvolvedincarbonnanotubesresearchaccordingtothenumberofdocumentstheyhaveproduced. India,theUnitedStates,andChinaproducethemostdocuments,with 576,518,and514.Chinahad6257citations,whiletheUnitedStateshad 3419.ItisnoteworthythattheChinaachievedahigherratioofcitationsto documentsthanUSA.Iranisranked4thoverall,followedbytheUnited Kingdomin4thplace,Italyin6thplace,andSouthKoreain7thplace. TherehasbeenanoticeableincreaseinresearchinCarbonnanotubeusage inthedrugdeliverysystemasshownbythereportedachievements.The majorityofthecontributionsoriginatefromChina,India,andtheUnited States.Severalcountrycollaborationclustersshowtheimportanceofgroup researchcontributionsandthecurrenttrends.Chart4Cdepictingvarious clusteringpatternsofCluster1identifiesitasthemostproductive. Furthermore, Fig.1.4a presentsageographicmapofthecountriesinvolved. ThisgraphisdrawnbytheVOSviewerpackage(www.vosviewer.com), whichisatoolforcomprehensivesciencemappinganalysisforquantitative researchinbibliometrics[48,49].Also,theredcolorintensitystatesthefour highestnumberofrelateddocumentspublishedineachcountry.Fromthe datainthegraph, Fig.1.4a exhibitedthatbetween50countries,India, China,andtheUnitedStateshavespecializedstudiesearlierthanother countrieswiththemostsignificantnumberofnormalizedstrongcollaborationlinkstoothercountrieswiththerateof20%ofpublication.China, theUnitedStates,andIranhavetherateof18.6%,18.5%,and12%, respectively,afterIndiainthementionedtopic.Athree-fieldplot(Sankey Diagram)listingtherespectiveinstitute,authors,andkeywordsonthe consideredtopicisshownin Fig.1.4c.This figureshowstherelationship amongtopinstitutes,topauthors,andtopauthors’ keywords.Thetop five
Figure1.4 Publicationofcarbonnanotubeindrugdeliverysystemresearchpapers: topcountriesandclusters(aandb),and(c)three-fieldplotoftop-author,topcountries;andtopauthors’ keywordsontheconsideredtopic.
institutesinwhichthesedocumentswerepublishedincluded “Ministryof EducationChina” (58DOC), “IslamicAzadUniversity” (53Docs), “ChineseAcademyofSciences” (42Docs), “CNRScenternationaldela ResearcheScientifique ” (35Doc),and “TehranUniversityofMedical Sciences” (31Docs).Thetop fiveauthorsalsoincludeJain,N.K,Mehra, N.K.,Kostarelos,K.,Raissi,H.,andBianco,H.,basedondrugdelivery andcarbonnanotubekeywords.
1.3CNTmorphologyandstructure Thecylindricalsheetofgraphenewithcarbonatomsbondedassp2 hybridizationisthoughttoresemblehollowfullerenetubes.Thecarbon nanotubesarecomposedofcarbonsheetsmadefromrolledgraphite,which isasourceofcarbonallotropesaswellasgraphiteandfullerenes[50].In many fields,carbonnanotubesareusedintheformofbuckytubes,with theircylindricalshapeanduniqueproperties.Inadditiontotheirmechanical,thermal,optical,andelectricalproperties,theyalsopossessthe followingcharacteristics[51].Highstiffnessandrobustnessaboundin nanotubes,whichalsopermitreversiblecollapseandbuckling.Inhexagonal networks,thehighaxialYoung’smodulus(degreeofstiffness)resultsin tensilestrengthsof150GPaduetothehighC Cbondrigidity[52].CNTs arethusamongthemostrigidmaterialsknownwhilestillbeingableto buckle(elasticdeformation)whensubjectedtocompressionforces[53].In additiontotherudimentaryconstituents,carbonassembliesformmany differentconfigurationsandshapes[54].Underhighpressure,nanotubes canbeassimilated,resultinginastrong,infinite-lengthwirebyreplacing severalsp2 bondswithsp3.TheuncoveredCNTswerediscoveredinrecent yearsbyIrjima,whodescribedmulti-walledCNTsincarbonsootproducedbythedevelopmentoftheC60moleculeinanarcevaporation methodforthe firsttime[54].
