Drug delivery aspects: expectations and realities of multifunctional drug delivery systems: volume 4

Page 1


DrugDeliveryAspects:ExpectationsandRealities ofMultifunctionalDrugDeliverySystems:Volume 4:ExpectationsandRealitiesofMultifunctional DrugDeliverySystems1stEditionRanjitaShegokar (Editor)

https://ebookmass.com/product/drug-delivery-aspectsexpectations-and-realities-of-multifunctional-drug-deliverysystems-volume-4-expectations-and-realities-ofmultifunctional-drug-delivery-systems-1st-edition-ranjitashegokar/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Delivery of Drugs: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 2: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/delivery-of-drugs-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-2-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar-edit/ ebookmass.com

Nanopharmaceuticals: Expectations and Realities of Multifunctional Drug Delivery Systems: Volume 1: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/nanopharmaceuticals-expectations-andrealities-of-multifunctional-drug-delivery-systemsvolume-1-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar-ed/ ebookmass.com

Drug Delivery Trends: Volume 3: Expectations and Realities of Multifunctional Drug Delivery Systems 1st Edition Ranjita Shegokar (Editor)

https://ebookmass.com/product/drug-delivery-trendsvolume-3-expectations-and-realities-of-multifunctional-drug-deliverysystems-1st-edition-ranjita-shegokar-editor/ ebookmass.com

Inequality in the 21st Century: A Reader David B. Grusky

https://ebookmass.com/product/inequality-in-the-21st-century-a-readerdavid-b-grusky/ ebookmass.com

College Algebra Enhanced with Graphing Utilities 7th Edition Sullivan

https://ebookmass.com/product/college-algebra-enhanced-with-graphingutilities-7th-edition-sullivan/

ebookmass.com

Decision Making in Health and Medicine: Integrating Evidence and Values 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/decision-making-in-health-and-medicineintegrating-evidence-and-values-2nd-edition-ebook-pdf-version/

ebookmass.com

May We Rise: A Dark College Bully Romance (A Mayfair University Novel Book 1) K.G. Reuss

https://ebookmass.com/product/may-we-rise-a-dark-college-bullyromance-a-mayfair-university-novel-book-1-k-g-reuss/

ebookmass.com

How to Date the Guy You Hate: An Enemies to Lovers Romance (Eden Hills Book 2) Julie Kriss

https://ebookmass.com/product/how-to-date-the-guy-you-hate-an-enemiesto-lovers-romance-eden-hills-book-2-julie-kriss/

ebookmass.com

Fortune Favors the Duke Kristin Vayden

https://ebookmass.com/product/fortune-favors-the-duke-kristinvayden-2/

ebookmass.com

Nano Technology for Battery Recycling, Remanufacturing, and Reusing (Micro and Nano Technologies) 1st Edition

https://ebookmass.com/product/nano-technology-for-battery-recyclingremanufacturing-and-reusing-micro-and-nano-technologies-1st-editionsiamak-farhad-editor/

ebookmass.com

DRUGDELIVERYASPECTS

DRUGDELIVERYASPECTS

EXPECTATIONSANDREALITIESOF MULTIFUNCTIONALDRUG DELIVERYSYSTEMS

VOLUME4

RANJITA SHEGOKAR,PHD

CapnomedGmbH,Zimmern,Germany

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmaybe notedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusinganyinformation, methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbemindfuloftheir ownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforanyinjury and/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-821222-6

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: AndreGerhardWolff

AcquisitionsEditor: ErinHill-Parks

EditorialProjectManager: PatGonzalez

ProductionProjectManager: KiruthikaGovindaraju

CoverDesigner: MarkRogers

TypesetbySPiGlobal,India

Contributors

HendAbd-Allah DepartmentofPharmaceutics andIndustrialPharmacy,FacultyofPharmacy, AinShamsUniversity,Cairo,Egypt

SaraM.AbdelSamie DepartmentofPharmaceutics andIndustrialPharmacy,FacultyofPharmacy,Ain ShamsUniversity,Cairo,Egypt

MonaM.A.Abdel-Mottaleb DepartmentofPharmaceuticsandIndustrialPharmacy,Facultyof Pharmacy,AinShamsUniversity,Cairo,Egypt; PEPITEEA4267,Univ.BourgogneFranche-Comte, Besanc ¸on,France

AbidRiazAhmed MerckHealthcareKGaA, Darmstadt,Germany

AkashChavrasiya DepartmentofPharmacy,Birla InstituteofTechnologyandScience,Pilani, Hyderabad,India

YanpingChen CenterofEmphasisinInfectious Diseases,DepartmentofMolecularandTranslationalMedicine,PaulL.FosterSchoolofMedicine, TexasTechUniversityHealthSciencesCenterEl Paso,ElPaso,TX,UnitedStates

JoaoDias-Ferreira DepartmentofPharmaceutical Technology,FacultyofPharmacy,Universityof Coimbra,Coimbra,Portugal

DianaDiaz-Arevalo ImmunologyFunctional Group,FoundationInstituteofImmunologyof Colombia-FIDIC,SchoolofMedicineandHealth Sciences,UniversidaddelRosario,Bogota,D.C., Colombia

SachinDubey Formulation,AnalyticalandDrug ProductDevelopment,GlenmarkPharmaceuticals, LaChauxdeFonds,Switzerland

AlessandraDurazzo CREA-ResearchCentrefor FoodandNutrition,Rome,Italy

ThomasD € urig R&DandInnovation,Ashland PharmaandHealth&Wellness,AshlandSpecialty IngredientsG.P.,Wilmington,DE,UnitedStates

RihamI.El-Gogary DepartmentofPharmaceutics andIndustrialPharmacy,FacultyofPharmacy, AinShamsUniversity,Cairo,Egypt

MuhammadIrfan DepartmentofPharmaceutics, FacultyofPharmaceuticalSciences,GCUniversity Faisalabad,Faisalabad,Pakistan

NirmalJayabalan DepartmentofPharmacy,Birla InstituteofTechnologyandScience,Pilani, Hyderabad,India

AnđelkaB.Kovacevic DepartmentofPharmaceuticalTechnology,FacultyofBiologicalSciences, InstituteofPharmacy,Friedrich-SchillerUniversity Jena,Jena,Germany

DharmeshMehta BusinessDevelopment,Gangwal Chemicals,Mumbai,India

JoanaPortugalMota Lecifarma—Laborato ´ rio Farmac^ eutico,Lda,Va ´ rzeadoAndrade—Cabec ¸o deMontachique,Lousa;CBIOS-ResearchCenter forBiosciencesandHealthTechnologies,Luso ´ fona University,Lisbon,Portugal

MostafaNakach SanofiR&D,VitrysurSeine, France

MahaNasr DepartmentofPharmaceuticsand IndustrialPharmacy,FacultyofPharmacy,Ain ShamsUniversity,Cairo,Egypt

RidahunlangNongkhlaw Department ofPharmacy,BirlaInstituteofTechnologyandScience, Pilani,Hyderabad,India

ParameswarPatra DepartmentofPharmacy,Birla InstituteofTechnologyandScience,Pilani, Hyderabad,India

AntonelloSantini DepartmentofPharmacy, UniversityofNapoli“FedericoII”,Napoli,Italy

AhmadAbdul-WahhabShahba KayyaliChairfor PharmaceuticalIndustries,DepartmentofPharmaceutics,CollegeofPharmacy,KingSaudUniversity,Riyadh,SaudiArabia

RanjitaShegokar CapnomedGmbH,Zimmern, Germany

VaibhavSihorkar Formulations,NCEandInnovation,SaiLifeSciencesLimited,ICICIKnowledge Park,GenomeValley,Hyderabad,Telangana, India

SarabjitSingh FormulationResearch,CIPLA, Mumbai,India

ElianaB.Souto DepartmentofPharmaceutical Technology,FacultyofPharmacy,Universityof Coimbra,Coimbra;CEB—CentreofBiological Engineering,UniversityofMinho,GualtarCampus,Braga,Portugal

HaiyanWang KeyLaboratoryofOralMedicine, GuangzhouInstituteofOralDisease,Stomatology HospitalofGuangzhouMedicalUniversity, Guangzhou,Guangdong,People’sRepublicof China;CenterofEmphasisinInfectiousDiseases,

DepartmentofMolecularandTranslationalMedicine,PaulL.FosterSchoolofMedicine,TexasTech UniversityHealthSciencesCenterElPaso,ElPaso, TX,UnitedStates

YongyongYan KeyLaboratoryofOralMedicine, GuangzhouInstituteofOralDisease,Stomatology HospitalofGuangzhouMedicalUniversity, Guangzhou,Guangdong,People’sRepublicof China;CenterofEmphasisinInfectiousDiseases, DepartmentofMolecularandTranslationalMedicine,PaulL.FosterSchoolofMedicine,TexasTech UniversityHealthSciencesCenterElPaso,ElPaso, TX,UnitedStates

MingtaoZeng CenterofEmphasisinInfectious Diseases,DepartmentofMolecularandTranslationalMedicine,PaulL.FosterSchoolofMedicine, TexasTechUniversityHealthSciencesCenterEl Paso,ElPaso,TX,UnitedStates

Preface

Thebookseriestitled ExpectationsandRealitiesofMultifunctionalDrugDeliverySystems coversseveralimportanttopicsondrug-deliverysystems,regulatoryrequirements,clinical studies,intellectualpropertiestrends,new advances,manufacturingchallenges,etc.,writtenbyleadingindustryandacademicexperts. Overall,thechapterspublishedinthisseries reflectthebroadnessofnanopharmaceuticals, microparticles,otherdrugcarriers,andthe importanceoftherespectivequality,regulatory, clinical,GMPscale-up,andregulatoryregistrationaspects.

Thisseriesisdestinedtofilltheknowledge gapthroughinformationsharingandwithorganizedresearchcompilationbetweendiverse areasofpharma,medicine,clinical,regulatory practices,andacademics.

ExpectationsandRealitiesofMultifunctional DrugDeliverySystems isdividedintofour volumes:

Volume1:Nanopharmaceuticals

Volume2:DeliveryofDrugs

Volume3:DrugDeliveryTrends

Volume4:DrugDeliveryAspects

Thespecificobjectivesofthisbookseries areto:

1. provideaplatformtodiscussopportunities andchallengesindevelopmentof nanomedicineandotherdrug-delivery systems;

2. discusscurrentandfuturemarkettrends;

3. facilitateinsightsharingwithinvarious areasofexpertise;and

4. establishcollaborationsbetweenacademic scientists,andindustrialandclinical researchers.

