Electrochemical sensors: from working electrodes to functionalization and miniaturized devices maruc

Page 1


https://ebookmass.com/product/electrochemical-sensors-from-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Graphene-Based Electrochemical Sensors for Biomolecules

Alagarsamy Pandikumar

https://ebookmass.com/product/graphene-based-electrochemical-sensorsfor-biomolecules-alagarsamy-pandikumar/ ebookmass.com

Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications

Chaudhery Mustansar Hussain

https://ebookmass.com/product/functionalized-nanomaterial-basedelectrochemical-sensors-principles-fabrication-methods-andapplications-chaudhery-mustansar-hussain-2/ ebookmass.com

Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications

Chaudhery Mustansar Hussain

https://ebookmass.com/product/functionalized-nanomaterial-basedelectrochemical-sensors-principles-fabrication-methods-andapplications-chaudhery-mustansar-hussain/ ebookmass.com

Ear, Nose, and Throat Disorders Sourcebook 3rd Edition

https://ebookmass.com/product/ear-nose-and-throat-disorderssourcebook-3rd-edition-angela-williams/

ebookmass.com

The Palgrave International Handbook of Women and Outdoor

Learning Tonia Gray

https://ebookmass.com/product/the-palgrave-international-handbook-ofwomen-and-outdoor-learning-tonia-gray/

ebookmass.com

Clathrate Hydrates: Molecular Science and Characterization, 2 Volumes John A. Ripmeester

https://ebookmass.com/product/clathrate-hydrates-molecular-scienceand-characterization-2-volumes-john-a-ripmeester/

ebookmass.com

The prospect of global history Belich

https://ebookmass.com/product/the-prospect-of-global-history-belich/

ebookmass.com

Civil Engineering PE Practice Exams: Breadth and Depth 2nd Edition Indranil Goswami

https://ebookmass.com/product/civil-engineering-pe-practice-examsbreadth-and-depth-2nd-edition-indranil-goswami/

ebookmass.com

Internet sex work : beyond the gaze Sanders

https://ebookmass.com/product/internet-sex-work-beyond-the-gazesanders/

ebookmass.com

I Promise It Won't Always Hurt Like This: 18 Assurances on Grief

https://ebookmass.com/product/i-promise-it-wont-always-hurt-likethis-18-assurances-on-grief-clare-mackintosh/

ebookmass.com

ElectrochemicalSensors

WoodheadPublishingisanimprintofElsevier

TheOfficers’ MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright©2022ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformation ormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhom theyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-823148-7(print)

ISBN:978-0-12-823599-7(online)

ForinformationonallWoodheadpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: KaylaDosSantos

EditorialProjectManager: SaraValentino

ProductionProjectManager: DebasishGhosh

CoverDesigner: MatthewLimbert

TypesetbySTRAIVE,India

Contributorsix Prefacexi

Acknowledgmentsxiii

1Biosensors1

TarabFatima,ShikhaBansal,SaminaHusain,andManikaKhanuja

1.1Introduction1

1.2Characteristicparameter3

1.3Electrodesystems4

1.4Biorecognitionelements9

1.5Transducers12

1.6Typesofbiosensors19

1.7Futureprospectsandconclusion22 References23

2Electrochemistry—Conceptsandmethodologies31

NahidChaudharyandManikaKhanuja

2.1Electrochemicalcells31

2.2Theelectrochemicalprocessesandequation34

2.3TheNernstEquation:Activityandpotential38

2.4Conclusion49 References49

3Metal-basedelectrodes51

BehzadRezaeiandNedaIrannejad

3.1Background51

3.2Metal-basedelectrodepreparation52

3.3Platinum-basedelectrodes54

3.4Gold-basedelectrodes55

3.5Copper-basedelectrodes56

3.6Enzymeimmobilizationmethods56

3.7Irreversibleenzymeimmobilizationmethods57

3.8Reversibleimmobilizationmethods59

3.9Specificstudyofenzymeimmobilizationonmetal-based electrodes60 References71

4Carbonandcarbonpasteelectrodes79

ShwetaJ.Malode,PradakshinaSharma,MohdRahilHasan, NagarajP.Shetti,andRonaldJ.Mascarenhas

4.1Background79

4.2Workingofcarbonelectrodesinbiosensorfabrication84

4.3Cleaningofcarbonelectrodes88

4.4Chemicalmodificationsforbiomolecules conjugation91

4.5Recentbiosensorsbasedoncarbonelectrodes94

4.6Usesofcarbonnanomaterials(CNMs)asbio-sensing99

4.7Advantagesanddisadvantages100

4.8Toxicityofcarbonnanomaterials104

4.9Conclusion104

4.10Futureperspective105 References105

5Mercury115

PradakshinaSharma,NeelamYadav,AnilKumarChhillar,and JogenderSinghRana

5.1Background115

5.2Recentbiosensorsbasedonmercuryelectrodes119

5.3Suppliers138

5.4Conclusion138 Acknowledgment138 Conflictofinterest138 References138

6Nanostructuredelectrodes147

MaheshM.Shanbhag,ShikandarD.Bukkitgar,PradakshinaSharma, andNagarajP.Shetti

6.1Background147

6.2Workingofnanostructuredelectrodesinbiosensor fabrication151

6.3Cleaningofnanostructuredelectrodes155

6.4Chemicalmodificationsforbiomolecule conjugation157

6.5Recentbiosensorsonnanostructured electrodes162

6.6Advantagesanddisadvantages165

6.7Suppliers165 References166

7Three-dimensionalelectrodes177

NedaIrannejadandBehzadRezaei

7.1Background177

7.2Workingof3Delectrodesinbiosensorfabrication179

7.3Chemicalmodificationsandfabricationstrategies181

7.4Three-dimensionalgraphenecomposites182

7.5Chemicalvapordeposition184

7.6Lithographicallydefinedthree-dimensionalgraphene structures184

7.7Hydrothermalmethod186

7.8Support-assistedandchemicallydepositedthree-dimensional graphene186

7.9Directelectrochemicalmethods188

7.10Keyfeaturesof3Dgraphenecompositesandtheirapplicationin electrochemicalsensing189

