Electric utility resource planning: past, present and future joe ferrari - The ebook is available fo

Page 1


https://ebookmass.com/product/electric-utility-resourceplanning-past-present-and-future-joe-ferrari/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

CMOS Past, Present and Future. Luo

https://ebookmass.com/product/cmos-past-present-and-future-luo/

ebookmass.com

Pilgrimage and England's Cathedrals: Past, Present, and Future Dee Dyas

https://ebookmass.com/product/pilgrimage-and-englands-cathedrals-pastpresent-and-future-dee-dyas/

ebookmass.com

Barrow Hill Roundhouse. Past, Present & Future Ben Jones

https://ebookmass.com/product/barrow-hill-roundhouse-past-presentfuture-ben-jones/

ebookmass.com

Sustainable Energy Management: Planning, Implementation, Control, and Security Mirjana Radovanovic (Golusin)

https://ebookmass.com/product/sustainable-energy-management-planningimplementation-control-and-security-mirjana-radovanovic-golusin/

ebookmass.com

Torde la Vérité: Une drame romantique basé sur l'amour, les mensonges et la perte C.S. Pearson

https://ebookmass.com/product/torde-la-verite-une-drame-romantiquebase-sur-lamour-les-mensonges-et-la-perte-c-s-pearson/

ebookmass.com

Bailey & Scott’s Diagnostic Microbiology E Book 14th Edition, (Ebook PDF)

https://ebookmass.com/product/bailey-scotts-diagnostic-microbiology-ebook-14th-edition-ebook-pdf/

ebookmass.com

Microeconomics 13th Edition Roger A. Arnold

https://ebookmass.com/product/microeconomics-13th-edition-roger-aarnold/

ebookmass.com

Psychopharmacology in British Literature and Culture, 1780–1900 1st ed. Edition Natalie Roxburgh

https://ebookmass.com/product/psychopharmacology-in-britishliterature-and-culture-1780-1900-1st-ed-edition-natalie-roxburgh/

ebookmass.com

Introduction to Computation and Programming Using Python, Third Edition John V. Guttag

https://ebookmass.com/product/introduction-to-computation-andprogramming-using-python-third-edition-john-v-guttag/

ebookmass.com

Concise Guide to Information Literacy, 2nd Edition 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/concise-guide-to-informationliteracy-2nd-edition-2nd-edition-ebook-pdf/

ebookmass.com

JOSEPHFERRARI

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-819873-5

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionsEditor: GrahamNisbet

EditorialProjectManager: LeticiaM.Lima

ProductionProjectManager: KameshRamajogi

CoverDesigner: ChristianBilbow

TypesetbyMPSLimited,Chennai,India

1.Introductiontoelectricutilitiesandhowtheyplanforthefuture1

Introduction1

Electricutilities:thebasics2

Theearlyhistoryoftheelectricutility4

Theearlystagesoftheevolutionofcostapproaches7

Varyingtechnologytypesthatmadeup(andstillmakeup)thegenerationmix ofmostutilities8

Coalboilerplants9

Combustionturbines10

Combined-cyclecombustionturbines11

Reciprocatingengines(Recips)12

Hydro14 Nuclear14 Other16

Long-rangeplanning(alsoreferredtoaslong-termplanningorintegrated resourceplanning)16

Basicsofutilitylong-rangeplanning18

Majorapproachestocapacityexpansionplanning25

Approach1 capitalcost25

Approach2 annualcost26

Approach3 levelizedcostofenergy26

Approach4 loaddurationcurve-screeningcurveapproach27

Approach5 allsource-loaddurationcurveapproach27

Approach6 loaddurationcurve-basedcapacityexpansionmodels29

Approach7 modifiedloaddurationcurve-basedcapacityexpansionmodels31

Approach8 chronologicalcapacityexpansionmodels32

Summaryandtimelineofcapacityexpansionplanningapproaches33 References35

2.Influxofvariablerenewableenergysources,thewaythingsare going39

Introduction39 Policyandincentivesdrivingchange41

Briefhistoryofsolarpower43

Briefhistoryofwindpower45

Trendsininstalledsolarandwindcapacityandpricing47

Howsolarandwindimpactdispatchandpricing50

Variabilityofsolarandwind53

Netloadversusload55

Challengesrenewablesimposeonbaseloadgenerators61

Effectofgeographicdiversity62

Timescaleisimportant63

Solarandwinddegradationrates65

Baseloadisgoingaway,enterresidualloads67

Ramificationsforresourceplanning69

References71

3.Energystorageandconversion73

Basicprinciplesofenergystorage74

Sizeandduration75

Typesofenergystorage78

Pumpedhydro78

Flywheels79

Thermalstorage81

Otherformsofthermalenergystorage81

Batteryenergystorage82

Compressedairenergystorage88

Liquidairenergystorage89

Trendsindeploymentofenergystorage90

Degradationissues91

Referencemetricsforcommonformsofenergystorage95

Resourceplanningconsiderations95

Isstorageevenintheintegratedresourceplan?96

Thecaseforreal-timeconsiderations97

Chronologicalcapacityexpansiontovalueflexibility99

Mandatesandsubsidies103

References105

4.Renewablefuelsforlong-termenergystorage109

Introduction109

Renewablefuelsaslong-termenergystorage110

Whataboutbiofuels?112

Directcombustion113

Recycledbiofuels114

Syntheticbiofuels114

Resourceplanningconsiderations115

Hydrogen115

Powertohydrogen116

Hydrogentopower119

Resourceplanningconsiderationsforhydrogen121

Directaircarboncapture126

High-temperatureaqueoussolutiondirectaircapture127

Low-temperaturesolidsorbentdirectaircapture128

Resourceplanningconsiderationsfordirectaircapture128

Methanation:combininghydrogenandcarbon129

Catalytic/thermochemicalmethanation130

Biologicalmethanation130

Resourceplanningconsiderationsformethanation130

Finalthoughtsonrenewablefuels131 References134

5.Long-termcapacityexpansionplanning139

Introduction139

Costsincapacityexpansion140

Operatingexpenditures140

Fixedoperationsandmaintenance140

Capitalexpenditures141

Thesupplystackandmarginalcost142

Netloadandthesupplystack145

Real-timedispatch145

Capacityfactors147

Screeningcurves148

Loaddurationcurve151

Usingtheloaddurationcurveforlong-termplanning152

Genericfive-stepcapacityexpansionframework,traditionalapproach153

Convergencecontingentonreserveprovisionandreliability155

Productioncostmodels157

Concernsrelatedtotraditionalapproaches,particularlyforsystemswith variablerenewableenergy158