Innovativecutting-edgedevelopmentsin micro–nanotechnologyoffernewwaysofpreventingandtreatingdiseaseslikecancer, malaria,HIV/AIDS,tuberculosis,andmany more.Theapplicationsofmicro–nanoparticles indrugdelivery,diagnostics,andimagingare vast.Hence, Volume4:DrugDeliveryAspects inthebookseriesmainlyreviewsadvancesin drugdeliveryareasviatargetedtherapywith improveddrugefficiencyatalowerdose,transportationofthedrugacrossphysiologicalbarriers,aswellasreduceddrug-relatedtoxicity. ThefocusofthisvolumeisonGMPscale-up, regulatory,functional,andpreclinicalaspects ofdrugdeliverysystems.

OneofthecontributionsbyAbdel-Mottaleb etal. (Chapter1) discussesnewtrendsindrug deliveryareausinghyaluronicacid,asaningredientaswellasanactive.Thepharmaindustryis alwaysinsearchofnewandfunctionalingredients.Hyaluronicrepresentsonesuchexample, andiscurrentlybeingexploredasadrugdeliveryagentforawiderangeofrouteslikenasal, pulmonary,ophthalmic,topical,andparenteral. Theauthorsreviewitspotentialinwound healing,osteoarthritis,tissueengineering,cancer targeting,atherosclerosis,diabetestreatment, theranostic,imagingapplications,andsoon.

Chapter2,byShegokar,highlightsbasic understandingsonpreclinicaltesting.Thistopic hasrecentlybeenseriouslypickedupbyindustryandregulatorybodies.However,itisnot easytogetaclearviewonwhattypesofpreclinicalstrategyonemustselectforspecificdrug deliverytypes.MultipleCROs(contract researchorganizations)existtosupportindustry/academicsonthis,butitisatimeconsumingandcostlydiscussion.Therefore, thefocusofthischapteristogivereadersabasic understandingofpreclinicalphaseanddesired testings,guidelinesavailable,andanoverview ofregulatoryrequirements,andupcoming trendsinthefield.

ThecontributionbyAhmedetal.in Chapter3 describestheimportanceofaqueous filmcoatings.Themainaimofthischapteristo provideanoverviewonthecuring(postthermal treatment)andstoragestabilityofaqueous coateddosageforms.Inthischapter,anovel approachofaqueouscoating—solidificationof Self-NanoEmulsifyingDrugDeliverySystems (SNEDDS)—isdiscussed,whichcansignificantlyenhancethesolubilityandstabilityof poorlysolubledrugs.

AchapterbyShegokarandNakach (Chapter4) reviewsindustrialscale-upaspects ofthemostemployedtechniqueinnanoparticle production,milling.Veryfewreportsarepublishedinliterature;however,theydescribethe scale-upofoneparticulardrugdeliverysystem. Thefocusofthischapteristogivereadersanindepthunderstandingofthemillingtechnique forproductionofnanoparticles,GMPsettings, regulationsassociatedwithit,andanoverview ofindustrialchallenges.

ThecompilationbySihorkarandDurigin Chapter5 aimsatdiscussingamorphoussolid dispersionasaformulationenablingtechnology toacommerciallyviabletechnologywitha plethoraofmarketedproductsacrosstheglobal pharmaceuticalspace.Theauthorsdiscussthe industrialperspectiveofASDtechnology, whichhasbenefitedimmenselyfromnewer-

generationexcipients,especiallypolymersand processingtechniqueslikeHME.Thischapter providesreadersanin-depthunderstanding ofkeyparametersinformulatingstablesolid amorphousdispersionsfromanindustrialpoint ofview.

Chapter6 byNongkhlawetal.highlights opportunitiesandchallengesinformulatingbiopharmaceuticals.Itisanothertrendspottedin pharmaceuticaldrugdeliveryinadditionto nanotechnology.Theauthorsdescribeindetail technologicalpotential,industrialadvantages, technologiesavailable,andlimitationsofthe sameforlocal(targetingbrain,pulmonary,ocular,oral,etc.)andintravenousdrugadministrationofbiopharmaceuticals.Attheendofthe chapter,anoverviewofformulationstrategies andingredientchoiceisprovided.

Nanotechnologyisgood,buttowhat extent?Itisslowlyposinghealthhazardsnot onlythoughautomobilesbutalsothoughfood, medicine,cosmetics,anddetergents.The topicpresentedbySoutoetal.,in Chapter7 describestheregulatoryandethicalissuesin nanoparticles,materials,andparticles(NMP) research.Thechapterfurtheroutlinesthepresentandfutureofnanotechnology,andits applicationsalongtheaxisofsocialandethical concerns.

Chapter8 bySinghandMehtareviewssterilizationopportunitiesandchallengesfordrug deliverysystems.Theteamofauthorshighlights keypointsliketheroleofformulations,physical forms,choiceofsterilizationtechnique,andregulatoryrequirements.Anindustrialperspective isgivenonthistopicbydiscussingcommon mistakesandwaystoovercomethese.

Botulismisaparalyticdiseasecausedbyintoxicationwithneurotoxinsproducedby Clostridium botulinum.Currently,vaccinesandantibodiesare theonlytwoprimarymeansoftreatingbotulism. TheworkbyYanetal. (Chapter9) highlightsthe vaccinedevelopmentstrategiesforbotulism.This chapterprovidesanoverviewofnewvaccineand immunotherapeuticdevelopmentslikevaccine

vectorupdates,immunesequenceoptimization, andrecombinantantibodies.

Chapter10 byKovacevicdiscusseschallenges inthedeliveryofnonsteroidalantiinflammatorydrugs(NSAIDs),andhighlightstherecent advancesontheuseofpolymericnanoparticles, nanoemulsions,andnanosuspensions/nanocrystals,intendedfororal,topical,parenteral, andocularadministrationtoovercometheassociatedchallenges.Thesenewstrategiescan increasedrug-associatedpooraqueoussolubility andtherebyreducethedose-associatedadverse effects.Anoverviewofvariousnanotechnological approachesfordeliveryofantiinflammatory drugsisprovidedinthischapter.

Nowadays,patientsandconsumersdemand saferandmorenaturalproductsforregular infections.Thisresultedintheevolutionof thenutraceuticalma rket.However,many

nutraceuticalshavelimitationslikehighdose, poorbioavailability,andtoxicityandstability problems.Inmaximizingtheirtherapeutic potentialtotheirfullextent,nanotechnology playsakeyrole.Thelastcontributionby AbdelSamieandNasr ( Chapter11 ) describes foodtomedicinetransformationofstilbenoid viavesicularandlipid-basednanocarriers.

Insummary,Iamsurethisbookvolume andthecompletebookserieswillprovideyou greatinsightsinareasofmicro-nanomedicines, drugdeliverysciences,newtrends,andregulatoryaspects.

Alltheeffortsofexperts,scientists,andauthors arehighlyacknowledgedforsharingtheirknowledge,ideas,andinsightsaboutthetopic.

Versatilehyaluronicacidnanoparticles forimproveddrugdelivery

MonaM.A.Abdel-Mottaleb a,b,HendAbd-Allah a , RihamI.El-Gogarya,MahaNasra

aDepartmentofPharmaceuticsandIndustrialPharmacy,FacultyofPharmacy,AinShamsUniversity, Cairo,Egypt

bPEPITEEA4267,Univ.BourgogneFranche-Comte,Besanc ¸ on,France

1Introduction

Althoughmorethan80yearshavepassedsince thediscoveryofhyaluronicacid(HA),itstillsurprisesresearcherswithitsuniquephysicochemical propertiesandphysiologicalrolesinthehuman body.HAwasfirstdiscoveredbyKarlMeyer andJohnPalmerin1954 [1].Theyisolatedan unknownmaterialfromthevitreousbodyofa bovineeye,containingtwosugarmolecules including“uronicacid.”So,byconnectingthesubstitutenameforthevitreous—“hyaloid”—with thenameofacomponentofthatpolysaccharide—“uronicacid”—thenameofHAwas adoptedforthismaterial.HAwasfirstusedcommerciallyasasubstituteforeggwhiteinbakery products.Lateron,itsfirstmedicalapplication forhumanswasinitiatedasavitreousreplacement duringeyesurgeryinthelate1950s [2]

HAbelongstoagroupofsubstancescalled mucopolysaccharidesbelongingtotheglycosaminoglycans(GAGs)family [1,2].HAincludes

severalthousandrepeatingdisaccharidesmoleculesinthebackbone.Themolecularweightof HAmoleculesdiffersowingtothevariable numberoftheserepeatingdisaccharideunits ineachmolecule,itsmolecularweightranges from1to10,000kDa [3].HAhasanunusual mechanismofbiosynthesisandexceptional physicalproperties.Sodiumhyaluronateisthe predominantformofHAatphysiologicalpH. SodiumhyaluronateandHAarecollectively referredtoashyaluronan.Duetothefactthat HAexistsasapolyanion,itcanself-associate andcanalsobindwatermoleculesgivingita stiff,viscousqualitywithjelly-likeconsistency thatcausesittobehavelikealubricant [2].

HAwasfoundtobeabundantlydistributed incellularsurfaces,inthebasicextracellular substancesoftheconnectivetissuesofvertebrates,inthesynovialfluidofjoints,inthevitreoushumoroftheeye,andinthetissueofthe umbilicalcord;allthisattractedsignificant attentionregardingitsmedicalapplications

[4].AlthoughHAhasaverysimplestructure, almosteverythingelseconcerningthemolecule isunusual.Sometimesitsroleismechanicaland structural,suchasinsynovialfluid,thevitreous humor,ortheumbilicalcord.Inothercases,it caninteractinlowconcentrationswithcellsto triggerimportantcellularresponses.HA’scharacteristics,includingitsconsistency,biocompatibility,andhydrophilicity,havemadeitan excellentmoisturizerincosmeticdermatology andskin-careproducts.Moreover,itsunique viscoelasticityandlimitedimmunogenicity haveledittobeusedforviscosupplementation inosteoarthritistreatment,asasurgicalaidin ophthalmology,andforsurgicalwoundregenerationindermatology.Inaddition,HAhascurrentlybeenexploredasadrugdeliveryagentfor differentroutessuchasnasal,pulmonary,ophthalmic,topical,andparenteral [2].Hencethe useofnanotechnologywouldcombinetheoutstandingpropertiesofHAbeingbiocompatible, biodegradable,nontoxic,andabletobindspecificreceptorswiththedifferentadvantagesof nanoparticlessuchasenhancedtherapeutic effectsandtargetability.Inthischapter,the useofHAnanoparticlesasaversatiledrug deliverysystemwillbediscussedbyhighlightingthedifferentproductiontechniquesbased onthechemicalandbiologicalpropertiesofHA.

