Electronic structure and surfaces of sulfide minerals: density functional theory and applications ji

Page 1


ElectronicStructureandSurfacesofSulfide Minerals:DensityFunctionalTheoryand ApplicationsJianhuaChen

https://ebookmass.com/product/electronic-structure-andsurfaces-of-sulfide-minerals-density-functional-theory-andapplications-jianhua-chen/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Chemistry of Functional Materials Surfaces and Interfaces: Fundamentals and Applications Andrei Honciuc

https://ebookmass.com/product/chemistry-of-functional-materialssurfaces-and-interfaces-fundamentals-and-applications-andrei-honciuc/

ebookmass.com

Fluid Inclusion Effect in Flotation of Sulfide Minerals 1st Edition Shuming Wen

https://ebookmass.com/product/fluid-inclusion-effect-in-flotation-ofsulfide-minerals-1st-edition-shuming-wen/

ebookmass.com

Structure in the Sea: The Science, Technology and Effects of Purpose-Built Reefs and Related Surfaces William Seaman

https://ebookmass.com/product/structure-in-the-sea-the-sciencetechnology-and-effects-of-purpose-built-reefs-and-related-surfaceswilliam-seaman/

ebookmass.com

Liquid-phase Extraction Poole Colin F. (Ed.)

https://ebookmass.com/product/liquid-phase-extraction-poole-colin-fed/

ebookmass.com

Securities Industry Essentials Exam 2023-2024 For Dummies with Online Practice Steven M. Rice

https://ebookmass.com/product/securities-industry-essentialsexam-2023-2024-for-dummies-with-online-practice-steven-m-rice/

ebookmass.com

The Norton Field Guide to Writing (Fifth Edition)

https://ebookmass.com/product/the-norton-field-guide-to-writing-fifthedition/

ebookmass.com

The Maiden Kate Foster

https://ebookmass.com/product/the-maiden-kate-foster/

ebookmass.com

Radiotherapy and the Cancers of Children, Teenagers and Young Adults (Illustrated Edition) Tom Boterberg

https://ebookmass.com/product/radiotherapy-and-the-cancers-ofchildren-teenagers-and-young-adults-illustrated-edition-tom-boterberg/

ebookmass.com

Language Change, Variation, and Universals Culicover

https://ebookmass.com/product/language-change-variation-anduniversals-culicover/

ebookmass.com

Psychology Fifth Edition Daniel L. Schacter

https://ebookmass.com/product/psychology-fifth-edition-daniel-lschacter/

ebookmass.com

ElectronicStructureandSurfaces ofSulfideMinerals

DensityFunctionalTheoryandApplications

JianhuaChen
ZhengheXu
YeChen

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020CentralSouthUniversityPress.PublishedbyElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfrom thepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher ’spermissionspoliciesand ourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,can befoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityfor anyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromany useoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-817974-1

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher:CandiceJanco

AcquisitionsEditor:AmyShapiro

EditorialProjectManager:EmeraldLi

ProductionProjectManager:SruthiSatheesh

CoverDesigner:MilesHitchen

TypesetbyTNQTechnologies

Preface

Flotationisaprocessofseparatingfinevaluablemineralparticlesfromtheirassociated gangues.Inflotation,hydrophobicmineralsofinterestareattachedtoairbubbles,floated underthebuoyancyforceofbubblestothetopofpulp,andcollectedasproductsreferredto asconcentrate,leavinghydrophilicparticlesinthepulpastailings.Flotationhasbeenused inlarge-scalemineralprocessingindustrysincethe1920s.In1921,Perkinsfirstpatented theslightlysolublethiocarbamateasanonoilchemicalcollectorforsulfidemineral flotation,followedbyKellerwhoinventedin1925water-solublexanthatesandWhitworth whodevelopedin1926dithiophosphate,whichrevolutionizedflotation.During1930s,the applicationofsoapsandcationicaminecollectorsindustrializedprocessingofnonmetallic ores.Duetoitshighefficiencyandlowcost,flotationiscurrentlyusedtoprocessannually overbillionsoftonsofores,inadditiontoitswidelyexpandingapplicationtowastewater treatmentandrecyclingofvarioustypesofvaluablesfromelectronicwastes,metallurgical slugs,usedbatteries,etc.Theimportanceofthefrothflotationtotheeconomyofthe industrialworldhasbeenconsideredtobeenormous.

Manyearlyeffortsatunderstandingflotationweredirectedtowardexplainingdifferential flotationintermsoftherelativeocclusionofgases.In1916,bubbleswereconsideredtobe attheheartofflotationscience.

TheroleofinterfacesinflotationhadbeenconsideredbySulmanby1912.Thefirstdirect applicationofthermodynamicstosystemssimilartoflotationwasthatofvonReinders,who deducedhowfinesolidparticleswouldbedistributedbetweenoilandwaterphasesbased onMaxwell’scapillarityequationsin1913.In1915,Ralstonsuggestedthatflotationmight resultfromtheelectricalattractionbetweennegativelychargedairbubblesandpositively chargedmineralparticles.In1917,TaggartandBeachfairlylucidlyapplied thermodynamicsconceptsdirectlytoflotation.Atpresent,thermodynamicshasbecomea fairlywidelyusedtoolfortheanalysisofflotationphenomena.

In1917,Andersonsuggestedthatadsorptionmightplayadominantroleinflotationand usedtheGibbsadsorptionequationtodiscussthefrotheradsorptionattheair water interface.In1920,Langmuirfoundthecorrelationbetweenadsorptionandhydrophobicity. Hereportedthatoleicacidcreatedlargecontactanglesoncleavedcalciteandgalenabut onlysmallanglesoncleanglassandcleavedmica.In1928,Taggartdescribedtheresultsof adsorptiontestsonsulfidemineralsthatrelatedthestructureoftheadsorbatetoitsabilityto

actasaflotationcollector.Taggartformulatedthedefinitionofthemolecularstructure neededforasolubleflotationcollector,namely,thatitmustpossessbothapolargroupthat bindsittothesurfaceandanonpolargroupthatcanorientawaywhenadsorbedata mineral waterinterface.AlthoughsuchearlyresearchersasFahrenwald,Sulman,and Taggartcarriedoutanumberofexperimentstoelucidateflotationphenomena,thefounder ofthescientificbasisofflotationwasA.M.Gaudinandhiscolleagues,whoopenedthe beginningofthemodernapproachtoresearchinflotationchemistry.Majoradvances, particularlystartinginthe1950s,wereachievedtoflotationsystemsthroughbetter understandingandapplicationofthefundamentalprinciplesofsurfaceandcolloid chemistry,particularlyelectricaldouble-layerphenomena.