Importanceofdynamicfeatures160

Attemptedfixestothetraditionalapproach162

Advancedapproaches chronologicallong-termplanningmodels163

Capacityexpansionmodelsforregionalandpolicyinitiatives167

Finalconsiderationsforresourceplannersandanalysts168 References170

6.Illustratingconceptswithexamples173

Howflexibilityreducescurtailmentandmaximizesthevalueofvariable renewableenergysources173

Theimpactofincreasingvariablerenewableenergypenetrationonday aheadandreal-timepricing177

Examplesofvariablerenewableenergydrivingbaseloadandintermediate resourcesoutofthemarket183

Resourceplanningconsiderations184

Ancillaryservices185

Flexiblecapacityinorganizedmarkets186

ExamplefromSPP(2014)187

ExamplefromNYISO(2016)187

ExamplefromERCOT(2016)188

ExamplefromSPP(2018)190

ExamplefromCAISO(2019)191

Resourceplanningconsiderations192

Energystorage(andflexiblecapacityingeneral)inintegratedresourceplans194

Thefuturedirectionofintegratedresourceplans197 References200

7.Pathwaysto100%decarbonization203

Learningfromthepast203

Thedefinitionof “100%”:theimportanceofsemantics206 Pathwaysto100%207

Thepathto100%renewable208

Thepathto100%carbon-free214

Thepathto100%carbon-neutral(net-zero)218

Summaryofthepathwaysto100%223

Acomparisonofdifferentpathwaysusingcapacityexpansionanalyses224

New-buildcapacitybyscenario226

Landuse226

Generation,load,curtailment,andairemissions227

Timingofuseofpowertomethaneinthe100%carbon-neutralscenario228

Long-termstoragepotentialofpowertogas229 Costs230 Summary231

Finalthoughtsonpathwaysto100%andtheimportanceofresourceplanning232 References234

Preface

Electricutilitiesmustcontinuallyreassesswhenandhowtheyinstallnew generationcapacitytomeetloadreliably.Formanyyearsthepoolof technologiesutilitiescouldchoosefromwasrathernarrow,andassociated costs,performance,andotherfactorswerewellunderstood.Accordingly, theycouldusestraightforwardapproachestowardvaluationtomake choicestheywereconfidentinandwereeasilyunderstoodbyshareholdersorregulators.Theseplansaremostoftencontainedinanintegratedresourceplan,orIRP.TheIRPisadocumentpreparedona recurringbasisthatprovidesaroadmapoftheutility’splansforcapacity expansion,associatedcosts,andfinancialimpacts,andadescriptionof howvaluationswereperformedtojustifychoices.Whileallutilitiesare notrequiredtoproducepublicversionsofIRPdocuments,practicallyall electricutilitiespreparetheseplansonaregularbasis.

Todaytheelectricpowersectorisbeingdrivenbyacommondesire todecarbonize,couchedintermsof100%renewableenergy. Commitmentsaremadetograduallyphaseoutfossilfuelsandreplace energyproductionwithsolar,wind,hydroelectric,andothercarbon-free energysources,suchasnuclear.Energystorageisrequiredtotime-shift overproductionofrenewableenergytoperiodswithlullsinthesame. However,seriouscomplicationsarisewhentryingtoapplylegacyresource planningapproachestomoremodernpowersystems.Forexample,equilibriumenergybalanceassumptionsembodiedinload-duration-curve capacityexpansionapproachesassumeallresourcesaredispatchableand onlygenerateonlywhenneeded.Cleanpowersystems,incontrast,have largeamountsofnondispatchablesolarandwind,whichhavebothseasonalfluctuationsandvolatileoutput,requiringnewandmoreexplicitly time-dependentapproachesforplanningpurposes.Theplanningprocess ismadeevenmorecomplexbythemuchwiderpooloftechnologiesto choosefrom.Forexample,itwasnottoolongagothattextbookson energyeconomicsdescribedelectricityasacommoditythathadtobe instantlyconsumedbecauseitcouldnotbestored.Todaythereareahost ofrenewableenergystoragetechnologieseachwithdifferentattributes, cost,performance,scalingcapabilities,andsoon.Thereisgrowingawarenessoflanduserequirementsforrenewables,anewdimensionthatraises environmentalconcerns.Thethoughtprocessesandmathematicsbehind

Preface

legacyplanningapproachesaresimplyinsufficienttosupportthisnew renewabledominatedworld.

Whilemanyelectricutilitiesareexploringnewandmoredynamic planningapproachestoformthebasisoftheirIRPs,myobservationhas beenthatwe “arenotquitethere” yet.UtilitiesuseIRPplanning approachestheyarefamiliarwith,andoftenthisiswhatisexpectedfrom shareholdersandregulators.Butasweaddmorevariablerenewables,the outcomesoftenfallshortofwhatwasexpected,evidencedbycostoverruns,higheremissions,andreliabilityissues.Changingmodelingparadigmscanbeacostlyendeavor,involvinglearningcurvesnotjustforutilities,butalsoforpolicymakersandregulators.Thecostisrathersmall, however,consideringthattheoutcomewillbeafarmoreefficientand robustpowersystemthatwillsaveratepayersbillionsofdollars.

Thisbookwaswrittentoprovideguidanceforthetransitionfrom simplelegacyplanningtomoredynamicstate-of-the-artapproaches requiredforhighrenewablepenetration.Anoverviewoftheoriginsof electricutilitiesandsimpleplanningapproachesusedinthepastsetsthe stageforhowwegottowherewearetoday.Theevolutionofsolar, wind,andotherrenewabletechnologiesaswellasenergystorageispresented,withdiscussionofhowtheiruniquefeaturesnecessitatenewplanningapproaches.Newplanningapproachesarepresentedalongwith examplesofutilitiesonthecuttingedgeoftheplanningspace.Numerical examplesareprovidedtodemonstrateconcepts.Andfinally,areviewof differentapproachestoa100%cleanenergystateisprovidedtoguide plannersandpolicymakers.Thetargetaudienceforthisworkincludes utilityexecutives,staff,analysts,policymakers,consultants,regulators, environmentalists,andacademicsinterestedinhowwecanreach100% cleanenergytargets.