7.11Recentbiosensorson3Delectrodes:Wearableelectrochemical biosensors191 References202

8Biologicalrecognitionelements213 Ravina,DeepakKumar,MinakshiPrasad,andHariMohan

8.1Background213

8.2Biologicalrecognitionelements214 8.3Receptors214

8.4Comparisonofdifferentbiologicalrecognitionelements226 8.5Suppliers232 References232

9Miniaturizationdevices:Ananotechnologicalapproach241 NitikaThakur,TruptiR.Das,SantanuPatra,MeenakshiChoudhary,and SudheeshK.Shukla

9.1Introduction:Ajourneyfrommacroscaletomicroscale miniaturization241

9.2Microfluidicsandlab-on-a-chipsystem:Applicationsand implications246

9.3Theprecisemicromillingprocess248

9.4Newerdevices:Applicationandincorporationfordiagnosisand detection250 References256

10Microfluidicsandlab-on-a-chip261 AshishMathurandSouradeepRoy

10.1Background261

10.2Microfluidicplatforms263

10.3Designofmicrofluidicchannels266 10.4Fabricationofmicrofluidicdevices267 10.5Glass-basedmicrofluidicdevices274

10.6Silicon-basedmicrofluidicdevices276

10.7Recentmicrofluidic-basedbiosensors277 10.8Conclusions284 References284 Index289

Contributors

ShikhaBansal CentreforNanoscienceandNanotechnology,JamiaMilliaIslamia, NewDelhi,India

ShikandarD.Bukkitgar DepartmentofEngineeringChemistry,KLEInstituteof Technology,Hubballi,Karnataka,India

NahidChaudhary CentreforNanoscienceandNanotechnology,JamiaMillia Islamia,NewDelhi,India

AnilKumarChhillar CentreforBiotechnology,MaharshiDayanandUniversity, Rohtak,Haryana,India

MeenakshiChoudhary TheSwissInstituteforDrylandEnvironmentalandEnergy Research,TheJacobBlausteinInstitutesforDesertResearch,Ben-GurionUniversity oftheNegev,MidreshetBen-Gurion,Israel

TruptiR.Das CIPET:InstituteofPetrochemicalsTechnology(IPT),Patia, Bhubaneswar,India

TarabFatima CentreforNanoscienceandNanotechnology,JamiaMilliaIslamia, NewDelhi,India

MohdRahilHasan DepartmentofBiotechnology,SchoolofChemicalandLife Sciences,JamiaHamdard,NewDelhi,India

SaminaHusain CentreforNanoscienceandNanotechnology,JamiaMilliaIslamia, NewDelhi,India

NedaIrannejad DepartmentofChemistry,IsfahanUniversityofTechnology, Isfahan,Iran

ManikaKhanuja CentreforNanoscienceandNanotechnology,JamiaMilliaIslamia, NewDelhi,India

DeepakKumar DepartmentofBiotechnology&MolecularMedicine/Microbiology, Pt.B.D.SharmaPostgraduateInstituteofMedicalSciences,Rohtak,Haryana,India

ShwetaJ.Malode DepartmentofChemistry,SchoolofAdvancedSciences,KLE TechnologicalUniversity,Vidyanagar,Hubballi,Karnataka,India

RonaldJ.Mascarenhas ElectrochemicalResearchGroup,DepartmentofChemistry, St.Joseph’sCollege(Autonomous),Bangalore,Karnataka,India

AshishMathur DepartmentofPhysics;CentreforInterdisciplinaryResearchand Innovation(CIDRI),UniversityofPetroleumandEnergyStudies,Dehradun, Uttarakhand,India

HariMohan CentreforMedicalBiotechnology,MaharshiDayanandUniversity, Rohtak,Haryana,India

SantanuPatra InstituteofAdvancedMaterials,IAAM,Ulrika,Sweden

MinakshiPrasad DepartmentofAnimalBiotechnology,LalaLajpatRaiUniversity ofVeterinaryandAnimalSciences,Hisar,Haryana,India

JogenderSinghRana DepartmentofBiotechnology,DeenbandhuChhotuRam UniversityofScienceandTechnology,Murthal,Haryana,India

Ravina CentreforMedicalBiotechnology,MaharshiDayanandUniversity,Rohtak, Haryana,India

BehzadRezaei DepartmentofChemistry,IsfahanUniversityofTechnology,Isfahan, Iran

SouradeepRoy CentreforInterdisciplinaryResearchandInnovation(CIDRI), UniversityofPetroleumandEnergyStudies,Dehradun,Uttarakhand,India

MaheshM.Shanbhag DepartmentofEngineeringChemistry,KLEInstituteof Technology,Hubballi,Karnataka,India

PradakshinaSharma DepartmentofBiotechnology,SchoolofChemicalandLife Sciences,JamiaHamdard,NewDelhi,India

NagarajP.Shetti DepartmentofChemistry,SchoolofAdvancedSciences,KLE TechnologicalUniversity,Vidyanagar,Hubballi,Karnataka,India

SudheeshK.Shukla SchoolofBiomedicalEngineering,ShobhitInstituteof Engineering&Technology(Deemedto-be-University),Modipuram,Meerut,India

NitikaThakur SchoolofAppliedScienceandBiotechnology,FacultyofApplied Sciences&Biotechnology,ShooliniUniversityofBiotechnology&Management Sciences,Solan,HimachalPradesh,India

NeelamYadav DepartmentofBiotechnology,DeenbandhuChhotuRamUniversity ofScienceandTechnology,Murthal,Haryana,India

Preface

Thisistheeraofsensorswhichareeverywherearoundustocollectdataformonitoringpurposesandimprovingourlife.Inparticular,electrochemicalsensorshave attractedsignificantinterestfortheirnumerousapplications,especiallyinthebiosensingfield.Biosensorsareanalyticaldevicesthatareabletodetectspecificanalytes usingbiologicalcomponentsandconvertthemintomeasurablesignalsusingoptical, electrochemical,thermal,ormass-basedtransductionmechanisms.