Sincemostofnaturalmineralsareoriginallynotsufficientlyhydrophobicforeffective attachmenttoairbubbles,akeyforseparatingvaluablemineralsfromganguemineralsis thereforetorenderthetargetmineralshydrophobicbyselectiveadsorptionofadded chemicalsknownascollectorsinmineralprocessing.Collectorscanadsorbonmineral surfacesbyelectrostaticattraction,electrochemicalreaction,chemicalbinding,hydrogen bonds,etc.Toachieveselectiveadsorptionofcollectorsontargetmineralsrequires designingspecialstructuresofcollectorstosuitparticularmineralsurfaces.Anumberof theorieshavebeenproposedtoexplaintheselectivityofcollectoradsorptionatmineral surfacesinflotation.In1930,forexample,thesolubilityproducttheoryofsolutionswas suggestedbyTaggartthatthesmallerthesolubilityproductofthecompoundsformedby reagentandmetallicionsis,thestrongeristheadsorptionofthereagentsonthe correspondingminerals,hencethemoreeffectiveflotation.Thistheoryhasprovided satisfactoryexplanationonsomeflotationphenomena,suchasstrongflotationofcalcium mineralsandweakerornegligiblecollectingpowerofsilicatemineralsbyoleicacids. Similarly,theproductsolubilitytheoryhasbeenusedtoexplainselectiveflotationofmetal sulfidemineralsfromganguemineralsbyxanthate.Othertheoriesbasedonchemical reactions,chelation,andcoordinationofcollectorswithmetalionsinsolutionshavealso beenproposedtoexplainselectiveflotation.Inthesetheories,thepotencyofmetalionsto reactwithcollectorsinbulksolutionsisusedtoinfertheirinteractionsonmineralsurfaces. Clearlytheinfluenceofthemineralsurfacestructureandthepropertiesofadjacent coordinationatomsontheirinteractionswithcollectorsarenotconsideredinthesetheories. Therefore,theycannotexplainwhycopper,lead,andironsulfidescanbeeffectivelyfloated byxanthate,butnottheircorrespondingoxidizedminerals.Theatoms(ions)inmineral crystalstructureandonmineralsurfacesareknowntointeractwitheachother,which greatlyaffectstheirreactivitywithcollectors.Forexample,thereactivityofironinhematite (Fe2O3)andinpyrite(FeS2)withcollectorsisdrasticallydifferent,leadingtotheuseof completelydifferentcollectorsforhematiteflotationandpyriteflotation.Pradipsuggested thattheselectivityofflotationreagentsdependsgreatlyonthe“structural/stereochemical compatibility”betweenthemoleculararchitectureoftheadsorbingcollectorandthe specificstructureofmineralsurface.Moreaccuratepredictionofinteractionsbetweenthe flotationreagentmoleculeandthemineralsurfacerequiresbetterunderstandingofspatial effectofmineralsurfaces.AlthoughLangmuirnoticedtheeffectofsolidsurfacestructure onadsorptionasearlyas1917,actualeffectofmineralsurfacestructureoncollector

adsorptionremainsunknown.M.C.Furstenauetal.wroteinTheFrothFlotationCentury that“Wearenowatastagewherethefurtherimprovementoftheflotationprocessrequires adeeperunderstandingofitsfundamentaltheory.”

In1925,Schrodingerputforwardthewavefunctionequationofelectronstodescribethe behaviorofmicroscopicparticles.In1927,HitlerandLondonmadethefirstattemptto describethestructureofhydrogenmoleculesusingtheSchrodingerequation,whichlaidthe foundationofmodernquantumchemistry.In1991,K.Takahashicalculatedtheelectronic propertiesofreagentmoleculesbyadoptingextendedHukelmolecularorbital(EHMO) methodtopredicttheirreactivity.D.Z.Wangfocusedonthestructure activityrelationship ofthereagentbyusingsemiempiricalLCAO-MOmethod.However,thecalculationusing atomicorbital-basedMOmethodisverydifficult.Foramoleculeof100electrons,for example,resolvingtheRHFequationusingMOmethodsrequiresintegrationof100million double-electronequations.Itisthereforealmostimpossibletocalculatemineralsurfacesby MOapproach.Densityfunctionaltheory(DFT)usingelectrondensitydistributionasabasic variableisanewrevolutionaryapproachforstudyingthegroundstatepropertiesof multi-particlesystems,whichgreatlyreducetheintensityofcalculations.Withtherecent developmentofsupercomputingpower,awiderangeofsoftwareforDFTcalculationhas beendevelopedandavailableforvariousapplications.Asaresult,DFTisnowbeingrapidly usedtocalculatethecrystalstructureofminerals,latticeimpurity,mineralsurfaceand interfaceproperties,andreagentadsorption.

Thesolidphysicalpropertiesofmineralsareofparticularimportanceforsulfideflotation. First,sulfidemineralshavesemiconductingproperties,andtheflotationofsulfidemineralis anelectrochemicalprocess.Electrochemistryisthebasicfeatureofsulfidemineralflotation. Secondly,electrochemicalreactionsorelectrochemicalinteractionsarecommoninthe sulfideoreprocessingfromgrindingtoflotationseparation,suchasgalvanicinteraction betweensulfidemineralsandgrindingmedia,theelectrochemicalinteractionsbetween flotationreagentsandsulfidemineralsurfaces,thegalvaniccorrosionbetweendifferent sulfidemineralparticles,andtheelectrochemicalreactionbetweenthesulfidemineral surfaceandtheoxygenandwatermedium,allofwhichinvolvethesemiconductorband structureandelectronicpropertiesofsulfideminerals.Therefore,thesemiconducting propertiesofsulfidemineralsarethefoundationofelectrochemistryofsulfidemineral flotation.Studyingthesolidphysicalpropertiesofsulfideminerals(energybandstructure, electronstate,andelectrontransfer)couldprovidetheoreticalexplanationtotheelectron transfermechanismsduringsulfidemineralflotation.Thisbooksystematicallysummarizes theresearchresultsoftheauthorsinrecentyearsandexpoundstherelationshipbetweenthe crystalpropertiesandthefloatabilityofsulfidemineralsfromsolidphysics,crystal chemistry,surfacescience,andquantummechanics.

TheresearchworksofthisbookhavebeenfundedbytheNationalNaturalScience FoundationofChina(50864001,51164001,51864003,51304054).Theauthorsarethankful forthesesupports.WewouldalsoliketothankDr.LiYuqiong,Dr.ZhaoCuihua,Dr.Lan Lihong,andothersfortheircontributionstothisbook.