Figure1.4 Cont'd
1.4Classi ficationofCNTs Nanotubesmayindeedbealienatedintovariousclassificationsbasedupon thenumberofsheetsofgrapheneexistentintheCNTs.Thefollowingare thereforesub-dividedinto:
1.4.1Single-walledCNTs(SWCNTs) Single-walledCNTsareformedbyorientingagraphenesheetonasingle wall.AcatalystisrequiredforthesynthesisofSWCNTs,resultinginanonpureCNTwithoutcomplexitywithareadilytwistedstructure[55]. Sometimes,theyappearas fluffyblackpowderorgranular flakeswitha metallicappearance[56].AvarietyofSWCNTsareavailable,whichcanbe trundledupasaseamlesstubeinmultipleways.Whenorganizedaccording totheirchiralityanddiameter,SWCNTsmayactmorelikeclearly delineatedsemiconducting,metallic,orsemi-metallicstructures[57].There isanewtechniquepublishedinUSpatientsforpreparingarraysortightly packedbundlesofsingle-walledCNTs,withadiameteroflessthan0.2m thatwouldbehelpfulinmeetingcommerciallyfeasiblereactionrequirements[51].
1.4.2Multi-walledCNTs(MWCNTs) ThesearetheCNTsthatcontainmultilayeredgraphenerolledover themselveshavevaryingdiametersrangingfrom2to50nmwhichinturn dependsonthenumberoftubes[58].Itssynthesisiscatalyst-free,andthe MWCTsarehighlycomplexandcannotbetwistedeasily[51].Thesetubes haveadistanceofapproximately0.34nminbetweenlayers[59].Their typicalformappearsinformof fluffyblackandgranularpowders.Thereare MWCNTsoftwodifferenttypesbasedonthegraphiticsheetarrangement pattern.Asanexampleofthis,wecanlookattheRussian-dollmodel wherethegraphiticsheetsformconcentricallyalignedsheets,forexample,a lengthof(0,14)SWCNTsurroundingashorterlength(0,12)SWCNT. Graphiteisrolledarounditselfinthesecondmodel,resemblingascrollof parchmentorarolled-upnewspaper[60].
1.4.3Double-walledcarbonnanotubes(DWCNTs) ThereisanothertypeofCNTthatissimilartoSWCNTswhichalsohas twoconcentriclayersthatencloseboththeinnerandoutertubesofthese nanotubes.Thesenanotubesareofseriousconcerninthepharmaceutical industry[55].
1.4.4CNTtypesbasedonchirality
ChiralityisacrucialfactorindeterminingtheelectricalpropertiesofCNTs. Dependingonthechirality,CNTscanbecategorizedasanarmchair, zigzag,andchiral,asillustratedin Fig.1.5 [60].Inthearmchair,an arrangementofbondsinoneofthechairsisperpendiculartothetubeaxis; inzigzag,thereisanarrangementofbondsinwhichthetubehasaVshape perpendiculartothetubeaxis.Chiralorhelicalconfigurationareboth contrarytotheabovetwotypes[57,61].Conductivityandelectrical characteristicsofCNTsarebotheffectiveindicatorsofCNTchiralityand maybeusedasabasisfornanoelectronicdevices[62,63].Basedontheir structuraltransformations,preparationtechnique,andsolubilitycharacteristics,CNTsarecategorizedintospecificcontexts,suchasfunctionalized, surfactant-assisted,solventdispersed,andbiomolecularassistednanotubes [64].
(a) Armchair(b) Chiral
(c) SWCNTs(d) MWCNTs
Armchair
Zigzag Figure1.5 Typeofcarbonnanotubes.
