Drought early warning and forecasting: theory and practice 1st edition chris funk - Download the ful

Page 1


https://ebookmass.com/product/drought-early-warning-andforecasting-theory-and-practice-1st-edition-chris-funk/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Forecasting with Artificial Intelligence: Theory and Applications Mohsen Hamoudia

https://ebookmass.com/product/forecasting-with-artificialintelligence-theory-and-applications-mohsen-hamoudia/

ebookmass.com

Global Drought and Flood : Monitoring, Prediction, and Adaptation 1st Edition Huan Wu

https://ebookmass.com/product/global-drought-and-flood-monitoringprediction-and-adaptation-1st-edition-huan-wu/

ebookmass.com

Bayesian Optimization: Theory and Practice Using Python 1st Edition Peng Liu

https://ebookmass.com/product/bayesian-optimization-theory-andpractice-using-python-1st-edition-peng-liu/

ebookmass.com

Calculus for Computer Graphics, 3rd Edition John Vince

https://ebookmass.com/product/calculus-for-computer-graphics-3rdedition-john-vince/

ebookmass.com

The Milne Papers: Volume III: The Royal Navy and the American Civil War, 1862–1864 John Beeler

https://ebookmass.com/product/the-milne-papers-volume-iii-the-royalnavy-and-the-american-civil-war-1862-1864-john-beeler/

ebookmass.com

(eTextbook PDF) for Financial Management: Core Concepts 4th Edition by Raymond Brooks

https://ebookmass.com/product/etextbook-pdf-for-financial-managementcore-concepts-4th-edition-by-raymond-brooks/

ebookmass.com

Researching and Writing on Contemporary Art and Artists: Challenges, Practices, and Complexities 1st ed. Edition

Wiley

https://ebookmass.com/product/researching-and-writing-on-contemporaryart-and-artists-challenges-practices-and-complexities-1st-ed-editionchristopher-wiley/ ebookmass.com

Business Ethics: Best Practices for Designing and Managing Ethical Organizations 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/business-ethics-best-practices-fordesigning-and-managing-ethical-organizations-2nd-edition-ebook-pdf/ ebookmass.com

Silhouette of a Spinster and Other Seductions: A Steamy Historical Romance Novel (Art of Love Book 4) Charlie Lane

https://ebookmass.com/product/silhouette-of-a-spinster-and-otherseductions-a-steamy-historical-romance-novel-art-of-lovebook-4-charlie-lane/

ebookmass.com

Guías Espirituales Silvia Hill

https://ebookmass.com/product/guias-espirituales-silvia-hill/

ebookmass.com

DroughtEarlyWarning andForecasting

DroughtEarlyWarning andForecasting TheoryandPractice

CHRISFUNK,PhD

UnitedStatesGeologicalSurveyEarthResources ObservationandScienceCenter(USGSEROS),Sioux Falls,SouthDakota,U.S.&ClimateHazardsCenter, DepartmentofGeography,UniversityofCalifornia, SantaBarbara,California,U.S.

SHRADDHANANDSHUKLA,PhD

ClimateHazardsCenter,DepartmentofGeography, UniversityofCalifornia,SantaBarbara,California,U.S.

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-814011-6

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: LouisaMunro

EditorialProjectManager: MichelleW.Fisher

ProductionProjectManager: KumarAnbazhagan

CoverDesigner: ChristianJ.Bilbow

TypesetbyMPSLimited,Chennai,India

Dedication

WewouldlikethankSabina,Leah,andMithileshfortheirongoingsupportandpatience.JimVerdin’sdecadesofcommitmenttoimproved droughtearlywarningprovidedcriticalinspirationforthiswork.

1.Droughts,governance,disasters,andresponsesystems1

1.1 20th-centurydroughts disastersandtheElNiño SouthernOscillation7

1.2 21st-centurydroughts developingeffectiveearlywarningsystems16 References19

2.Droughtearlywarning definitions,challenges,andopportunities23

2.1 Definitions supplyanddemand,themanyflavorsof “dry” 23

2.2 Droughts whenwaterdemandexceedswatersupply25

2.3 Slow-onsetdisasters26

2.4 Quantifyingdroughtmagnitudeinmultipledimensions27

2.5 Impact-basedsectoralordisciplinarydefinitionsofdrought30

2.6 ContrastingrecentU.S.andsouthernAfricandroughts35

2.7 Chapterreview38 References41

3.Droughtearlywarningsystems43

3.1 TheU.S.NationalIntegratedDroughtInformationSystem43

3.2 TheFamineEarlyWarningSystemsNetwork50

3.3 FamineEarlyWarningSystemsNetworkFoodSecurityOutlooks52

3.4 Multistageearlywarning anEthiopiaexample54 References56 Furtherreading58

4.Toolsofthetrade1 weatherandclimateforecasts61

4.1 Examplesofoperationaldroughtforecastingsystems61

4.2 Methodsofweatherandclimateforecasts65

4.3 Sourcesofweatherandclimateforecastskill68

4.4 Summary69 References70 Furtherreading70

5.Toolsofthetrade2 landsurfacemodels71

5.1 Introduction71

5.2 Anoverviewoflandsurfacemodels72

5.3 Operationallandsurfacemodels baseddroughtmonitors74

5.4 Limitationsofdroughtmonitoringusinglandsurfacemodels79

5.5 Summary80 References80

6.Toolsofthetrade3 mappingexposureandvulnerability83

6.1 Exposureandvulnerability83

6.2 Conclusion98 References99

7.Theory understandingatmosphericdemandinawarming world101

7.1 Background101

7.2 Referenceevapotranspirationresistanceterms106

7.3 Definingreferencecropevapotranspiration107

7.4 TheFAO56Penman Monteithformulation107

7.5 Temperaturealoneisinsufficienttoestimatereferenceevapotranspiration109

7.6 ReferenceevapotranspirationdecompositionsandMorton’ s complementaryhypothesis110

7.7 Spatiotemporalvariationsinreferenceevapotranspirationandactual evapotranspiration,andtheirrelationshiptovulnerabilityandexposure111 References115