Prologue

Thisbooksystematicallystudiestheelectronicstructureofsulfideminerals,surface properties,andinteractionofreagentswithmineralsurfaces.Thebookisstructuredin sevenchapters.Thefirstchapterintroducesdensityfunctionaltheory(DFT),andsome importantconceptsofsolidstatephysicsarealsointroduced.Thesecondchapterdealswith thecrystalstructureandelectronicpropertiesofsulfidemineralsandtheirapplicationsin flotation.Therelationshipsbetweenthefloatabilityandtheircrystalstructure,band structure,densityofstates,andfrontierorbitalsareprovided.Thethirdchapterpresentsthe surfacerelaxationandelectronicstructureofsulfidemineralssurfaces.Thedifferencein chargedistributionbetweensurfaceatomsandbulkatoms,aswellasthecorrelation betweensurfaceatomiccoordinationandreactivityisdiscussed.Inthefourthchapterthe adsorptionofflotationreagentsonmineralsurfacesatthesolid liquidinterfacewas studied.Inaddition,theeffectofwaterandoxygenmoleculeonthesurfacepropertiesand reagentadsorptionarediscussed.Thefifthchapterexplorestheelectronicpropertiesof flotationreagentsbyDFT,andstructure activityofreagentsisdiscussed.Inthesixth chapterthemechanismofflotationreagentinteractingwithmineralsurfaceswasstudiedby DFTcalculationandmicrocalorimetrytests.Theseventhchapterreportstheeffectsof latticedefectsonthepropertiesofsulfideminerals,surfacestructure,andadsorption behaviorsofreagents.

Introductionofdensityfunctionaltheory

1.1Introduction

In1926and1927,physicistsSchrodingerandHeisenberg,respectively,putforwardthe Schrodingerequationanduncertaintyprinciple,whichmarkedthebirthofquantum mechanics.Afterthat,anewworldthatiscompletelydifferentfromclassicalphysicswas showninfrontofthephysicist.Meanwhile,anewtheoreticaltoolforunderstandingthe chemicalstructureofmatterwasprovidedforthechemisttoo.In1927thephysicists HeitlerandLondonappliedtheapproachofquantummechanicstoatomicstructureto studyH2 molecule[1],successfullyexplainingthebondingmechanisminahomonuclear molecule.Theirsuccessmarkedtheinterdisciplinaryscienceofquantummechanicsand chemistry:thebirthofquantumchemistry.

AfterHeitlerandLondon,chemistshavealsobeguntoapplyquantummechanicstheory tostudy.Onthebasisofthestudyofhydrogenmoleculebythetwophysicists,three theoriesofmolecularstructurewereestablishedbychemists,namelyvalencebondtheory, molecularorbitaltheory,andligandfieldtheory.Paulingdevelopedthevalencebond theoryonthebasisoftheearliesthydrogenmolecularmodel[2]andwontheNobelPrize inChemistryin1954.In1928,thephysicistMullikenputforwardtheearliestmolecular orbitaltheory[3 5].In1931,Hu ¨ ckeldevelopedthemolecularorbitaltheoryofMulliken andappliedittoconjugatedandaromatichydrocarbons[6].In1929,Betheproposedthe theoryofligandfieldandappliedittothetheoreticalresearchonthetransitionmetal complexes[7].Later,thetheoryofligandfieldandmolecularorbitaltheorydeveloped intoamodernligandfieldtheory.Thevalencebondtheory,molecularorbitaltheory,and ligandfieldtheoryarethethreebasictheoriesofquantumchemistryusedtodescribe molecularstructure.Intheearlystages,duetothelimitationofcalculationmethodand relativelysmallcalculationamount,themoreintuitivevalencebondtheorydominatedthe studyofquantumchemistry.Afterthe1950s,withtheinventionandrapiddevelopmentof thecomputer,ahugeamountofcomputationbecameaneasytask.Theadvantagesof molecularorbitaltheorywerehighlightedatthisbackground,whichgraduallyreplacedthe valencebondtheory.

In1928,HartreeproposedtheHartreeequation[8],whichassumedthatthecharge distributionofeachelectronwasthesolutionoftheSchrodingerequationforanelectron inapotential n(r),derivedfromthefield.In1930,Hartree’sstudents,FockandSlater, proposedaself-consistentfielditerativeequationconsideringthePauliprinciple,calledthe Hartree-Fockequation,whichfurtherimprovedtheHartreeequation[9 11].Tosolvethe Hartree-Fockequation,in1951,Roothaanfurtherproposedthatmolecularorbitalscould beexpressedasthelinearcombinationofatomicorbitalsthatcomposedthemoleculeand developedthefamousRoothaan-Hartree-Fock(RHF)equation[12].Thisequationalong withthemethodbasedonthefurtherdevelopmentofthisequationisthefundamental methodofmodernquantumchemistry.

In1952,JapanesechemistKenichiFukuiproposedafrontiermolecularorbitaltheory[13]. In1965,theAmericanorganicchemistWoodwardandthequantumchemistHoffmann jointlyproposedthetheoryofconservationofmolecularorbitalsymmetryinorganic reactions.ThetheoriesproposedbyFukui,Woodward,andHoffmanusesimplemodels thatarebasedonthesimplemolecularorbitaltheorytoavoidcomplexmathematical operationsandapplyquantumchemistrytheorytoqualitativetreatmentofchemical reactionsinanintuitiveform.Throughtheirtheory,experimentalchemistscanintuitively understandtheabstractconceptsofmolecularorbitalwavefunctions.In1981,Fukuiand HoffmanwontheNobelPrizeinChemistryfortheircontributions.

Althoughthequantumtheoryhadbeenestablishedasearlyasthe1930s,theSchrodinger equationisverycomplexandstilldifficulttoobtaintheexactsolution.Evenforthe approximatesolutionbymolecularorbital,therequiredcomputationsareenormous.For example,forasmallmoleculewith100electrons,thereareover100millionofthe double-electronintegralsintheprocessofsolvingtheRHFequation.Thiscalculationis obviouslyimpossibletocompletebyhumans.Hence,inthenextdecades,quantum chemistryprogressedslowly,andwasevenrejectedbyexperimentalchemists.Inthestudy ofsolidstatephysics,itisalmostimpossibletocalculatethecrystalandthesurfacefrom theclassicalmolecularorbitalduetotheperiodicstructureofthecrystaland1023 order magnitudeofnucleiandelectronspercubiccentimeter,thusthetheoreticalcalculationof solidphysicshasbeendevelopingslowly.Itwasnotuntilthe1990sthatthematurityof densityfunctionaltheory(DFT)andthedevelopmentofcomputerhardwareprovidedan effectivetheoreticaltoolforthecalculationofsolidsandtheirsurfaces.

DFTisoneofthesolutionsbasedonquantummechanicsandtheabinitiomethodof Born Oppenheimerapproximation.Distinguishedwithmanymethodsbasedon molecularorbitaltheory,whichconstructswavefunctionsofmultielectronsystems (e.g.,Hartree Fockmethods),thismethodisbasedonelectrondensityfunctionand solvesthesingle-electronmany-bodySchrodingerequationbyKohn Sham

self-consistentfield(KS-SCF)iterationtoobtaintheelectrondensitydistribution.This operationreducesthenumberoffreevariablesandthedegreeofsystematicoscillation, thusimprovingtherateofconvergence.