2Hyaluronicacid

2.1Chemistry

TheexactchemicalstructureofHAwas determinedbyWeissmanandMeyerin1954. Asalreadynoted,HAbelongstoagroupofsubstancescalledmucopolysaccharidesbelonging totheGAGsfamily.ItisanunbranchednonsulfatedGAGcomposedofrepeatingdisaccharides [β-1,4-D-glucuronicacid(knownasuronicacid) and β-1,3-N-acetyl-D-glucosamide],asshown in Fig.1.1.Bothsugarsarespatiallyrelatedto glucoseinthebetaconfiguration,thusallowing

allitsbulkygroups(thehydroxyls,thecarboxylatemoietyandtheanomericcarbononthe adjacentsugar)tobeinstericallyfavorableequatorialpositions,whileallthesmallhydrogen atomsoccupythelessstericallyfavorableaxial positions.Thus,thestructureofthedisaccharide isenergeticallyverystable [3].

TheHAbackboneisstiffenedinphysiological solutionviaacombinationofinternalhydrogen bonds,interactionswithsolvents,andthechemicalstructureofthedisaccharide.HAmolecular investigationssuggestedthattheaxialhydrogen atomsformanonpolarface(relativelyhydrophobic)andtheequatorialsidechainsformamore polarface(hydrophilic)whichleadstoatwisted ribbonstructureforHAcalledacoiled structure [4]

Owingtothisconformationalbehavioras wellasitshighmolecularweight,thesolutions ofHAareveryviscousandelastic.Atvery lowconcentrations,chainsentanglewitheach other,leadingtoamildviscosity(molecular weightdependent).However,HAsolutionsat higherconcentrationshaveahigherthanexpectedviscosityduetogreaterHAchainentanglementthatisshear-dependent.Forinstance,a1% solutionofhighmolecularweightHAcan behavelikejelly,butwhenshearstressis applied,itwilleasilyshearthinlyandcanbe administeredviaafineneedle [2].HAisthereforea“pseudo-plastic”material.Thisrheologicalproperty(concentrationandmolecular weightdependent)ofHAsolutionshasmade

FIG.1.1 Chemicalstructureofhyaluronicacidunit.

itidealasalubricantinbiomedicalapplications. Thereisevidencethathyaluronanseparates mosttissuesurfacesthatslidealongeachother. Theextremelylubriciouspropertiesofhyaluronan,meanwhile,havebeenshowntoreduce postoperativeadhesionformationfollowing abdominalandorthopedicsurgery.

HAhasseveralinterestingmedical,pharmaceutical,food,andcosmeticusesinitsnaturally occurringlinearform.However,chemicalmodificationsoftheHAstructurerepresentastrategytoextendthepossibleapplicationsofthe polymer,obtainingbetterperformingproducts thatcansatisfyspecificdemandsandcanbe characterizedbyalongerhalf-life.Duringthe designofnovelsyntheticderivatives,particular attentionispaidtoavoidthelossofnativeHA propertiessuchasbiocompatibility,biodegradability,andmucoadhesivity [5].HAcanbechemicallymodifiedbycrosslinkingorconjugation reactions.Thesechemicalmodificationsmainly involvetwofunctionalsitesofthebiopolymer: thehydroxyl(probablytheprimaryalcoholic functionofthe N-acetyl-D-glucosamine)andthe carboxylgroups [6].Furthermore,synthetic modificationscanbeperformedafterthedeacetylationofHAN-acetylgroups [7].

ConjugationreactionsusuallyconsistofaddingamonofunctionalmoleculeontooneHA chainbyasinglecovalentbond,whilecrosslinkingemployspolyfunctionalcompoundstolink togetherdifferentchainsofnativeorconjugated HAbytwoormorecovalentbonds.Crosslinked hyaluronancanbepreparedfromnativeHA (directcrosslinking)orfromitsconjugates. Crosslinkingisnormallyintendedtoimprove themechanical,rheological,andswellingpropertiesofHAandtoreduceitsdegradationrate, todevelopderivativeswithalongerresidence timeinthesiteofapplicationandcontrolled releaseproperties [5]

2.2Sources

HAisanaturalpolymerbiologicallysynthesizedbycellsinthebodybyanenzymaticprocess.HAproductionisaunique,highly controlled,andcontinuousprocess.Approximatelyhalfofourbody’sHAisdistributedin thecutaneousregion.Itisproducedand secretedbycellsincludingfibroblasts,keratinocytes,orchondrocyteswithvaryingmolecular weightsbetween50and3000kDa.TheGolgi networkistheproductionsiteformostGAGs. IntissuessuchasskinandcartilagewhereHA comprisesalargeportionofthetissuemass, HAissynthesizedinlargeamounts.Itisnaturallysynthesizedbyhyaluronansynthases (HAS1,HAS2,andHAS3),aclassofintegral membraneproteins [10].Thethreeenzymes arelocatedondifferentchromosomes,producingHAwithdifferentmolecularweights. HAS1andHAS2proteinsareresponsiblefor thesynthesisofhighmolecularweightHA ( 2 106 Da)withthelattermoreactivecatalyticallythantheformer,whereastheenzyme HAS3isthemostactivebutcanonlysynthesize shortHAchainsfrom200,000to300,000Da.The differentmolecularweightsofHAchainscan leadtodifferenteffectsoncellbehavior.HAperformsitsbiologicalactionsaccordingtotwo basicmechanisms:itcanactasapassivestructuralmoleculeandasasignalingmolecule.Both mechanismsofactionhavebeenshowntobe size-dependent [11].

Asmentionedabove,HAhasanessential functionalcomponentofalmostalltissuesin thevertebrateorganism.Thus,variousanimal

ConjugationofdrugstoHAwasreportedas earlyas1991.ThisapproachaimedtoformaprodrugbycovalentlybindingadrugtotheHA backbonethroughabondthatideallyshould bestableduringthebloodcirculationand promptlycleavedataspecifictargetsite [8]. OwingtoHAsolubility,itispossibletoperform thereactioninwater.However,intheaqueous phase,somereactionsarepH-dependentand needtobeperformedinacidicoralkalineconditions,whichhavebeenshowntoinducesignificantHAchainhydrolysis [8,9].

tissues,forexample,inroostercombs,sharkskin, andbovineeyeshavebeenusedassourcesofisolationandproductionofhighmolecularweight HA.SinceHAinbiologicalmaterialsisusually presentinacomplexlinkedtootherbiopolymers, severalseparationproceduresmustbeappliedto obtainapurecompound,suchasproteasedigestion [10].HAwasinitiallyisolatedfrombovine vitreoushumorandlaterfromroostercombs andhumanumbilicalcords [11].Themean molecularweightofthecommerciallyavailable “extractive”HApreparationsobtainedfromanimaltissuesismostlyintherangefromseveral hundredthousandDauptoapproximately2.5 MDa [12].However,ithasbeenobservedthat theHAproductsobtainedfromroostercombs causedsomeallergicresponses.Further,thetechnologyhasbeendevelopedrecentlytowardbacterialfermentationtoreducetheproductioncost andcomplexpurificationprocesses.Suchalternativesourcesincludeattenuatedstrainsof Streptococcuszooepidemicus and Streptococcusequi for theproductionofHA.Thebacteriumsecretes theHAintofermentationbrothandthisbehavior isanadditionaladvantageforisolationoftheHA directlyfrombrothwithouttheneedforhomogenizingbacterialcells [13,14].However,therisk ofmutationofthebacterialstrains,andpossible co-productionofvarioustoxins,pyrogens,and immunogens,decreasestheapplicationoffermentativeHAinclinicalpractice.Thisisalso whyHAsamplesoriginatingfromroostercombs arestillcurrentlypreferredforhumantreatment incaseswhentheHAmaterialisdesignatedfor injection,intheeyesorsynovialjoints.However, thesearealsonotidealsourcesofHA,asallHA productsobtainedfromroostercombsareobligatedtocarrywarningsforthosewhoareallergic toavianproducts.Thus,alternativesourcesfor productionofHAarepresentlyasubjectof research [12]

Oneofthepromisingpotentialcandidatesis ageneticallymodifiedbacterialstrain, Bacillus subtilis ,carryingtheAgenefrom Streptococcus equisimilis encodingtheenzymeHAsynthase.

SuchanengineeredstraincouldproduceHA withthemolecularweightinthe1MDarange. Theadvantageofusing B.subtilis isthatitis easilycultivatedonalargescaleanddoes notproduceexotoxinsorendotoxins,and manyproductsmanufacturedbythismicroorganismhavereceivedaGRAS(generallyrecognizedassafe)designationintheearly 1960s.Atpresent,microbiologicallyproduced HAhasbeenapprovedfortreatmentofsuperficialwoundsaswellasforuseinthecosmetic industry [12] .

2.3Physiologicalrole

HAdiffersfromothersyntheticpolymersin thatitisbiologicallyactive.Togetherwith HA’soutstandingviscoelasticnature,itsbiocompatibilityandnonimmunogenicityhave ledtoitsuseinseveralclinicalapplications. HAwasdescribedasanubiquitouscarbohydratepolymerthatispartoftheextracellular matrix [15].Ahumanbodyweighing70kgcontains15gofHA.ThegreatestamountofHAis presentintheskin,followedbythesynovial fluid,thevitreousbody,andtheumbilicalcord. Itcanalsobefoundinplaceswherefriction occurs:thejoints,tendons,sheaths,pleura,and pericardium [16].

Inthehumanbody,HAoccursinmany diverseforms,circulatingfreely,decoratedwith avarietyofHA-bindingproteins(hyaladherins), tissue-associated,intercolatedintotheextracellularmatrixbyelectrostaticorcovalentbindingtoothermatrixmolecules.Itcomprisesa majorportionoftheintimateglycocalyxthat surroundsallcells.HAcanbetetheredtocell surfacesbyanyofthemembrane-associated receptors.RecentevidenceindicatesthatHA alsoexistswithincells,thoughlittleisknown oftheformorfunctionofsuchHA [17]

HAisamajorcomponentofthesynovial fluid,andwasfoundtoincreasetheviscosity ofthefluid.Alongwithlubricin,itisoneof thefluid’smainlubricatingcomponents.Itis

consideredanimportantcomponentofarticular cartilage,presentingacoataroundindividual chondrocytesandprovidingitsresistanceto compression.Themolecularweight(size)of HAincartilagedecreaseswithage,butthe amountofitincreases [18].HApossessesanumberofprotectivephysiochemicalfunctionsthat mayprovidesomeadditionalchondroprotectiveeffectsinvivo,explainingitslonger-term effectsonarticularcartilage.HAdecreasesthe nerveimpulsesandnervesensitivityassociated withpain.Inexperimentalosteoarthritis,HA hasprotectiveeffectsoncartilage [19].ExogenousHAenhancesitssynthesistogetherwith proteoglycaninchondrocyte,reducestheproductionandactivityofproinflammatorymediatorsandmatrixmetalloproteinases,andalters thebehaviorofimmunecells.Thesefunctions aremanifestedbythescavengingofreactive oxygen-derivedfreeradicals,theinhibitionof immunecomplexadherencetopolymorphonuclearcells,andtheinhibitionofleukocyteand macrophagemigrationandaggregation [20]

Alubricatingroleofhyaluronaninmuscular connectivetissuestoenhanceslidingbetween adjacenttissuelayershasalsobeensuggested. Aparticulartypeoffibroblasts,embeddedin densefascialtissues,hasbeenproposedasbeing cellsspecializedforthebiosynthesisofthe hyaluronan-richmatrix.Theirrelatedactivity couldbeinvolvedinregulatingthesliding abilitybetweenadjacentmuscularconnective tissues [18].