Inelectrochemicalbiosensors,threeelectrodes,namelyworkingelectrode(WE), referenceelectrode(RE),andauxiliary/counter(CE)electrode,aretypicallyused. Electrochemicalreactionsandelectrontransfertakeplaceatthesurfaceoftheworkingelectrodes.Therefore,thesensitivityandselectivityofelectrochemicalsystems areinfluencedbytheirintrinsiccharacteristics.Platinum,gold,carbon,andmercury arethemostcommonmaterialsusedforworkingelectrodesduetotheirelectrochemicalinertness,highelectricalconductivity,andeaseoffabricationinvariousforms.In thisbook,thecharacteristicsandfunctionalityofthesematerialsarediscussedalong withthecriteriadrivingtheirchoiceandsomeremarkableapplicationsforthedetectionoforganicandinorganicanalytesincorporatingelectrocatalysts,mediators,modifiers,orenzymes.

Recently,theemergenceofnanostructuredmaterialsandopportunitiesforminiaturizationofsensorshaveopenedupnewpossibilitiesforadvancementintermsof sensitivity,selectivityandstability,lowersampleconsumption,improvedresponse time,andapplicabilityinresource-limitedsettings.Thesetopicsarealsoaddressed inthepresentbook.

Thegoalofthisbookistodeliverawidespreadandcriticaloutlineofthedifferent methodsusedfortheconstructionofelectrochemicalelectrodesandsensors.These platformsmaypavethewayforthedevelopmentofportableelectronicpoint-of-care devicesforapplicationsrangingfromenvironmentalanalysistobiomedicaldiagnostics.Thepresentbookcanserveasaresourceforteachersandstudentsdealing withelectrochemicalstudiesandlookingfortechnologiesfromresearchto commercialusage.

Acknowledgments

Wethankalltheauthorswhosesincereworkgreatlyhelpedusinproducingthisbook. Wealsothankallthescientistsreferencedthroughoutthebookwhosecontributions havebeenveryhelpfulincompilingalltheinformationrelatedtothetopicsdiscussed inthisbook.

Dr.Narangthanksherparentsandfamilywhoalwaysencouragedhertoaccomplishseveralacademicachievements.Shededicatesthisbooktoallworkingwomen whokeeptheirchildrenoutofsightwithheavyhearts.

Biosensors

1

TarabFatima,ShikhaBansal,SaminaHusain,andManikaKhanuja CentreforNanoscienceandNanotechnology,JamiaMilliaIslamia,NewDelhi,India

1.1Introduction

Abiosensorisadevicethatiscapableofmeasuringaspecificchemicalorbiological analytebyproducingsignalswhichareproportionaltoitsquantityorconcentration.A basicstructureofbiosensorsisgenerallycomprisedofthefollowingcomponents:An analyte,abiologicalrecognitionelement,whichisalsocalledabioreceptor,atransducerandelectroniccomponentsthataregenerallyconnectedwithtransducersand display,asshownin Fig.1.1.

Thispotentiallyinnovativeanalyticaldevicecanbeusedinawiderangeoffields suchasbiomedicine,diagnosis,environmentalremediation,anddrugdiscovery. ClarkandLyonsin1962inventedthefirstbiosensorforthedeterminationofglucose inbiologicalsamplesutilizingtheelectrochemicalmethodandglucoseoxidase immobilizedelectrodes [1,2].Afterthisinnovation,unbelievableprogresshasbeen madeinthefield.Biosensorsimprovethequalityoflifewiththeirseveralapplications.Oneofthemajorapplicationsisinthesensingofabiomoleculewhichiseither forthediagnosisofdiseasesortherapeutics.Biosensorswerealsosuccessfully implementedinthemonitoringoffoodquality,nutritionalvalue,andadulteration [3,4].Thebiosensingtechnologyprovedtobeverysuitabletofulfilltheneedfor cost-effectiveapproachesanddisposableplatforms.Ontheotherhand,biosensors requiretoimprovetheirworkingtimeandstabilitytomeettherequirementfor “long-termmonitoring”detectionplatformsandthedetectionoftoxicchemical andbiologicalanalytesindefensesecurity [5].

Irrespectiveoftheapplication,miniaturizationhasbeenprovedtobeverybeneficial andleadstoabettersignal-to-noiseratio, consumptionofsmallervolume,andlowpower utilizationresultinginlowcost.Furthermore,whenthesizeisreducedtothenanoscale, thesurfacetovolumeratioincreasesresultinginanincreaseintheactiveareaforsensing whichinturnenhancesthesensitivityandselectivity.Thisalsoincreasedthespecificbindingefficiencyandreducedthenon-specificbindingofthemolecule [6].

Recentlynanomaterialsaregaininghugeattentioninthefieldofbiosensingdueto theiruniqueandexcellentproperties.Nanomaterialssuchasgrapheneandtransition metaldichalcogenidesprovedasabeaconforbiosensingplatformandopenedvarious possibilitiesineveryresearchfield.Theintegrationofnanomaterialsinthefabrication ofelectrodesallowstheleastlimitofdetectionwithwidelinearrangesandhighsensitivity [7–9].Fromthelastfewdecades,therehasbeenlargeliteratureonbiosensors. Undoubtedly,thesebiosensorsprovedasanexcellentplatformnotonlyinacademics butalsoinindustries. ElectrochemicalSensors.

Fig.1.1 Structureofabiosensorrepresentingbiorecognitionelements(antibody,DNA, enzyme,andcell)interfaceandtransducer.

1.1.1Analyte

Achemicalorbiologicalentitythatissubjectofinterestandneedstobedetermined. Forexample,inaglucose-basedbiosensor,“Glucose”isananalyte.

1.1.2Biorecognitionelement(bioreceptor)

Abiologicalentitythatisspecificallycapableofidentifyingtheanalyteisknownas thebiorecognitionelementorbioreceptor.Someexamplesofbioreceptorsare enzymes,deoxyribonucleicacid(DNA),ribonucleicacid(RNA),antibodies,aptamer, etc.Thisbiorecognitionelementgivessignalscorrespondingtothespecificanalytein theformofchangeincolor,current,mass,heat,pH,etc.

