Download Group theory finite discrete groups and applications john demetrius vergados ebook All Chap

Page 1


https://ebookmass.com/product/group-theory-finite-discrete-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Group processes : dynamics within and between groups Third Edition Brown

https://ebookmass.com/product/group-processes-dynamics-within-andbetween-groups-third-edition-brown/

ebookmass.com

Effective group discussion : theory and practice Adams

https://ebookmass.com/product/effective-group-discussion-theory-andpractice-adams/

ebookmass.com

Discrete Mathematics and Its Applications 7th Edition, (Ebook PDF)

https://ebookmass.com/product/discrete-mathematics-and-itsapplications-7th-edition-ebook-pdf/

ebookmass.com

Diagnostic Imaging Gastrointestinal 4th Edition Atif Zaheer

https://ebookmass.com/product/diagnostic-imaging-gastrointestinal-4thedition-atif-zaheer/

ebookmass.com

Dangerous Women 1st Edition Mark De

Castrique

https://ebookmass.com/product/dangerous-women-1st-edition-mark-decastrique/

ebookmass.com

Dauntless : An Epic Space Opera/Alien Invasion/Alternate Universe Adventure Sean Robins

https://ebookmass.com/product/dauntless-an-epic-space-opera-alieninvasion-alternate-universe-adventure-sean-robins/

ebookmass.com

SOCCER FOR DUMMIES 3rd Edition Thomas Dunmore

https://ebookmass.com/product/soccer-for-dummies-3rd-edition-thomasdunmore/

ebookmass.com

Law, Engineering, and the American Right-of-Way 1st ed. Edition David Prytherch

https://ebookmass.com/product/law-engineering-and-the-american-rightof-way-1st-ed-edition-david-prytherch/

ebookmass.com

Introduction to Sonar Transducer Design John C Cochran

https://ebookmass.com/product/introduction-to-sonar-transducer-designjohn-c-cochran/

ebookmass.com

The Younger Wife Hepworth

https://ebookmass.com/product/the-younger-wife-hepworth/

ebookmass.com

This page intentionally left blank

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Control Number: 2023940436

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

GROUP THEORY

Finite Discrete Groups and Applications

Copyright © 2023 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-127-475-6 (hardcover)

ISBN 978-981-127-476-3 (ebook for institutions)

ISBN 978-981-127-477-0 (ebook for individuals)

For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/13366#t=suppl

Desk Editor: Nur Syarfeena Binte Mohd Fauzi

Typeset by Stallion Press

Email: enquiries@stallionpress.com

Printed in Singapore

Inmemoryofmyteacher

This page intentionally left blank

Preface

Theroleplayedbysymmetryintheunderstandingofthephysicalworldis wellknown.Initially,mainlyintheeraofancientGreekphilosophersand mathematicians,itinvolvedthestudyandgeometricpropertiesof:

(a)planeshapes.

Notonlythecommonones,suchasregulartriangles,squaresandhexagons, butevenmoreinvolvedones,suchasthedodecagonandicosagon;and (b)three-dimensionalobjects.

Regularpolyhedra,includingthecommonones,suchasthecubeandtetrahedron,aswellasthosethataremoreinvolved,suchasthedodecahedron andicosahedron.Therecognitionoftheexistenceofsymmetriesledto thenotionoftransformations,whichleadfromonestateofthesystemto another.Itwasthenrealizedthatsuchtransformations,undertheoperationofmultiplication,constituteasetcalleda group bymathematicians, asystempossessingveryinterestingmathematicalproperties.Thus,group theorywasdeveloped.Thistheorybecamemuchmoreinterestingandled tosomeadditionalapplicationswiththeemergenceofquantummechanics.Soon,theinternaldegreesoffreedomwererecognizedandputintothe realmofsymmetries,andthus,grouptheoryisnolongerpurelygeometric.

Forpracticalaswellaspedagogicalreasons,grouptheoryissplitinto twodifferentparts.Thefirstdealswith discretegroups andthesecond with continuousgroups.Inthefirstcase,theelementsofthegroupare countableandusuallyfiniteinnumber.Thispartdealsmorewithgeometricsymmetries.Thesecondischaracterizedbygroupelements,which dependoncontinuousparameters.Wewillnotconsiderthecaseofcontinuousgroupsinthecurrentvolumesincethereexistmanybooksonthissubject,including,inparticular,atextcoveringsuchtopicsbythefirstauthor,

recentlypublishedbyWSPC,whichcanbeconsideredacompanionvolume tothisbook.