HAisalsoamajorcomponentofskin.More thanhalfofthetotalbody’sHAispresentin theskin [8],whereitplaysastructuralrolethat dependsonitsuniquehydrodynamicproperties anditsinteractionswithotherextracellular matricesmolecules(ECM)components.HA excellentconsistencyandtissue-friendliness andbeingoneofthemosthydrophilicmolecules innaturehascausedittobedescribedas nature’smoisturizer [4].Itgivestheskinits propertiesofresistanceandmaintenanceof theshape,andsupportsthepreservationof

thenaturaldegreeofhydrationoftheskincells. Itsconcentrationinthebodytendstodecrease withaging,andalackofitleadstoaskinweaknesspromotingtheformationofwrinkles [7]

Whileitisabundantinextracellularmatrices, HAalsocontributestotissuehydrodynamics, movementandproliferationofcells,andparticipatesinanumberofcellsurfacereceptorinteractions,notablythoseincludingitsprimary receptors,CD44andRHAMM.Upregulation ofCD44itselfiswidelyacceptedasamarker ofcellactivationinlymphocytes.HA’scontributiontotumorgrowthmaybeduetoitsinteractionwithCD44.ThereceptorCD44participates incelladhesioninteractionsrequiredbytumor cells.

Onthecellularlevel,HAishighlyhygroscopicandthispropertyisbelievedtobeimportantformodulatingtissuehydrationand osmoticbalance.Becauseofitshygroscopic properties,hyaluronansignificantlyinfluences hydrationandthephysicalpropertiesofthe extracellularmatrix.Hyaluronanisalsocapable ofinteractingwithseveralreceptors,resultingin theactivationofsignalingcascadesthatinfluencecellmigration,proliferation,andgene expression [21].

2.4Turnoverandeliminationpathways

TheconcentrationofHAinthehumanbody variesfromahighconcentrationof4g/kgin umbilicalcord,2–4g/Linsynovialfluid,0.2 g/kgindermis,about10mg/Linthoracic lymph,andthelowestof0.1–0.01mg/Linnormalserum [10].Dependingonthelocationof HAinthebody,mostofitiscatabolizedwithin days.Studiessuggestedthatthenormalhalf-life ofHAvariesfrom1–3weeksininerttissues suchascartilages,to1–2daysintheepidermis ofskin,to2–5mininbloodcirculation.ThepathwaysinvolvedinHAcatabolismincludeturnover(internalizationanddegradationwithin tissue)andreleasefromthetissuematrix,

1.Versatilehyaluronicacidnanoparticlesforimproveddrugdelivery

drainageintothevasculature,andclearancevia lymphnodes,liver,andkidneys.

Instructuraltissueslikeboneorcartilage withnoorlittlelymphaticdrainage,HAdegradationoccursinsituwithotherECMsuchascollagensandproteoglycans.Ontheotherhand,in skinandjoints,aminimalfraction(approximately20%–30%)ofHAdegradesinsitu.Since HAisrestrictedtothesmallintracellularspace ofskintissue,itshalf-lifeisslightlylongerfor daysandweeks [22].

3Preparationofhyaluronicacid nanoparticles

3.1Conjugateformation

Oneofthemostcommonlyusedtechniques forthepreparationofHAnanoparticlesisthe preparationofHA-drugnano-conjugatesby establishingacovalentbondbetweenthedrug ofinterestandHAwhichcouldimprovesolubility,pharmacokineticprofile,andinvivoplasma half-lifeoftheconjugateddrugs.Inmostcases, theconjugationisdesignedtobecleavedafter reachingthetargetsite,andincasesofcancer, theseconjugatesusuallyhavehigheraccumulationinthetumorsitesduetotheenhancedpermeationandretentioneffect(EPR) [23].Dueto thepresenceofmultiplefunctionalgroupson thebackboneofHAlikehydroxylandcarboxylic acidgroups,itwaspossibletogetconjugatedto variouscompoundsandmacromoleculessuchas paclitaxel [24,25],sodiumbutyrate [26,27],and ovalbumin [28].

TheuseofHAdrugconjugatesiskindofconvertingthedrugintoaprodrugderivativein whichthelinkbetweentheHAandthedrug moleculeshouldachievecertaincriteria.The mostimportantisthatthebondshouldbestable extracellularlytogivetherequiredinvivohalflife,andshouldbecleavedeasilyintracellularly toachievethedesiredeffect.Itisevidentthatthe releaseofintactdrugmoleculewithoutaffecting

thechemicalstructureisanotherrequiredproperty [29].Thetwomostcommonsitesforthe chemicalconjugationofdrugstoHAarethe hydroxylgroupsandthecarboxylicacidfunctionalitieswhiletheterminalaldehydegroup canonlybeusedtoprepareterminallymodified HA-ligandconjugatesaswellastograftHA oligomerstoanotherpolymercarryingamino groups.

3.2Self-assembliesformation

AnothertypeofHAnanoparticlesarethe onespreparedbyHAassociationwithhydrophobicpolymerswiththeresultingconjugates abletoself-aggregateintheformofhydrophobic micelles.Examplesincludethehydrophobic associationofHAtopoly(lactic-co-glycolicacid) (PLGA) [30],poly(ethyleneglycol)-poly (ε-caprolactone)copolymers(PEG-PCL) [31], ortetradecylamine [32].Theseamphiphilic self-assemblingHAderivativeshavebeenpreparedbycouplingthecarboxylicgroupsofthe hydrophilicHAthroughcarbodiimidechemistrytodifferenthydrophobicmoietiessuchas PLGA [33],tetradecylamine [32],andPCL [31]. Thiskindofnanoparticlewouldcombinethe hydrophobiccoreneededfortheencapsulation ofmanytherapeuticagents,andthehydrophilic shellprovideslongercirculationtimesbyreducingunwantedproteinadsorption [23].

HydrophobicallymodifiedHA(HMH)was preparedbythecovalentconjugationtothe hydrophobictetradecylamine(TDA)using 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDC)andhydroxysulfosuccinimide(sulfoNHS).Thisreactionwasabletoproducenano self-aggregatesuponitsdissolutionandsonicationintoaqueousphosphatebuffersolution [32] Theself-associatedHMHnanoparticlesranged insizebetween197and285nmdependingon thedegreeofsubstitutionwithminorinfluence fromthepolymerconcentrationused.Thehigher thedegreeofsubstitution,thesmallertheparticles produced.AmphiphilicHA-5b-cholanicacid

conjugates(HA-CAconjugates)weresynthesized bychemicalconjugationofhydrophobicbileacid (5b-cholanicacid)tothehydrophilicHAbackbonethroughamideformationinthepresence ofEDCandNHS.VaryingthemolarratioofCA tothecarboxylicacidofHAvariedthedegreeof substitutionfrom2to10.Fortheproductionof HAnanoparticles,theproducedamphiphilic HA-CAconjugatesweredissolvedinaphosphate bufferedsalineandthesolutionwassonicated usingaprobe-typesonificationsystemfollowed byfiltrationstep.Theproducedparticlesranged insizefrom237to424nm [34].

3.3Ionicnanocomplexesformation

SinceHAisapolyanionicpolysaccharide,it canbeeasilyallowedtoreactwithcationiccompoundsandformsuccessfulioniccomplexes. ThisreactioncanbeinducedbydirectinteractionofHAwithpositivelychargedcargomoleculeslikeinthecaseofDNAandplasmids,orit canhappeninthepresenceofanotherpositively chargedpolymerlikechitosan [35].Examples includetheionicnanocomplexbetweenHA andTRAIL(TumornecrosisfactorRelatedApoptosisInducingLigand),whichwashighlystableandlongcirculatingcomparedtothe nativeTRAIL [36].Similarly,biopolymeric amphiphileswerepreparedfromtheEDC mediatedcouplingreactionbetweenHAand deoxcycholicacidproducingself-assembled nanocarriersinthesizerangeof100–600nm. ThestronginteractionbetweenHAandchitosan (CS)evenledtothefasterreleaseofthe entrappednegativelychargedcargomolecules, whosereleasecouldhavebeenhinderedincase ofinteractionwithchitosanalone.CS-HAplasmidnanoparticleswerepreparedbysimple mixingofbothsolutionsundermagneticstirring andDNAwasthenaddedtoformcomplexes. Themixturewasvortexedfor3–5sandthenleft atroomtemperatureforthecomplexestoform completely [37].Itwasfoundthatthesizeof thenanoparticlesincreasedandthezeta

potentialdecreaseduponincreasingtheratio ofHAtoCS.Similarly,HAcouldionicallyinteractwithpositivelychargedmetalliccompounds suchastheanticancerdrugcisplatin.CisplatinHAnanoparticleswerepreparedbysimple mixingofHAandthedrug,formingnanoparticlesinthesizerangeof80–160nm.Being largeinamount,thereleaseofthedrugfrom theparticlematrixwasaccompaniedbydisintegrationoftheparticles [38].

3.4Nanogelsformation

HAnanogelscanbepreparedbyeitherphysicalorchemicalcrosslinkingofHAtoprovide colloidalstableparticlesinthemicroornano range.Thephysicalcrosslinkingwoulddepend onnoncovalentattractiveforcesbetweenthe polymerchainssuchashydrophobicinteractions,hydrogenbondingandionicinteractions. However,chemicalcrosslinkingwouldprovide particlesofhigherstabilityandsubsequently longerhalf-lives.Topreparechemicallycrosslinkednanogelparticles,itispreferableto spatiallylocalizetheHAmoleculesandcrosslinkersinverysmallvolumestoachievethe requiredreactioninthenanorange.Thiscould besuccessfullyachievedusingtheinverse w/omicroemulsiontechnique,whichis describedin Fig.1.2[29].Hyaluronanmicrosphereswerepreparedbythesurfactant-aided homogenizationofHAaqueoussolutionsand crosslinkerinmineraloil.Thisstepisfollowed bytheinitiationofcrosslinkingbyadding EDC [39].Otherexamplesofnanogelparticles formationbyamidationcrosslinkingwere describedintheliterature [40,41].However,this microemulsionchemicalcrosslinkingtechniquesdemandshighenergymechanicalstirringorultrasonicationandtheuseoforganic solvents,whicharenotconsideredfavorable conditionsforthelabilemoleculessuchasproteinsandnucleicacids.Physicalcrosslinkingis consideredtobemuchmilderintermsofaffectingthelabilestructuresofdrugmolecules [29].

