Elementary linear algebra 5th student solutions manual 5th edition andrilli hecker - The newest eboo

Page 1


Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Instructor's Solutions Manual for Elementary Linear Algebra with Applications, 9th Edition Bernard Kolman

https://ebookmass.com/product/instructors-solutions-manual-forelementary-linear-algebra-with-applications-9th-edition-bernardkolman/

ebookmass.com

Elementary Linear Algebra 8th Edition Ron Larson

https://ebookmass.com/product/elementary-linear-algebra-8th-editionron-larson/

ebookmass.com

Linear Algebra and Its Applications 5th Edition, (Ebook PDF)

https://ebookmass.com/product/linear-algebra-and-its-applications-5thedition-ebook-pdf/

ebookmass.com

Witch Please Ann Aguirre

https://ebookmass.com/product/witch-please-ann-aguirre/

ebookmass.com

Monsters in the Mist Juliana Brandt

https://ebookmass.com/product/monsters-in-the-mist-juliana-brandt/

ebookmass.com

Flexible Supercapacitor Nanoarchitectonics Inamuddin

https://ebookmass.com/product/flexible-supercapacitornanoarchitectonics-inamuddin/

ebookmass.com

Campbell's Operative Orthopaedics 4-Volume Set 14th Edition Frederick M. Azar

https://ebookmass.com/product/campbells-operativeorthopaedics-4-volume-set-14th-edition-frederick-m-azar/

ebookmass.com

Prophecy and Diplomacy: The Moral Doctrine of John Paul II John J. Conley

https://ebookmass.com/product/prophecy-and-diplomacy-the-moraldoctrine-of-john-paul-ii-john-j-conley/

ebookmass.com

The Korean K-Drama Cookbook : Make the Dishes Seen in Your Favorite TV Shows! Choi Heejae

https://ebookmass.com/product/the-korean-k-drama-cookbook-make-thedishes-seen-in-your-favorite-tv-shows-choi-heejae/

ebookmass.com

Dedication

To all the students who have used the various editions of our book over the years

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Appendix

Appendix

Appendix

StudentManualforAndrilliandHecker- ElementaryLinearAlgebra,5theditionSection1.1

(4)(a)First,we findthevector v havingthegiveninitialandterminalpointbysubtracting: [10

10 11] [ 4

9]= v .Next,thedesiredpointisfoundbyadding 2 3 v (which is 2 3 thelengthof v)tothevectorfortheinitialpoint

(5)Let v representthegivenvector.Thenthedesiredunitvector

u isshorterthan v since k

; neithervectorislongerbecause u = v

(6)Twononzerovectorsareparallelifandonlyifoneisascalarmultipleoftheother.

(a) [12 16] and [9 12] areparallelbecause 3 4 [12 16]=[9 12]. (c) [ 2 3 1] and [6 4 3] arenotparallel.Toshowwhynot,supposetheyare.Thentherewould bea  ∈ R suchthat [ 2 3 1]=[6 4 3].Comparing firstcoordinatesshowsthat 2 =6, or  = 3.Howevercomparingsecondcoordinatesshowsthat 3 = 4,or  = 4 3 instead.But  cannothavebothvalues.

(7)(a) 3[ 2 4 5]=[3( 2) 3(4) 3(5)]=[ 6 12 15]

(c) [ 2 4 5]+[ 5 3 6]=[( 2+( 5)) (4+( 3)) (5+6)]=[ 7 1 11] (e) 4[ 5 3 6] 5[ 2 4 5]=[4( 5) 4( 3) 4(6)] [5( 2) 5(4) 5(5)]=[ 20 12 24] [ 10 20 25]= [( 20 ( 10)) ( 12 20) (24 25)]=[ 10 32 1]

(8)(a) x+y =[ 1 5]+[2 4]=[( 1+2) (5 4)]=[1 1], x y =[ 1 5] [2 4]=[( 1 2) (5 ( 4))]= [ 3 9], y x =[2 4] [ 1 5]=[(2 ( 1)) (( 4) 5)]=[3 9] (seeFigure3,nextpage)

(c) x + y =[2 5 3]+[ 1 3 2]=[(2+( 1)) (5+3) (( 3)+( 2))]=[1 8 5], x y =[2 5 3] [ 1 3 2]=[(2 ( 1)) (5 3) (( 3) ( 2))]=[3 2 1], y x =[ 1 3 2] [2 5 3]=[(( 1) 2) (3 5) (( 2) ( 3))]=[ 3 2 1] (seeFigure4, nextpage)

(10)Ineachpart,considerthecenteroftheclocktobetheorigin.