CHAPTER1

Introductiontoelectricutilities andhowtheyplanforthefuture

Introduction

Affordableandreliableelectricityisafundamentalbuildingblockof modernsociety.Electricityprovidescleanlightinginourhomes,atour workplaces,onthestreets,withnosmokeorfumesfromopenflames. Weuseittocoolourhomesinthesummerandheattheminthewinter. Itbreatheslifeintoindustrialfacilities.Silentandunseen,itsunceasing flowallowsustotapintothedigitalworldwithourtelevisions,computers,andsmartphones [1]

Billionsofpeopledependontheelectricalgrideverydaywithout thinkingofwheretheelectricitycomesfrom.Atmosttheymightthink ofitinpassingwhentheelectricitybillarrivesfromthelocalutility. Thereis,however,agrowingconsensus,fromeverydaypeoplethrough thehighestpoliticalbodies,todivestfromfossilfueluseduetoenvironmentalconcernsrelatedtoCO2 emissions,whicharebelievedtodrive climatechange.Greaternumbersofpeoplearepressuringtheirgovernmentsandutilitiestostrivetowardtheuseofcarbon-free,renewable resources,withsomedemandingthat100%ofourelectricitycomesfrom renewablessuchaswindandsolar.

Mostpeoplearenotawareofthecomplexindustrial,engineering,and economichurdlesthathadtobeovercometogettowherewearetoday, letalonewhatitwilltaketogetwheretheywanttogo.Understanding thehistoryoftheutilityindustry,combinedwiththeemergenceofnew formsofenergyproductionandstorageandtheanalyticsrequiredtostitch allthepiecestogether,iscriticalformodernizingandadvancingtowarda worldwith100%affordablerenewableenergy.Wemustunderstandfundamentalquestionsandhowtoanswerthem wheredoeselectricity comefrom,andwhatdoesitcost?

Whiletherearecountlessopinionsandideasaroundtheproduction andconsumptionofelectricity,tounderstandtheissues,werequirea commonunderstandingofhowelectricutilitiesoperateandplanforthe

future.Long-rangeplans(LRPs),alsoreferredtointheindustryas integratedresourceplans(IRPs),areplanningdocumentsusedbyutilities tocharacterizetheirbestviewofthecomingyears;5,10,ormoreyears intothefuture,andtodeterminetheoptimalmixofresourcestheymust maintaintosatisfycustomerloadsandmaintainreliability.Theplantypicallyaccountsforchangingloadprofiles,variationsinexpectedfuelprices, existingpowerplants,andpotentialretirementofthesameaswellasthe needfornewresources,whattheycouldpotentiallybe,andtheircosts. Oncethesefactorsareaccountedfor,theymustbeanalyzedtoanswer thefollowingquestion:Whatmixofresourcesforsomefuturedateprovidesmaximumreliabilityatlowestcost?Aswewillsee,usingthesame assumptionsforagivenutility,onecangetdramaticallydifferentanswers dependingontheanalyticalapproachusedtoaddressthequestion.

Manyutilitysystemstodaystilluseapproachesthatweremodern 50yearsago,however,morerigorousapproachestoplanningprovidea moreaccuratepictureinaworldwithhigh-renewablepenetration. Simpleapproachesthatworkedinthepastdonotstrictlyapplytomodern powersystemsbecauserenewablesourcessuchaswindandsolardonot behaveatallliketraditionalfossil-fueledgeneration.Thischapter addressesthehistoryoftheelectricutilityindustryandintroducesthe thoughtprocessesandchallengesutilityplanners,policymakers,regulators, researchers,andpoliticianshavefacedinthepast.Itdiscusseshowthat institutionalmomentumisdrivingsomeoftheoutcomesweseetoday andinfluencingourplansfortomorrow.

Electricutilities:thebasics

Therearethousandsofelectricutilitiesacrosstheplanet,eachwithits owntechnologymixinitspowergenerationportfolio,fromhydropower tonuclear,fromcoaltonaturalgas,frombiofuelstorenewables.They eachhavedifferentlocalizedidiosyncrasiestodealwithandvaryingregulatorypressures.Dependingontheutility,theycanevenhavedifferent missionstatements.Forexample,amunicipalelectricutilityexiststoprovidereliablelow-costelectricitytotheresidentsofthatcity,anddecisions aremade,toalargeextent,byelectedcitycouncilsand/ormayorswho mustanswertovoters.Atabroaderscale,somegovernment-ownedutilitiesprovidesimilarservicestoentirenations,withdecisionsmadeagain byelectedofficials.Electriccooperatives,member-ownedutilities,tasked withprovidingreliableelectricitytoresidentswithintheirfootprintalso

strivetominimizecostsforcustomers,anddecisionsaremadebytheir boardofdirectors.Thenthereareinvestor-ownedutilities(IOUs).These canbelargeorsmall.Theyarerequiredtomaintainreliabilityandcompetitivepricing,whichisgenerallycappedorsubjecttomarketratesset byregulatorybodiesbutareprofit-makingbusinesses.Acrossthis,spectrumofutilitytypesisanoverlayofgovernmentregulationsandgoverningbodieswhosepurposeistoensurecompliancewithlawssuchasair emissionstandardsorrenewableportfoliostandards.

Onecommonfactorcutsacrossallutilitytypes.Theyplaninaway thatminimizescosts,whichischallengingastherearenumerouscoststo consider;operationalcostssuchasfuel,staffing,andmaintenance;capital costssuchasnewpowerplantsormajoroverhauls;compliancecostssuch asadditionofcomplicatedandexpensiveemissioncontrolsonanolder plant.Lowercostsmeanlowercustomerpricingor,forIOUs,greater profit.

Iftheutilitiesarefocusedonreducingcost,itwouldbenaturaltoask how “cost” isdefinedand/orcalculated.Thisseemslikeasimplequestion,untilyoudigintothedetails.Severalfactorswerementionedabove suchasfuel,capitalcost,compliancecosts,etc.Theseareeachcomplicated,interrelated,andoftentime-dependent.Forautilitytoprovethey areminimizingcost,eithertothemselves,toregulators,ortocustomers orvoters,theremustbesomecommonbasis,orsoonewouldthink.In reality,theconceptofquantifyingcostsisanevolvingdiscipline.There arecountlesspeer-reviewedarticlesinengineeringandeconomicsjournals overthecourseofdecadesdedicatedtoquestionsrelatedtohowcostsare calculatedforutilities.Andthereareahostofapproachesusedinpractice thatcanvarydramaticallyfromoneutilitytothenext.Givengreater resourcechoices,evergreaterregulatoryandsocietalpressures,andevolvingtechnologies,thecomplexityofthequestionhasonlyincreasedover time.