FIG.1.2 InversephasewaterinoilmicroemulsiontechniqueforthepreparationofchemicallycrosslinkedHAnanogels. ReprintedwithpermissionfromOssipovDA.Nanostructuredhyaluronicacid-basedmaterialsforactivedeliverytocancer.ExpertOpin DrugDeliv2010;7:681–703. https://doi.org/10.1517/17425241003730399 andTaylorandFrancisLtd.

4.1Skinapplications

AlthoughHAispresentinmostofthebiologicalfluidsandtissuesandextracellular matrixofsoftconnectivetissues,skinisconsideredtobemostHA-abundanttissueinthe humanbody.Uponaging,especiallyafterthe ageof20,skincontentofHAcontinuously decreases [42]

TheuniquepropertiesofHA,includingits biocompatibility,biodegradability,viscoelasticity,andnonimmunogenicity,havemadeitan idealmaterialforcosmeticandbiomedical applications.Itexertsahydratingeffectonthe skin,whichmayhelptoenhancethepenetration ofdifferentdrugsthroughtheskin.However,its ownpenetrationisverylimitedduetothehigh molecularweightaswellastheenzymatic degradationrisk.ItwasreportedthatcrosslinkedHAprovedtopermeatethroughtheskin

deeperlayersmakingitsuitablecarrierfortransdermalapplications [42].HAitselfasmacromoleculeisnotabletopenetratetheskin beyondthesurfacelayersduetothestrongbarrierproperties [43].HAnanoparticlesprepared bytheanionicinteractionwiththecationicpolymerprotaminewereabletopenetratetheskin anddelivertheHAtothedermiswhilefree HApenetratednofurtherthestratumcorneum. Therefore,thesenanoparticleswereconsidered promisingfortheeffectiveskindeliveryofHA tocontributetobarrierrecoveryfollowingUV irradiation [44].Similarly,nanoparticlesofquaternizedcyclodextrin-graftedchitosanassociatedwithHAhavebeenalsoproven promisingforcosmeticsandskinhydration applications.Theirskinhydratingabilityaswell astheirsafetyonhumanskinfibroblastswere demonstratedinvitro [45].

Besidestheuseofnanoparticlesforthedrug deliverypurposes,somecosmeticapplications

HA and drug Aqueous phase
Surfactant Organic phase
Nano gel
Crosslinks
Drug
Crosslinker or coupling agent
HA

havebeenproposed.Preparationsofslightly crosslinkedHAareusedasfillersforaugmentation,tofillfacialwrinklesanddepressedscars. SuchHAgelsaremoreeffectiveinmaintaining cosmeticcorrectionsthancollagen-basedproducts.Unlikecollagen-basedfillers,HAis extremelyelastic,providingtheelasticity requiredbyspacesinwhichitisinjectedand thehyaluronatepreparationsaremoresustained.ExamplesoftheuseofHANPsforcosmeticapplicationsaredescribedin Table1.1.

4.2Osteoarthritis

Theuseofintra-articularHAinjectionsasa viscosupplementtorestorethenormalviscosity ofsynovialfluidinosteoarthritispatientsisa well-establishedtherapeuticstrategy [11]. Cationicpolymericnanoparticleslinkedtohyaluronateprovedtobeeffectiveintheproduction ofionicallycrosslinkedhydrogelsinsituto increasetheretentiontimeofamodeldrugin thesynovialcavity [50].

4.3Tissueengineering

HAasoneofthemaincomponentsofbody tissueshasfrequentlybeeninvestigatedfor tissueengineeringapplications.HA-based sheetsserveasamatrixforsofttissue,cartilage, bone,andskingrowth,andasasubstratefor tissueregenerationandremodeling.ThreedimensionalscaffoldsofHA-basedmaterials canfacilitaterestructuringoftissuesandassist inregainingfunction.Thesematerialsareideal fortissuereconstruction,asthereisnohost immuneresponse,andareparticularlyuseful

Genetherapyhasbeenproposedasatreatmentmodalityfortargetingspecificpathological mechanismsandhencehelpingtotreatthe underlyingdiseaseorigin.HA-CS-plasmid nanoparticleswerepreparedasnovelnonviral genedeliveryvectorforthetreatmentofosteoarthritis.TheyutilizetheabilityofHAtobindtothe CD44tobeinternalizedbythetargetedcellsby theendocytosispathway.ThetransfectionefficiencyoftheseNPswasfoundtobesuperiorto theCS-plasmidNPS,suggestingthemasasafe andeffectivenonviralgenedeliveryvectorto chondrocytes [37].

TABLE1.1 CosmeticapplicationsofHAandHANPs.

HAPolyioncomplexformationwiththe cationicpolymerProtamine

HAPolyioncomplexformationwith quaternizedcyclodextrin-grafted chitosan

barrierpropertiesindamagedskin [44]

moisturizingproperties [45] HAHA/lysineNPsbyionicinteraction betweenHAandlysine

injectiontechnique

nanoparticlesbyionicgelation

[46]

forcellularskinlayersregeneration [47]

[48]

percutaneousabsorption [49]

forburnandtraumapatients.Stemcellsrequire anHA-richenvironmentformaintainingthe undifferentiatedstate.Vascularendothelialcells canbeselected,aswellasaorticsmoothmuscle cellsfortheconstructionofheartvalves,by seedingontoHAsheetsandmembranes.However,duetoHA’shighsolubilityandfastelimination,itsuseforscaffoldfabricationand structuralstabilityhasbeenchallenging.To overcometheselimitations,modificationand crosslinkingofHAhavebeenproposed.Various examplesontheuseofcrosslinkedHAnanoparticlesfordrugdeliveryarepresentedin Table1.2.Water-solublecarbodiimidecrosslinking,polyvalenthyadrazidecrosslinking,and othertechniqueshavebeenintroducedfortissue engineeringapplicationsofHA.ChemicalcrosslinkingisexpectedtoextendtheHAdegradationprocessinvivoandprovidelong-term stabilityforthevariousapplicationsinorthopedics,cardiovascularmedicine,anddermatology. Elsewhere,photocrosslinkedHAhydrogels havebeenalsointroducedfordifferentapplicationssuchascartilagetissueengineering,cardiac repair,moleculedelivery,valvularengineering, controlofstemcellbehavior,andmicrodevices [10].HAasanaturalpolymerhasbeenmixed withpoly(lactic-co-glycolicacid)nanoparticles todevelopaninsitucrosslinkablesystemwith drugdeliverypotential.Althoughsuchasystem hasshownfavorablemechanicalpropertiesfor tissueengineering,itsbiocompatibilityandtoxicityinvivoisstillamajorconcern [64].

4.4Cancertargeting

Self-assembledpolymericnanoparticleshave beeninvestigatedforcancertherapyduetotheir abilitytoencapsulatethechemotherapeutic agentsandreleasethemonasustainedmanner. Thisisevenenhancedbyrenderingtheirsurface hydrophilicwhichwouldenhancetheircirculationtimeleadingtohigheraccumulationinto thetumortissuewiththeknownEPReffectof nanoparticles [34,65].Inadditiontothispassive

targetingstrategy,activetargetingcanbealso achievedbybindingtheseNPstotargeting moietiestorecognizeandbindtothetumorcells andbeinginternalizedbyreceptor-mediated endocytosis.SinceHAisdistinguishedbyits abilitytobindtovariouscancercellsthat overexpressCD44,ithasbeenconjugatedto variousdrugloadednanoparticlesasatargeting moiety [66].CD44isoverexpressedinmanycancersofepithelialoriginandthereforetheuseof HAnanocarrierscouldincreasethetargetability andtheretentionintothecancertissue [66]. However,theuseofHAnanoparticlesasatargetingmoietyanddrugcarrierisanewtrend, andextensivestudiesareneededtounderstand thefactorsaffectingtheaffinitytoCD44andthe internalizationmechanismsofHAnanoparticles.ItwasfoundthattheslowCD44representation(24–48h)ledtolimitedavailabilityofHA internalizationreceptors.Therefore,ahigher affinitynanoparticleandahigherdegreeofclusteringwouldleadtoalowernumberofinternalizedparticles.Ontheotherhand,loweraffinity systemsmightleadtolessclusteringwithmore efficientHA-mediateddeliveryofdrugpayloads [67].AmphiphilicHA-CAconjugates nanoparticles,whichself-assembleintohydrophobiccorenanosizedparticles,surrounded byahydrophilicHAshellefficientlyaccumulate intothetumorsitecomparedtothepurewatersolubleHAaftersystemicadministration.Thein vivobiodistributionoftheseNPsintumorbearingmicewasinvestigatedusinganoninvasivenear-infraredopticalimagingtechnique, whichrevealedasignificantaccumulationof theHANPsinthetumorsite.Theaccumulation wasmuchstrongerthaninnormaltissuesand wassizedependent,whichembracestherole oftheEPRpassivetargetingpathway.However, whenanimalswerepreinjectedwithhighdoses ofHApolymerbeforetheinjectionofHANPs, theNPsaccumulationinthetumorsitewas remarkablyattenuated,suggestingthatthe interactionbetweentheHAfromtheNPsto theCD44receptorsonthecancercellsurfaceis

TABLE1.2 VariousapplicationsofHANPsindrugdelivery.