In1964,HohenbergandKohnputforwardanimportantcomputationalideaandproved thattheelectronenergywasdeterminedbytheelectrondensity[14].Thus,theelectronic structurecanbeobtainedbyelectrondensitywithoutdealingwithcomplexmany-body electronwavefunctions.Theelectronicstructurecanbedescribedbyonlythreespatial variables.Thismethodiscalledasdensityfunctionaltheory(DFT).Accordingtothis theory,theHamiltonianoftheparticleisdeterminedbythelocalelectrondensity,andthe localdensityapproximation(LDA)methodisderived.Thismethodhasachievedgreat successinthesimulationofsolidmaterialssuchasmetalandsemiconductorsthroughthe combinationofmetalelectrontheory,periodicboundarycondition,andenergyband theory.LDAwaslaterextendedtoseveralotherfields,inparticulartostudytheproperty ofmoleculesandcondensedmatter.Nowitisoneofthemostcommonlyusedmethodsin thefieldofcondensedmatterphysicsandcomputationalchemistry.WalterKohnreceived theNobelPrizeinChemistryforthegreatcontributionsinthedevelopmentsofdensity functionaltheory.InviewoftheextensiveapplicationandgreatachievementsofDFT,this theoryistakenasthesecondrevolutionofquantumchemistry.Atpresent,DFTisthe mainmethodtocalculatethestructureandelectronicpropertiesofsolids,andtheselfconsistentcalculationbasedonthismethodiscalledthefirstprinciplemethod.

Since1970,DFThasbeenwidelyusedinthecalculationofsolidstatephysics.Inmost cases,DFTwithLDAgivesverysatisfyingresultscomparedwithothermethodsof solvingthemany-bodyproblemofquantummechanics,andthecomputationalcostisless thanthatoftheexperiment.Itwasgenerallyconsideredthatquantumchemistry calculationscannotgivesufficientpreciseresults,untilthe1990s,whentheapproximation usedintheDFTwasrefinedintoabetterexchangecorrelationmodel.

However,DFTisstillnotperfect.DFTismainlyachievedthroughtheKohn-Sham method.IntheframeworkofKohn-ShamDFT,theintractablemany-bodyproblem(dueto theinteractingelectronsinastaticexternalpotential)issimplifiedtoatractableproblem ofnon-interactingelectronsmovinginaneffectivepotential.Theeffectivepotential includestheexternalpotentialandtheeffectofCoulombinteractionsbetweenthe electrons,e.g.,theexchangeandcorrelationinteractions.Modelingthelattertwo interactionsbecomesthedifficultywithinKohn-ShamDFT.Atpresent,thereisnoprecise solutiontocalculatetheexchangecorrelationenergy;thesimplestapproximationisthe local-densityapproximation(LDA).LDAapproximationusesasimplehomogeneous electrongasmodeltocalculatetheexchangeenergyofthesystem,andthecorrelation

energyistreatedbyfittingfreeelectrongas.AlthoughDFThasbeengreatlyimproved,it ishardtoaccuratelydescribetheintermolecularinteractions,especiallyvanderWaals forcesandincalculationsofthebandgapinsemiconductors.Forexample,the experimentalbandgapofzincsulfide(ZnS)isof3.6eV,butthecalculatedresultbasedon DFTisonly2.0eV,whichisfarawayfromtheexperimentalvalue.

1.2Thomas¡Fermimodel

Asearlyas1927,ThomasandFermifirstrealizedthatstatisticalmethodscouldbeusedto approximatethedistributionofelectronsinanatom[15,16].Theyproposeda homogeneouselectrongasmodelbasedonthekineticenergyasanelectrondensity functionalexpression,whichiscalledastheThomas Fermimodel.

AccordingtotheThomas Fermimodel,thetotalkineticenergyoftheelectrons(TTF)can beexpressedasshownin Eq.(1.1):

where CF ¼ 3 10

Theintegrand rðr Þ isanundeterminedfunction,so TTF ½r isafunctional.Forthemanyelectronsystem,inconsideringonlytheinteractionsbetweennucleiandelectronsand betweenelectronsandelectrons,thetotalenergyoftheelectronscanbeexpressedas shown:

Eq.(1.2) needstobesolvedunderequivalentperiodicconditions:

TheThomas Fermimodeldoesnotconsidertheatomicexchangeenergy,sothe calculationaccuracyislowerthanothermethods.Althoughthetreatmentofmoleculesby theThomas Fermimethodisnotsuccessful,theThomas Fermimethodopensanew methodforDFT.Sincethen,thecalculationaccuracyofthemodelhasbeenthefocusof researchinthisfield,buttheresultsarenotunsatisfactory.Thissituationkeepsunchanged untiltheemergenceofHohenberg Kohn’stheorem.

1.3Hohenberg Kohntheorem

In1964,basedontheinhomogeneouselectrongastheory,HohenbergandKohnproposed amulti-electronsysteminanexternalpotential V ðr Þ,whosegroundstatephysical propertiescanbedeterminedbytheelectrondensitydistributionfunction rðr Þ.Thistheory proposedthattheenergyofthesystemisthefunctionaloftheelectrondensitydistribution function,andthegroundstateistheminimum[14].

J ½r istheclassicelectronrepulsionenergy, Vne isthepotentialenergybetweennuclear andelectrons,and Vee isthepotentialenergybetweenelectronsandelectrons. Nonclassicaltermveryimportantbutdifficulttounderstandquantity.Inthisnonclassical term,exchange-correlationenergy(Exc ½rðr Þ )isthemainpartofit.

Hohenberg Kohn’stheoremisaboutthevariationalprincipleof EV ½rðr Þ .Itisassumed that EV ½r inthisequationisdifferentiable.Undertheconditionthatthenumberof particlesisconserved,theconditionfortheextremevalueoffunctional EV ½r isas follows:

Substituting Eq.(1.4) into Eq.(1.9) yieldsthis:

Eq.(1.10) istheEuler Lagrangeequationof EV ½r .Where FHK isindependentof externalpotential V ðr Þ,itisauniversalfunctionalof rðr Þ.Ifwecanfinditsapproximate form,theEuler Lagrangeequationcanbeappliedtoanysystem.Therefore, Eq.(1.10) is thebasicequationoftheDFT.

However,althoughtheHohenberg Kohntheoremclearlystatesthatthetotalenergyofthe systemcanbeobtainedbysolvingthegroundstateelectrondensitydistributionfunction, itdoesnotindicatehowtodeterminetheelectrondensitydistributionfunction rðr Þ,the kineticenergyfunctional T ½rðr Þ ,andtheexchange-correlationenergyfunctional Exc ½rðr Þ . ItwasnotuntiltheKohn Shamequationwasproposedin1965thatDFTwasintroduced intopracticalapplication.