1.1.3Transducer

Transducersplayacrucialroleinthegenerationofasignalasthisconvertsoneform intoanotherform.Inabiosensor,whenthebiorecognitionelementprovidesaspecific signalbyrecognizingtheanalyte,thetransducerhelpstoconvertthisrecognition eventintoareadableormeasurableform.Forexample,inanamperometricelectrochemicalbiosensor,alterationincurrentisproportionaltotheamountofanalyte presentattheinterface.

1.1.4Electricalsignalanddisplay

Theelectronicsystemanalyzesthesignalgivenbythetransducer,helpsinsignal amplificationandconvertsthesignalfromanalogtodigitalform.Theseamplified signalsarethenrepresentedbythedisplaycomponentofthebiosensor.Theobtained signalfromthedisplaycanbeinvariousformssuchasgraph,image,numeric,tabular.

1.2Characteristicparameter

Theperformancesofthebiosensorcanbeinterpretedbasedonthefollowing parameters.

1.2.1Selectivity

Selectivityisoneofthemostimportantparametersandconcernsthecapabilityofa biorecognitionelementtodetectaspecificanalyteinthepresenceofinterferentand contaminantmolecules.Forexample,ifweareusinganantibodyasarecognitionelementorbioreceptorwhichwasimmobilizedonthesurfaceoftheworkingelectrode, whenthesolutioncontainingantigensreachesthesurfaceoftheworkingelectrode, thisleadstoantigen-antibodyinteractionandtheabilityoftheantibodytointeract withthespecificantigentogiveaproportionatesignaldeterminestheselectivity ofthefabricatedbiosensor.

1.2.2Stability

Stabilityisthecapabilityofthebiosensortomaintaintheworkingperformancefora certainperiodoftime.Stabilityisthedegreeofsusceptibilityinresponsetoadisturbancearoundthesystem.Theinterferencearoundthebiosensingsystemcancausean errorandaffecttheaccuracyandperformanceofthebiosensor.Anotherimportant factorthataffectstheperformanceorstabilityofthebiosensoristhedegradation ofthebiorecognitionelementoveraperiodoftime.

1.2.3Sensitivity

Sensitivityisrelatedtotheminimumamountofanalytethatcanbedetectedbyafabricatedbiosensor,alsoknownasthelimitofdetection.Thelimitofdetectionofthe detectedanalytecanbecalculatedbyusingthe3-sigmamethod.Thisisaveryimportantparameterindefiningtheperformanceofthebiosensor.

1.2.4Responsetime

Theresponsetimeistakenbyafabricatedbiosensortoreach90%ofthetotalresponse ofthesignalafterexposuretotheanalyte.Forexample,inaDNA-basedbiosensor,it dependsonthetimetakenbythehybridizationafterexposuretotheanalyte.

1.2.5Linearity

Linearityconcernsrelativedeviationofanexperimentallydefinedcalibrationgraph fromanidealstraightline.

1.3Electrodesystems

1.3.1Twoelectrodesystems

Twoelectrodesystemconsistofaworkingandacounterelectrodeasshownin

Fig.1.2.Thereactionoftheanalytewhichneedstobedeterminedoccursontheworkingelectrodeandacounterelectrodehelpstocompletethecircuit.Thepotential(EA) istobeappliedbetweentheworkingandacounterelectrodeandthechangeinthe currentofthecorrespondingreactionismeasuredfromtheworkingelectrode.The counterelectrodeinthefollowingreactionperformstwoimportantfunctions.It allowschargetoflowthroughthecellbycompletingitscircuitandmaintainsaconstantinterfacialpotentialacrossthereactionirrespectiveofcurrent.Inatwo-electrode configuration,whencurrentisflowingthroughthecellatthetimeofreaction,sometimesitbecomeshardtomaintainaconstantcounterelectrodepotential(eC).Thereis alsoaproblemofthevoltagedropacrossthesolution(iRS)whichleadstopoorcontrol overthepotentialofaworkingelectrode(eW).

Theminiaturizationofelectrodeshasextensivelyimpactedtheperformanceof electrochemicalbiosensor.Microelectrodesexhibitappealingpropertiesinthe

Fig.1.2 Schematicrepresentationof(A)twoelectrodeconfigurationshowingcounterand workingelectrodeand(B)potentialgradientoftwo-electrodeconfiguration.

performanceofbiosensorduetofastresponsetime,comparativelylowohmicdropas aresultofsmallmeasuredcurrent,increasedrateofthemasstransferduetoradial diffusion,andcomparativelysmallelectricdoublelayercapacitance [10,11].Hence, biosensorsbasedontheelectrochemicalmechanismcanbeconductedefficiently usingtwo-electrodesetups.Generally,itwasobservedthattheperformanceofmicroelectrodemajorlydependsuponthematerialusedintheelectrode.Commonlyused materialsforelectrodesarenoblemetals,fluorine-dopedtinoxide(FTO)coatedglass, indium-tin-oxideconductiveglass(ITO),anddifferentformsofcarbon.Researchers wereusingnoblemetalsfordecadesinbiosensortechnologyduetotheirfastelectron transferkineticsandhighsensitivity,buttheyarefacingsomedrawbackssuchasthe increaseinbackgroundnoise,surfaceoxidation,andhighcostwhichlimitstheirapplication [12,13].Ontheotherhand,FTOandITO-basedelectrodesneedtimeconsumingpre-electrodetreatmentandcomplexmanufacturingprocesses.Therefore, nanomaterialsbasedoncarbon,bringarevolutiontothefieldofbiosensing.Carbon nanomaterialssuchasgraphene,carbonnanotubesandnanofibers,andgraphiticcarbonnitridegainingextensiveattentionduetolowcost,appealingelectrochemical properties,easeoffunctionalization,andwidepotentialwindow [14,15].Recently, theconductiveink-basedpaperelectrodesaredrawingattentionbecauseoftheirversatileproperties,easeofhandling,andlowcost.Disposabletwo-electrode—Prussian blue-basedpaperelectrodehasbeensuccessfullyfabricatedforthedetectionof H2O2 [16] Anotherstudyfabricatedanelectrochemical-basedpaperanalyticaldevice modifiedbyg-C3N4 forthedetectionofNorovirus-specificDNA.Thedeveloped paperelectrode-basedsensorshowedexcellentsensitivity,selectivitywithalow detectionlimitof100fMin5s [17].