(a)At 12 PM,thetipoftheminutehandisat (0 10).At 12:15 PM,thetipoftheminutehandis at (10 0).To findthedisplacementvector,wesubtractthevectorfortheinitialpointfromthe vectorfortheterminalpoint,yielding [10 0] [0 10]=[10 10]

(b)At 12 PM,thetipoftheminutehandisat (0 10).At 12:40 PM,theminutehandmakesa 210◦ anglewiththepositive -axis.So,asshowninFigure1.10inthetextbook,theminutehandmakes thevector v =[kvk cos  kv k sin  ]=[10cos(210◦ ) 10sin(210◦ )]= h10 ³ √3 2 ´  10 ¡ 1 2 ¢i = [ 5√3 5].To findthedisplacementvector,wesubtractthevectorfortheinitialpointfromthe vectorfortheterminalpoint,yielding [ 5√3 5] [0 10]=[ 5√3 15]

Copyright c ° 2016ElsevierLtd.Allrightsreserved.2

StudentManualforAndrilliandHecker-

¤.Finally,

[0 0462 0 2646 0 3015]

(20)AsshowninFigure1.10inthetextbook,foranyvector v ∈ R2  v =[kvk cos 

,where

is theangle v makeswiththepositive -axis.Thus,ifwelet  =

and

,then

.Now,since theweightisnotmoving,

.Thatis,

.Using the firstcoordinatesgivesus

Also,

(23)If  =0,wearedone.Otherwise,

.Usingthesecondcoordinatesgivesus

produces

(bypart(1)ofTheorem1.3) = 0,bytheabove.

)x = 0 (bypart(7)ofTheorem 1.3) =⇒ x = 0.Thuseither  =0 or x = 0

(25)(a)False.Thelengthof

.Theformulagivenintheproblemismissingthe squareroot.So,forexample,thelengthof [0 3 4] isactually 5, not 02 +32 +42 =25.

(b)True.Thisiseasilyprovedusingparts(1)and(2)ofTheorem1.3.

(c)True. [2 0 3]=2[1 0 0]+( 3)[0 0 1]

(d)False.Twononzerovectorsareparallelifand onlyifoneisascalarmultipleoftheother.To showwhy [3 5 2] and [6 10 5] arenotparallel,supposetheyare.Thentherewouldbea  ∈ R suchthat [3 5 2]=[6 10 5].Comparing firstcoordinatesshowsthat 3 =6,or  =2.But thisvalueof  mustworkinallcoordinates.However,itdoesnotworkinthethirdcoordinate, since (2)(2) =5

(e)True.Multiplybothsidesof x = 0 by 1  .

(f)False.Parallelvectorscanbeinoppositedirections.Forexample, [1 0] and [ 2 0] areparallel, butarenotinthesamedirection.

(g)False.ThepropertiesofvectorsinTheorem1.3areindependentofthelocationoftheinitial pointsofthevectors.

(h)False. ||[9 8 4]|| = p92 +( 8)2 +( 4)2 = √81+64+16= √161  1

Copyright c ° 2016ElsevierLtd.Allrightsreserved.4

Section1.2

(1)Ineachpart,weusetheformula cos  = x y kxkkyk

(a) cos  =

 =arccos( 27 5√37 ),orabout 152 6◦ ,or 2 66 radians.

(c) cos  = x y k

=arccos(0),whichis 90

,or  2 radians.

.Andso,usingacalculatoryields

(4)Whenaforce f movesanobjectbyadisplacement d,theworkperformedis f d.

(b)First,weneedtocompute f .Aunitvectorinthedirectionof

,wherewehaverationalizedthedenominators.

Next,weneedtocompute d.Aunitvectorinthedirectionof

Hence,theworkperformedis

(6)Inallparts,let

(b)

.Andso,

isasumofsquares,eachofwhichmustbenonnegative.Hence,thesumisalsononnegative,and soitssquarerootisdefined.Thus,

(c)Suppose x x =0.Frompart(b),

,foreach

,sincealltermsinthe sumarenonnegative.Hence,

,becauseitisasquare.Henceeach 

=0.Therefore, x = 0.