1.4Kohn¡Shamequation

KohnandShamproposedin1965thattheelectrondensityfunctionofamultiparticle systemcanbeobtainedbyasimplesingle-particlewaveequation[17].ThissimplesingleparticleequationistheKohn Shamequation(K Sequationforshort).

IntheKohn Shamequation,theelectrondensityfunctionofthesystemcanbeexpressed bythesumofthesquaresofthesingleelectronwavefunctions:

andtheKohn Shamequationcanbewrittenas:

Theproblemofthegroundstateeigenvaluesofthemulti-electronsystemcanbe transformedintoasingleelectronproblem.TheKohn Shamequationfindsitsselfconsistentsolutionobtainedthroughaniterativeequation.

1.5Exchange-correlationenergyfunctional

Theexchange-correlationfunctional EXC ½r isveryimportantinDFT,butsofar,thereis noaccurateexpressionfor EXC ½r .Ifamoreaccurateexpressioncanbefound,theDFT calculationwillbemorepractical.Variousapproximationmethodshavebeenproposed, includingLDA,LSDA(localspindensityapproximation),GGA(generalizedgradient approximation),andBLYP(hybriddensityfunctional).Atpresent,LDAandGGAare widelyused.

1.5.1Localdensityapproximation

ThebasicideaofLDAproposedbyKohnandShamin1965istodividetheentire inhomogeneouselectronregioninthesystemintomultiplesmallregions,andto approximatethesesmallregionsasahomogeneouselectrongas.Thespecificformofthe systemnonuniformelectrongasexchange-correlationfunctionalisobtainedbythedensity function rðr Þ oftheuniformelectrongas,andthentheself-consistentcalculationis performedbytheK Sequationandthe VKS equation:

where εXC ½rðr Þ istheexchange-correlationenergyofeachparticleinauniformelectron gasofdensity.

TheLDApotentialfunctionistheexchangecorrelationpotentialbasedonthelocalcharge densityinthesystem.TheLDAhasbeenverysuccessfulindealingwiththeelectronic energybandsandrelatedphysicochemicalpropertiesofmetalsandsemiconductors,but therearealsodeficienciesincalculatingthemetald-bandandthebandgapof semiconductor.ConsideringtheelectronspinstateonthebasisoftheLDA,LSDAis developed.Itsexchange-correlationenergyiscalculated:

Where, r[ ðr Þ and rY ðr Þ arethespin-upelectrondensityandthespin-downelectron density,respectively,and εxc r[ ; rY istheexchange-correlationenergyequivalenttothe homogeneouselectrongassingleelectroninthepresenceofspinpolarization,whichis relatedtothespinorientation.

1.5.2Generalizedgradientapproximation

BasedonLDA,PerdewandWangproposedin1986thatinadditiontoelectrondensity, theexchangeenergyandcorrelationenergyofthesystemalsodependonthedensity gradient[18].Basedonthistheory,theexchange-correlationfunctionalcanbeexpressed asafunctionofchargedensityandgradient:

Duetoitsrationalityandaccuracy,manyfunctionalssuchasPBE,RPBE,andPW91have beendevelopedundertheframeworkofGGA[19 23].

Atpresent,LDAandGGAhavebeenwidelyusedinthecalculationofsolidphysicsand materialchemistryandhaveachievedgreatsuccess.

1.6Energybandtheory

1.6.1Bloch’stheorem

Bloch’stheoremisthefoundationofenergybandtheoryofsolidphysics.Itisbasedona basicassumptionthattheatomsinthecrystalareperiodicallyarrangedandthatthe potentialfieldinthecrystalistranslational.Intheperiodicpotential,thesingle-electron Schrodingerdifferentialequationcanbewrittenas:

where V ðxÞ istheperiodicpotential,whichistranslational

Here, a1, a2,and a3 arethethreelatticebasisvectorsofthecrystal.TheBlochtheorem statesthattheelectronicstatesinthecrystalhavethefollowingproperties:

where k istherealwavevectorof k-space,andfunction Jðk ; xÞ isalsocalledBloch functionorBlochwave,whichisthemostbasicfunctioninmodernsolidstatephysics.

Inordertomaketheeigenfunctionandeigenvalue,one-to-onecorrespondence,whichis theelectronicwavevectorkandtheintrinsicvalueofE(k),mustlimitthewavevectork valuesinaninvertedprimitive cellinterval,andtheinterval iscalledthefirstBrillouin zone.TheelectronicwavevectornumberinthefirstBrillouinzoneisequaltothe primitivecellnumberofthecrystal.

When k changesintheBrillouinzone,theenergyofthecorrespondingBlochwave,i.e., theeigenvalueEoftheequation (1.17),alsochangeswithinacertainrange.These allowableenergyrangesarecalledenergybands,oritcanbewrittenas En ðk Þ (where n is theenergybandindicator),andtheycanbearrangedinorderofincreasingenergy:

Thecorrespondingeigenfunctionscanberepresentedby Jn ðk ; xÞ,whichcanbewrittenas follows:

where k isthewavevectorand un ðk ; xÞ isthefunctionwiththesameperiodicityasthe lattice:

Theenergybandformedbycrystalvalenceelectronsplaysanimportantroleinthe physicalpropertiesofthecrystalandthephysicalprocessesinvolved.Thecrystalhasa bandgapbetweenitshighestoccupiedenergybandandthelowestunoccupiedenergy band.Thecrystalhasonlyasmallnumberofconductiveelectronsatlowtemperatures, whichisasemiconductororaninsulator,dependingonthebandgap.Ifacrystalhasno bandgapbetweenitshighestoccupiedbandandthelowestunoccupiedband,therewill stillbeasignificantnumberofconductiveelectrons,evenatverylowtemperatures, whichismetal.Thebandtheoryofcrystalsexplainstheconductivityofsolidswell,and thehypothesisisreasonable.Thebandtheoryhasbeenvaluedbysolidphysicists. Althoughtherearestillsomeproblemsthatcannotbeexplainedwell,thebandtheoryis stillthemosteffectivemeansofstudyingsolidstatephysics.

1.6.2ThefirstBrillouinzone

Brillouinzoneisapartofspacecenteredontheorigininthereciprocallattice.Thefirst Brillouinzonecanbeobtainedbybisectingwithperpendicularplanesnearestneighbors reciprocallatticevectors,secondnearestneighbors,andconsideringthesmallestvolume enclosed.Similarly,thesecondBrillouinzoneisobtainedbycontinuingthebisecting operationsanddelimitingthesecondvolumeenclosed.Thevolumeadjacenttothesecond BrillouinzoneandequalinvolumetothefirstBrillouinzoneisthethirdBrillouinzone. ThefirstBrillouinareaisalsocalledasthesimplyBrillouinzone,referredtoasthe Brillouinzone(BZ).Brillouinzoneisasymmetricprimitivecellinwavevectorspace, whichhasallthesymmetriesofthepointgroupofthereciprocallattice.