Thecurrentbookdealswithdiscretegroups.Itisatranslationfrom abookinGreekwiththesametitlebythefirstauthor,suitablyupdated andextended.Itwasintendedtocoverthematerialgiveninthefirstof atwo-semestercoursegivenattheUniversityofIoannina.Partsofthis materialhavealsobeendeliveredtosenior-levelphysicsstudentsatNanjing University,Nanjing,China,in2012.

Inthelongpast,thissubjectwastaughtinacourseonalgebra,withthe applicationsconsideredapartofmathematicalmethodsinphysics,witha focusonapplicationsinaspecificresearchareaofphysics.Wehavecomea longwayfromthat,andthissubjectisnowtaughteverywhere,asoutlined above,i.e.ina bonafide grouptheorycourse.Inmanycases,however,after abriefpresentationofthebasictheoreticalideas,manyinstructorsdevise specialrulesandrushtousetheminspecificapplications.Webelieve, however,thatgrouptheoryshouldbepresentedfromaunifiedperspective involvingboththebeautyofsymmetries,resultinginelegantmathematical expressions,andusingitasatoolforapplications,eithercurrentlypopular orexpectedtoemergeinthefuture.Thisapproachisnotrecommended fortheEpicureantypewhowouldliketolookupaformulaorusethe resultsofsometablewithoutunderstandingtheirderivation.Weexpect, however,thatinthelongrun,ourapproachwillbemorebeneficialfor thestudentwhowillhavethepatiencetogothroughthematerial.To thisend,wemadeeveryefforttoincludeillustrativeexamples,whichare thesimplestpossibletoclarifythebasicconceptsintroduced.Somesimple applications,especiallythosethatmaycontributetoabetterunderstanding ofsomerelevantconceptsofthetheory,havebeenincludedasillustrative examples.Asetofusefultableshasbeenincluded,withthededicated studentexpectedtoconstructsomesegmentsofthemaspartofhomework. Moredetailedapplicationsformthematerialofawholechapter,whichmay beskippedatfirstreading.Thisapproachresultedinamuchlargervolume forthebook.Ihopethiswillnothaveanadverseeffectonthestudent’s decisiontoregisterfora one-semestercourse.

Onthisoccasion,Iwouldliketothankformerstudentofphysics,MiltosChristoulakis,currentlythepresidentofHappy–Box,forpreparingthe coveraswellasmostofthefiguresinthebook.

J.D.Vergados,V-IVergadou-Remediaki Ioannina,October2022,

Preface vii

1.TheRoleofSymmetriesinPhysics—APrelude1

1.1Geometricsymmetries....................2

1.2Symmetryinthedynamicsofclassicalmechanics....5

1.3Symmetryinquantummechanics.............6

2.IntroductiontoDiscreteGroups13

2.1Definitionsandbasicconcepts...............13

2.2Thesymmetricgroup Sn ..................18

2.2.1Briefoverviewofpermutations..........18

2.3Afirstexaminationof Sn ..................20

2.3.1The A4 groupasasubgroupof S4 ........22

2.3.2Applicationtotheconstructionof(fully) symmetricandantisymmetricfunctions.....22