1.5Drugloadingoncarbonnanotubes Theterm “drugloading” referstothecombinationofdrugandcarrier, whichdeliverstheactivemedicationtothetargetcellsortissues.CNTsare widelyusedforthispurpose,particularlyforlarge-scaledrugdelivery becauseoftheirhighsurface-to-volumeratioandsphere-shapedshape[65]. Moreover,amphiphilicorhydrophilicpolymersonCNTsurfacescanincreasetheirloadingcapacity[66,67].Inadditiontothis,thechemical functionalizationofnanotubes’ surfacescouldalsoenhanceCNTs’ biocompatibility[68,69].ModificationofCNTscanbeachievedthrough thecovalentattachmentofPEGlayersontheirsurface,PAMAMdendrimersontheirsurface,amphiphilicdeblockcopolymersontheirsurface, ordispersingthemodifiedmaterialsinamatrixofhyaluronicacid.The mechanicalstrengthofCNTs,likeSWCNTs,enhancesthepropertiesof bothpolymericandnon-polymericcomposites[70].Itisalsonoteworthy thatthesenanomaterialscanalsocarrypharmaceuticalagentsbyencapsulatingthemwithinhollowcavities[71],adsorbingthemwithinthewallsof CNTs,andbindingthemtotheirsurfacesuponfunctionalization[72].A drugdeliverysysteminvolvingencapsulationhasmoreadvantagesbecause thedrugsarereleasedinaspecificwaywithinthetargetedcellswhile preventingtheirdegradation[73]. Table1.2 showshowtherapeuticdrugs
Table1.2 Mechanismofloadingdrug.
EntryDrug
Typeofcarbon nanotube Processof immobilizationReferences
1PregabalinSWCNTEncapsulation[74]
2DoxorubicinArmchairand zigzagCNT Adsorption[75]
3IfosfamideArmchair SWCNT Encapsulation[76]
4Paclitaxelf-MWCNTEncapsulation[77]
5DoxorubicinCovalent-fMWCNT Adsorptionand encapsulatingofdrug [78]
6CisplatinCarboxyl-fMWCNTs Encapsulation[79]
7DoxorubicinMWCNT-FAEncapsulation[80]
8Cipro floxacinPEG/GelChitMWCNT Graftingin nanocompositematrix [81]
9Doxorubicinf-SWCNTEncapsulation[82]
wouldbeattachedtodifferenttypesofcarbonnanotubes.Variouschemical andelectricalmethodsareavailableforcontrollingthereleaseofdrugsfrom CNTs.CNTscanalsobesealedwithpolypyrrole(PPy) filminorderto preventdrugrelease[83].Drugdeliverysystemscouldbemademoreselectivebyusinghomingdevices,suchasepidermalgrowthfactor(EGF),or folicacid[84].Awiderangeofbiomedicalapplicationsmaybepossiblefor CNTsasadrugdeliverycarriers.
Unlikeencapsulationor “endohedralmodification” [73],theseCNTs servetomaintainthestructuralintegrityofdrugs,whichhelpstominimize theirdegradationandinturnmaximizetheirreleasefromwithinthem undercontrolledconditions[85].Duetohydrophobicandcapillaryforces, thisapproachismostusefulfordrugswithlowsurfacetension.Forinstance, Fig.1.6 showshownanoparticlesofgoldareincorporatedintothecarbon nanobottlestopreventtheuncontrolledreleaseoftheencapsulateddrug (cisplatin)[86].Whenthedrugsareloadedbyexohedralmodification(as opposedtoencapsulation),itbecomesmuchmoreexposed.Tethering referstocovalentinteractionswithnoncovalentlyattacheddrugs;asoneof thebio-conjugationmethods.Afurtherstepofoxidationisrequiredinthe tetheringprocessbeforefunctionalgroupscanbeproducedforconjugation. Additionally,acovalentbondmaychangethedrug’smolecularstructure, therebyalteringitsbioactivityandspecificity[87].Thistetheringapproach issuperiorduetostrongcovalentbondsthatproduceastableplatform
Figure1.6 Schematicillustrationofcisplatindeliverysystemandpossibleinternalizationmethodofcarbonnanotubeincludingloadingofthedrugonthesurfaceof carbonnanotube,thencisplatincarriedinside,invivostudyofcurrentnanocarrierand pH-responsivereleasingdrugleadingtodecreasingoftumorsize.