Theshapeofthereciprocallatticeofcrystallatticeofsimplecubeisstillsimplecube,and itsshapeoftheBrillouinzoneisstillsimplecube.Theshapeofthereciprocallatticeof crystallatticeofbody-centeredcubeisface-centered,anditsshapeoftheBrillouinzoneis rhombicdodecahedron.Theshapeofthereciprocallatticeofcrystallatticeoffacecenteredcubeisbody-centered,anditsshapeoftheBrillouinzoneistruncated octahedron.ThevolumeoftheBrillouinzoneisequaltothevolumeoftheprimitiveunit cell.

Theprimitivetranslationvectorsofatwo-dimensionallatticeare a1 ¼ ai, a2 ¼ aj;then theprimitivetranslationvectorsofreciprocallatticeare:

Therearefourreciprocalpointsclosesttotheorigin:b1, b1,b2, b2.Thespaceenclosed bytheirperpendicularbisectorsisthesimplyBrillouinzone,thatis,thefirstBrillouin zone.Asshownin Fig.1.1,thesquareinthisreciprocallatticespaceisthefirstBrillouin zoneofthesquarelattice.

Byconnectingthecoordinateoriginwiththesecondnearestneighborreciprocalpoints anddrawingtheverticalbisectoroftheselines,thespaceadjacenttothefirstBrillouin zoneandequalinvolumetothefirstBrillouinzoneisthesecondBrillouinzone,whichis theshadedareaofthefourisoscelesrighttrianglesasshownin Figure1.1.

Byconnectingthecoordinateoriginwiththethirdnearestneighborreciprocalpointsand drawingtheverticalbisectoroftheselines,thespaceadjacenttothesecondBrillouinzone andequalinvolumetothesecondBrillouinzoneisthethirdBrillouinzone,whichisthe regionoftheeightisoscelesrighttrianglesin Figure1.1.

Figure1.1

Two-dimensionalsquarelatticeBrillouinzone.

ThefirstBrillouinzoneoftheface-centeredcubiclattice.

ThefirstBrillouinzoneoftheface-centeredcubiclatticeismorecomplex.Itisa tetrakaidecahedronwitheightregularhexagonsandsixsquares,oftencalledtruncated octahedron. Fig.1.2 showstheshapeofthistruncatedoctahedron. ThecoordinatesofthetypicalsymmetrypointinthefirstBrillouinzoneofthefacecenteredcubiclatticeareasfollows:

References

[1]HeitlerW,LondonF.WechselwirkungneutralerAtomeundhomo ¨ opolareBindungnachder Quantenmechanik.ZPhys1927;44(6 7):455 72.

[2]PaulingL.Thenatureofthechemicalbond.CornellUniversityPress;1960.

[3]MullikeRS.Theassignmentofquantumnumbersforelectronsinmolecules,I.PhysRev 1928;32(2):186 222.

[4]MullikeRS.Theassignmentofquantumnumbersforelectronsinmolecules.II.Correlationofmolecular andatomicelectronstates.PhysRev1928;32(5):761 72.

[5]MullikeRS.Theassignmentofquantumnumbersforelectronsinmolecules.III.Diatomichydrides.Phys Rev1929;33(5):730 47.

[6]Hu ¨ ckelE.QuanstentheoretischeBeitra ¨ gezumBenzolproblemII.Quantentheoriederinduzierten Polaritaten.ZPhys1931;72(5 6):310 35.

[7]BetheH.Splittingoftermsincrystals.AnnPhys1929;3:133.

[8]HartreeDR.Thewavemechanicsofanatomwithanon-Coulombcentralfield.PartI.Theoryand methods.ProcCambPhilosSoc1928;24(01):89.

G XKL
Figure1.2

[9]FockV.NaherungsmethodezurLosungdesquantenmechanischenMehrkorperproblems.ZPhys 1930;61(1 2):126 48.

[10]SlaterJC.NoteonHartree’smethod.PhysRev1930;35(2):210 1.

[11]SlaterJC.Atomicshieldingconstants.PhysRev1930;36(1):57 64.

[12]RoothaanCCJ.Newdevelopmentsinmolecularorbitaltheory.RevModPhys1951;23(2):69 89.

[13]FukuiK,YonezawaT,ShinguH.Amolecularorbitaltheoryofreactivityinaromatichydrocarbons. JChemPhys1952;20:722.

[14]HohenbergP,KohnW.Inhomogeneouselectrongas.PhysRev1964;136(3B):B864 71.

[15]ThomasLH.Thecalculationofatomicfields.ProcCambPhilosSoc1927;23:542.

[16]FermiE.Unmetodostatisticoperladeterminazionedialcunepriorietadell’atome.Rend.AccadNaz Lincei1927;6:602 7.

[17]KohnW,ShamLJ.Self-consistentequationsincludingexchangeandcorrelationeffects.PhysRev 1965;140(4A):A1133 8.

[18]PerdewJP,WangY.Accurateandsimpledensityfunctionalfortheelectronicexchangeenergy: generalizedgradientapproximation.PhysRevB1986;33(12):8800 2.

[19]PerdewPJ,BurkeK,EmezerhofM.Generalizedgradientapproximationmadesimple.PhysRevLett 1996;77(18):3865 8.

[20]HammerB,HansenLB,NorskovJK.Improvedadsorptionenergeticswithindensityfunctionaltheory usingrevisedPBEfunctionals.PhysRevB1999;59:7413.

[21]WuZ,CohenRE.Moreaccurategeneralizedgradientapproximationforsolids.PhysRevB 2006;73(23):235116 21.

[22]PerdewJP,ChevaryJA,VoskoSH,JacksonKA,PedersonMR,SinghDJ,FiolhaisC.Atoms,molecules, solids,andsurfaces:applicationsofthegeneralizedgradientapproximationforexchangeandcorrelation. PhysRevB1992;46(11):6671 87.

[23]VanderbiltD.Softself consistentpseudopotentialsinageneralizedeigenvalueformalism.PhysRevB 1990;41(11):7892 5.

Electronicpropertiesofsulfideminerals andfloatability

Sulfidemineralsarecharacteristicofsemiconducting,andelectrontransferand electrochemicalreactionswouldoccurintheprocessofflotation.Theelectronic propertiesofsulfidemineralsdeterminethebasicflotationbehaviors.The electrochemicalreactionisnotonlycarriedoutonthesurfaceofsulfideminerals,butit alsoisinvolvedinbulkelectrons.Forexample,therestpotentialisabulkparameter, whichcanbeusedtoexplainthecollector’sproductsonthesulfidesurface.Thestudyof theelectronicstructureandpropertiesofsulfidemineralscangiveaninsightto understandtheelectrochemicalbehaviorofflotation.Thischapterdiscussestheeffectsof crystalstructureandelectronicpropertiesofsulfidemineralsandattemptstoestablish therelationshipbetweenelectronicstructureandfloatabillityofsulfideminerals.