8.Theory indicesformeasuringdroughtseverity117

8.1 Introduction117

8.2 Lengthofrecordandnonstationarysystematicerrors123

8.3 Percapitawateravailability131

8.4 Summaryanddiscussion131 References132

9.Sourcesofdroughtearlywarningskill,stagedprediction systems,andanexampleforSomalia135

9.1 Theoceanasasourceofskill137

9.2 Skillfrompersistentatmosphericconditions140

9.3 Predictiveskillfromthelandsurface142

9.4 Stagedopportunitiesforpredictionsupportdefense-in-depth145

9.5 Summary:stagedstrategiesforeffectiveearlywarning157

9.6 Conclusion158 References158

10.Practice evaluatingforecastskill161

10.1 Introduction161

10.2 Deterministicforecastskillscores162

10.3 Probabilisticforecastskillscores167

10.4 Summary174 References175

11.Practice integratingobservationsandclimateforecasts177

11.1 Approach177

11.2 Bias-correctionanddownscalingmethods179

11.3 Anexample:TheNASAHydrologicalandForecastAnalysisSystem183

11.4 Summary184 References185

12.Practice actionableinformationanddecision-makingnetworks187

12.1 Actionableinformationandthethreepillars191

12.2 Actionableinformationanddecision-makingnetworks anexample fromfamineearlywarninginEastAfrica195

12.3 Conclusion205 References206

13.Finalthoughts209 References213

Foreword

Droughtisamongthemostdamaging,andleastunderstood,ofall “natural” hazards.Althoughrecentdrought-relateddisastersfromSomalia,to CapeTown,toCalifornia,havecontributedtoasenseofurgency, droughtshavenotreceivedcommensurateattentionwithinthehazards researchandpractitionercommunities,unlikeeventssuchashurricanes, floods,andearthquakes,whichhavedirectandimmediatelyvisible impacts.Mostcountries,regions,andcommunitiescurrentlymanage droughtriskthroughreactive,crisis-drivenapproaches.Droughtthus remainsa “hidden” hazardandyetcanspantimescalesfromafewmonths andseasonstodecades,andspatialscalesfromafewsquarekilometersto entireregions,withbillionsofdollarsandthousandsoflivesandlivelihoodsaffectedorlost.Despiteprogress,therearestillimportantlimitationstoourunderstandingandabilitytopredictvariousaspectsof drought,includingonset,duration,severity,recovery,andrecurrence.

Ashasbeennoted,muchisassumedaboutthevulnerabilityandcapacityofthoseaffectedbyenvironmentalhazards.Inthecontextofachangingclimate,muchisalsoassumedaboutthereliabilityofprojectionsand, asimportantly,aboutourunderstandingofpresent-dayvariabilityand howfeaturessuchasENSOmightbechanging.Theassumptionsthatare beingmadebybothresearchersandpractitionerswarrantamorecareful andupdatedexplicationofthestateofknowledge,uncertainties,challenges,andbenefits.Thisvolumeisamuchneededandtimelycomplementtothelong-standingchallengeofunderstandingthesocio-ecological conditioningfactorsofdrought-relatedrisk,framedundertheactionorientedconceptof “earlywarning.” Aselucidatedinthetext,fasterrates ofenvironmentalchange,includingcompoundingeffectsofheatstress/ evaporativedemand,andtheincreasinglycomplexdevelopmentandecologicalpathwaysthroughwhichdroughtimpactsfilter,maydrivesurprises andrapidtransitionsinwhichearlywarningsofemergingthresholdsare increasinglycritical.Improvingpredictionsofthefulllifecycleof droughtsrequiresabetterunderstandingofhowwater,vegetation,and energysignalspropagatethroughtheocean atmosphere landsystem, sheddinglightonthepredictabilityofthevariousphysicalfacetsof drought,includingprecipitation,temperature,soilmoisture,snow,and runoff.

Aslongrecognized,andfullyexploredinthisvolume,aforecastby itselfisnotanearlywarningsystem.Inaproactiveframinganearlywarningsysteminvolvesmuchmorethandevelopmentanddisseminationofa forecast;itincludesthesystematiccollectionandanalysisofrelevantinformationabout,andcomingfrom,areasofimpendingriskthat(1)informs thedevelopmentofstrategicresponsestoanticipatecrisesandcrisisevolution;(2)providescapabilitiesforgeneratingproblem-specificriskassessmentsandscenarios;and(3)effectivelyworkswithandcommunicates optionstocriticalactorsforthepurposesofdecision-making,preparedness,andmitigation.Successfuldroughtinformationsystemshavemultiple subsystemssupportedbyresearchinintegratedriskassessment,communication,anddecisionsupport,ofwhichearlywarningisacomponentand output.Thisvolumebringstobeartheexperienceoftheauthors,who havebeenengagedinearlywarningsystemdevelopmentsincetheEast Africandroughtsofthemid-1980s,andsystematicallyscrutinizesthe “ pros ” and “ cons ” ofexistingandproposedsystems,distillinglessonsfrom pastpractices,landmarkdroughtevents,andadvancesinthefield.

Theauthorscapturekeyaspectsofearlywarningdesign,includingthe importanceofconvergenceofevidence,placingmultipleindicatorswithin consistenttriggeringframeworks,andtheconfoundingfactorsofpopulation,technology,andenvironmentalchange.Sourcesofphysicalinformationasnotedinthetextarederivedfromsatellitedata,insitu observations,landsurfacesimulation,andmodel-basedforecastskill.Key totheproductiveuseofsuchinformationwithinearlywarningsisclearer delineationofsourcesofuncertainty,theirreliabilityatdifferenttimesof theyear,andtheintegrationofdiverseenvironmentaldatasetsinto coherentdatabasessuchastheCHIRPS.