betweennanocarriersanddrugsratherthanthenon-covalentmethod, whichultimatelycausestheundesirabledissociationoftherapeuticagentsin biological fluids.CNTsaregenerallyusedtodeliverdrugstotargetcellsin thefollowingway.ModifiedCNTscontainchemicalreceptorsthatattach todrugmolecules.Drugmoleculesaretransportedbythesechemicalreceptorsinsidenanotubes[88].Dependingonthemethodused,thereceived conjugatecanbeinjectedintothebodythroughinjection,oraladministration,ordirectlyuponcontactwiththetargetedcell.Usingtheendocytosispathway,thedrug-loadedintoCNTcapsulescanbeinternalizedby thechemicalreceptorsandeventuallyemittedbythecells[88]. Fig.1.6 isa schematicillustrationofaneffectivedrugdeliverysystem.
1.5.1CNTsandcellularuptake Itiscrucialtounderstandhowdrugsaretakenupbytheprojectedcellsto comprehenddrugpharmacokineticsandpharmacodynamics.Theremustbe abetterunderstandingofbiochemicalpathwaysanddrugpermeationacross cellularmembranes.Drugswithhighsolubilityarethoughttobeabsorbed primarilythroughdiffusionthroughthelipidbilayer.However,inthecaseof highmolecularweightdrugs,suchmechanismisimpaired,aslowlipophilicityinterferesinpassingthroughthebilayerstructure[89].CNTshave remarkablepropertiesthatallowthemtobeabsorbedbyawidevarietyof cells.CNTscanpenetratecellmembranesefficientlybecauseoftheirneedlelikeshape,whichcanbeeithergoodorbaddependingontheintended application.Hence,CNTsaresuitableforarangeofbiomedicalapplications, includingthedeliveryoftherapeuticagentsandgenes[90].Althoughmany studieshavebeenconductedoncellularuptake,therearestillmanyquestions regardingcellularpathwaysinitiatedbyCNTsandthedeliveryoftherapeutic agentsandgenes[91].Furthermore,notonlyisitessentialtodeterminehow cellstakeupCNTs,butiftheCNTswilldeliverdrugsviablytothecells. Therefore,itisextremelyimportanttocarefullystudyCNTinternalization. Several(notone)pathways,dependingonthepropertiesoftheCNTs,have beenelucidatedforcellularuptakeofCNTs[92].SomecomprehensivereviewsshowthatthereisnosinglemechanismforcellularuptakeofCNTs.
Inparticular,CNTscanbeinternalizedviavariousmechanisms,including (1)directpenetrationthroughthecellmembraneor(2)passiveandactive uptake,whichhavealsobeencalledindependentanddependentpathways, accordingly[93].BelowisasummaryofthecurrentliteratureonCNTentry intovariouscells,emphasizingdimensions,celltypes,andCNTfaces(Fig.1.7).