2.4Pointsymmetrygroups...................25

2.4.1Thesymmetryofammonia............27

2.4.2Somecategoriesofpointgroups..........30

2.5Extendedpointsymmetrygroups.............37

2.5.1Timereversal....................37

2.5.2Centralinversion..................38

2.6Problems...........................39

3.DiscreteGroups—BasicTheorems43

3.1Cayley’sreorderingtheorem................43

3.2Conjugateelementsandclassesofconjugate elements...........................47

3.3Theconjugateclassesof Sn .................48

3.4Subgroupsandcosets....................51

3.5Regularsubgroupsandsimplegroups— Thefactorgroup.......................55

3.6Possiblegroupsofagivenorder g .............59

3.7Directgroupproduct....................61

3.8Problems...........................62

4.ElementsofRepresentationTheory67

4.1Grouprepresentations:Illustrativeexamples.......67

4.2Representationsofgroupoperators............68

4.3Theregularrepresentationofagroup...........70

4.4Variouswaysofconstructingrepresentations.......73

4.5Directproductofrepresentations.............74

4.6Equivalentrepresentations.................78

4.7Representationconstructioninthespace offunctions.........................79

5.RepresentationReduction—Schur’sLemmas— CharacterTables91

5.1Representationreduction..................91

5.2Unitaryrepresentations...................96

5.3Charactersofrepresentations................99

5.4ThetwolemmasofSchur..................100

5.5Orthogonalitytheorem...................101

5.5.1Characterorthogonalityrelations.........102

5.5.2Acriterionofirreducibilityofgroup representations...................103

5.6Moreonrepresentationreduction.............105

5.7Someexamplesofrepresentationreduction........107

5.8Reductionofthedirectproductofgroup representations........................114

5.9Reductionofthedirectproductofgroups.........117

5.10Doublecoveringgroupsofdiscretegroups.........122

5.11Problems...........................123

6.SimpleApplicationsinQuantumMechanics127

6.1Behaviorofaquantumsystemacteduponbygroup operators...........................127

6.2Wigner’stheorem......................130

6.3Usefulexamples.......................134

6.4Problems...........................142

7.SymmetriesandNormalModesofOscillation145

7.1Introduction.........................145

7.2Normalmodesofoscillation................147

7.2.1Summary......................148

7.3Someapplicationsinvolvingtheuseofsymmetry.....149

7.4Problems...........................157

8.SpaceGroups161

8.1Introductorynotions....................161

8.2Thegroupoftranslationsinspace.............163

8.3Theallowedcrystalsymmetries..............164

8.4Spacegroups.........................167

8.4.1Crystalsystemsin3D...............170

8.4.2Crystalsystemsintwodimensions........171

8.5Charactertablesoftheirreduciblerepresentations ofcrystalgroups.......................172

8.6Generatorsofthecrystalgroups..............173

8.7Problems...........................174

9.IrreducibleRepresentationsofSpaceGroups175

9.1Irreduciblerepresentationsofspacegroups........175

9.2Thegroupofvector k ofthereducedBrillouinzone...180

9.3Constructionoftheirreduciblerepresentationsofthe spacegroup.........................183

GroupTheory:FiniteDiscreteGroups

9.4Graphene—Aremarkableexampleofa2Dcrystal...192

9.4.1Theirreduciblerepresentationsofthespacegroup connectedwithpointsymmetry C6v .......194

9.5Problems...........................196

10.NormalModesinCrystals199

10.1Introduction.........................199

10.2Normalmodesfor1Dcrystalwithonekindof particle............................200

10.3Normalmodesin1Dcrystalwithtwokindsof molecules...........................203

10.4Normaloscillationmodesofgraphene...........205

10.4.1Theclassicalequationofmotionapproach: Aprelude......................206

10.4.2Themethodofdiagonalizingthepotential....207

Specialtopicsandapplications

215

11.TheSymmetricGroup S n 217

11.1Theroleofthesymmetricgroup Sn inquantum mechanics..........................217

11.2Theirreduciblerepresentationsofthesymmetric group Sn ...........................220

11.3Constructionoffunctionsofagiven Sn symmetry....221

11.3.1TheYoungoperators................222

11.3.2Anexample—TheIrreduciblerepresentations of S3 .........................226

11.4Constructionofsymmetricandantisymmetricfunctions intwospaces.........................230

11.4.1Constructionofantisymmetricfunctions.....230

11.4.2Constructionofsymmetricfunctions.......232

11.5Kroneckerproductsandtheemergenceoftensors....232

11.6Constructionoftensorsofagivensymmetry.......233

11.7Kroneckerproducts[f ] ⊗ [f ]................238

11.8Problems...........................242

12.FurtherApplicationsinMolecularPhysicsand CrystalStructure—CrystalHarmonics245

12.1Introductorynotions....................245

12.2Reductionof SO (3)representationsunderdiscrete symmetries..........................246

12.2.1Reductionofsingle-valuedrepresentationsof SO (3)underdiscretesymmetries.........247

12.2.2Thereductionofdouble-valuedrepresentationsof SO (3)underdiscretesymmetries.........255

12.3Somereductiontablesofrepresentationsof SO (3)under discretesymmetries.....................259

12.4Crystalharmonics......................260 12.5Problems...........................267

13.ApplicationsofDiscreteGroupsinParticlePhysics269

13.1Thegroup A4 asasubgroupof S4 .............269

13.2Thestructureof A4 .....................270

13.3Thecharactermatrixof A4 .................275

13.4ReductionoftheKroneckerproductoftherepresentations of A4 .............................276