Astheauthorsnote,thevolumeaimsatpragmaticgoals toprovidea readable,accessibleresourcethatisusefulinbothaclassroomandin national,meteorological,andhydrologicalagencies.Severalstudieshave identifiedthecharacteristicsofpredecisionalpracticesthatleadtoeffective communicationoverthelongterm.Keyamongthesecharacteristicsisthe needtobringthedeliverypersons(e.g.,extensionpersonnelwithinlocal communitiesandtheresearchcommunity)toanunderstandingofwhat hastobedonetotranslatecurrentinformation,reliably,intolocalcontexts,aswellastheneedtodevelop,support,andtrainacadreofprofessionalswhoviewtheroleoflinkingscience,policy,andpracticesasa coregoaloverthelongterm.Thechaptersonpracticeonactionable informationanddecision-makingnetworksprovideanexcellentgroundingforthetrainingofsuchprofessionals.

Theauthorsareabundantlyclearthatthechaptersdonotpresumeto coverallaspectsofdroughtriskandresiliencemanagement.Theychoose amoremodestgoal,highlightingthescienceandobservationsthatunderpinactionableimpactsassessmentsandearlywarning.Thedepthtowhich theseissuesarepursuedinthevolume,whilemaintainingreadabilityand accessibility,isimpressiveandverymuchwelcomed.Thisbookisan importantcontributiontothechallengeofdrawinginformationalongthe weather climatecontinuum,frominternalatmosphericvariabilityto modesofclimate.Thechaptersillustratetheneedtonotonlyunderstand anddesigninformationsystems “for” changebutalsotodesignrobust science-basedsystemsthathelpusnavigate “through” change.Morethan usefulorevenusableinformationisneeded;whatisrequiredarepathways toimproveddecisionsthatthreadthroughdisasterriskreduction,adaptation,sustainability.Droughtinformationsystemsalongthiscontinuumare investmentsratherthan “costs.” Suchaninformeddroughtearlywarning systemwouldnotbesimplytranslationalbut,bydesign,transformative. Thisbookprovidesrobustandneededguidanceonbuildingsuchapath. Thechaptersinthisvolumewillbevitaltoolsinthequiverofeffective earlywarningpractitionersandresearchersandforprovidingaspacein whichthesecommunitiescanworktogether.

NOAAPhysicalSciencesLaboratory,Boulder,CO,U.S.

Preface

Wearepleasedtosharewithyou DroughtEarlyWarningandForecasting: TheoryandPractice.Thisbookisintendedtoassistbothstudentsand droughtearlywarningpractitionersinunderstanding,developing,and applyingdroughtearlywarningsystems.Everyyeardroughtsimpactmillionsofpeopleandcauselossestotalingbillionsofdollars.Asourpopulationandeconomiesexpand,sogrowsourexposuretodroughtrisk. Increasingwaterdemandsandtheimpactsofclimatechangekeepacceleratingtheneedforeffectivedroughtmanagementanddroughtearlywarning.Focusingonthissecondchallenge,thismanuscriptgatherstogether manyofthedifferentcomponentsofdroughtearlywarningsystems.The introductorychapters(Chapters1 3)describethehistoricnatureof droughtswhileintroducingdroughtearlywarningandearlywarningsystems.Droughtsarecomplexslow-onsetmultiscaledisastersthatimpact manydifferentsectors,anddroughtearlywarningsystemsmustbecorrespondinglysophisticated.Tothisend,thenextthreechapters(Chapters 4 6)describekey “toolsofthetrade” (weatherandclimateforecasts, landsurfacemodels,andmapsdescribingexposureandvulnerability).We thendescribe(Chapters7 8)twotheoreticalframeworkscentralto understandingandmonitoringdroughts:atmosphericwaterdemandand droughtindices.Theremaining “practice” chapters(Chapters9 12)of thebookaddressvariousaspectsrelatedtodevelopingintegratedsystems. Whilesomeofthismaterialhasbeendrawnfromourmanyyearsof experiencewiththeFamineEarlyWarningSystemsNetwork,thetechnicaldescriptions,generalstrategies,andlessonslearnedshouldbeapplicable inmanydroughtearlywarningsettings.

Droughtearlywarningpractitionershaveauniqueopportunitytouse theirskillstobenefitsociety,guardingthelivesandlivelihoodsofhundredsofthousandsorevenmillionsofpeople.Theseskillswillbeputto thetestinthecomingcentury,andwehopethatthisaccessible “ onestop-shop” discussionofdroughtearlywarningsciencewillprove valuable.

Acknowledgments

ThisworkwassupportedbytheU.S.GeologicalSurveyDriversof DroughtandtheFamineEarlyWarningSystemsNetworkprograms, U.S.GeologicalSurvey(USGS)cooperativeagreement#G14AC00042, UnitedStatesAgencyforInternationalDevelopment(USAID)cooperative agreement#72DFFP19CA00001,andNationalAeronauticsandSpace Administration(NASA)grant#NNX16AM02G.USGSeffortsweresupportedbyaParticipatingAgencyProgramAgreementwithUSAID/FFP. Dr.ShuklaalsoacknowledgesNationalOceanicandAtmospheric Administration(NOAA)RegionalIntegratedSciencesandAssessments (RISA)'ssupportthroughtheCalifornia NevadaApplicationsProgram (Grantnumber:NA17OAR4310284).