Allutilitiesareatsomestageonthe “evolutionaryscale” ofcostcalculationsthatstartedwiththesimplisticapproachesofthefirstutilitiesand progressedthroughever-morecomplexmethodologiestowhatisconsideredthestate-of-the-arttoday.Thecomplexityofthecostquestion increasedasthenumberofpowerplantsgrewtokeeppacewiththedramaticexplosionofelectricityconsumersacrossbroadergeographic expanses.Newtechnologiesemergedwithvaryingcostsandreliantona widerarrayoffuels,inadditiontohavingwidelydisparatetechnicalfeaturessuchasstarttimes,startcosts,minimumupanddowntimes,

minimumstableloads,varyingneedsforemissioncontrols,andwateruse. Approachesthatworkedwellfortheearlyutilitiesarenotapplicablefor thelargemodernutility.Thereare,however,legacyissues.Utilitystaff andmanagementmaybecomfortablewithacertainmethodologyand apprehensiveofinvestinginthetrainingandsoftwarenecessarytoapply morecomplexapproaches.Thetrendtowardmoderncostoptimization approachesishappening,butnoteveryoneisatthesameplaceonthe evolutionaryscale.

Tounderstandhowandwhythisrangeofcost-economiccalculations evenexistsrequiresunderstandingabitabouttheearlyhistoryofelectric utilitiesandtheevolutionoftheapproachesintime.Thisfirstchapterof thebookisdedicatedtoanexplorationoftheearlyhistoryofelectricutilitiesthroughthemoderndayandanintroductiontobasicplanning approaches.Thisinformationwillformabuildingblockforthefollowing chapters.

Theearlyhistoryoftheelectricutility

Thefirstexamplesofelectricutilitiesemergedinthe1870swiththe world’sfirstgeneratingstations,facilitiesthatusedsomething,beitwater/ hydropower,orcombustionoffossilfuels,togenerateelectricity.Theinitialdriverwastotakeadvantageofthenewlyinventedlightbulbasan alternativetogas/kerosenelampsand/orcandles.OneofthefirstgeneratingstationswasinstalledbyLordArmstrongtopowerhishousein1878. LordArmstrongbuiltanestatecalledCragside,locatedin Northumberland,England,inwhichheintegratedahydroelectricgeneratortoproduceelectricitytopowereverythingfromelectriclightstoa dishwasher [2].ThenearbycityofGodalming,in1881,builtthefirst streetlampsthattookadvantageofelectricityfromhydropower [3]

In1882,ThomasEdison’sEdisonIlluminatingCompanybuiltthefirst coal-firedgeneratingstationinManhattan,UnitedStates.Thisfacilitywas calledthePearlStreetStationandinitiallyservedfewerthan100customers,includingstreetlightingandbuildinglighting.Within2years,the numberofcustomershadincreasedto500.Theconceptofagenerating stationwithinamunicipalityspreadrapidly.Forexample,theBoroughof Chambersburg,PA,lessthan300milesfromManhattan,startedofficial discussionsofwhatitwouldtaketobuildapowerplantintheirtownin Augustof1888.BySeptember1889,theresidentsofChambersburg votedonabondresolutiontofundtheplant,andbyFebruary1890,

5 Introductiontoelectricutilitiesandhowtheyplanforthefuture

the “lightswenton,” poweringatotalof40streetlamps.TheBorough ofChambersburgisstillintheutilitybusinessandisoneoftheoldest municipalutilitiesintheUnitedStates [4].Theemergenceofmunicipal utilitiesquicklyspreadsacrossNorthAmerica.Forexample,while Chambersburg,Pennsylvaniawasconsideringapowerplant,thecityof Albuquerqueopeneditsfirstelectriclightutilityin1883,almost30years beforethestateofNewMexicowasadmittedtotheUnitedStatesasits 47thstate [5].In1886,JapaneseimmigrantHutchlonOhnickwasgranted afranchiseforgasandelectricservicebytheCityCouncilofPhoenix, Arizona,givingrisetothePhoenixElectricLightCompany(Fig.1.1). Thefirstpowerplanttheybuiltwasa “fiftyhorsepower” unitthatcould power45lightsat1500candlepowereach,byburningmesquitewood collectedinthesurroundingdesertandhauledtothesitebymules [6] ThePhoenixElectricLightCompanywasthefoundationofwhatwould laterbecomeArizonaPublicService,aregulatedIOUnowserving

Figure1.1 DisplayinlobbyofArizonaPublicServiceheadquarters(Phoenix,AZ, UnitedStates)commemoratingthebeginningsoftheutility.

2.7millioncustomers [7].Emergenceofutilitiesandexpansionofelectricalpowerwasmirroredacrosstheglobeinquicksuccession.Forexample, TokyoElectricLightingcommencedoperationinJapanin1886 [8]. TheMunicipalCouncilofSydney(Australia)firstpoweredelectriclights in1904 [9].Practicallyallofthesefirstelectricutilitiesstartedwithasingle generatingplantprimarilydedicatedtostreetlighting.

Thecommercialsuccessofthesesmallgeneratingstationswasnot guaranteed,asstreetlightingwastraditionallyprovidedbygascompanies. Fiercecompetitionarosebetweenthenewlyfoundedelectricutilitiesand gassuppliersparticularlyforlightingofpublicspacessuchasstreets [10]. Asgenerationanddistributionofelectricitybecamemorecost-effective,it wasnaturalformunicipalitiestoconsiderelectriclightingasacosteffectivealternativetotraditionalsources.Theinventionofelectricstreet carsinthe1880sgreatlyexpandedthepotentialneedforelectricityfrom astrictlynight-timeservicetosomethingthatwasneededtosomeextent allday,everyday [11].This,inturn,droveupdemand,whichledto competitionandtechnologicaladvances,whichinturnledtorapidly growingeconomiesofscaleandreductionofelectricityprice.

IntheUnitedStates,by1900electricitysalesexceeded100million USdollars [12],andtheservicewasexpandingbeyondafewsimplelight polesdirectlyconnectedtoageneratingstation.Itbecamequicklyapparentthattheindustryhadtoprovideinfrastructuretoservethedemand basedonthreecentralpillarsthatarestillthebackboneofeveryelectric powersysteminexistencetoday;

Generation:ThesourcesthatgenerateMWfordeliveryacrosstransmissionanddistributionsystems.

Transmission:Theinfrastructureneededtomovelargevolumesof high-voltageelectricityfromgeneratorstothedistributionsystem(s)to serveload.Volumesofelectricityaremovedathighvoltagebecauseit ismoreefficientandcost-effectivetodosointhismanner.