StudentManualforAndrilliandHecker- ElementaryLinearAlgebra,5theditionSection1.2

(8)Bypart(2)ofTheorem1.5, (a b) (a b)= ka bk2 ≥ 0.Hence,byparts(5)and(6)of Theorem1.5, (a a) (b a) (a b)+(b b) ≥ 0.Byparts(1)and(2)ofTheorem1.5,wehave kak2 2(a b)+ kbk2 ≥ 0.Thus, 1 2(a b)+1 ≥ 0 because a and b areunitvectors,andso a b ≤ 1

(16)Positionthecubesothatoneofitscornersisattheoriginandthethreeedgesfromthatcornerare alongthepositive -,  -,and  -axes.Thenthecornerdiagonallyoppositefromtheoriginisatthe point ().Thevectorrepresentingthisdiagonalis d =[

].

(a)Thelengthofthediagonal = kdk = √

(b)Theangle d makeswithasideofthecubeisequaltotheanglebetween d and [ 0 0],which is arccos ³

0 955 radians.

(20)Ineachpart,if v isthegivenvector,thenbyTheorem1.11, x = projv

),where projv x isparallelto v and (x projv x) isorthogonalto v (a)Inthiscase, x

Andso projv x isclearlyparallelto v since projv x = ¡

¢ v .Also, (x projv x)=[

and (x projv x) areorthogonal,since projv x (

,andthat

and

(23)(a)Notethat projx y =[ 8 5  6 5

isorthogonalto x.Let w = y projx y Thensince y = projx y +(y projx y)

wehave y = 2 5 x + w where w isorthogonal to x

(25)(a)Truebypart(4)ofTheorem1.5.

(b)True.Theorem1.7(theCauchy-SchwarzInequality)statesthat |x y| ≤ kxkkyk.Since x y ≤ |x y |,wehave x y ≤ kxkkyk.Butthen,because kxk  0,wecandividebothsidesby kxk toobtainthedesiredinequality

(c)False.Forexample,if x =[1 0 0] and y =[0 1 0],then kx yk = k[1 1 0]k = p12 +( 1)2 +02 = √2,and kxk kyk = k[1 0 0]k k[0 1 0k = √12 +02 +02 √02 +12 +02 =1 1=0.However, √2 £ 0.

(d)False.Theorem1.9showsthatif   2 ,then x · y  0.(Remember,  isdefinedtobe ≤  .)

(e)True.If  =  ,then e e =0(0)+ +1(0) |{z} thterms + +0(1) |{z}  thterms +0(0)+ +0(0)=0+ +0=0

(f)False. proja b = ³ a b kak2 ´ a,andso proja b isparallelto a,sinceitisascalarmultipleof a.Thus,if proja b = b, a and b areparallel,notperpendicular.Foraparticularexample,suppose a =[1 0] and b =[2 0].Then proja b

0] k[1

0]k ´ [1 0]= ³ 1(2)+0(0) √12 +02 ´ [1 0]=2[1 0]=[2 0]= b.However, a =[1 0] and b =[2 0] areparallel(since b =2a)and not perpendicular(since a b =[1 0] [2 0]=1(2)+0(0)=2 =0.

Section1.3

(1)(b)Let  =max{|| |

Theproofisasfollows:

y

kxk + k±y k bytheTriangleInequality

byTheorem1.1

and

(2)(b)Theconverseis:Ifanintegerhastheform 3 +1,thenitalsohastheform 6 5,where  and  areintegers.Foracounterexample,considerthatthenumber 4=3 +1 with  =1,butthere isnointeger  suchthat 4=6 5,sincethisequationimplies  = 3 2 ,whichisnotaninteger.

Copyright c ° 2016ElsevierLtd.Allrightsreserved.7

StudentManualforAndrilliandHecker- ElementaryLinearAlgebra,5theditionSection1.4

(c) 4 ⎡ ⎣ 423 05 1 61 2 ⎤ ⎦ = ⎡ ⎣ 4( 4)4(2)4(3) 4(0)4(5)4( 1) 4(6)4(1)4( 2)

(e)Impossible. C isa 2 × 2 matrix, F isa 3 × 2 matrix,and E isa 3 × 3 matrix.Hence, 3F is 3 × 2 and E is 3 × 3.Thus, C, 3F,and E havedifferentsizes.However,inordertoaddmatrices, theymustbethesamesize.