2.1Crystalstructureandelectronicpropertiesofcoppersulfide minerals

2.1.1Crystalstructureofcoppersulfides

Coppersulfideore,whichaccountsfor80%ofthecopperresource,isthemajorsource forthemetalliccopper[1].Themajorcoppersulfideorescontainchalcopyrite(CuFeS2), bornite(Cu5FeS4),covellite(CuS),andchalcocite(Cu 2S).Theconcentratesofcopper fromsulfidesoresaregenerallyperformedbyflotationandthenprocessedby pyrometallurgicorhydrometallurgicroutestoextractcopperfromtheconcentrates. Althoughthepyrometallurgicprocessisthemajorroutetoproducecopper,moreand moreattentionhasbeenpaidtohydrometallurgicandbioleachingprocessingroutesdue totheireconomicandenvironmentalbenefits,especiallyforthelow-gradeoresand copper-richtailings[ 2].

Itiswellacceptedthatthehydrometallurgy,bioleaching,andflotationofmetalsulfides areelectrochemicalprocesses,whicharedependentonthecompositionandmorphology ofthemineral.Thedifferencesincrystalstructurebetweencoppersulfidesleadto differencesindissolution,oxidative,andflotationbehaviors.Forexample,thedissolution ofmetalcomponentsfromchalcopyriteisslowinbothchemicalandbiologicleaching reaction[3,4].Thebioleachingratesofothercoppersulfidessuchascovellite(CuS)and chalcocite(Cu2S)arerelativelyhighinthepresenceofironoxidizingbacteria[ 5].

Borniteisknowntooxidizerapidlyonexposuretoairatroomtemperature[6]. Therefore,thedifferencesincrystalstructureofthesecoppersulfidescouldresultin differentelectronicproperties,andconsequentlyhavegreatinfluenceonthe electrochemicalandoxidativebehaviors.

Differentcoppersulfidemineralsareofsimilarchemicalcomposition,butoftotally differentcrystalstructure,andconsequentlydifferentcharacteristics.Themodelsfor crystalstructuresofthefourkindsofcoppersulfidesareshownin Fig.2.1.

Chalcopyritecrystallizesinthetetragonalsystem,andtheunitcellisCu4Fe4S8 (Fig.2.1A).Eachmetalatom(CuandFe)iscoordinatedbyatetrahedronofSatoms,and eachSatomiscoordinatedbytwoCuandtwoFeatoms.Thecalculatedbondlengthsare asfollows:dCu S ¼ 2.323A ˚ ,dFe‒S ¼ 2.216A ˚ ,dCu

¼ 3.695A ˚ , dCu Fe ¼ 3.695A ˚ ,anddS S ¼ 3.631/3.853A ˚ ,whichareinagoodagreementwiththe experimentalvaluesof2.302,2.257,3.713,3.740,and3.685/3.795A ˚ [7].

Covellitebelongstoahexagonalcrystal,andtheunitcellformulaisCu6S6 (Fig.2.1B). ThecovelliteCuatomsarethree-andfourfoldcoordination,andSatomsarefourand

Figure2.1

Schematicviewsofthestructurefor(A)chalcopyrite(Cu4Fe4S8),(B)covellite(Cu6S6), (C)bornite(Cu32Fe16S32),and(D)chalcocite(Cu96S48).(Numbersarethecoordinationvalueof theatom.)

fivefoldcoordination.Thefour-coordinatedCuatombondstothefour-coordinatedSatom, andthethree-coordinatedCubondstothefive-coordinatedSatomwiththebondlengths of2.340and2.181A ˚ [8],respectively.

Bornite,Cu5FeS4,occursinthreepolymorphicforms:low-,intermediate-,andhightemperaturestructuralforms[9].Thehighformisstableabove228 Candhascubic symmetrywitha ¼ 5.50A ˚ andspacegroupFm3m;andthelowformistetragonalwith a ¼ 10.94andc ¼ 21.88A ˚ andspacegroup P421c [10].Theintermediateformoccurs below228 Candhasthespacegroup Fd3m witha ¼ 10.94A ˚ [11].Sulfuratomsforman idealface-centeredcubicclosestpacking,andmetalatomsaredistributedstatisticallyin thetetrahedralsitesofsulfuratoms.ThesuperstructurecellforborniteisCu32Fe16S32 (Fig.2.1C),andSatomhasfour-coordinateCuatomwiththebondlengthof2.234A ˚ and eight-coordinateFeatomwiththebondlengthof2.230A ˚ .

Thecrystalstructureofchalcocite(Cu2S)iscomplexwiththreephases[12],amonoclinic phasecalledlowchalcocitebelow103.5 C,ahexagonalphasecalledhighchalcocite betweentheprevioustemperatureand436 C,andacubicphaseabovethistemperature. Theunitcelloflowchalcocitecontains48Cu2Swith144atoms(Fig.2.1D). ThecoordinationnumberofchalcociteCuatomvariesfromthreetosix.TheSatomsare mainlyinsixfoldcoordinationandpartlyinfivefoldcoordination.Thefourfoldand threefoldcoordinatedCuatomsarecoordinatedwithsixfoldSatoms,andthefivefoldand sixfoldcoordinationCuatomsarecoordinatedwithsixfoldandfivefoldSatoms.

2.1.2Computationalmethods

Thefourcoppersulfideshaveseveralpolymorphs;here,wechoosethecommon polymorphinnaturetosimulate.Chalcopyrite(CuFeS2)crystallizesinthetetragonal group(spacegroupofI42d)withthelatticeparametersofa ¼ b ¼ 5.289A ˚ and c ¼ 10.423A ˚ [13].Thespacegroupofbornite(Cu5FeS4)is Fd3m andthelattice parametersarea ¼ b ¼ c ¼ 10.940A ˚ and a ¼ b ¼ g ¼ 90 [10].Covellite(CuS)hasa spacegroupofP63/mmc witha ¼ b ¼ 3.794A ˚ andc ¼ 16.341A ˚ [8].Chalcocite(Cu2S) crystallizesinspacegroupof P21/c withlatticeparametersofa ¼ 15.246A ˚ ,b ¼ 11.884A ˚ , c ¼ 13.494A ˚ ,and b ¼ 116.35 [14].