Distribution:Theinfrastructureneededtostep-downhigh-voltageelectricitytolowervoltagesthatcanbeuseddirectlybytheenduser(s).

Earlyontheelectricneedsofconsumersweremetbyamixofsmall privateenterprises,suchasthePearlStreetStation,ormunicipals,suchas theBoroughofChambersburg.MunicipalsdominatedintheUnited Stateswithmorethan3000municipallyownedpowercompaniesinthe early1920s.However,privateutilityholdingcompanieswereformed andinthebusinessofbuyingandconsolidatingtotakeadvantage ofeconomiesofscale.Somuchsothatbytheearly1930smorethan

1200municipalelectricutilitieshadgoneoutofbusinessorbeensold [11,13].By1932intheUnitedStatesprivatelyheldIOUsgenerated andreceivedrevenuesformorethan95%ofallMWhsoldinthe UnitedStatesandprovidedelectricitytomorethan90%ofallcustomers [10,11,14].Someorallofthetransmissionanddistributionserviceswere retainedbymunicipalorstateagenciesandhavesincebeenovertakenby thesameconsolidation,sothattoday’stransmissionanddistributionare oftenheldbylargeIOUsaswell.In2019,theelectricitygeneratedby IOUsintheUnitedStatesservedmorethantwo-thirdsoftheUSpopulation,withtheremainderbeingprovidedbyamixofmunicipalutilities, member-ownedelectriccooperatives,andasmallnumberoffederally chartered,government-runutilities.

Theearlystagesoftheevolutionofcostapproaches

Regardlessoftheorganizationofanelectricutility,publicorprivate,economicplanningforasmallstationintheearly1900swasratherstraightforward.Thedecisionvariablesincludedataminimum,andnottaking considerationoftransmissionordistribution,thefollowing;

Capacity(MW):anestimateofcapacityneeds,howmanykWor MWtheplantcouldbeexpectedtoserveatanyoneinstantintime, typicallysizedforthemaximumorpeakload.

Energy(MWh):anestimateoftheenergythatwouldbegenerated,in termsofMWneedtimesthetimeneededtoprovideforthatload, oftenexpressedasMWh.

Owners’ cost($perkWofcapacity):costtobuildthepowerplant, includingthecostoftheequipment,costtoinstalltheequipment, landpurchase,anyinfrastructureimprovementssuchasroads,andthe costtoconnecttheplanttotransmissionordistributionnetworksas wellaspermittingandlegalcosts.

Fuel:typeoffuelusedandcostofthefuel.

Efficiency:efficiencyofthepowerplantdeterminestheamountand subsequentcostoffuelneededtogenerateMWh.

Operationalcost:annualcoststorunandmaintainthefacility,fromthe costofpayrollandbenefitstopropertytaxesand/orutilitiessuchas sewerorwater.

Puttingallofthesefactorstogetherallowsone,viaanumberofsimple algebraicapproaches,toestimatethetotalcostofprovidingpowertocustomers.Thisallowstheplantownertodeterminewhattheymustcharge

perMWhofelectricitygenerated,alsoallowingforanyprofitmarginsor requiredreturnoninvestment.IfthecostperMWhtoprovideforstreet lighting,forexample,islessthanthealternativegas-firedlampsthenelectriclightingiscompetitive.

Intheearlystagesofutilitydevelopment,theinvestmentdecisions wereratherstraightforwardastherewereonlyahandfulofcompanies thatmadeequipmentthatcouldgenerateelectricity.Theequipmentwas basedonaverynarrowpooloftechnologychoicesandfueloptionswere limited.Astimewenton,ahostofchangeshappenedacrosstheelectric utilityspace,includingtheconsolidationofsmallerutilitiesintolarger onesandcoveringbroadergeographicranges.Nowcitiesbecameloads, andthegeneratorswerenotalwaysneartheload,requiringtransmission linestomoveenergyfromwhereitwasproducedtostep-downstations thatenergizedistributionsystems.Autilitycouldnolongersimplysay theyhad100customersbeingservedby1plant,theycouldhavetensof thousandsofcustomersacrossbroadexpansesbeingservedby10,20,50, ormoregenerators.Powerdeliveryincreasinglybecameanetworkproblem,withtheloadsconsideredasnodesorsinks(ofMWh),thegenerators beingsources(ofMWh)andthetransmissionsystembeingthenetwork ofphysicalcablesmovingMWhfromsourcestosinks.Whilecomplexitiesrelatedtonetworksystemsarerelevant,theideaofhowchanging technologyandfueltypescomplicatecostdecisionswas,andstillis,afundamentalissueinutilityplanning,soletuslookatsomeofthetechnologiesthatemergedduringtheearlyyears,uptothe1960sand1970s.

Varyingtechnologytypesthatmadeup(andstillmakeup) thegenerationmixofmostutilities

Historicallypowergenerationreliedonfuelcombustion.Fuelssuchas coaltooilsofvarioustypes,towoodorotherformsofbiomass,togaseousfuels(naturalgas).Ingeneral,fuelisburnedtoprovideadriving forceforashaftthatinturnspinsageneratorthatgenerateselectricity. Thesameistrueforhydroelectricandwindturbines,whichsimplyuse waterandwindforthesamepurpose.Regardless,powerplantsthatburn fuelaregenerallyreferredtoasthermalplants.

Inthermalplants,fuelisburnedinacombustionchamber.Thecombustionchamberadmitsairandfuel.Carboninthefuelreactswithoxygenintheairtoprovideheatandpressure,whichareconvertedto mechanicalpowerthatdrivesashaftconnectedtothegenerator.Insome

cases,aswithcombustionturbines(CTs),theproductsofcombustion driveturbinebladesconnectedtotheshaft.Inothers,suchasreciprocatingengines,combustionmovespistonsthatareconnectedtotheshaft. Boilerplantshaveacombustionchamberconnectedtoheatexchangers thatconvertwatertosteam,whichisthenusedtospinasteamturbine connectedtoashaft(thatturnsagenerator).Inallcases,theheatofcombustionisconvertedtomechanicalenergyandthentoelectricity.The combustiongasescoolintheprocess,sothatwhatcomesoutasexhaustis veryhot,butconsiderablycoolerthanthetemperatureinthecombustion chamber.

Coalboilerplants

Acrosstheentirehistoryofcoal-firedpowergeneration,onethinghas remainedconstant.Inallcases,thecoalisburnedinaboilerthatextracts heatfromthecoalcombustionandusestheheattoconvertwaterto steam.Thisboilerisoftenreferredtoasaheatrecoverysteamgenerator (HRSG).Thesteamisthenusedtoturnasteamturbinewhichisconnectedtoagenerator,whichmakeselectricity.