ThekeeneditorialassistanceofJulietWay-Henthorne,theClimate HazardsCenter’sSciencewriter,wasabsolutelyvitaltothecompletion andimprovementofthisbook.Shehastirelesslycorrectedourmanymistakesandhelpedusmeldtheseindividualchaptersintoacohesivewhole. Wecouldnothavefinishedthisbookwithoutherunstintingsupportand technicalexcellence.SandraCooper,theU.S.GeologicalSurveyBureau ApprovingOfficial,providedextremelyvaluablesuggestionsthatgreatly improvedtheoverallmanuscript.WearealsoindebtedtoRoger Pulwartyforhisthoughtfulforeword,whichhelpssituatethisbookinthe broaderdroughtriskmanagementlandscape.LauraHarrisonkindlyprovidedmaterialforChapter6,ToolsoftheTrade4 MappingExposure andVulnerability.Wewouldalsoliketothankthemanymembersor associatesoftheClimateHazardsCenter,whohaveprovidedinspiration orchapterreviews,particularly,PetePeterson,TamukaMagadzire,Jim Verdin,AmyMcNally,RachelGreen,LauraHarrison,andNatashaKrell allkindlyprovidedinternalreviewsofselectedchapters.Anyuseoftrade, firm,orproductnamesisfordescriptivepurposesonlyanddoesnotimply endorsementbytheU.S.Government.

CHAPTER1

Droughts,governance,disasters, andresponsesystems

Historyissomethingthatveryfewpeoplehavebeendoingwhileeveryoneelse wasplowingfieldsandcarryingwaterbuckets.

Sapiens,YuvalHarari,p.101

HistoryforuswaitssilentlyinthebasementoftheNationalMuseum ofEthiopia,inAddisAbaba(Fig.1.1).There,Lucy,akaAL288-1,rests,as shehasrestedforsome3.2millionyears.Amemberof Australopithecus afarensis,diminutiveLucywalkedacrossthehot,lowAfarTrianglein northeasternEthiopiaduringthePlioceneEpoch,ormorespecifically, duringthemid-Pliocenewarmperiod.TheEarthatthistimewas extremelywarm,withcarbondioxidelevelsonparwiththosetoday (Raymoetal.,1996).High-resolutionpollendatafromHadar,Ethiopia,

Figure1.1 SkullandpelvisofLucy,takenattheNationalMuseumofEthiopia,Addis Ababa. ChrisFunk.

whereLucywasfound,showsalargebiomeshift,withupto5°Cof coolingandalargeincreaseinannualrainfalloccurringbetween3.4and 2.9millionyearsago(Bonnefilleetal.,2004).Thisclimateshiftmayhave helpedstimulatetheevolutionofbipedalproto-humans.Lucy’sbones representaspeciesintransition.Theshapeofherkneesandpelvisindicate bipedallocomotion,andthelengthofherarmswasrelativelyshortand herlegsrelativelylong,comparedtochimpanzees.Herbrain,however, wasquitesmall.

Therearenumeroustheoriesastowhyhumansevolvedbipedal motion.Bipedallocomotionismoreefficient,andshiftingforestsand fragmentedlandscapesmayhaverewardedthisinnovation.Bipedalism mayhavemadeiteasiertogivebirthtobig-brainedbabies(Falketal., 2012).Bipedalcreatureshavetheirhandsfree,enablingthemtobetter produceandmanipulatetools.This,inturn,mayhaveledtoamore protein-richdiet,potentiallyleadingtoanincreaseinbrainsize(Johanson andEdgar,1996).

By2.5millionyearsago,ourhumanancestorswereusingsimpletools. Ourbrainshadgrownprodigiously,necessitatingtheearlybirthofchildrenandthuslongerperiodsofchildhooddependency.Thismayhave necessitatedstrongsocialnetworksandlanguagedevelopment.Asingle motherwouldhavehadalotoftroubleforagingforfoodandtakingcare oflittlechildren.Theearlybirthofchildren,inturn,mayhavecreated uniqueopportunitiesforeducation,innovation,andculturalevolution. Tooluseandcommunicationmayhavehelpedmovehumansintoatop predatorpositionby400,000yearsago.Itwasthenthatsomehuman bandswerehuntinglargegameonaregularbasis.By300,000yearsago, wewereusingfireonaregularbasis.Firekilledgermsandparasitesand madefoodeasiertochewanddigest,allowingourancestorstoeata widervarietyoffood.Easierdigestionmayhaveledtoshorterintestinal tracksinSapiensandNeanderthals(Gibbons,2007),reducingenergyconsumption,helpingusfuelourmassivebrains.Thesehugebrains,combinedwithoursocialproclivities,helpedleadtoevolutionarysuccess,and out-migrationfromAfricaabout70,000yearsago(Harari,2015).

HumanitymovedoutofAfrica(Fig.1.2)andspreadacrossAsiaand Europe,with Homosapiens supplantingNeanderthals,perhapsduetotheir advantageouscommunicationskillsandsocietalcoordination.These advantageshelpedtriggerthecognitiverevolution,whichallowedusto formlargecommunitiesandlearn,teach,andengageincomplexbehaviors.Slowly,thesecoordinationskillsgrew,untilearlyhumanswereable

Figure1.2 Expansionof Homosapiens outofAfrica. ChrisFunk,afterMap1in SapiensABriefHistoryofHumankind,YuvalNoahHarari.

Figure1.3 Sophisticatedhunter gatherersbuiltatemplebeforeagriculture. Wikimedia.

toassemblecomplextempleslikeGöbekliTepe,whichisincurrent-day southernTurkeyneartheSyrianborder(Fig.1.3).Builtaround10,000 BCE,thisNeolithic(StoneAge)templepredatedagriculture.Immense6m,20-tonT-shapedstonemegalithswerefittedintosocketshewninthe bedrocktoformcircles.Intricatecarvingsofbulls,foxes,cranes,andpeopleadornpillarsandtotems.GöbekliTepesupportstheearlyimportance ofreligionandsocialstructureinhumandevelopment.Beforeagriculture, pottery,writing,metallurgy,ortheinventionofthewheel,Neolithic hunterandgatherersbuiltcomplexsocietiesandbuildings.