(g) 2

2( 4)2(2)2(3) 2(0)2(5)2( 1) 2(6)2(1)2( 2)

( 8)+( 9)+( 6)4+9+16+( 15)+0 0+( 3)+( 2)10+0+( 2)( 2)+6+4 12+( 18)+( 3)2+( 21)+1( 4)+6+( 1)

(( 4)+3)(0+1)(6+6) (2+( 3))(5+0)(1+7) (3+5)(( 1)+( 2))(( 2)+( 2))

(l)Impossible.Since C isa 2 × 2 matrix,both C and 2C are 2 × 2.Also,since F isa 3 × 2 matrix, 3F is 3 × 2.Thus, 2C and 3F havedifferentsizes.However,inordertoaddmatrices,they mustbethesamesize.

(n) (B A) = ⎡

(2)Foramatrixtobesquare,itmusthavethesamenumberofrowsascolumns.Amatrix X isdiagonal ifandonlyifitissquareand  =0 for  =  .Amatrix X isuppertriangularifandonlyifitis squareand  =0 for  .Amatrix X islowertriangularifandonlyifitissquareand  =0 for  .Amatrix X issymmetricifandonlyifitissquareand  =  forall  .Amatrix X is skew-symmetricifandonlyifitissquareand  =  forall  .Noticethatthisimpliesthatif X isskew-symmetric,then  =0 forall .Finally,thetransposeofan  ×  matrix X isthe  ×  matrixwhose( )thentryis  .Wenowcheckeachmatrixinturn. A isa 3 × 2 matrix,soisnotsquare.Thereforeitcannotbediagonal,uppertriangular,lower triangular,symmetric,orskew-symmetric.Finally, A = ∙ 106 410 ¸

Copyright c ° 2016ElsevierLtd.Allrightsreserved.10

(5)(d)Thematrix(callit A)mustbeasquarezeromatrix;thatis, O ,forsome .First,since A is diagonal,itmustbesquare(bydefinitionofadiagonalmatrix).Toprovethat  =0 forall  , weconsidertwocases:First,if  =  ,then  =0 since A isdiagonal.Second,if  =  ,then  =  =0 since A isskew-symmetric(

 =  forall ,implying  =0 forall ).Hence, everyentry  =0,andso A isazeromatrix.

(10)(a)Part(1):Let B = A and C =(A ) .Then  =

=

.Sincethisistrueforall  and  , wehave C = A;thatis, (A ) = A

(b)Part(2),SubtractionCase:Let D = A B, F =(A B) and G = A B .Then

=

=

=

.Sincethisistrueforall  and  ,wehave F = G;thatis, (A B) = A B .

(c)Part(3):Let B = (A ), D = A and F =(A) .Then 

=

=

.Sincethisis trueforall  and  ,wehave F = B;thatis, (A) = (A ).

(13)(a)Trace(B) = 11 + 22 =2+( 1)=1,trace(C) = 11 + 22 =( 1)+1=0, trace(E) = 11 + 22 + 33 =0+( 6)+0= 6,trace(F) = 11 + 22 + 33 + 44 =1+0+0+1=2,trace(G) = 11 + 22 + 33 =6+6+6=18,trace(H) = 11 + 22 + 33 + 44 = 0+0+0+0=0,trace(J) = 11 + 22 + 33 + 44 =0+0+1+0=1,trace(K) = 11 + 22 + 33 + 44 =1+1+1+1=4,trace(L) = 11 + 22 + 33 =1+1+1=3,trace(M) = 11 + 22 + 33 = 0+0+0=0,trace(N) = 11 + 22 + 33 =1+1+1=3,trace(P) = 11 + 22 =0+0=0, trace(Q) = 11 + 22 + 33 =( 2)+0+3=1.

(c)Notnecessarilytruewhen  1.Considermatrices L and N inExercise2.Frompart(a)ofthis exercise,trace(L) =3= trace(N).However, L = N. (14)(a)False.Themaindiagonalentriesofa 5 × 6 matrix A are 11 , 22 , 33 , 44 ,and 55 .Thus,there are 5 entriesonthemaindiagonal.(Thereisnoentry 66 becausethereisno 6throw.)

(b)True.Suppose A islowertriangular.Then  =0 whenever  .If B = A ,then  =  =0, if  ,andso B isuppertriangular.

(c)False.Thesquarezeromatrix O isbothskew-symmetricanddiagonal. (d)True.Thisfollowsfromthedefinitionofaskew-symmetricmatrix.