ThedistributionofCNTswithincellscanoccureitherpassively throughdiffusionacrossthecellmembranelipidbilayerorthroughneedle mechanisms.CNTsovercomesuchbarriersduetotheirneedle-like structureandhighrespectratios[27].CNTscanalsobeinternalizedby endocytosis,whichcanbeclassifiedinto fivegroups:phagocytoses,pinocytosis,caveolin-mediatedendocytosis,clathrin/clathrin-mediatedendocytosis,andclathrin/caveolaeindependent.Aphagocyticpathwayisthe processinwhichlargeparticles(w1 mm)entercells.Itpredominantly occurswithinneutrophils,macrophages,andmonocytes.Cellularuptake occursprimarilythroughreceptor-mediatedendocytosis,whichinvolves clathrin-coatedendocyticvacuoles.Caveolaegetsinvadedbynanomaterials 60nmindiameter,whichcontainshighlevelsofcholesterolandsphingolipids.TheCaveolin-mediatedendocytosisprocessisresponsiblefor transportingvesicularmaterialandentrappingvirusesandbacteria.Caveolin andclathrinareknowntoplayaroleincellularendocytosisandcan facilitatetheinternalizationofCNTswithadiameterof100nm.
ThemacropinocytosismechanismisthoughttotakeupCNTsthatarelarger than300nm.WhiletheentryofCNTsandtheirdrugcargomayoffermany advantages,eachmechanismalsohasdrawbacksthatshouldbeconsidered.There areseveralfeaturesthatinfluencecellularuptakes,suchasCNTtypes(MWCNTs orSWCNTs),dimension,surfacecharge, surfacefunctionalization,degreeof aggregation,functionalgroupchemistry,celltype,andagglomeration[94].
Figure1.7 Cellularuptakeofcarbonnanotubeintoendocyticvesicles.
1.5.2SizeofCNTs ThepreviousstudiesdemonstratedthatCNTswithasmallerdiameter resultinahighercellularuptake[22,95].Anumberofmechanismsare involvedinthepassageofshortCNTsthroughcellmembranes,butactive endocytosis,particularlyclathrin-mediatedendocytosis,isgenerallythe mostimportant[96,97].Indeed,theshortertheCNT,thegreaterthe chanceofpassiveinternalization.Inthisregard,Zhangetal.evaluatedcell uptakebasedonCNTparticlesizeandcomparedCNTparticlesizesof eighttypes,consistingofMWCNTsandSWCNTs,withmacrophages (RAW264.7),ranginginsizesfrom30to400nm.Theirresultsindicated thatmacrophageswereabletotakeupCNTsinmoresignifi cantquantitieswhentheirparticlesizeincreasedafterincreasingcytotoxicity,with energy-dependentphagocytosisastheprimarymechanismofcellular uptake[98].
1.5.3Degreeofagglomerationandaggregation ThedegreeofagglomerationandaggregationofCNTsmayaffecttheir internalization.AstudybySongetal.foundthathigherconcentrationsof O-MWCNTsresultedinhigheruptakewithinhumanepithelialcervical cancercells(HeLa).However,thesecellswerenotcytotoxicatconcentrationsoflessthan150 mg/mL[99].Theamountofagglomerationand toxicityincreasedslightlywhentheconcentrationofO-MWCNTswas raisedto150 mg/mL.Accordingtotheir findings,agglomerationassisted endocytosisofO-MWCNTsoccurredduetotheirabilitytointeract effectivelywithcells.AregulatedagglomerationofCNTsinsomedelivery systemsiscapableoffacilitatingthedeliveryofdrugs/genesthroughtheir highuptakeandlowtoxicity.AstudyconductedbyKurodaetal. demonstratedthataggregatedCNTsenhancesuptakeinRAW264cells [100].Thissuggeststhataggregationwouldbeeffectiveonuptake mechanisms.