GeometryoptimizationsoffourcoppersulfideswereperformedusingtheCambridge SerialTotalEnergyPackage(CASTEP)[15]andDMol3 [16],whicharefirst-principle pseudopotentialmethodsbasedondensityfunctionaltheory(DFT).Theinteractions betweenvalenceelectronsandtheioniccorewererepresentedbyultrasoft pseudopotentials.Aftertesting,theexchangecorrelationfunctionandthecutoffenergyof theplanewavebasisweredetermined,andtheoptimizedresultsoffourcoppersulfides areshownin Table2.1.Itisfoundthatthecalculatedlatticeparametersagreewellwith theexperimentalvalues.

Table2.1: Latticeparametersofthebulkcoppersulfide.

Bornite(Cu32Fe16S32)GGA-PW91(280eV)a

Covellite(Cu6S6)GGA-WC[18] (270eV)

Chalcocite(Cu96S48)GGA-PW91(300eV)a ¼

2.1.3Theelectronicpropertiesofcoppersulfide

Thebandstructuresanddensityofstates(DOS)forthefourkindsofcoppersulfidesare shownin Figs.2.2 2.5,andtheFermilevel(EF)issettothezeropoint.Thecalculated resultindicatesthatthereisnospinDOSforchalcopyriteandbornite.

Forchalcopyrite,itisfoundfrom Fig.2.2 thatboththevalencebandmaximumand conductionbandminimumoftheidealchalcopyritearelocatedattheGpoint,which suggeststhatchalcopyriteisap-typesemiconductor.AstheFermilevelentersintothe valenceband,itindicatesthatchalcopyriteisadegeneratesemiconductor,whichis consistentwiththereportofFujisawa[19].

Figure2.2 BandstructureandDOSofchalcopyrite.

Figure2.3

BandstructureandDOSofcovellite.

Figure2.4

BandstructureandDOSofbornite.

Figure2.5

BandstructureandDOSofchalcocite.

TheDOSshownin Fig.2.2 indicatesthattheconductionbandsofchalcopyritearederived fromCu4sandFe4sstates.Thelowervalencebandslocatedfrom 14.5to 12.5eVare composedofS3sstates,andtheupperpartsfrom 6.5to2.4eVaremainlycomposedof Cu3dstates,mixedwithFe3dandS3pstates.

TheDOSofcovelliteisshownin Fig.2.3.Thedeepvalencebandsconsistofthreeparts: (a)bandsfrom 16.3to 12.3eVarecontributedbythe3sstatesofS2f andS3f atoms; (b)bandsfrom 7.6to1.1eVarecomposedmainlyofCu3dstates,mixedwithS3p states;and(c)bandsfrom2.6to7.4eVarederivedfrom4sstatesofCu1atomand3p statesofS2atom.Thebandslocateat1.1 2.7eVconnectingtheconductionandvalence bandsarecomposedmainlyof3pstatesmixedwith2sstatesofS2atom,whichgreatly improvestheelectricalconductivityofcovellite.

ThebandstructureandDOSofborniteareshownin Fig.2.4.Inthevalenceband, thebandsfrom 16.7to 11.9eVarederivedfromS3sstates,andthebandsfrom 8.7 to 3.9eVarederivedfromS3pstates.Inaddition,thebandsfrom 3.9to1.8eV mainlyconsistofCu3dandFe3dstatesandpartlyofS3pstates.Theconductionbands arefrom1.8to4.5eV.

Aspreviouslypointedout,thecopperatomsintheunitcellofchalcocitehavefivefoldand sixfoldcoordination,calledasCu1andCu2,respectively.Itisfoundfrom Fig.2.5 thatthe lowerpartofthevalencebandsfrom 8.7to0eVisderivedfromS3sstates.Theupper valencebandsfrom 15.4to12.9eVaremainlycomposedofthehybridizationstateof Cu23d,Cu13d,andS3pstates.TheconductionbandsconsistofCu4sandS3pstates.

Thecalculatedbandstructuresofchalcocite,covellite,andborniteshowthattheir conductionbandandthevalencebandintersect,indicatingthattheyareconductorswith goodelectricalconductivity[6,14,20,21],whilechalcopyriteisanarrowbandgap semiconductorexhibitingasimilarpropertywithmetallic.Theresearch[22]showsthat electronsneartheFermilevelaremoreactive,andtheimportantphysicalandchemical reactionsoftenoccurneartheFermilevel.

ItisnotedthatforchalcopyritethebandsneartheFermienergylevelarecontributedbyS 4pandFe3dorbital,forcovellitethataremainlycomposedofS3pstatesmixedwithCu 3dstates,forbornitethatarederivedfromCu3dandS3pstates,andforchalcocitethat aremainlycomposedofCu4sstatesmixedwithS3pstates.Itcouldbeconcludedthatin chalcopyrite,ironandsulfuratomsexhibitmorereactivitythancopperatom,andin chalcocite,copperatomwillshowthegreatestreactivity,andincovellitethemostreactive atomisthesulfuratom,andinbornite,copperandsulfuratomsarethemostreactive atoms.

2.1.4Bondinganalysisofcoppersulfideminerals

ThebondingenergylevelgenerallyappearsaroundtheFermilevel,andthecontribution ofdeeperenergyleveltothebondingisrelativelyweak.Inaddition,itisobservedthat dorbitalsplitsintot2g andeg orbitalsinthecrystalfield,especiallyattheFermilevel. Therefore,theanalysisoftheDOSneartheFermilevelwouldgiveabetterunderstanding oftheinteractionbetweenorbitalsandthestrengthofthebonding.

Forchalcopyrite,theDOSforCu SandFe Sbondingareshownin Fig.2.6.The tetrahedralfieldresultsinthesplitofCu3dandFe3dorbitalsintotwoterms,eandt2, andthesplitofCu3dorbitalisweakerthanthatofFe3dorbitalasthebandsofCu3d orbitalarelocatedfarawayfromtheFermilevel,whilebandsofFe3dorbitalare concentratedattheFermilevel.

FortheCu Sbonding,thelowervalencebands,from 6.71to 3.74eV,aretheCu4s andS3pbondingstates.TheresonanceofCu3d(e)withS3porbitalisweakatenergies between 4.0and4.5eV,andthebondingofCu3d(e)andS3pisweakened.Theupper valencebandsfrom 3.38to 1.0eVaretheCu3d(t2)andS3pstates,andbandsfrom 1.0to 0.4eVaretheCu3d(e*)andS3pantibondingstates.

FortheFe Sbonding,theFe3d(eg)andS3pbondingstatesappearfrom 6.63to 3.72eV,andahybridizedpeaklocatedat 4.5eVstrengthensthebondingeffect betweenFe3d(eg)andS3porbitals.Bandsfrom 3.01to 0.37eVaretheweakFe3d (t2g)andS3pbondingstates.ThestrongantibondingstatesofFe3d(eg*)andS3pare observedfrom 0.37to1.56eV.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Electronic structure and surfaces of sulfide minerals: density functional theory and applications ji by Education Libraries - Issuu