(e)True. ¡ ¡A + B¢¢ = ³ ¡A + B¢ ´ (bypart(3)ofTheorem1.13) = ³ ³¡A ¢ + B ´´ (bypart(2)ofTheorem1.13) =  ¡A + B ¢ (bypart(1)ofTheorem1.13) = A + B (bypart (5)ofTheorem1.12) = B + A (bypart(1)ofTheorem1.12).

Section1.5

(1)(b) BA = ⎡ ⎣ 536 380 204 ⎤ ⎦ ⎡ ⎣ 23 65 1 4 ⎤ ⎦ = ⎡ ⎣ (( 5)( 2)+(3)(6)+(6)(1))(( 5)(3)+(3)(5)+(6)( 4)) ((3)( 2)+(8)(6)+(0)(1))((3)(3)+(8)(5)+(0)( 4)) (( 2)( 2)+(0)(6)+(4)(1))(( 2)(3)+(0)(5)+(4)( 4)) ⎤ ⎦ = ⎡

Copyright c ° 2016ElsevierLtd.Allrightsreserved.13

StudentManualforAndrilliandHecker- ElementaryLinearAlgebra,5theditionSection1.5

Also, PN = ∙ 3 1 47 ¸ ∙ 00 00 ¸ = ∙ ((3)(0)+( 1)(0))((3)(0)+( 1)(0)) ((4)(0)+(7)(0))((4)(0)+(7)(0)) ¸ = ∙ 00 00 ¸.

Hence, NP = PN,andso N and P commute.

(3)(a)(2ndrowof BG)=(2ndrowof B)G = £ 380 ¤ ⎡ ⎣ 510 0 2 1 103

.Theentriesobtainedfrom thisare:

1stcolumnentry =((3)(5)+(8)(0)+(0)(1))=15, 2ndcolumnentry =((3)(1)+(8)( 2)+(0)(0))= 13, 3rdcolumnentry =((3)(0)+(8)( 1)+(0)(3))= 8

Hence,(2ndrowof BG) =[15 13 8]

(c)(1stcolumnof SE) = S(1stcolumnof E)= £ 6 432 ¤

=[(6)(1)+( 4)(1)+(3)(0)+(2)(1)]=[4]

(4)(a)Valid,byTheorem1.16,part(1).

(b)Invalid.Theequationclaimsthatallpairsofmatricesthatcanbemultipliedinbothorders commute.However,parts(a)and(c)ofExercise2illustratetwodifferentpairsofmatricesthat donotcommute(seeabove).

(c)Valid,byTheorem1.16,part(1).

(d)Valid,byTheorem1.16,part(2).

(e)Valid,byTheorem1.18.

(f)Invalid.Foracounterexample,considerthematrices L and M fromExercises1through3.

Usingourcomputationof ML fromExercise2(a),above, L(ML)=

∙ ((10)(62)+(9)(134))((10)(56)+(9)(120)) ((8)(62)+(7)(134))((8)(56)+(7)(120)) ¸ = ∙ 18261640 14341288 ¸ , but L2 M =(LL)M = µ∙ 109 87 ¸

=

((10)(10)+(9)(8))((10)(9)+(9)(7)) ((8)(10)+(7)(8))((8)(9)+(7)(7))

136121 ¸ ∙ 7 1 113 ¸ = ∙ ((172)(7)+(153)(11))((172)( 1)+(153)(3)) ((136)(7)+(121)(11))((136)( 1)+(121)(3)) ¸ = ∙ 2887287 2283227 ¸

(g)Valid,byTheorem1.16,part(3).

(h)Valid,byTheorem1.16,part(2).

(i)Invalid.Foracounterexample,considerthematrices A and K fromExercises1through3.Note that A isa 3 × 2 matrixand K isa 2 × 3 matrix.Therefore, AK isa 3 × 3 matrix.Hence, (AK) isa 3 × 3 matrix.However, A isa 2 × 3 matrixand K isa 3 × 2 matrix.Thus, A K isa 2 × 2 matrix,andsocannotequal (AK) Theequationisalsofalseingeneralforsquare matrices,whereitisnotthesizesofthematrices

Copyright c ° 2016ElsevierLtd.Allrightsreserved.16

thatcausetheproblem.Forexample,let A =

.Then,

However,therearesomerareinstancesforwhichtheequationistrue,suchaswhen A = K,or wheneither A or K equals I .Anotherexampleforwhichtheequationholdsisfor A = G and K = H,where G and H arethematricesusedinExercises1,2,and3.