1.3.2Threeelectrodesystems

Threeelectrodesystemsconsistofaworkingelectrode,acounterelectrode,andareferenceelectrodeasshownin Fig.1.3.Threeelectrodesystemsovercomemanyproblemsofthetwo-electrodesystem.Theroleofthereferenceelectrodeiscontrollingand measuringthepotentialoftheworkingelectrodetoactasareferencewithouttransferringanycurrent.Theelectrochemicalpotentialshouldbeconstantatalowcurrent densityforthereferenceelectrode.AsthecurrentpassesthroughthereferenceelectrodeisextremelynegligiblewhichleadstoaverysmalliRdropbetweenthereferenceandtheworkingelectrode(iRU).Thus,thisthree-electrodesystemoffersamore stablereferencepotentialandgivescompensationfortheiRdropthatoccurredacross thesolution.

Thisautomaticallyresultsinbettercontroloverthepotentialoftheworkingelectrode.Ag/AgClelectrodesandSaturatedCalomelElectrodearethemostcommon typesofreferenceelectrodesgenerallyusedintheElectrochemicalreaction.Therole ofthecounterelectrodeinthethree-electrodesystemistobalancethecurrentofthe workingelectrodebypassingthecurrentneededacrossthesolution.

Fig.1.3 Schematicrepresentationof(A)threeelectrodeconfigurationshowingcounter, working,andreferenceelectrodesand(B)potentialgradientofthree-electrodeconfiguration.

1.3.2.1Referenceelectrodes

Thereferenceelectrodesareresponsibleforprovidingastableanddrift-freepotential asareferencevoltage.Thisreferenceelectrodecanalsobeusedtomonitortheapplied potentialfortheworkingelectrode.Standardhydrogenelectrodeisusedforthemeasurementofstandardelectrodepotentialsintermsofreductionpotential.SHEiscomprisedofplatinumsheetsorwiretoformanelectrodeinwhichplatinumis electroplatedtoformafinelayerofmetallicplatinumcontainedinanHClsolution onwhichhydrogengasbubblesat1atm.

Anotherreferenceelectrodethatisbasedonmetal-saltcontactinwhichsparingly solublesaltcontainingcationofthecorrespondingmetalisincontactsuchas (Hg/HgCl2)andAg/AgCl.Generally,thereferenceelectrodeiskeptisolatedfrom directcontactviathesaltbridgetomaintainstability.Becauseitisessentialforthe referenceelectrodepotentialtomaintainstabilityandshouldnotchangewith interferents.

1.3.2.2Counterelectrode

Theworkofacounterelectrodeistomaintainpotentialapplyingtotheworkingelectrode.Thiselectrodehelpsinflowingofchargeandcompletesthecircuit.Generally, theyusedtobemadeofinertmaterialsuchasgold,carbon,orplatinum.Tominimize theerrorinthemeasuringcurrentattheelectrochemicalsetup,thesurfaceofthecounterelectrodeshouldbegreaterthantheworkingelectrode.Ouraimistoaccurately determineandstudythereactiontakingplaceatthesurfaceoftheworkingelectrode. Thisisthereasonthatthereactionoccurringattheworkingelectrodeshouldbeslow otherwisereactionoccurringatthecounterelectrodedominatethemeasuredelectric

current.Thisproblemovercomesbyusingthehighsurfaceareaastherateofthereactiondependsonthesurfaceoftheelectrode.Theelectricalconductivityofthecounter electrodemustbegoodbecauseifitisnotsothatmayresultinpoorflowofchargeat theinterfaceofthecounterelectrode.

1.3.2.3Workingelectrode

Theworkingelectrodeisthemostimportantpartoftheelectrochemicalreactionsetup becausethereactionofinterestoccursatthesurfaceoftheworkingelectrode. Forthe idealconditiontheworkingelectrodeshouldbeinert,goodelectricalandlong-term stability,reproducibility,goodsignal-to-noiseratio,uniformity,withstandwithvarioussolvents,andnon-toxic.Tomatchtheidealconditions,theworkingelectrodeis generallymadeofnoblemetalssuchasgold,silver,copper,platinum,carbonpaste, andgraphite.Sometimesitcanalsobecoatedwithdifferentmaterialstoachieveideal conditionsneedforthereaction [18].

Theelectrodeswithahighvalueofresistanceleadtoanohmic(IR)drop,which developstheneedforhighercellpotential.Thisextraenergymaybelostintheformof heatinthereactionmediumandcreatesinterferencetothereactionmedium [19].This problemcanlimitthechoiceofmaterial;severalsurfacemodificationsandfunctionalizationofmaterialwereusedtoovercomethisissue [20].

Amongallthenoblemetals,goldandsilvernanoparticlesarewidelyusedinbiosensingapplicationsduetotheiruniqueopticalandoptoelectronicproperties,biocompatibility,andeaseofsurfacemodification.Thesenanoparticlesshowedthe interestingSPRphenomena,inwhichwhenthelightofaspecificwavelengthirradiatedonthesurfacecausesanoscillationoftheelectronscalledsurfaceplasmonicresonance.Otheradvantagesofusinggoldnanoparticle-modifiedelectrodesarehigh(S/ N)ratio,improvedelectroactivespeciesdiffusion,enhancedselectivity,andcatalytic activity [21].Platinumnanoparticlesarealsogainingattentioninthefieldofbiosensingduetotheirexcellentelectrocatalyticproperties.Ptnanoparticlesshowsignificantelectrontransferprocesseswhichmaybeattributedtotheircrystalstructure, crystallographicorientation,andsurfaceproperties.