Drug HAnanoparticles Particle size (nm)Application Reference

PlasmidDNAPolyioncomplexofHAandchitosan andplasmidDNA 100–300Nonviralvectorforgene deliveryforchondrocytes [37]

siRNA Inversew/oemulsion(nanogel)200–500SelectivetargetingofHCT-116cells [51]

PlasmidDNADihydrazidemediatedcrosslinking5–20 μmControlledrateDNAdelivery [39]

DoxorubicinHA-PEG-PLGApolymeric nanoparticlesbynanoprecipitation 93–186Selectivetumortargeting [33]

HA

Self-assembliesofhydrophobic 5β-cholanicacid-HA

HA Self-assembliesofhydrophobic 5β-cholanicacid-HA

DoxorubicinBioreduciblecore-crosslinked polymericmicellebasedon hyaluronicacid

Cy5.5and doxorubicin

Self-assembliesofamphiphilic iodinatedhyaluronicacid

–400Tumortargeting [52]

–424Passiveandactivetumortargeting [34]

[53]

200Theranosticsystemforcancer [54]

Paclitaxel Hyaluronate-cholanicacidmicelles258TargetingCD44overexpressionin cancercells [55]

Cy5.5 (PEG)-conjugatedself-assembledHA nanoparticles 217–269Cancertherapyanddiagnosis [56]

Cy5.5 Self-assembliesofhydrophobic 5β-cholanicacid-HA

Cy7or 89ZrEDCandsulfo-NHScrosslinkedHA andcholanicacid

237–424Targetingstabilin-2andCD44 receptorsoverexpressedin atherosclerosis [57]

90Theranosticapplicationin atherosclerosis [58]

pEGFPorpβ-gal asmodelplasmid Hyaluronicacid-chitosanionotropic gelation 100–235Genetransferandtargetingtoocular cells [59]

DexamethasoneHA-chitosannanoparticles – Enhancedocularbioavailability [60]

InsulinReverse-emulsion-freeze-drying182Oralinsulindelivery [61]

PerfluoropentaneOil-in-water(O/W)emulsification350Ultra-long-acting,liver-specific, Ultrasoundcontrastagent [62]

CuSandCy5.5EDCandsulfo-NHScrosslinkedHA andcholanicacid

227Image-guidedphotothermal therapyofcancer [63]

alsoresponsibleforthehighaccumulationon thetumorsite [34,52].TheuseofcorecrosslinkedHAmicellespreparedwithasimple methodofdisulfidebondformationloadedwith doxorubicinhasshownanenhancedtherapeutic efficiencyandtumoraccumulationaswellas improvedstabilityinvivocomparedtothe uncrosslinkedmicellesandthefreedrug.The superioractivitywascorrelatedtotheability ofthesecarrierstounloadthedruginsidethe tumorcellonlywiththemicellarstructuredissociatedinresponsetotheglutathioneattheintracellularlevel.2,3,5-Triiodobenzoicacid(TIBA) wasconjugatedtoanHAoligomerasa computedtomography(CT)imagingmodality andahydrophobicresidueandself-woven nano-assemblieswereproducedforthetumortargeteddeliveryofdoxorubicinmwhich presentedapromisingtheranosticsystemfor cancerdiagnosisandtherapyoftumorsthat expressCD44receptors [54].PolymericnanoparticulatemicellesofHA-CApaclitaxelwere foundtobespecificandefficientchemotherapeutictreatmentforCD44overexpressing tumorsandcancercells [55].However,amajor drawbackofHA-basedconjugatesornanoparticlesforcancertargetingistheirpreferential accumulationintheliveraftersystemicadministration.PEGylatedHA-NPsformedselfassemblednanoparticlesinthesizerangeof 217–269nmofimprovedcanceraccumulation andtargetabilitycomparedtoHA-NPswhen testedintumor-bearingmice [56].

4.5Atherosclerosis

TheuseofHA-NPshasbeenproposedasa potentialtoolforbothdiagnosticandtherapeuticapplicationsinatherosclerosis.Amajor observationinthepathogenicprocessofatherosclerosisistheoverexpressionofreceptorsof HAsuchasstabilin-2andCD44.SelectivestrongeraccumulationofHA-NPsinatherosclerotic lesionswasobserved,whichwasprobably explainedbyanactivetargetingmechanism

aftersystemicadministration [57].Aminefunctionalizedoligometrichyaluronanconjugated withcholanicesterandlabeledwithfluorescent orradioactivenanoparticleswastestedfor targetingatherosclerosisassociatedinflammation.The90nmparticlesaccumulationwas 30%higherinatheroscleroticaortasthanwild typecontrols.TheplaquestreatedwiththeHA nanoparticlescontained30%fewermacrophagescomparedtocontrolandfreeHAtreated groups.Therefore,thesenanoparticleswere proposedforPETimagingofatherosclerosisassociatedinflammationduetotheirfavorable targetingpotential [58].

4.6Oculardrugdelivery

Duetothestrongdefensivemechanismsofthe eye,thetransportofdrugsviatopicalinstillation intheeyesislimited,causingrestrictedbioavailability.Theuseofhyaluronan-coatedchitosannanoparticleswasinvestigatedforthe enhancedoculardeliveryofdexamethasone. TheHA-coatednanoparticleshaveshown 2.14-foldhigherAUC0-24h comparedtodexamethasonesolution,whichwasexplainedby theprolongedprecornealretentioncausedby thehighlymucoadhesiveHA [60].HA-chitosan nanoparticleswithsizesbetween100and235 nmwerealsotestedforoculargenedelivery andwereabletoachievehightransfection efficiencywithoutaffectingcellviability [59]. HAisalsoparticularlyusefulasaspace-filling matrixintheeyetomaintaintheshapeof theanteriorchamberduringsurgeries.HAsolutionsalsoserveasaviscosity-enhancingcomponentofeyedropsandasanadjuvanttoeyetissue repair.

4.7Insulinsensitivityanddiabetes

Recently,ithasbeendemonstratedthatCD44 receptorsinpro-inflammatorycellsinobese adiposetissuesareinvolvedinthedevelopment ofadiposetissueinflammationandinsulin

resistanceintype2diabetespatients.Therefore, emptyHAnanoparticleswereusedasatherapeutictoolforadiposetissueinflammationand insulinresistancebyselectivelyaccumulating andclusteringtheCD44receptorsininhibiting theinteractionofthelowmolecularweightHA withthesereceptors,leadingtoimprovedinsulin sensitivityandglycemiccontrol.TheHAnanoparticlesarehenceproposedasatherapeutic agentinthetreatmentoftype2diabetespatients [68].HAnanoparticleshavealsobeenproposed fortheoraldeliveryofinsulinasanalternative forinsulininjectionsforthetreatmentofdiabetes.Insulin-loadedHAnanoparticleswerepreparedbyareverseemulsionfreeze-drying methodinsizesofapproximately180nm.The particlesproducedhadveryhighentrapment efficiencyupto95%.ThesepH-sensitivenanoparticlesprovidedtherequiredprotectionfor insulinfromtheacidicenvironmentofthestomachandatthesametimehadnoeffectonthejunctionintegrityofepithelialcells,whichisan importantparametertoconsiderincaseof chronicuseofmedicaments,whichistheusual caseofinsulin.ThepresenceofHAenhanced thetranscellulareffluxofinsulintransported throughCaco-2cellmonolayersviathetranscellularpathways.Theresultsofpermeability througharatsmallintestineshowedthatinsulin transportthroughtheduodenumandileumwas enhanced,andthetherapeuticefficiencyofthe producednanoparticleswasalsoprovedinadiabeticratsmodel [61].

4.8Theranosticandimaging

Forhigherdiagnosticprocedures’efficiency fordifferentdiseases,thereisagreatneedfor instantreal-timeimagingtechniquesthatcould favorablytargetcertainorgansortissuetypes. Oneofthemostcommonlyusedimagingtechniquesinmedicalfieldsisultrasoundimaging. NewechogenicHAnanoparticleshavebeen developedandpresentedasanultra-longacting,liver-specificultrasoundcontrastagent.

Theparticleswerepreparedwiththeoilina wateremulsificationmethodandcontainedperfluoropentaneasanultrasoundgasprecursor. Theparticlesweremorestablecomparedtothe conventionalmicrobubblesusedforultrasound (US)imaging.Theirlongcirculatingproperties allowedforseveralsystemiccirculationsfollowedbyintenseaccumulationattheliver, whichembracedtheirpotentialasatargeting imagingsystemfordiagnosisofliverdiseases. Thetargetabilitytotheliverwasrelatedtoboth thesmallhydrodynamicsizeoftheparticlesas wellasthehighaffinityofHAtotheliver.More interestingly,thepreparedparticleswereableto discriminatebetweenthenormallivertissues andlivercancerinalivertumor-bearingmice model.Thecanceroustissuewasfoundtobe morecompactthanthenormaltissue,andhence lowerUSsignalswereobserved [62]

Ironoxide-basedmagneticnanoparticles bearingHAonthesurfacehavebeendeveloped totargetactivatedmacrophagesforimagingand therapeuticapplicationsininflammatorydiseases.Theparticleswerepreparedby co-precipitationproceduresfollowedbypostsyntheticfunctionalizationwithbothHAand fluorescein.Particlesexpressedasignificantbiocompatibilityandstabilityinserum.Significant uptakebyactivatedmacrophageswasobserved, whichwasHAdependent.Inaddition,themagneticcoreoftheparticleswasfoundtobeonly transientlypresentinthecells,whichindicates lowerrisksoftoxicity.Fluoresceinwasfound tobesuccessfullydeliveredtothecellularnuclei, whichshowedthepotentialofusingthesenanocarriersalsoasatargeteddrugdeliveryand molecularimaging [69].HAnanoparticleswere synthesizedandlabeledwiththenearinfrared dyeCys5.5forimagingpurposes.Forusingthe sameparticlesbutforphotothermalpurposes, anadditionalstepofloadingtheparticleswith CuSwasperformed.Theobtainedparticleshad asizerangeofaround200nm.Thefluorescent signalofCys5.5wasquenchedbythepresence ofCuS.Whentheenzymehyaluronidasewas

addedtotheparticles,thefluorescencesignal wasrestoredinatime-dependentmanner,which suggestedthattheparticlescouldbeusedasa nanoprobetobeactivatedbythehighlyoverexpressedhyaluronidaseinthecanceroustumor areas.Therefore,theCuS-loadedHAnanoparticleswereusedforphotoacousticimaging, utilizingthestrongabsorbanceoftheCuS.After intravenousadministration,theparticlesaccumulatedinthetumorareaovertime,andwhen irradiatedwithalaser,agoodtumorinhibition rateof89.74%wasobservedonday5,indicating thegreatpotentialofthesenanoparticlesfor theranosticapplications [63].

5Clinicalstatus

Asalreadydiscussed,HAseemstobeavery promisingmoleculeforutilizationasavehicleor asanactiveingredientformanydrugdelivery purposes.TheuseofHAasadermalfillerand forintra-articulardeliveryisalreadywellestablished,andseveralproductshavebeenproved safeandapprovedbytheFDAforclinicaluse [70].However,mostofthescientificresearch conductedontheuseofHAandHANPsfor clinicalapplicationsinotherareasisstillinthe phaseoflaboratoryresearchandpreclinical evaluation.Thismaybeduetotheconsideration ofHAasanewchemicalentityeverytimeitis linkedorconjugatedtoadrugoranymolecules forchangingtheirproperties.Duetothecomplexprocessesinvolvedinsuchreactionsand thevariousfactorstobestudied,HAandits derivativesarealsodifficulttoindustrialize [1] However,severalproductshavereachedphase IIandphaseIIIclinicaltrials.AlchemicaoncologyinAustraliahaveproducedseveral HA-basedsystemsforthemanagementof cancersuchasHA-irinotecan,HA-DOX,and HA-5FU.AphaseIclinicaltrialwasconducted on12patients,andHA-Irinotecanhasproved tobesafeandwelltoleratedwhilepreserving

theanticanceractivityofirinotecan [23].Another phaseIItrialwasdoneon41patients,and showedtheadvantagesoftheHAnanoformulationsintermsofprogression-freesurvivaland safety [71].Unfortunately,phaseIIIclinicaltrials didnotachievetheexpectedresultsandthe reasonforthisisnotyetclear [1].Therefore, theindustrializationandwidespreadclinical utilizationofHAandHANPsasdrugcarriers arestillrichareasthatrequiremoreextensive researchandhavealongwaytogo.