(j)Valid,byTheorem1.16,part(3),andTheorem1.18.

(5)To findthetotalinsalariespaidbyOutlet1,wemustcomputethetotalamountpaidtoexecutives,the totalamountpaidtosalespersons,andthetotalamountpaidtoothers,andthenaddtheseamounts. ButeachofthesetotalsisfoundbymultiplyingthenumberofthattypeofemployeeworkingatOutlet 1bythesalaryforthattypeofemployee.Hence,thetotalsalarypaidatOutlet1is (3)(30000) | {z } Executives +(7)(22500) | {z } Salespersons +(8)(15000)

Notethatthisisthe(1 1)entryobtainedwhenmultiplyingthetwogivenmatrices.Asimilaranalysis showsthatmultiplyingthetwogivenmatricesgivesallthedesiredsalaryandfringebenefittotals.In particular,if

11 =(3)(30000)+(7)(22500)+(8)(15000)=367500

12 =(3)(7500)+(7)(4500)+(8)(3000)=78000

21 =(2)(30000)+(4)(22500)+(5)(15000)=225000

22 =(2)(7500)+(4)(4500)+(5)(3000)=48000

31 =(6)(30000)+(14)(22500)+(18)(15000)=765000

32 =(6)(7500)+(14)(4500)+(18)(3000)=162000

41 =(3)(30000)+(6)(22500)+(9)(15000)=360000

42 =(3)(7500)+(6)(4500)+(9)(3000)=76500

Hence,wehave:

(7)Tocomputethetonnageofaparticularchemicalappliedtoagiven field,foreachtypeoffertilizerwe mustmultiplythepercentconcentrationofthechemicalinthefertilizerbythenumberoftonsofthat fertilizerappliedtothegiven field.Afterthisisdoneforeachfertilizertype,weaddtheseresultsto

(15)SeveralcrucialstepsinthefollowingproofsrelyonTheorem1.5fortheirvalidity.

(a)ProofofPart(2):The ( ) entryof A(B + C)

= (throwof A) ( thcolumnof (B + C))

= (throwof A) ( thcolumnof B +  thcolumnof C)

= (throwof A)·( thcolumnof B)

+(throwof A)·( thcolumnof C)

=(( ) entryof AB) + (( ) entryof AC)

= ( ) entryof (AB + AC)

(b)ProofofPart(3):The ( ) entryof (A + B)C

= (throwof (A + B)) ( thcolumnof C)

= ((throwof A)+(throwof B)) ( thcolumnof C)

= (throwof A) ( thcolumnof C)

+(throwof B) ( thcolumnof C)

=(( ) entryof AC) + (( ) entryof BC)

= ( ) entryof (AC + BC)

(c)Forthe firstequationinPart(4),the ( ) entryof (AB)

= ((throwof A)·( thcolumnof B))

=((throwof A))·( thcolumnof B)

=(throwof A) ( thcolumnof B)

=( ) entryof (A)B

Similarly,the ( ) entryof (AB)

= ((throwof A) ( thcolumnof B))

=(throwof A) (( thcolumnof B))

=(throwof A) ( thcolumnof B)

=( ) entryof A(B)

(20)(a)ProofofPart(1):Weuseinductiononthevariable .BaseStep: A+0 = A = A I =

InductiveStep:Assume A+ = A A forsome  ≥ 0.Wemustprove A+(

+1) = A A+1 .But A+(+1) = A(+)+1 = A+ A =(A A )A (bytheinductivehypothesis) = A

(A A)= A

(b)ProofofPart(2):Again,weuseinductiononthevariable .BaseStep: (A )0 = I = A0 = A0 .

.

InductiveStep:Assume (A ) = A forsomeinteger  ≥ 0.Wemustprove (A )+1 = A(+1) . But (A )+1 =(A ) A (bydefinition) = A A (bytheinductivehypothesis) = A+ (bypart (1)) = A(+1) .Finally,reversingtherolesof  and  intheproofaboveshowsthat (A ) = A , whichequals A

(29)(a)Consideranymatrix A oftheform ∙ 10  0 ¸.Then A2 = ∙ 10  0 ¸ ∙ 10  0 ¸ = ∙ ((1)(1)+(0)())((1)(0)+(0)(0)) (()(1)+(0)())(()(0)+(0)(0)) ¸ = A.So,forexample, ∙ 10 10 ¸ isidempotent.