Coal-firedpowerplantsaresimila rtomostthermaltechnologiesin thatbiggerisbetter.Thelargertheplant,thegreatertheeconomyof scale,andthelowertheinvestmentcostonaperkWbasissimultaneous withmaximizingfuelefficiency.A1000MWcoalplantwillhave lowercost($/kWowners ’ cost,andhigherefficiency)thana10MW coalplant.

Acoal-firedboilerplantintheearly1900smightbeinthe 1 10MWsizerange [15] withanefficiencyof10% 15%.By1930s, coal-firedplantsinthe300MWrangewereavailablewithhigherefficiencies.By1970s,unitratingsinexcessof1000MWwerethenorm, withnetefficienciesgreaterthan30%.Netefficiencyreferstothefuel neededperMWhofenergydeliveredtothetransmissionsystemandis differentthangrossefficiency.Grossefficiencyreferstotheamountof fuelneededperMWhasmeasuredatthegeneratoritself.Netefficiency accountsforparasiticloads,lossesacrossthestep-uptransformer,and anyloadswithintheplantitself,suchaslighting.Netefficiencyisthe metricofmeaningforutilityplannersasitmeasuresthefuelneededto provideuseableenergy,whilegrossefficiencyisoftenusedbyequipmentOEMsasthatistheefficiencytheycanmeasureandtestin manufacturingfacilities.

Theprevalenceofcoalasanabundantandlow-costfueliswhycoalhas been,andinsomeplacesisstill,thedominantfuelsourceforelectricity.As of2019,countriessuchasIndiaandChinaproducemostoftheirelectricity withcoal,althoughtheshareofcoalgenerationisexpectedtofallwith time.IntheUnitedStates,from1950to2000,coalprovidedbetween45% and60%ofallUSpowerneeds,droppingsharplyafter2000asaggressive environmentalregulationslimitingcoalcombustionwereputinplace. However,thebiggerfactorleadingtocoalsreduceddominanceinthe UnitedStateswastheemergenceofhydraulicfracturing(fracking)fornaturalgas,whichprovidedalowercostfuelandlowersubsequentpower prices,puttingcoalgenerationatacompetitivedisadvantage.

Coalplantsareasubsetofabroaderclassofgenerationtechnologies referredtoasboilerplants.Alternatefuelscanbeburned,suchasbiomass ornaturalgas.Giventhelargeinvestmentutilitieshavemadeintocoalfiredboilerplants,insomecases,itisadvantageoustoconvertthemto burnnaturalgasasopposedtoretiringthemThisallowsthemtoleverage thelowerfuelprices,higherefficiencies,andloweremissionprofileof naturalgascombustion. [16].

Combustionturbines

TheCTistheworkhorseofmostmodernutilities,abletoburnseveral fuelsfromliquid/oilstonaturalgas.Thefirstpatentforthetechnology wasfiledbyJohnBarberintheUnitedKingdomin1790s.Itwasnot until1939thatthefirstworkingexampleofanythingresemblingamodernCTwasinstalled,a4MWunitatamunicipalpowerstationin Neuchatel,Switzerland,withanefficiencyof17%[17].Inpost-World WarII,therewasaracetodevelopCTsforaircraftpropulsionandstationaryuse.In1949thefirstCTtogeneratepowerintheUnitedStates wasinstalledattheBelleIslefacilityinOklahoma,byOklahomaGas& ElectricCompany [18].The3.5MWturbinewasaddedtoanexisting coal-firedpowerplant.Sincethattime,thebasicinnerworkingsofCTs haveremainedvirtuallyunchanged,withbetterefficienciesandeconomies ofscalemostlyaproductofadvancesinmaterialssciencethatallowsfor higheroperatingtemperatures.Atpresent,awiderangeofmanufacturers providesCTsinsizesrangingfrom1MWtomorethan500MWper unit.Efficienciesformodernunitsrangefrom30%to40%,dependingon thetypeandsizeoftheCT,andtheycanburnanumberoffuels,from kerosenetooiltonaturalgas.

Ingeneral,CTsfallintotwogroups,referredtoas “Frame” and “Aero,” shortforaeroderivative.FrameCTsaregenerallylarge,many greaterthan100MW,anddesignedforindustrialorelectricutilityuse. Theyaretypicallylowcost(ona$/kWbasis)andhavelowerefficiencies thanAeroCTs,inthe30% 35%range.FrameCTsaretypicallyusedfor peakingserviceswithlowrunhoursperyearandaregenerallynotconsideredforlong-runhoursorforfrequentstarts.AeroCTsarederived fromaerospacepropulsiondesignsandaremorecompactandmoreefficientthanFrameCTs,around40%.Theyaregenerallysmallerinoutput, withthelargestunitsreaching100MW,andareusedforapplications rangingfromintermediate(afewthousandhoursperyear)topeaking(a fewhundredhoursperyear).

CTsaresensitivetoaltitudeandambienttemperature,withoutput andefficiencyfallingathigherelevationsandhighertemperatures,mainly duetodecreasedairdensityrelatedtoeach.TocompensatesomeCT installationsuseintercoolers,whichremoveheatfrominletairand increaseairdensityenteringthecombustionchamber,allowingtheCTs tomaintainoutputandefficiencyathighertemperatures.Other approachesusedirectwaterinjectiontoincreaseoutputandboostefficiency.Intercoolingandwaterinjectionaretypicallyfoundonmore advancedAeroCTs.

Combined-cyclecombustionturbines

Ajetengineforaircraftpropulsionusestheexhaustenergytomovethe planeforward.WhenageneratorisaddedtoaCTforland-basedpower generation,muchofthatexhaustenergyisusedtoturntherotorsthat turnthegenerator,butagoodamountoffuelenergyleavestheunitas hotexhaustgas.Thatis,ifaCTtakes100unitsoffuelinandgenerates 30unitsofelectricity,theremaining70unitsoffuelenergyissentout thestackashotexhaust.Startinginthe1940s,engineersleverageddecades ofexperienceinboilerplantstoleveragetheheatfromCTexhaust.The firstuseofCTheatrecoveryoccurredin1949,whenGeneralElectric (GE)usedtheexhaustheatfromaCTtoperformfeedwaterheatingofa 35MWconventionalboilerplant [19].WhileanexampleofheatrecoveryfromCTs,boilerpreheatingisnotstrictlyacombinedcycle.Thefirst combined-cycleCT(CCCT),takinghotexhaustgastomakesteamto powerasteamturbine,wasinstalledbyanAustrianutilityatKorneuburg in1960withanefficiencyof32.5% [20].