Soon,however,agriculturewouldchangetheworld(Fig.1.4).Inthe MiddleEast’sFertileCrescent,wheatandgoatsweredomesticatedby about9000BCE.c.7000BCE,independentagricultureinnovationsled tothedomesticationofmilletincurrent-dayChina.By4000BCEearly varietiesofmaize,beans,andsquashwerebeingraisedinCentral America.Insub-SaharanAfrica,agricultureemergedintheEthiopian highlands,WestAfrica,andtheSahel(Diamond,1997).Taro,bananas, andsugarcaneweredomesticatedinNewGuineawhileSouthAmericans begantoharvestpotatoesandmanioc.InthesoutheasternUnitedStates, NativeAmericansraisedsunflowers,sumpweed,andgoosefoot.

Withtheriseofagriculturecameanincreasedsocietalsensitivity todrought.Withhighmobilityandlowpopulationdensities,earlier hunter gathererpopulationswereprobablyrelativelyresilienttomost

Figure1.4 Sitesofearlyagriculturaldevelopment. ChrisFunk,aftermapinSapiensA BriefHistoryofHumankind,YuvalNoahHarari.

climaticextremes.Theycouldmovetowardmoreabundantrains,unlike thefarmersofmorerecenttimes.Thespatialcompassofearlyagriculturalistsextendedtothefewmilesaroundtheirhabitations.Villagesandcitieslivedordiedbasedonthestrengthoftheirharvests.Forexample,a studyofdroughtstressvariabilityinancientNearEasternagriculturalsystemsfinds “Theemergenceanddeclineofearlycivilizationsisintrinsically tiedtoagriculturalsurplusproduction,eitherenablingafocusontechnologicalprogressandtheaccumulationofwealthor,inthecaseofinsufficientyield,leadingtohunger,violence,andwar(Riehletal.,2014).”

Oneofthemostseverecrisesinancienttimeswasthe4220BP(2200 BCE)Holoceneclimateevent,whichwasassociatedwithseverearidityin NorthAfrica,Egypt,theMiddleEast,theIndianContinent,andNorth America.Thisaridificationeventmayhavehelpedtriggerthedemiseof theOldKingdominEgypt,theIndusValleyCivilizationinIndia,the AkkadianEmpireinMesopotamia,andtheLiangzhucultureinpresentdayChina.

Themostsuccessfulearlycivilizationssupporteddensepopulationsby enablingthemtodevoteresourcestoreligious,administrative,military, artistic,andindustrialactivities.Droughtsposedanexistentialthreatto thesesocieties.Inresponse,variouswaterandagriculturalmanagement practicesweredeveloped.InancientAssyria,granariesandartificialirrigationhelpedovercomefoodshortages(Sołtysiak,2016).Inancient Mesopotamia,whereHammurabiestablishedhisfamouscodein1754 BCE,theredevelopedasystemofcommunalcanalsandirrigationworks andalegalframeworktogoverntheseworks(Kornfeld,2009).Inancient Egypt,pharaohseffectivelycontrolledequitablewaterdistributionsystems (primarilydrivenbymanpower)thatpromotedsocialstabilitywhileprovidingsuppliestocitiesandtowns(Driaux,2016).InancientIndia, “deficienciesofrainfallwereovercomebymeansofoneortheotherformof irrigation rivers,canals,lakes,tanks,wells,artificialreservoirs,pondsand pools” (Date,2008).

Giventheacknowledgedwaterdependenciesofancientagricultural societies,itcomesasnosurprisethattheyalsoshowedakeeninterestin droughtearlywarning.Earlyagrarianpopulationsgrewrapidlyandcould onlybesustainedwithextensiveeffortandstableaccesstowater.Inhistorictimes,agriculturallandsmadeupasmallfractionoftheEarth’sland surface,2%inCE1400(Marks,2006).Theselandsneededtobe defended,andwhendroughtstruck,therewaslittlemobility,andthe poormustmakedo.

AsdescribedbyYuvalHarari:

Fromtheveryadventofagriculture,worriesaboutthefuturebecamemajor playersinthetheatreofthehumanmind.Wherefarmersdependedonrainsto watertheirfields,theonsetoftherainyseasonmeantthateachmorningfarmersgazedtowardsthehorizon,sniffingthewindandstrainingtheireyes.Isthat acloud?Wouldtherainscomeontime?Wouldtherebeenough?Wouldviolatestormswashtheseedsfromthefieldsandbatterdowntheseedlings? Meanwhile,inthevalleysoftheEuphrates,Indus,andYellowRivers,otherpeasantsmonitored,withnolesstrepidation,theheightsofthewater.