1.5.4Surfacecharge CNTscanbemodifiedfortheirsurfacechargebyalteringtheelectrostatic interactionsanddispersibility.Consequently,thesurfacechargewouldbe relevanttotheuptakeofNTsbycells,aswellasotherbiologicalprocesses [101].TheSWCNTswerefunctionalizedbyBudhathoki-Upretyetal. usingpolycarbodiimidepolymerswithcarboxylicacids(COOH-CNT)or primaryamines(NH2-CNT)attachedtotheirsidechains,whichthese
complexeshavesurfacechargesofapproximately66.8and52.8mV, respectively[102,103].CationicnanotubescouldbemorereadilyincorporatedintoHeLacellsthananionicnanotubes.However,serumproteins intheculturemediaadsorbCNTsinthecellculturemediaandinfluence cellularuptakeoftheseCNTs.Itisimportanttorememberthattheproteinsadsorbtothenanomaterialsthatcellsrecognize,notthenanomaterial itself.Thatisreferredtoasthe “proteincoronaeffect” ofnanomaterials,a layerofproteinsadsorbedtoananomaterialwhenexposedtobody fluids [104].CNTscanthereforebedesignedsothattheycanbetakenupby cells.Consequently,CNTscanbedesignedtodeliverdrugsefficiently whentheirsurfacechemistryistakenintoaccount.Thereactivityof nanomaterials’ surfaceswithcellularmembranescontributestotheir toxicity.ItisthenonbiodegradabilityofCNTsthatgivesthemtheir toxicologicalproperties.ThebindingofbloodproteinsinfluencesbiologicalpathwaysoftheCNTs,andcytotoxicitycanthereforebedecreasedasa result[105].AccordingtoGeetal.,bloodproteinsbindtothesurfaceof SWCNTs,enablingchangestotheircellularinteractions.Thisultimately reducestheircytotoxicityintwodifferenthumancelllines,including humanumbilicalveinendothelialandacutehumanmonocyteleukemia (THP-1)cells.
1.5.5Celltype
Cellularuptakeratesandmechanismsmayvarybythecellularsystem[106]. TheinternalizationofCNTswasevaluatedinhumanlungcancercells A549,humanlungcancercellsCalu-6,humanbreastcellsMCF-7,and mousemacrophagesJ774bySummersetal.Heinhisworkdemonstrated thatthehighestCNTuptakeoccurredintheJ774cellline[101].After exposuretoCNTsfor24h,A549cellshada w40%loweruptakethan J774(whichshowedthehighestuptake).TherewasnosignificantdifferencebetweentheMCF-7andCalu-6cells,butbothtypescomprisedof about30%J774CNTs.Additionally,macrophagescouldtakeupSWCNTs moreefficientlythan fibroblasts.Althoughmacrophagespreferentially phagocytoseparticleswithadiameterofover500nm, fibroblastsprimarily endocytoseparticleswithadiameterof200nmandless[107].Inaddition, J774cellscantakeuplargerparticlesandalsotheaggregatesofCNTs.By aggregatingCNTswithinphagocyticcells,nanoparticlesareretained withinthem,whichmakesthemidealcarriersforCNTtransportationinto tumorcells.
CNTsandtheircellularuptakehavebeenanalyzedusingawiderange oftechniques,includingatomicforcemicroscopy,transmissionelectron microscopy,dynamiclightscattering, fluorescencemicroscopy,surfaceenhancedRamanscattering,andconfocalRamanspectroscopy.The characterizationandvisualizationofcellularuptakeofCNTsarebasedon somecharacteristicsofCNTs,suchasopticalcharacteristics[107 109].The evolutionofnanotechnologybeganwithimprovementsinmicroscopy,and thisheredepictsisnolessertruthintermsofCNTcellular internationalization.
1.6Drugdeliveryusingcarbonnanotubes Inrecentdecades,biomedicalresearchershavefocusedsignificantattention onusingCNTsforvariouspurposesduetotheirhighelectrical,physicochemical,andmechanicalpropertiesandthehighaspectratioofCNTs.In addition,theyhavebeenusedasnanocarriersforthedeliveryofseveral plasmidDNAs[110],proteins[111],peptides[112],siRNAs[113],andAPI [114].