6Conclusion

HAisoneofthemostimportantnaturalcomponentsofhumantissues,makingitabiocompatible,biodegradable,andpromisingcarrier forvariousdrugdeliveryapplications.Theuse ofnanotechnologyhasenhancedtoagreat extentthebenefitsachievedfromthisbiomaterial.Thiscouldbebyusingsystemsthatcan activelytargetcertaintissuesorachieve enhancedpenetrationorpermeationthrough certainbodybarriers.Futurestudiesareneeded toenhancethefabricationtechniquesand ensuretherequiredefficacyandsafetyofthe producednanosystems.

References

[1]HuangG,HuangH.Applicationofhyaluronicacidas carriersindrugdelivery.DrugDeliv2018;25:766–72. https://doi.org/10.1080/10717544.2018.1450910.

[2] NecasJ,BartosikovaL,BraunerP,KolarJ.Hyaluronic acid(hyaluronan):areview.VetMed(Praha) 2008;53:397–411.

[3]JinY-J,UbonvanT,KimD-D.Hyaluronicacidindrug deliverysystems.JPharmInvestig2010;40:33–43. https://doi.org/10.4333/KPS.2010.40.S.033

[4]SzeJH,BrownlieJC,LoveCA.Biotechnologicalproductionofhyaluronicacid:aminireview.3Biotech2016;6: https://doi.org/10.1007/s13205-016-0379-9

[5]FallacaraA,BaldiniE,ManfrediniS,VertuaniS.Hyaluronicacidinthethirdmillennium.Polymers 2018;10:701. https://doi.org/10.3390/polym10070701

[6]TripodoG,TrapaniA,TorreML,GiammonaG, TrapaniG,MandracchiaD.Hyaluronicacidandits

derivativesindrugdeliveryandimaging:recent advancesandchallenges.EurJPharmBiopharm 2015;97:400–16. https://doi.org/10.1016/j.ejpb.2015. 03.032

[7]WolfKJ,KumarS.Hyaluronicacid:incorporatingthe biointothematerial.ACSBiomaterSciEng2019. https://doi.org/10.1021/acsbiomaterials.8b01268.

[8]MeroA,CampisiM.Hyaluronicacidbioconjugatesfor thedeliveryofbioactivemolecules.Polymers 2014;6:346–69. https://doi.org/10.3390/polym6020346.

[9]SchanteCE,ZuberG,HerlinC,VandammeTF.Chemicalmodificationsofhyaluronicacidforthesynthesisof derivativesforabroadrangeofbiomedicalapplications.CarbohydrPolym2011;85:469–89. https://doi. org/10.1016/j.carbpol.2011.03.019.

[10]FakhariA,BerklandC.Applicationsandemerging trendsofhyaluronicacidintissueengineering,asadermalfillerandinosteoarthritistreatment.ActaBiomater 2013;9:7081–92. https://doi.org/10.1016/j.actbio. 2013.03.005

[11] FakhariA.Biomedicalapplicationofhyaluronicacid nanoparticles.UniversityofKansas;2012.

[12]KoganG,S ˇ oltesL,SternR,GemeinerP.Hyaluronic acid:anaturalbiopolymerwithabroadrangeof biomedicalandindustrialapplications.BiotechnolLett 2006;29:17–25. https://doi.org/10.1007/s10529-0069219-z

[13]MendichiR,GiacomettiSchieroniA.Fractionationand characterizationofultra-highmolarmasshyaluronan. 2.On-linesizeexclusionchromatographymethods. Polymer2002;43:6115–21. https://doi.org/10.1016/ S0032-3861(02)00586-4

[14]ShiedlinA,BigelowR,ChristopherW,ArbabiS, YangL,MaierRV,WainwrightN,ChildsA,MillerRJ. Evaluationofhyaluronanfromdifferentsources: Streptococcuszooepidemicus,roostercomb,bovinevitreous,and humanumbilicalcord.Biomacromolecules2004; 5:2122–7. https://doi.org/10.1021/bm0498427.

[15]SalwowskaNM,BebenekKA,Za˛dłoDA,WcisłoDziadeckaDL.Physiochemicalpropertiesandapplicationofhyaluronicacid:asystematicreview.JCosmet Dermatol2016;15:520–6. https://doi.org/10.1111/ jocd.12237

[16]TooleBP.Hyaluronanisnotjustagoo!.JClinInvest 2000;106:335–6. https://doi.org/10.1172/JCI10706

[17]KoganG,S ˇ oltesL,SternR,SchillerJ,MendichiR.Hyaluronicacid:itsfunctionanddegradationininvivosystems.In:Studiesinnaturalproductschemistry. Elsevier;2008.p.789–882. https://doi.org/10.1016/ S1572-5995(08)80035-X

[18]HolmesMWA,BaylissMT,MuirH.Hyaluronicacidin human articularcartilage.Age-relatedchangesincontentandsize.BiochemJ1988;250:435–41. https://doi. org/10.1042/bj2500435

[19]AkmalM,SinghA,AnandA,KesaniA,AslamN, GoodshipA,BentleyG.Theeffectsofhyaluronicacid onarticularchondrocytes.JBoneJointSurg(Br) 2005;87-B:1143–9. https://doi.org/10.1302/0301-620X. 87B8.15083

[20]IturriagaV,Va ´ squezB,ManterolaC,delSolM.Roleof hyaluronicacidinthehomeostasisandtherapeuticsof temporomandibularjointosteoarthritis.IntJMorphol 2017;35:870–6. https://doi.org/10.4067/S0717-95022 017000300012.

[21]DechertTA,DucaleAE,WardSI,YagerDR.Hyaluronaninhumanacuteandchronicdermalwounds:hyaluronaninhumandermalwounds.WoundRepair Regen2006;14:252–8. https://doi.org/10.1111/j.17436109.2006.00119.x.

[22]DruryJL,MooneyDJ.Hydrogelsfortissueengineering: scaffolddesignvariablesandapplications.Biomaterials 2003;24:4337–51. https://doi.org/10.1016/S0142-9612 (03)00340-5

[23]ChoiKY,SaravanakumarG,ParkJH,ParkK.Hyaluronicacid-basednanocarriersforintracellulartargeting: Interfacialinteractionswithproteinsincancer.Colloids SurfBBiointerfaces2012;99:82–94. https://doi.org/ 10.1016/j.colsurfb.2011.10.029

[24]LuoY,PrestwichGD.Synthesisandselectivecytotoxicityofahyaluronicacid-antitumorbioconjugate.BioconjugChem1999;10:755–63. https://doi.org/ 10.1021/bc9900338

[25]RosatoA,BanzatoA,DeLucaG,RenierD,BettellaF, PaganoC,EspositoG,ZanovelloP,BassiP.HYTAD1p20:anewpaclitaxel-hyaluronicacidhydrosoluble bioconjugatefortreatmentofsuperficialbladdercancer. UrolOncol2006;24:207–15. https://doi.org/10.1016/j. urolonc.2005.08.020 [ProcAnnuMeetSocUrolOncol May2005PartIIMolApproachesEarlyDetectProgn DetermProsateCancerSystTherProstateCancer AngiogenicTargetsClin.TrialData].

[26] CoradiniD,PellizzaroC,MiglieriniG,DaidoneMG, PerbelliniA.Hyaluronicacidasdrugdeliveryforsodium butyrate:improvementoftheanti-proliferativeactivity onabreast-cancercellline.IntJCancer1999;81:411–6.

[27] CoradiniD,ZorzetS,RossinR,ScarlataI,PellizzaroC, TurrinC,BelloM,CantoniS,SperanzaA,SavaG. Inhibitionofhepatocellularcarcinomasinvitroand hepaticmetastasesinvivoinmicebythehistone deacetylaseinhibitorHA-But.ClinCancerRes 2004;10:4822–30.

[28]KimKS,KimH,ParkY,KongWH,LeeSW,KwokSJJ, HahnSK,YunSH.Noninvasivetransdermalvaccinationusinghyaluronannanocarriersandlaseradjuvant. AdvFunctMater2016;26:2512–22. https://doi.org/ 10.1002/adfm.201504879

[29]OssipovDA.Nanostructuredhyaluronicacid-based materialsforactivedeliverytocancer.ExpertOpin

1.Versatilehyaluronicacidnanoparticlesforimproveddrugdelivery

DrugDeliv2010;7:681–703. https://doi.org/ 10.1517/17425241003730399

[30]LeeH,AhnC-H,ParkTG.Poly[lactic-co-(glycolic acid)]-graftedhyaluronicacidcopolymermicellenanoparticlesfortarget-specificdeliveryofdoxorubicin. MacromolBiosci2009;9:336–42. https://doi.org/ 10.1002/mabi.200800229.

[31]YadavAK,MishraP,JainS,MishraP,MishraAK, AgrawalGP.Preparationandcharacterizationof HA-PEG-PCLintelligentcore-coronananoparticlesfor deliveryofdoxorubicin.JDrugTarget2008;16:464–78. https://doi.org/10.1080/10611860802095494.

[32]ChoiKY,LeeS,ParkK,KimK,ParkJH,KwonIC, JeongSY.Preparationandcharacterizationofhyaluronicacid-basedhydrogelnanoparticles.JPhysChem Solids2008;69:1591–5. https://doi.org/10.1016/j. jpcs.2007.10.052.

[33]YadavAK,MishraP,MishraAK,MishraP,JainS, AgrawalGP.Developmentandcharacterizationofhyaluronicacid-anchoredPLGAnanoparticulatecarriersof doxorubicin.NanomedNanotechnolBiolMed 2007;3:246–57. https://doi.org/10.1016/j.nano.2007. 09.004

[34]ChoiKY,ChungH,MinKH,YoonHY,KimK,ParkJH, KwonIC,JeongSY.Self-assembledhyaluronicacidnanoparticlesforactivetumortargeting.Biomaterials 2010;31:106–14. https://doi.org/10.1016/j.biomaterials. 2009.09.030

[35]DuceppeN,TabrizianM.Factorsinfluencingthetransfectionefficiencyofultralowmolecularweightchitosan/ hyaluronicacidnanoparticles.Biomaterials 2009;30:2625–31. https://doi.org/10.1016/j.biomaterials. 2009.01.017.