Sapiens,YuvalHarari,p.101

Ouragriculturalfoundationshaveguaranteedastrongdependenceon adequateprecipitationthatremainswithustoday.InCE1400theEarth supportedabout360millionpeople,whereasnowitsupportsabout7.6 billion a21-foldincrease.Todaywefarmabout12%oftheEarth’sicefreesurface(Ramankuttyetal.,2008).Inmanypartsoftheworld,technologyhasdramaticallyincreasedyieldsandalteredfarmingpractices.In others,poorfarmersstillsowandreapmostlybyhand.Inallofthese regions,however,cropsstillrequirewater.Technologycandolittleto overcomecropwaterdeficits,and80%ofourcroplandsarestillunirrigated.Watercanbemoved,butthisisoftenexpensiveandenergyintensive.Inmanypartsofthedevelopingworld,furthermore,hydropower hasemergedasacriticalsourceofenergy,avaluablebutpotentiallyfragile alternativetofossilfuels.Commoditymarkets,bothlocalandglobal,can exposemillionsofpoorpeopletopriceshocks,sometimesoriginating fromdroughtsthousandsofmilesaway.Thepoorestofthesepoor,often subsistingon100or200USDayear,typicallyspendmorethanhalftheir incomesonfood;whenpricesjumpup,theymustoftendowithout food.In2018thecityofCapeTowninSouthAfricafaced “DayZero,” orthedaywhenthecitywasexpectedtorunoutofwater.Suchcrises arebecomingincreasinglycommon.In2015and2016,Harare, Zimbabwe,grapplingwiththeimpactofanElNiño-relateddrought, facedsimilarconditions,asdidSaoPaulo,Brazil.In2018Mexico’s21 millionresidentsalsofacedshortagesofrunningwater.

Inancienttimes,settlementsandcitiesgrewalongriversandgaverise togreatcivilizations,andtoday,accordingtoarecentWorldBankreport, weremainhighlydependentonwateravailability(Damaniaetal.,2017). Thisreportfindsthat “throughoutmuchoftheworld,evenmoderate deviationsfromnormalrainfalllevelscancauselargechangesincrop yields.” Rainfallshocksinduceacascadeofeffectsthatincludelower

agriculturalproductionanddeforestation.Ironically,inmanyareas,irrigationcanresultinthe paradoxofsupply,whenwaterissuppliedtoocheaply andconsumedrecklessly.Droughtscanleadtosevereundernutritionof childrenandmothers,producingchildhoodstunting,andanincreaseof low-birthweightchildren(Davenportetal.,2017;Graceetal.,2012, 2015),allofwhichcanincreasepovertyandreinforceintergenerational healthproblems.

Droughtsstillcontributetoseverehunger.In2017approximately815 millionpeople,roughly1outofevery10peopleonourplanet,were deemedbytheUnitedNationsFoodandAgriculturalOrganizationtobe sufferingfromchronichunger.Contemporaneousassessmentsof extremelyfood-insecurepopulations thosefacingarealthreatoffamine withoutimmediateemergencyassistance totaled81million,roughly oneofeveryhundredhumanbeings.Despiteourgreattechnological achievements,hungeranddroughtstillplaguetheadvanceofhumanity.

Aspopulationsexpandandourclimatebecomeswarmerandmore variable,wewillneedimproveddroughtearlywarningsystems(DEWS). Thisbookdescribesboththetheoryandpracticalmethodsrequiredto createandeffectivelyusethesesystems,helpingtopotentiallysavelives andlivelihoodswhilemitigatingsomeoftheimpactsofclimatechange. Overthenext20years,weknowthatincreasingpopulation,economic growth,andrisingairtemperatureswillincreasedemandsforwater,while rainfedandglacier-basedwatersuppliesarelikelytobecomemoreerratic. Wealsoknow,however,thatourabilitytoobservetheEarthusingsatellitesisrapidlyincreasing.Witheachpassingyear,wecanbetterobserve, explain,andpredictweatherandclimateextremes.Richersocialand computernetworksaresupportingenhancedcommunicationanddecision support.Thisinformationisbeingusedsuccessfullytohelpusanticipate, preparefor,andrespondto21st-centurydroughts.Atthebeginningof the21stcentury,weareachievingwhatcouldonlybedreamedofatthe outsetofthe20thcentury.

1.120th-centurydroughts

The20thcenturybeganwithseverefaminesthatkilledtensofmillionsof people,helpingtomotivatethemodernscienceofdroughtearlywarning. Between1896and1902,inIndiaandChina,themonsoonrainsfailed, bringingdestructiveepidemicsofmalaria,bubonicplague,dysentery,

—disastersandtheEl Niño SouthernOscillation

smallpox,andcholera(Davis,2002).MortalityestimatesforIndiaindicate 19millionpeoplemayhaveperished,whileinChina,itwasestimatedto be10million.TheBombayGovernment’ s “ReportontheFamineinthe BombayPresidency” foundthat1899 1900harvestsintheBombay Deccan,Karnatak,andGujaratprovinceswereonly4% 16%ofnormal. Indianauthorities,heldunderrigidinflexibleideologicalBritishrule, failedtorespondadequatelytotheextremeconditions.GeorgeNathaniel Curzon,firstMarquessCurzonofKedleston,servedasviceroy.Inhiszeal tosuppressHomeRule,Curzontightenedpresscensorship,clamped downoneducation,andpittedHinduagainstMuslim.ForCurzon, financingtheBoerWarinSouthAfricawasmuchmoreimportantthan relievingthedistressofthefamine-strickenpeopleofIndia.Writingatthe time,andquotingdatafromtheLancet,WilliamDigbywrote “This statementbywhatisprobablytheforemostmedicaljournalintheworld meansthatthelossoflifethusrecordedrepresentedthe ‘disappearance’ of fullyone-halfapopulationaslargeasthatoftheUnitedKingdom” (Davis,2002).

ForIndiathesuccessivedroughtsof1876 79,1896 97,and 1899 1900hadahugenegativeimpactonproductivity,livestock,and development. “Almostalltheprogressmadeinagriculturaldevelopment since1880wasnullifiedduringthefamines” (Davis,2002).

India’sterribledroughts,however,didhelppromptmajorintellectual advancesthateventuallyhelpedusunderstand,andsometimesanticipate, futureclimateextremes.