TheallureofcombiningtheCTwithanHRSG/steamturbineis thatyoudonothavetoburnanymorefuel,ratheryouaresimplygettingmorepowerout.Thus,a100MWCTwitha35%efficiencycan belinkedwithanHRSGandasteamturbinetogenerateapproximately 30MWmorepowerwithoutburninganyadditionalfuel.WhilemodernCTefficiencytopsoffatappr oximately40%,thesameunitin combined-cycleconfigurationcanachieveefficienciesof50% 55%,and insomecases,evenhigher.Likecoalpowerplants,combined-cycle plantsbecomelessexpensive($/ kW)thelargertheplant.Fully predesignedandpreengineeredcombined-cyclefacilitiesweremade availabletotheutilityindustrybyGEandWestinghouseintheearly 1960s.

FrameCTsaretypicallypairedwithHRSGsandsteamturbinesdue totheirlow$/kWcostandlowersimplecycle(CTonly)efficiency. ACTwithlowerefficiencyrejectsgreateramountsofhightemperatureexhaustgasthanamoreefficientAeroCT.ThislargerstreamofhighertemperaturegasfromFrameCTsisbettersuitedformaximizingthe efficiencyoftheHRSGandsteamturbine,suchthattheoverallefficiency ofaframeCT-basedCCCTishigherthanthatfromaCCCTusinga moreefficient(andmoreexpensive,ona$/kWbasis)AeroCT.

Reciprocatingengines(Recips)

In1794,ThomasMeadandRobertStreeteachobtainedpatentsin Englandforwhatcanbeconsideredthefirstspark-ignitedinternalcombustionengines.Inthelate1850sandearly1860s,BelgianengineerJean J.Lenoirmadeadvancesinspark-ignitionReciptechnology,leadingto thefirstmass-producedRecipenginesinFrance,thenlaterinEngland, foruseinhorselesscarriages.Thisadvancewasnotedbythemagazine “ScientificAmerican” in1860claiming “theageofsteamisended” by Lenoirsengine,inreferencetoRecipenginesenvisionedasreplacing steamenginesforlocomotiveandpropulsionpurposes [21].Further advancementsweremade,includingGeorgeBraytonspatentsinthe 1870sformultipistonspark-ignitedinternalcombustionengines.Thefirst gasoline-typeenginethatresembleswhatwenowcalla “gasolineengine” forcarsandtruckswasinventedbyNikolausOttoin1876,usingameans tocompressthefuel-airmixturewhichinturnincreasedefficiency.Inthe 1890sRudolfDieselfiledablitzkriegofpatentsinseveralEuropean countriesandintheUnitedStatesforvaryingdesignstagesofinternal

combustionreciprocatingenginesthatreliedoncompressionignition. Unlikespark-ignitedengines,highcompressionratiosindieselengines auto-ignitethefuelmixture.MostearlyapplicationsofRecipswerefor automotiveandmarinepropulsion.

Mostpeopleknowof “engines” assomethingfoundincars,trucks, anddiesellocomotives.Theyallhaveaseriesofcylindersthatcombust fueltomoveapiston,whichinturnrotatesashaft.Thatshaftcanbe usedtopropelavehiclethroughadrive-shaft,topropelaboatviaapropeller,ortoturnageneratortomakeelectricity.Themajorityoflarge transportandcruiseshipsonthehighseasusemassivereciprocating enginesforpropulsion,withsomeunitsbeingcloseto100MWinsize. Whilesmallerpowergeneratingunitsaretypicallyandhistoricallyused foremergencypowerathospitalsorothercriticalinfrastructure,theyhave beenusedforprimarypowergenerationbyutilitiesfordecades.Installed globallyforsmallerapplications(sub10 20MW),itwasnotuntilthe 1970sthatsomeofthefirstlarge-scale(100,200 1 MW)reciprocating enginepowerstationswerebuiltinLatinAmericatopowereconomies thatdidnothaveaccesstocoalornaturalgasbutdidhaveaccesstolowcostliquidfuelsthatcannotbeburnedinCTs.Theseoil-firedRecip plantsusedcompressionignitionengines.Morerecentlyspark-ignitednaturalgas-firedRecipmachineshaveenteredutilityserviceinmarketswith accesstonaturalgas.

TherearethreedifferentcategoriesofReciptechnologiesbasedon rotationalspeed:high(1000 1 rpm),medium(500 900rpm),andslow (sub150rpm)speed.Anyofthesecanbecompressionignited(diesel), sparkignited(gaseousfuels),ordualfuel(capableofburningliquidorgaseousfuels,dependentoncompressionignitionofaliquidpilotfuel).The sizeandefficiencyincreasewithslowerspeeds.High-speedmachinesare lowefficiencybutsmallandcompact,idealforbackup/standbyorpeakingpowergeneration,generallyunder5MWinsize.Slow-speed machinesaregenerallycompressionignited,runningonliquidfuels,with veryhighefficiency,butarelarge(50 1 MWperunit),andmostoften usedforshippropulsion.Therearesomestationarypowerplantsusing slow-speedRecips,buttheirlargesizemakesdeliverytoinlandsitesdifficultandexpensive.ThemajorityofstationaryRecippowerplantsuse medium-speedmachines,typically5 20MWperunit,whichboasthigh efficiency,arerobustacrossawidearrayofoperationalprofilesandcanbe transportedtoremotesiteswithcommerciallyavailableequipmentsuchas barge,rail,ortrailer.

Theallureofreciprocatingenginesistheirhighefficiencyand flexibility.Whileaboilerplantcanburnoilorgas,itsefficiencymaxes outataround30%.Reciprocatingenginesburningthesamefuelcan exceed40% 45%efficiency.Duetotheirsuccess,furtherevolutionsin thetechnologyresultedinreducedstarttimes,makingthemidealfor renewableintegration.Unitsizeforpowergenerationrangesfrom 5 20MW,andapowerstationtypicallyconsistsofmultipleunitsfor plantsizesof100,200,ormoreMW.Thelargestreciprocatingplant todatewasbuiltinthecountryofJordanin2014,a600MWmultifuel (gasandliquid)plantcomprisedof38WärtsiläRecipengines.