1.6.1AntineoplasticAPIs Worldwide,cancerrankssecondbehindcardiovasculardiseases.Various unwantedtoxiceffectshavebeenobservedinthesurroundinghealthy tissuesasaresultofAPIstherapy[115].Oneofthemostchallengingaspects oftherapeuticresearchremainsdrugdeliverytocancerouscells[116].This isbecausetumorcellsexpressP-glycoprotein(P-gp),whichwillblockthe entryoftherapeuticagentsintothetissue.Therefore,mostofthetumortargetedantineoplasticagentsareunexpectedlydestroyedbeforetheycan killthetargetedcells.Forthetreatmentofcancer,innovativetechnologies areneededfordeliveringtherapeuticagents[117].
Differentnanomaterialshavepreviouslybeenutilizedasdrugdelivery agents.AwidevarietyofantineoplasticagentscanbeloadedinCNTs, includingdoxorubicin,cisplatin,methotrexate,andcamptothecin.Asan example,cisplatinhasbeenusedtotreatavarietyofcancer-relateddisorders.CisplatinstimulatescellulardeathbyinhibitingDNAreplicationand cross-linkingbetweenDNAstrands.Despiteitsanticancereffect,thisdrug producesmanysideeffects,includingototoxic,nephrotoxic,andneurotoxiceffects.
Thechlorideionsinplasmacanobliteratethetherapeuticeffectofdrugs bycausinganinterferenceintheirinteractionwithwater.Duetothis,
CNTsareusedasdrugcarrierstoreducesideeffectsbypreventingthe deactivationoftherapeuticagents.Inonestudy,thesynthesisoffunctionalizedSWCNTscontainingcisplatintotargetprostatecancercelllines PC3andDU145wasreported.Cisplatinactsbypenetratingdeepwithin thecellularmembraneandselectivelyaccumulatingwithinthecytoplasmof cancerousprostatecellsbasedon findingsofcellularuptakestudies. Therefore,theencapsulationofcisplatinhasprovedtobeveryeffective factorinstabilizingitsadministrationtocancerousprostatecells[118].
Ithasalsobeenextensivelyusedfortreatingcancerwithdoxorubicin drugasananticancertherapeuticagent.Thechemicalstructureofdoxorubicinhasbeenshownin(Fig.1.4b).Thenon-covalentcomplexationof MWCNTsandfunctionalizedSWCNTswithpolyethyleneglycol(PEG) wasalsodemonstratedbyHwang[119].Inaninvestigation,itwasfound thatMWCNTscombinedwithdoxorubicinworkbetteragainstcancerous cellsthandoxorubicinalone.SWCNTshavebeensynthesizedandmodifiedwithdifferenttypesofpolysaccharidesaswellaswithdoxorubicinand folicacidinrecentyears[120].Insomecases,thereleaseoftherapeutic agentsfromwithinthesenanocarrierswasreportedtobepHdependent.In thisregard,CNTsarefunctionalizedonthesurfacetocontroltherateof drugreleaseandloadingefficiency.AccordingtoFabbroetal.research [116],anovelmethodisessentialforimprovingtheconstructionand characterizationofmodifiedCNTstoallowthemtobeapplied therapeutically.
1.6.2Anti-inflammatoryAPIs Manystudieshavebeenconductedinordertoenhancecellularuptake propertiesovertheyears.Inadditiontoimprovingthemoleculerelease profile,thisalsohelpsinreducingsideeffects[121].Meanwhile,researchers havealsobeenlookingatCNTsasameansofdeliveringanti-inflammatory APIs.Zanellaetal.(2007)investigatedananti-inflammatorydrugknownas nimesulideonbothSi-dopedcappedandpristineSWCNTsusing firstprincipalcalculations(DFT).BasedonDFTcalculations,theyreported theuseofCNTsaspotentialcarriersforaromaticresiduesandhavealso demonstratedimprovedphysisorptionwithSi-dopedSWCNTsdueto theirelectronicproperties[122].
Duetotheinefficiencyofconventionaladministrationstrategies,antiinflammatorydeliverysystemsprovidestableplasmalevelsofthetherapeuticagentoveralongerperiodoftime,allowingforextendeddrug