GilbertWalker’sappointmentasSpecialAssistanttotheDirector GeneraloftheIndianObservatoriesin1903cameasasurprise(Walker, 1997).Beforebeingselectedforthejob,Gilbert “Boomerang” Walkerhad recentlypublishedanoriginalandimaginativepaperontheseAustralian spinningdevices(boomerangs)inthePhilosophicalTransactionsofthe RoyalSociety(1897,190,pp.23 42).Walkerhadbeenselectedbecause ofhisexceptionallystrongmathematicalcapabilities.In1904hetook chargeoftheIndiaMeteorologicalDepartment.WhileorganizingthevariousIndianweatherobservatoriesandservicestookupmuchofhistime,he quicklyturnedtoanalyzingtheaccuracyofmonsoonforecasts.Realizing thathecouldnotpredictthemonsoondroughtsanalytically,heturnedto theanalysisoflaggedcorrelations.Interestingly,thisworkledtofundamentaladvancesinourunderstandingofoneimportantfeatureofthemean globalclimate(theWalkerCirculation),themostimportantquasiperiodic climatevariation[theElNiño SouthernOscillation(ENSO)],anda

mathematicaldescriptionoftheexpectedautocorrelationstructureofan autoregressiveprocess(theYule Walkerequations)(Katz,2002).

Likepreviousmeteorologistsbeforehim,Walkerbeganthedaunting prospectoflookingforpredictiveanomaliesthatcouldbeusedtoforecast Indiandroughts.Thisledhimtoanalyzevariationsinworldwideweather. FollowingthenewworkofthestatisticianKarlPearson,hebecameapioneerintheuseofcorrelationinmeteorology.By1908hewasusingmultipleregressiontopredictmonsoonrainfall.Examiningtherelativelyrich setofglobalweatherdataavailabletoaBritishmeteorologist,Walkeralso lookedfor “CentersofAction” byexaminingextensivetablesofautocorrelationsandcross-correlationsinsea-levelpressureatmultiplelocations.

Fromthisanalysis(Katz,2002),hedetermined, “thereisaswayingof pressureonabigscalebackwardsandforwardsbetweenthePacificOcean andtheIndianOcean,thereareswayings,onamuchsmallerscale, betweentheAzoresandIceland,andbetweentheareasofhighandlow pressureintheN.Pacific” (Walker,1923).Theswayingofpressure betweenthePacificandIndianOceansisnowreferredtoasthe “SouthernOscillation” (SO).TheseesawbetweentheAzoresandIceland isknownastheNorthAtlanticOscillation,andtheoscillationinthe PacificisreferredtoastheNorthPacificOscillation.Allthreeofthese patternsofclimatevariabilityhaveturnedouttobecriticaldriversofclimateanddrought(Fig.1.5).

Walker,however,pointedoutthattheinfluenceoftheSOseemed muchgreaterandmorepersistentthantheothertwooscillatorypatterns. ThingshavechangedalotsinceWalkerflunghisboomerangsandpainfullyworkedouthiscross-correlationtablesbyhand.Technology,the Internet,computers,andcarefullycompileddatasetsnowmakeiteasyto analyzetheimportanceofclimatepatternsliketheSO.Forexample,with afewwell-chosenclicks,wecancompileamapofthecorrelation betweenlocalsea-levelpressurevaluesandthe “SOIndex”—anindex

measuringthedifferenceinsea-levelpressurebetweenTahitiintheSouth PacificandDarwin,Australia.Thispattern,firstidentifiedbyWalker, identifiesaquasi-globalseesaw1 inpressurebetweenthewestPacific/ IndianOceanregionandtheeastPacific.

Asownersofavastinternationalnavalempire,theBritishwerekeen totrackandanalyzesea-levelpressuredata,likethedataanalyzedby GilbertWalker,becauseitwasstronglyrelatedtochangesinsurface winds.Understandingthemean(long-termaverage)structureofatmosphericcirculationsturnsouttobeacriticalcomponentofeffective droughtearlywarning.Understandingour “normal” climateprovidesan importantfoundationforunderstandingextremes.Onekeyadvanceon thisfrontwasmadebyGeorgeHadley(1685 1786).Hadleywasan Englishlawyerandamateurmeteorologistwhoproposedtheatmospheric mechanismbywhichthetradewindsaresustained.Asakeyfactorin ensuringthatEuropeansailingvesselsreachedNorthAmericanshores, understandingthetradewindswasamatterofgreatimportanceatthe time.Hadleywasintriguedbythefactthatwinds,whichshouldbyall rightshaveblownstraighttowardtheequator,hadapronouncedwesterly flow. Hadley(1735) beganconsideringhowthedifferentialheatingofthe equatorproducedlowatmosphericpressure,whichdrewinthelow-level winds: “ForletussupposetheAirineveryParttokeepanequalPace withtheEarthinitsdiurnalMotion;inwhichcasetherewillbenorelativeMotionoftheSurfaceoftheEarthandAir,andconsequentlyno Wind;thenbytheActionoftheSunonthepartsabouttheEquator,and theRarefactionoftheAirproceedingtherefrom,lettheAirbedrawn thitherfromtheN.andS.parts.” Hadleythenwentontointroducethe ideaoftheconservationofangularmomentum: “Fromwhichitfollows, thattheAir,asitmovesfromtheTropicstowardstheEquator,havinga lessVelocitythanthePartsoftheEarthitarrivedat,willhavearelative MotioncontrarytothatofthediurnalMotionoftheEarthinthoseParts, whichbeingcombinedwiththeMotiontowardstheEquator,aN.E. windbeproducedonthisSideoftheEquator,andS.E.ontheother.”