[36]NaSJ,ChaeSY,LeeS,ParkK,KimK,ParkJH,KwonIC, JeongSY,LeeKC.StabilityandbioactivityofnanocomplexofTNF-relatedapoptosis-inducingligand.Int JPharm2008;363:149–54. https://doi.org/10.1016/j. ijpharm.2008.07.013.

[37]LuH-D,ZhaoH-Q,WangK,LvL-L.Novelhyaluronic acid-chitosannanoparticlesasnon-viralgenedeliveryvectorstargetingosteoarthritis.IntJPharm2011;420:358–65. https://doi.org/10.1016/j.ijpharm.2011.08.046.

[38]JeongY-I,KimS-T,JinS-G,RyuH-H,JinY-H,JungT-Y, KimI-Y,JungS.Cisplatin-incorporatedhyaluronicacid nanoparticlesbasedonion-complexformation.JPharm Sci2008;97:1268–76. https://doi.org/10.1002/jps.21103

[39]YunYH,GoetzDJ,YellenP,ChenW.Hyaluronan microspheresforsustainedgenedeliveryandsitespecifictargeting.Biomaterials2004;25:147–57. https://doi.org/10.1016/S0142-9612(03)00467-8

[40]KumarA,SahooB,MontpetitA,BeheraS,LockeyRF, MohapatraSS.Developmentofhyaluronicacid-Fe2O3 hybridmagneticnanoparticlesfortargeteddeliveryof peptides.NanomedNanotechnolBiolMed 2007;3:132–7. https://doi.org/10.1016/j.nano.2007. 03.001

[41]PitarresiG,CraparoEF,PalumboFS,CarlisiB, GiammonaG.Compositenanoparticlesbasedonhyaluronicacidchemicallycross-linkedwith α,β-polyaspartylhydrazide.Biomacromolecules2007;8:1890–8. https://doi.org/10.1021/bm070224a.

[42]Berko ´ S,MarodaM,Bodna ´ rM,Ero ˝ sG,HartmannP, SzentnerK,Szabo ´ -ReveszP,KemenyL,BorbelyJ, Csa ´ nyiE.Advantagesofcross-linkedversuslinearhyaluronicacidforsemisolidskindeliverysystems.Eur PolymJ2013;49:2511–7. https://doi.org/10.1016/j. eurpolymj.2013.04.001.

[43]Abdel-MottalebMMA,LamprechtA.Invivoskinpenetrationofmacromoleculesinirritantcontactdermatitis.IntJPharm2016;515:384–9. https://doi.org/ 10.1016/j.ijpharm.2016.10.042

[44]TokudomeY,KomiT,OmataA,SekitaM.Anewstrategyforthepassiveskindeliveryofnanoparticulate, highmolecularweighthyaluronicacidpreparedbya polyioncomplexmethod.SciRep2018;8:2336. https://doi.org/10.1038/s41598-018-20805-3

[45]SakulwechS,LourithN,RuktanonchaiU, KanlayavattanakulM.Preparationandcharacterization ofnanoparticlesfromquaternizedcyclodextrin-grafted chitosanassociatedwithhyaluronicacidforcosmetics. SpecIssuePharmInnov2018;13:498–504. https://doi. org/10.1016/j.ajps.2018.05.006

[46]CarneiroJ,D € oll-BoscardinPM,FiorinBC,NadalJM, FaragoPV,dePaulaJP.Developmentand characterizationofhyaluronicacid-lysinenanoparticles withpotentialasinnovativedermalfilling.Braz JPharmSci2016;52:645–51. https://doi.org/10.1590/ s1984-82502016000400008.

[47]PereiraGG,DetoniCB,BalducciAG,RondelliV, ColomboP,GuterresSS,SonvicoF.Hyaluronatenanoparticlesincludedinpolymerfilmsfortheprolonged releaseofvitaminEforthemanagementofskin wounds.EurJPharmSci2016;83:203–11. https://doi. org/10.1016/j.ejps.2016.01.002

[48]MorgantiP,PalomboM,TishchenkoG,YudinV, GuarneriF,CardilloM,DelCiottoP,CarezziF, MorgantiG,FabriziG.Chitin-hyaluronannanoparticles: amultifunctionalcarriertodeliveranti-agingactiveingredientsthroughtheskin.Cosmetics2014;1:140–58. https://doi.org/10.3390/cosmetics1030140

[49]KongM,ChenXG,KweonDK,ParkHJ.Investigationson skinpermeationofhyaluronic acidbasednanoemulsionas transdermalcarrier.CarbohydrPolym2011;86:837–43. https://doi.org/10.1016/j.carbpol.2011.05.027

[50]MorgenM,TungD,BorasB,MillerW,MalfaitA-M, TortorellaM.Nanoparticlesforimprovedlocalretentionafterintra-articularinjectionintothekneejoint. PharmRes2013;30:257–68. https://doi.org/10.1007/ s11095-012-0870-x.

[51]LeeH,MokH,LeeS,OhY-K,ParkTG.Target-specific intracellulardeliveryofsiRNAusingdegradablehyaluronicacidnanogels.JControlRelease2007;119:245–52. https://doi.org/10.1016/j.jconrel.2007.02.011.

[52]ChoiKY,MinKH,NaJH,ChoiK,KimK,ParkJH, KwonIC,JeongSY.Self-assembledhyaluronicacid nanoparticlesasapotentialdrugcarrierforcancertherapy:synthesis,characterization,andinvivobiodistribution.JMaterChem2009;19:4102. https://doi.org/ 10.1039/b900456d

[53]HanHS,ChoiKY,KoH,JeonJ,SaravanakumarG, SuhYD,LeeDS,ParkJH.Bioreduciblecore-crosslinked hyaluronicacidmicellefortargetedcancertherapy. JControlRelease2015;200:158–66. https://doi.org/ 10.1016/j.jconrel.2014.12.032

[54]LeeJ-Y,ChungS-J,ChoH-J,KimD-D.Iodinatedhyaluronicacidoligomer-basednanoassembliesfor tumor-targeteddrugdeliveryandcancerimaging. Biomaterials2016;85:218–31. https://doi.org/10.1016/ j.biomaterials.2016.01.060

[55]ThomasRG,MoonM,LeeS,JeongYY.Paclitaxelloaded hyaluronicacidnanoparticlesfortargetedcancer therapy:Invitroandinvivoanalysis.IntJBiol Macromol2015;72:510–8. https://doi.org/10.1016/j. ijbiomac.2014.08.054.

[56]ChoiKY,MinKH,YoonHY,KimK,ParkJH,KwonIC, ChoiK,JeongSY.PEGylationofhyaluronicacidnanoparticlesimprovestumortargetabilityinvivo.Biomaterials 2011;32:1880–9. https://doi.org/10.1016/j.biomaterials. 2010.11.010.

[57]LeeGY,KimJ-H,ChoiKY,YoonHY,KimK,KwonIC, ChoiK,LeeB-H,ParkJH,KimI-S.Hyaluronicacid nanoparticlesforactivetargetingatherosclerosis. Biomaterials2015;53:341–8. https://doi.org/10.1016/j. biomaterials.2015.02.089

[58]BeldmanTJ,SendersML,AlaargA,Perez-MedinaC, TangJ,ZhaoY,FayF,DeichmollerJ,BornB, DesclosE,vanderWelNN,HoebeRA,KohenF, KartvelishvilyE,NeemanM,ReinerT,CalcagnoC, FayadZA,deWintherMPJ,LutgensE,MulderWJM, KluzaE.Hyaluronannanoparticlesselectivelytarget

plaque-associatedmacrophagesandimproveplaque stabilityinatherosclerosis.ACSNano2017;11:5785–99. https://doi.org/10.1021/acsnano.7b01385

[59]delaFuenteM,SeijoB,AlonsoMJ.Novelhyaluronic acid-chitosannanoparticlesforoculargenetherapy. InvestOphthalmolVisSci2008;49:2016–24. https:// doi.org/10.1167/iovs.07-1077

[60]KalamMA.Thepotentialapplicationofhyaluronicacid coatedchitosannanoparticlesinoculardeliveryof dexamethasone.IntJBiolMacromol2016;89:559–68. https://doi.org/10.1016/j.ijbiomac.2016.05.016.

[61] HanL,ZhaoY,YinL,LiR,LiangY,HuangH,PanS, WuC,FengM.Insulin-loadedpH-sensitivehyaluronic acidnanoparticlesenhancetranscellulardelivery. AAPSPharmSciTech2012;13:836–45. https://doi.org/ 10.1208/s12249-012-9807-2.

[62]MinHS,SonS,LeeTW,KooH,YoonHY,NaJH,ChoiY, ParkJH,LeeJ,HanMH,ParkR-W,KimI-S,JeongSY, RheeK,KimSH,KwonIC,KimK.Liver-specificand echogenichyaluronicacidnanoparticlesfacilitatingliver cancerdiscrimination.AdvFunctMater2013;23:5518–29. https://doi.org/10.1002/adfm.201301131

[63]ZhangL,GaoS,ZhangF,YangK,MaQ,ZhuL.Activatablehyaluronicacidnanoparticleasatheranosticagent foroptical/photoacousticimage-guidedphotothermal therapy.ACSNano2014;8:12250–8. https://doi.org/ 10.1021/nn506130t

[64]YeoY,ItoT,BellasE,HighleyCB,MariniR,KohaneDS. Insitucross-linkablehyaluronanhydrogelscontaining polymericnanoparticlesforpreventingpostsurgical adhesions.AnnSurg2007;245:819–24. https://doi. org/10.1097/01.sla.0000251519.49405.55

[65]RamzyL,NasrM,MetwallyAA,AwadGAS.Cancer nanotheranostics:areviewoftheroleofconjugated ligandsforoverexpressedreceptors.EurJPharmSci 2017;104:273–92. https://doi.org/10.1016/j.ejps.2017. 04.005.

[66]PlattVM,SzokaFC.Anticancertherapeutics:targeting macromoleculesandnanocarrierstohyaluronanor CD44,ahyaluronanreceptor.MolPharm2008;5:474–86. https://doi.org/10.1021/mp800024g.

[67]AlmalikA,KarimiS,OuastiS,DonnoR,WandreyC, DayPJ,TirelliN.Hyaluronicacid(HA)presentationasa tooltomodulateandcontrolthereceptor-mediateduptake ofHA-coatednanoparticles.Biomaterials2013;34:5369–80. https://doi.org/10.1016/j.biomaterials.2013.03.065

[68]RhoJG,HanHS,HanJH,LeeH,NguyenVQ,LeeWH, KwonS,HeoS,YoonJ,ShinHH,LeeE,KangH, YangS,LeeEK,ParkJH,KimW.Self-assembled hyaluronicacidnanoparticles:implicationsasa

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.