Einagaetal.havefabricatedanelectrochemicalsensorbasedonPtnanoparticles depositedontheboron-dopeddiamondsurfaceforthesensingofhydrogenperoxide (H2O2)withalimitofdetectionof100nM [22].Metaloxidenanoparticlesarealso quitefavorableintheareaofbiosensing.Mostlytheyaresynthesizedbythewetchemicalreductionmethodandresultsinvariousmorphologiessuchasnanorods,nano comb,nanobelts,etc.YangandcoworkerssynthesizedTiO2 nanocrystalswithhighly reactivesurfacesforthedetectionofglucosewithalimitofdetectionof0.83 μM [23]. Severaleffortshavebeenmadetoimprovetheperformanceofthemetaloxidemediatedsensorsbytuningthepropertiesusingcontrollablesynthesis.ZnOand TiO2 arethewidelyusedmetaloxidenanomaterialinthefieldofbiosensorsdue totheirbiocompatibility,tunableproperties,andeaseoffunctionalization.Narang andcoworkersfabricatedaZnOnanorods-basedsensorforthedetectionoftherecreationaldrugMDMA.Theyusedauniquepaperanalyticaldevicefabricatedusing conductingcarbonink-basedsensorwithawidelinearrangeof1 μ to1mM [24].

Thedevelopmentofscreen-printedelectrodes(SPE)istheapproachtowardsmoderntechnologywithhighdemandduetoitsexcellentspecificity,sensitivity,low responsetime,andeaseofhandling.Screen-printedelectrodesarecapableofallowing alargenumberofexperimentsusinglowvolumeinasmallperiod.Theydonot requiretime-consumingpre-treatmentofelectrodesandcomplexprocessesascomparedtootherelectrodes.BiosensorsbasedonSPEarecommonlyusedinresearch areasofmedicines,agriculture,foodindustry,andenvironmentalremediation.The materialsusedinscreen-printedelectrodescanbeselectedbasedonresearcharea andrequirementssuchasgold,silver,andcarbon.Viswanathanetal. [25] fabricated animmunosensorbasedonmultiwallcarbonnanotube-polyallylaminemodifiedSPE preparedbyimmobilizingantibodiesofanti-Escherichiacoli,anti-Campylobacter, andanti-Salmonella.Theyachievedaverylowlimitofdetectionof400cells/mL forSalmonellaandCampylobacterand800cells/mLfor E.coli.Another researcher-developedimmunosensorbasedoncarbonscreen-printedelectrodesfor theelectrochemicaldetectionof E.coli and Enterobactersakazakii [26].Bonanni etal.introducedMWCNTsmodifiedSPEgenosensorbasedonimpedimetricdetectionmethod [27].Inanotherstudy,electrochemicaldetectionofnaloxonehasbeen reported.Theymodifiedscreen-printedelectrodesusingMIP(molecularlyimprinted polymer)andMWCNTusingthetechniqueofelectropolymeriation [28,29].Bartlett etal.usedthecarbonscreen-printedelectrodesforthedetectionofmethamphetamine (MAMP)byusing N,N-(1,4-phenylene)-dibenzenesulfonamideasamediatorwhich actsasaredoxindicatorandhelpsinthedeterminationofMAMPwithLODof 400ng/mL [30].ChaitaliandcoworkersusedMoS2 nanosheetsmodifiesgoldSPE forthedetectionofchikungunyaasshownin Fig.1.4.Theyfabricatedanelectrochemicalgenosensorinwhichdetectionwasbasedoncapturingofhybridizationevent usingmethyleneblueasaredoxindicatorwithLODof3.4nM [37].

Table1.1 showsthematerialusedforthemodificationoftheworkingelectrode.

Fig.1.4 Screen-printedelectrodemediatedelectrochemicaldetectionofchikungunyavirus showinghybridizationofprobeandtargetDNA.

FromC.Singhal,M.Khanuja,N.Chaudhary,C.S.Pundir,J.Narang.Detectionofchikungunya virusDNAusingtwo-dimensionalMoS2nanosheetsbaseddisposablebiosensor.Sci.Rep.8(1) (2018),1–11. https://doi.org/10.1038/s41598-018-25824-8

Table1.1 Differentnanomaterialsareusedforthemodificationoftheworkingelectrodefor thedetectionofvariousanalytes.

S.no.MaterialElectrodeAnalyte

Limitof detectionReferences

1AunanoparticlesGlassycarbonAs3+ 32.5pM [21]

2Au-grapheneGlassycarbonHg2+ 0.001aM [31]

3AgnanoparticlescarbonelectrodeInfluenza virus 0.4pM [32]

4AgNPs-grapheneGoldelectrodeAIVH71.6pg/mL [33]

5Platinum nanoparticles Diamond electrode H2O2 100nM [34]

6b-Cyclodextrin-Pt nanoparticles/ graphene Glassycarbon electrode a-naphthol b-naphthol 0.23nM 0.37nM [35]

7ZrO2 nanocubesGold electrode Arsenic(III)5ppb [36]

8TiO2 GoldelectrodeGlucose0.83 μM [23]

9ZnOnanorodsInkprinted paper electrode MDMA0.1 μM [24]

10MoS2 nanosheetsScreenprinted electrode Chikungunya3.4nM [37]

1.4Biorecognitionelements

Thebiorecognitionelementisthecentralpartofbiosensingandaninfluentialtoolto definespecificity.Themajorworkofthebiorecognitionelementistodevelopthebiosensorwithmorespecificity.Thebiosensorisknowntobemorespecificwhenthereis astrongaffinityorselectivitybetweenthebiorecognitionelementandtheanalyteof interest.Biorecognitionelementsexistinseveralmolecularstructuresandformsthat directlyinfluencethecharacteristicsofabiosensor.Therefore,itisverynecessaryto understandthecharacteristicsandmorphologyofeachbiorecognitionelementto makethemspecificfortheanalyte.Thereisawiderangeofbiorecognitionelements usinginthefabricationofbiosensorsfromsynthetictonaturallyoccurringintheenvironment(Fig.1.5).Enzymesandantibodiesarethenaturallyoccurringbiorecognition elementthatisderivedfromthenaturallyexistingbiologicalmechanism.Theyfollow anaturallyoccurringmechanismtoprovidespecificitybyattachingtotheanalyteand givethecorrespondingsignals.Syntheticbiorecognitionelementsaredevelopedartificiallytomimicphysiologicallydefinedinteractions.Adifferentclassof biorecognitionelementspossessesadifferentmechanismtodefinerecognitionstructure.Someofthemareantibodies,enzymes,nucleicacid,aptamer,molecularly imprintedpolymers [38,39]

Fig.1.5 Schematicrepresentationofelementsofbiosensorshowingitscomponents:analyte, biorecognitionelements,interface,transducer,andsignal.