Hadley’stheoryturnedouttobecorrect,andthestructurehe describedisnowknownastheHadleyCirculation(Fig.1.6).TheHadley CirculationdescribedtheNorth Southandup downmotionsofthe

1 Inwritingthefirstdraftofthissentence,wemadeaprescienttypographicerror describingseesawpatterns.ButitwouldbedecadesbeforescientistslinkedtheatmosphericSouthernOscillationwiththeoceanicphenomenonknownasElNiño.

atmosphereaveragedacrosseverylongitudeband.Thedifferentialheating oftheequatorcombinedwiththeconservationofangularmomentum producesnear-surfaceatmosphericconvergenceneartheequator.This bandofconvergenceisalsoassociatedwithheavyrainfallandascending atmosphericmotions(redbandin Fig.1.6).Airparcelsriseandmove towardthepoles(andtheeast).Theconservationofangularmotionagain turnsthemintoastronglyeastwardwindfield(thesub-TropicalEasterly Jet).Theserelativelywarmparcelsofaircool,radiatingtheirextrawarmth backouttospace.Thiscoolingmakestheatmosphereverystable,andwe findatendencyforairtosubside(sink)inthesubtropics,atlatitudesof about30-degreenorthandsouth.Thislatitudeiswherewetendtofind mostoftheworld’sdesertsandaridlands:theSahara,Kalahari,Arabian Peninsula,SouthwestandCentralAsia,AtacamaDesert,Australia,andthe southwesternUnitedStatesareassociatedwiththesinkingbranchofthe HadleyCirculation.Manyseveredroughtsoccurwithinorontheedges ofthesedryregimes,whereconditionscanslipfromtentativetodisastrous,sometimesforyearsonend.

GilbertWalker’sSO,however,focusedonEast Westvariations betweentheeasternandwesternPacific.Eventually,thiswouldturnout tobeacriticaladvanceleadingtoeffectivedroughtforecasts.Akeystep towardthatpoint,though,wasdescribingthemean(long-termaverage) structureoftheeast westatmosphericmotionsoverthePacific.ThispioneeringworkwascarriedoutbyJacobBjerknesinthe1960s.Hecoined theterm “WalkerCirculation” andwasthefirstpersontodescribethe

Figure1.6 SchematicrepresentationoftheHadleyCirculation. ChrisFunk.

linkbetweenElNiñoandtheSouthernOscillation(Bjerknes,1969). Thiscoupledair-seaclimatevariationisnowcommonlyreferredtoasthe ENSO.BjerknesstartedbynotingthattheeasternPacificseasurfacetemperatureswereexceptionallycold(Fig.1.7),whilethewesternPacific/ IndianOceanseasurfacetemperaturesweremuchwarmer.Becauseatthe equator,wedonotneedtoworryabouttheconservationofmotion, Bjerknestheorizedthatthistemperaturegradientwouldsetupathermally directcirculation.Coldwatersproducecoldairwitharelativelyhigh density.Warmwatersproducewarmairwithlowdensities.Windsatthe equatorwillmovetowardthelowerpressure.Thiswindpatternproduces manypositivefeedbacksthathelpcreatetheIndo-PacificWarmPool (Clementetal.,2005),whilealsoreinforcingthestrongeast westtropicaltemperaturegradientbetweentheWarmPoolandtheequatorialeast Pacific.

The “WarmPool” isatermusedtodescribetheworld’swarmest oceanwatersinanareaoftheequatorialeasternIndianandWestern PacificOceans(Fig.1.8).InthisrainiestregionontheEarth,seasurface temperaturesroutinelyexceed29°C(84°F)andannualprecipitationtotals oftenexceed3m(129in.)ofrainfall.TotheeastoftheWarmPoolthe rapidpersistentwestwardtradewindsblowacrosstheeasternPacific.In thePacificOcean,thesewindstransportheatfromtheeastPacificinto

Figure1.7 Seasurfacetemperaturerepresentedasdeviationfromtheaverageat eachlatitude. FromBjerknes,J.,1969.Atmosphericteleconnectionsfromtheequatorial Pacific.97(3),163–172 Figure7.

theWarmPoolregion.ThisactstocooltheeastPacificandwarmthe westPacific.Thiswarmingpushesdownthe “thermocline” (thedepthat whichtheoceanrapidlytransitionstomuchcoolertemperatures).This hastheeffectofproducingverypersistentwarmoceanconditions.Above theWarmPool,wefindasimilarconvergenceofwarm,moistair.The buildupofthiswarm,moistairincreasesthedepthoftheplanetary boundarylayer(thelowestwell-mixedlayeroftheatmosphere,which tendstobehumidovertheoceans).Thisincreaseinwet,warmairhas severalimportantfeedbacksthathelpwarmtheWarmPoolandmaintain theWalkerCirculation.ThethickboundarylayerovertheWarmPool holdsalotofwater(about50kgm 2),andthiswatervaporisavery activegreenhousegas.Whenthereisabundantwatervaporoverthe WarmPool,thismoistureactsaspositivefeedback,warmingtheWarm Poolbyincreasingtheamountoflongwave(infrared)radiationabsorbed bytheocean.

Alessdirectbutequallyimportantfeedinvolvestheatmospheric responsetotheconditionallyunstablewarmmoistairabovetheWarm Pool.Intenseprecipitationoccurseasilyundersuchconditions. Condensingwatervaporreleasesagreatdealofenergy,andthisheating producesrisingairneartheintersectionoftheIndianandWesternPacific Oceans(Fig.1.9).Thisairrisesandcoolsandthentendstomovetoward theeasternPacificandwesternIndianOceans,whereitsinksproducinga tendencyforhotdrysurfaceconditions.Thissubsidenceproduceshigh surfacepressures,whichresultsinasurfacepressuregradientbetweenthe eastPacificandthewestPacific.Thisgradientsupportstheeasterlytrade winds,reinforcingheatandwatervaportransportsintotheWarmPool andoutoftheeasternequatorialregion,completingtheWalker

Figure1.8 SchematicdiagramdescribingtheIndo-PacificWarmPool. ChrisFunk.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.