Copyright c ° 2016ElsevierLtd.Allrightsreserved.20

(30)(b)Consider

Settingtheseequalshowsthat 21 =0

(()(0)+(12 )(1))(()(0)+(12 )(0)) ((0)(0)+()(1))((0)(0)+()(0)) ¸

((0)()+(0)(0))((0)(12 )+(0)()) ((1)()+(0)(0))((1)(12 )+(0)())

12 ¸

Setting AD = DA showsthat 12 =0,andso A = I2 . Finally,wemustshowthat I2 actuallydoescommutewithevery 2 × 2 matrix.If M isa 2 × 2 matrix, then (I2 )M = (I2 M)= M.Similarly, M(I2 )= (MI2 )= M.Hence I2 commuteswith M (32)(a)True.Thisisa“boxed”resultgiveninthesection.

(b)True. D (A + B)= DA + DB (bypart(2)ofTheorem1.16) = DB + DA (bypart(1)ofTheorem 1.12)

(c)True.Thisispart(4)ofTheorem1.16.

(d)False.Let D = ∙ 11 0 1 ¸ ,andlet E = ∙ 1 2 01 ¸.Now, DE = ∙ 11 0 1 ¸ ∙ 1 2 01 ¸ = ∙ ((1)(1)+(1)(0))((1)( 2)+(1)(1)) ((0)(1)+( 1)(0))((0)( 2)+( 1)(1)) ¸ = ∙ 1 1 0 1 ¸.Hence, (DE)2 = ∙ 1 1 0 1 ¸ ∙ 1 1 0 1 ¸ = ∙ ((1)(1)+( 1)(0))((1)( 1)+( 1)( 1)) ((0)(1)+( 1)(0))((0)( 1)+( 1)( 1)) ¸ = I2 But, D2 = ∙ 11 0 1 ¸ ∙ 11 0 1 ¸ = ∙ ((1)(1)+(1)(0))((1)(1)+(1)( 1)) ((0)(1)+( 1)(0))((0)(1)+( 1)( 1)) ¸ = I2 .Also, E2 = ∙ 1 2 01 ¸ ∙ 1 2 01 ¸ = ∙ ((1)(1)+( 2)(0))((1)( 2)+( 2)(1)) ((0)(1)+(1)(0))((0)( 2)+(1)(1)) ¸ = ∙ 1 4 01 ¸

Hence, D2 E2 = I2 E2 = E2 = I2 .Thus, (DE)2 = D2 E2 .Theproblemhereisthat D and E do

Copyright c ° 2016ElsevierLtd.Allrightsreserved.21

StudentManualforAndrilliandHecker- ElementaryLinearAlgebra,5theditionChapter1Review

notcommute.For, iftheydid,wewouldhave (DE)2 =(DE)(DE)= D(ED)E = D(DE)E = (DD)(EE)= D2 E2

(e)False.Seetheanswerforpart(i)ofExercise4foracounterexample.WeknowfromTheorem 1.18that (DE) = E D

.Soif D and E

donotcommute,then (DE) = D E .

(f)False.Seetheanswerforpart(b)ofExercise30foracounterexample. DE = O wheneverevery rowof D isorthogonaltoeverycolumnof E,butneithermatrixisforcedtobezerofor DE = O tobetrue.

(g)False.Consider

Chapter1ReviewExercises

(2) kxk =

0 5955 0 7444].Thisisslightlylongerthan x becausewehave divided x byascalarwithabsolutevaluelessthan 1,whichamountstomultiplying x byascalarhavingabsolutevaluegreaterthan 1.

(4)WewilluseNewton’sSecondLawwhichstatesthat f = a,orequivalently, a = 1  f .Fortheforce

6].Similarly,forthe

(8)Work=

(10)First, x = 0,orelse projx y isnotdefined.Also, y = 0,sincethatwouldimply projx y = y.Now, assume x k y.Then,thereisascalar  =0 suchthat y = x.Hence, projx y =

kxk

kxk2 ´ x = x = y ,contradictingtheassumptionthat y = projx y

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Elementary linear algebra 5th student solutions manual 5th edition andrilli hecker - The newest eboo by Education Libraries - Issuu