1.4.1Antibody

Antibodiesarethe3Dstructureofaprotein,anapproximatesizeof 150kDa.These arepresentinbiochemicalpathwaysandextractedtouseforbiosensing [40].These antibodiesprovidehighspecificityandaccuracyforthespecificanalytedependson thestructurebycreatingauniquerecognitionpattern.Antibodycomprisesof“Y” shaped3Dstructurewhichconsistsoftwotypesofchains,light,andheavychain. Thearmsofantibodiesprovidethespecificdomainforthebindingofananalyte asshownin Fig.1.6.

Thebiorecognitionprocessofantibodydependsuponthebindingeventformby antibody-antigenimmunocomplex.Generally,antibodiesareimmobilizedonthesurfaceoftheworkingelectrodethroughcovalentlinkage.Thesecovalentinteractions aredevelopedbyimmobilizedantibodiesbyintroducingfunctionalgroupssuchas amino,carboxyl,aldehyde,etc. [41].Theworkingprincipleoftheantibody-basedbiosensorisbasedontheformationofanantibody-antigen(Ab-Ag)complex.

Fig.1.6 Schematicrepresentationofimmunosensorshowingantibodyasabiorecognition elementformingantibody-antigenimmunocomplex.

1.4.2Enzymes

Enzymesareabiologicalcatalystprovidesbindingsitestoachievebiorecognitionof analytewithhighspecificityasshownin Fig.1.7.Thesespecificanalytesbindtothe cavitiesoftheenzymethroughvariousinteractionssuchaselectrostatic,hydrogen bonding,andseveralnon-covalentinteractions [42].Intheenzyme-basedbiosensor, bioanalytecapturesbythecavitiespresentonthesurfaceoftheenzyme,andthisrecognitioncomplexconvertintomeasurableresultsandismonitoredbyseveraltransductionmethodssuchasamperometric,potentiometric,etc. [43].Asshowninthe figureenzymeisimmobilizedonthesurfaceoftheelectrodeandthesurfaceis exposedtothebioanalytebutonlythetargetanalyteattachedtothespecificenzyme leadstobiosensingwithhighspecificity.Thus,biosensorsthatarebasedonthe enzyme-substraterelationshipareknownasanenzymaticbiosensor.Theseenzymatic biosensorsworkontwotypesofmechanismseitherbioanalyte-substratecomplex detectionorenzymeinhibition.ThemechanismofEnzymeinhibitionbasedenzymaticbiosensorbasedonreductionofenzymaticactivitybytargetbioanalyte [44] Iba ´ nezandco-workers [45] havefabricatedahighlysensitivenovelamperometricbasedbiosensorforthedetectionoflactatelevelsinembryoniccellcultures.They usedChitosan/multi-walledcarbonnanotubesmodifiedscreen-printedelectrodes fortheimmobilizationoflactateoxidaseenzyme.Themechanismisbasedonthe reactionoflactateoxidasewithlactatetoformpyruvateandH2O2. Thisenzyme-based biosensorhasbeenreportedtoprovideexcellentsensitivitywithlowresponsetime. Anotherstudybasedwasconductedtodetectcholesterolbyusingcholesterolesterase andcholesteroloxidaseenzymesforthereductionofhydrogenperoxidase.The enzymesareimmobilizedonthesilverpasteelectrodesandTritonX-100isused toenhancetheelectrocatalyticactivityofthereaction [46].Suaifanetal.developed aninnovativepaper-basedbiosensorforthedetectionof Staphylococcusaureus by usingtheenzyme S.aureus proteases.Thisbiosensorshowsexcellentresultswith lowcostandrapidmechanismwhichcanbeappliedtovariousfieldssuchasfood industry,clinicalsamples,andenvironmentalpollutants [47].

Fig.1.7 Schematicrepresentationofabiosensorshowingenzymeasabio-recognitionelement.

1.4.3DNA

Nucleicacid-basedbiosensorsarealsoknownasGenosensorsworksontheprinciple ofhybridizationoftargetDNAwithcomplementaryDNAasshownin Fig.1.8. FirstlywedeterminethesequenceofthetargetDNAthantheDNAprobewillbe designedartificiallyandimmobilizedonthesurfaceoftheworkingelectrodeasa biorecognitionelement.ThetwostrandsofDNAhybridizedwiththehelpofhydrogen bondingwithcomplementarybasepairswhichisadenine,thymine,guanine,cytosine (A ¼ T,G ≡ C).AccordingtoWatsonandCrickmodeladeninebindswiththymine withdoublehydrogenbondsandguaninebindswithcytosinewithtriplehydrogen bonds.AfterthehybridizationofprobeDNAwiththetargetstrand,thishybridization eventwillberecognizedbyvarioustransductionmethodssuchasamperometric, potentiometriccolorimetric,etc. [48,49].

1.4.4Aptamer

Theaptamer-basedbiosensorisanadvancedbiosensorwithawiderangeofapplicationsinbiosensingduetoitsstrongabilitytorecognizevariousanalyteswithhigh specificitysuchasproteins,DNA,metalions,smallmolecule,wholecells.Aptamers areasinglestrandofoligonucleotidesdevelopedusingaselectionprocessknownas SystemicEvolutionofLigandsbyExponentialEnrichment(SELEX) [50].SELAXis acombinatorialchemistryprocessfortheproductionofrandomnucleotidesequences eithersingle-strandedDNAorRNAwithastrongaffinitytobindspecificallytothe targetDNA.