Hydro

Hydrohaslongbeenastapleofpowersystems.Longbeforehydropower wasusedtogenerateelectricity,ithadbeenusedtoprovidemechanical powerandwasinstrumentalintheindustrialrevolution.ThefirsthydroelectricpowerplantintheUnitedStateswasa12.5kWunitinstalledin Appleton,Wisconsinin1882.Within7years,morethan200hydroelectricplantswereinoperationintheUnitedStates.Mostofthehydropowerisprovidedbyreservoirs,whereariverisdammed,andwater releasedfromthebaseofthedamspinsturbinesthatgenerateelectricity. In1936,theHooverDam,whichcapturedtheflowoftheColorado River,wasopenedandgenerated1345MWofelectricity.Morerecently, theThreeGorgesDaminChinawasbuilttogenerate22,500MW. SomecountriesincludingBrazil,Canada,Norway,andVenezualageneratemorethan50%oftheirelectricityusinghydro.Paraguayisentirely poweredbyhydro.

Whilehydrofacilitiesofferrenewableenergy,theycanbequite expensiveandarethemselvesmassivecivilengineeringprojectsthatcan takedecadestocomplete.Morerecently,concernsovertheecological impactsofdamsonaquaticlife,riverhealth,andbiodiversityhavenarrowedthenumberofpotentiallynewhydrogeneratorstoasmallnumber,particularlyindevelopedcountries.

Nuclear

Andfinally,nuclearpower.Thefirstnuclearpowerplantinstalledinthe UnitedStateswasa60MWfacilityin1957attheShippingportAtomic PowerStation,locatedontheOhioRiverandoperatedbyDuquesne LightCompany.Energyfromthisplantprimarilyservedthecityof

Pittsburgh,Pennsylvania,for25years.Thisplantwasretiredin1982,but itprovidedsomeoftheearliestreal-worldknowledgeonthesafeoperationofnuclearpowerfacilitiesandledtoanexpansionofnuclearpower intheUnitedStates.By1989,109nuclearreactorswereinoperationin theUnitedStatesservingcloseto20%ofallelectricload,secondonlyto coalgeneration.

Asof2019,theWorldNuclearAssociationreportedthat450power reactorsproduced11%oftheworlds’ electricity [22].In2017therewere 13countriesthatproducedatleast25%oftheirelectricityfromnuclear powerreactors.Ingeneral,duetoeconomiesofscale,largerisbetter, withmanymorerecentunitsexceeding1000MW.Theselargefacilities areexpensivetobuildandtakedecadestodevelopandbringonline.The dramaticfailuresatChernobylandFukushimaledmanycountriesto question,ifnothaltorevenreverse,thepaceofnucleardevelopment.

Manypolicymakersandutilities areconcernedwithmaintaining nuclearassetsalreadyinservice,astheyarelargeandcriticalpiecesof theirenergysupplyportfolio.Theyarealsocarbon-freegeneration sources,leadingsomeenvironmentalintereststopromotetheiruse overfossilfuelsources.Alargeconcernhasariseninrecentyearsgiven thefactthatnuclearreactorsarenotflexible.Theyaredesignedtorun atfullloadforthousandsofhoursinarow,theyarenotdesignedto start/stoporcyclefromlowtohighloadsonaregularbasis.Thiscan causechallengesforhigh-renewablesystems,particularlywhenwind andsolarareprovidingallorclosetoalloftheMWneedsforagiven hour.Whatdoestheutilitythendowithitsnucleargeneration?They cannotcyclethenuclearunitdownwardinoutput,solow-costwind andsolargenerationmustbereject edfromthesysteminpreferencefor highercostnuclear.Thisisalwaysapossibility,butitisnotsustainable inthelongrun.

Tothisend,anewwaveofnuclearfacilitiesisunderdevelopment, calledsmallmodularreactors(SMRs).Whileatraditionalnuclearplant hasonelargereactorproducinghundredstomorethanathousandMWs, SMRplantsmakeuseofnumeroussmallerreactors,eachlessthan 300MWinsize.Smallerinsizeandbasedonstandardizeddesigns,SMRs canbeinstalledinsmallincrementstosatisfyspecificcapacityneeds,with costbenefitsoverlargecustom-designedcentralstationfacilities.SMR designandimplementationarestillinitsinfancybutaregainingincreasing supportfromseveralgovernments,includingtheUSDepartmentof Energy [23].

Other

Throughoutthepastcentury,therewereotherformsofelectrical generationbeingdevelopedandinstalledglobally.Theseincludebiofuels, trash-to-steam,geothermal,wind,andsolarpower.However,thesupermajorityofgenerationgloballyhasbeenprovidedbythemajortechnologieslistedabove.Utilitieswitharelativelylargeshareofrenewablesin theirfleetofassetsstillhaveatremendousamountofgeneratingcapacity basedonthetechnologieslistedabove.

Howandwhyutilitieshavechosentoinstallvariousmixesoftechnologiesinthepasthasbeenbasedoneconomicandregulatoryenvironments,whichvaryregionally.Also,thetypesofgeneratingcapacity utilitiescouldconsiderwerequitenarrow.Initially,theinvestmentdecisionswereratherlocalizedandstraightforward,butasnationsbecame electrifiedandutilityloadsgrewandbecamemorediverse,theageof long-rangeplanningcameintobeing.

Long-rangeplanning(alsoreferredtoaslong-term planningorintegratedresourceplanning)

Insofarasutilitiesareexpectedtoserveinstantaneousdemandatany moment,withoutexception,planningtodayforexpectationsyearsfrom nowcanhaveadramaticimpactonwhatisinstalledtomeetfutureloads. Andplanningmustoccuryearsbeforeanyactionistakengiventheirhistoricalsize(hundredsofMW)andthetimerequiredtocompletethesiting,environmentalpermitting,financing,interconnectionstudies,fuel supplyagreements,construction,andphysicalinterconnectionwiththe grid.Whileutilitiesmaybeshiftingtowardmorerenewables,orawider arrayofsmallerdistributedgeneratingsources,theprocesscantakejustas long.Practicallyeveryelectricutilityhassomeworkingprocessforlongrangeplanning.

Long-range,long-term,orintegratedresourceplanningallrefertoa similarprocessbywhichautilityformalizeslong-termplansformaintainingreliability.IntheUnitedStates,regulatorypressuresreachingbackto the1970s [24] ledtoformalrequirementsforutilitiestofileIRPs.State andfederalagencieswereplacinggreateremphasisonensuringutilities wereproducingstrategiesthatdeliveredlowestcostsforratepayers,driven byconcernsthatthismaynotactuallybehappening.Severalstates enactedlegislationrequiringIOUstofileregularIRPswithstate

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.