1.5Transducers

Atransducerisanimportantcomponentofbiosensorsthatcantransformaphysical quantityoranon-electricalquantitylikesound,light,pressure,ortemperatureintoa proportionalelectricalquantitysuchasvoltageorcurrent(Fig.1.9) [51].

Fig.1.8 SchematicrepresentationofgenosensorshowingDNAasabiorecognitionelementto detecttheanalytebyhybridization.

Transducersconsistoftwomaincomponents:

1. Sensingelement.

2. Transductionelement.

Otherthanthese,thetransducercontainsvariouspartslikeamplifiers,signalprocessors,powersupply,calibrationandreferenceunits,etc.

Sensingordetectorelement:Itgivesaresponsetothephysicalquantitytobe detectedwhichisdependentonthephysicalphenomenon.

Transductionelement:Thefunctionofthetransductionelementistochangethe sensoroutputobtainedfromthesensingelementintoasuitableform.Thetransduction elementisalsonamedasecondarytransducer.

1.5.1Parametersgoverningthetransducer’schoice

Therearemanyfactorsthatgoverntheselectionofthetransducersforinvestigating thephysicalparameter.Thesefactorsaregivenasfollows:

l Sensitivity:Transducer’ssensitivityshouldbesufficientfordeliveringtheperceptibleyield.

l Operatingrange.Theoperatingrangeofatransducermustbelongforuninterruptedutility.

l Accuracy:Thetransducersgiveprecisionaftercalibration.Thefundamentalrequirementfor commercialapplicationsissmallprecisionforrepeatability.

l Crosssensitivity:Crosssensitivityisconsideredwhilemeasuringthemechanicalparameters.Duetothesensitivity,thetransducersmayproduceavariablemeasuredsignalfor thedifferentplanes.

l Errors:Considerationoftheinput-outputrelationsobtainedbythetransferfunctionavoids theprobableerrors.

l Transientandfrequencyresponse:Thetransducershouldbeoperatableinthepredetermined timedomainsuchassettingtime,peakovershoot,smalldynamicerror,andrisetime,etc.

l Loadingeffects:Theinputimpedanceofthetransducersshouldbehighandtheoutput impedanceshouldbelowtoavoidprobableerrors.

l Environmentalcapability:Thetransducersshouldbecompatiblewithenvironmentalconditionssuchascorrosive,environmentwithhighpressure,andshocks.

l Insensitivitytounwantedsignals:Thetransducershouldfilterouttheunwantedsignals.

l Usageandruggedness:Theknowledgeofdurability,weight,andsizeofthetransducer beforeaselectionisimportantforitseffectiveutility.

l Stability:Thetransducershouldbestableenoughfortheselectedoperation.

l Staticcharacteristic:Thelinearityandresolutionofthetransducershouldbehighandits hysteresisshouldbelow.

Fig.1.9 Aschemedepictsamodeloftransducer.

1.5.2Classificationoftransducers

Thecharacterofthetransducerdeterminestheperformanceofabiosensor.Various transductionmethodsareusedaccordingtothedifferenttypesofbiosensorsutility. Themostcommonvarietiesoftransducersare:optical,thermaldetection,piezoelectric(massdetectionmethods),calorimetric,electrical,andelectrochemical

1.5.2.1Electricaltransducers

Conductometric(impedimetric)transducers

Theoutput,equivalenttothequantitymeasured,obtainedfromanimpedimetrictransducerisintheformofanelectricalsignal.Theoutputsignalthusobtainedcanbeusedto monitorordisplaythephysicalquantity.Whenabiochemicalreactiontakesplace,the overallconductivityofthechemicalsolutionchangesduetotheproductionofelectrons orionicspecies.Therefore,animpedimetrictransducermeasurestheelectricalconductanceorelectricalresistanceofthesolution.AndtheuseofAC(sinusoidal)voltagegeneratestheelectricfieldthatleadstotheminimizationofanunwantedsignalproducedby Faradaicprocesses,double-layercharging,andconcentrationpolarization [52].Ingeneral,thefunctionoftheimpedancebiosensorisbasedontheWheatstonebridge [53]. TheadvancementsinimpedimetricbiosensorswerereviewedbyGuanetal. [54] and Muhammad-Tahiretal.reportedtheapplicationsofconductometricbiosensors [55].

Ion-sensitivetransducers

Earlier,theion-sensitivebiosensorsbasedonion-selectivefield-effecttransistors (ISFETs)wereoneofthedifferenttypesofpotentiometricsensors.However,as perthelatestIUPACreport,ISFETshavebeenconsideredasthe4thcategoryofelectrochemicalsensors [56].ISFETisatypicalmetal/oxide/semiconductor(MOS)fieldeffecttransistor(FET)inwhichthegateisaseparatereferenceelectrode.Thisis attachedtotheareaofthegatebyanaqueoussolution [57].Thesurfaceofthe semiconductor-basedFETsision-sensitive.Becauseofthecouplingofthesemiconductorandtheions,theelectricalpotentialofthesurfacechanges.Thechangeinthe electricpotentialismeasuredbyusingtheISFETs.ISFETisfabricatedbycoatinga selectivelypermeablepolymerlayeronthesensorelectrode,whichfacilitatesthediffusionofionsandresultsinthechangeofFETsurfaceelectricalpotential.Duetothe polymercoatings,thesebiosensorsarealsonamedENFET(enzymefieldeffecttransistor) [58].Dzyadevychetal.reviewedtheenzymebiosensorsbasedonISFETs [59].

1.5.2.2Opticaltransducers

Opticaltransducershavebeenusedinseveralbiosensorswithvarioustypesofspectroscopy,likeabsorption [60],fluorescence [61],andRaman [62].Opticaltransducers usephotonstogathertheanalyteinformation. [63].Theseareextremelysensitive,precise,compact,andeconomical.Theoutputsignalofthetransducerthatisdetectedis light.Themechanismofdetectionofanopticaltransduceriscontrolledbythesystem thatchangestheanalyteintoproductsthatactaseitheroxidantsorreductantsatthe workingelectrode [64].

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.