13.5Anapplicationinparticlephysics.............279

13.5.1Thescalarpotentialintheframeworkof A4 ...280

13.5.2Theleptonmassesinasimple A4 model.....281

13.5.3Asemirealisticmodelfortheneutrinomasses..286 13.6Problems...........................288

14.ExoticDiscreteGroupsforQuantum Mechanics—FieldTheory293

14.1Matrixgroupswithelementsintegers mod(p).......293

14.2Themodulargroup.....................295

14.3TheHeisenberg–Weylgroup................298

14.3.1Afaithfulrepresentationofthediscrete Heisenberggroup..................302

14.3.2Magnetictranslations...............305

14.3.3ThemetaplecticrepresentationbyWeyl.....306

14.4Theconstructionofthe SL2 (p)generators........310

14.5Examples:Thecases

14.5.1Thecase

14.5.2Thecase

15.AppendixI:ProofsofVariousTheorems319

16.AppendixII:RepresentationReduction ViaaChainofGroupOperators325

16.1Chainsofsubspacesofbasisvectors............325

17.AppendixIII:GeneratorsandCharacterTables ofPointGroups331

Chapter1

TheRoleofSymmetriesinPhysics— APrelude

Thenotionofsymmetryisnot,ofcourse,anewone.Ithasbeenknown sincetheveryancienttimesthatthehumanbodypossessesright/leftsymmetry,a“mirrorsymmetry”,i.e.areflectionwithrespecttoaplane;thata cubehasahighdegreeofsymmetry,bothwithrespecttorotationsaround someaxesaswellasreflectionswith respecttocertainplanes;thatthe sphereisthemostsymmetricofallbodies.Theideaofgeometricsymmetryaffecteddeeplythethoughtofmany ancientGreekphilosophers,includingPythagoras,Platoandothers.Indeed,Platoattemptedtodescribethe motionoftheheavenlybodiesintermsofcirclesorcirclesovercircles (circlesonepicenters).

Inspiteofitsbeautyasatheory,however,grouptheory(GT)didnot becomeatrulyusefultoolinphysicsuntilafterthefoundationofquantum mechanicsinthe1920s.Tothisend,acrucialrolewasplayedbyWigner, Weyl,Gelfand,Racahandothers.Inotherwords,GTbecameveryuseful tothephysicalscienceswhenitwasrealizedthatthesetoflineartransformations,whichleadfromonestateofasystemtoanother,constitutea group.

Asoutlinedabove,theancientnotionofsymmetrybecameveryuseful tothephysicalsciences.Whatisa symmetry?Roughly,asymmetryis apropertyofsomeobjectwhichremainsinvariantundersomeoperations. Notethatthenotionofsymmetryrequiresbothanobjectandtheoperation whichactsoroperatesontheobject.Invariancemeansthattherelevant propertyoftheobjectremainsthesamebeforeandaftertheoperationhas beenacteduponit.

1.1Geometricsymmetries

Aswehavealreadymentioned,thesesymmetrieswerethefirsttoberecognizedbytheancientGreeks.Theyrelatetotransformationswhichmaintainthedistancebetweentwopointsofabodyandmapitontoitself.Such transformationsareessentiallyofthreetypes:

(i)Rotationsaboutanaxisofsymmetrybyagivenangle. Asaconcreteexample,letusconsider asquare.Welabelthefourcornersof thesquare A,B,C,D .Intuitively,ifwerotatethesquareby90◦ clockwise, wegetthepictureshowninFig.1.1(a).Letuscallthisoperation S .Then, thesquareremainsthesamewiththeoriginalorientation.Whatdowe meanby“thesame”?Itmeansthat,ifwedropthelabels A,B,C,D ,you donotseeanydifference.Now,arotationof180◦ alsoleavesthesquare invariant.Letuscallthisoperation T.Clearly,wecanachievethesame resultbyapplyingtheoperator S twice.Thus,wewrite T = S S .Similarly, arotationof270◦ ,indicatedas U ,leavesthesquareinvariant,and U = (S S )S .Clearly,arotationof360◦ doesnotchangeanything,andwe identifythiswiththeidentityoperatoranddesignateitas E . Wecalltheoperation S arotationofthesystembyanangle π/4around anaxisperpendiculartotheplaneofthesquare,passingthroughitscenter.Inthestandardnotation,weindicatetheoperationassociatedwith S as C1 .Ifweapplythisoperationfourtimessuccessively,thesystem returnstoitsoriginalposition.Wesaythatthisaxisisoffourthorder, 2π π/2 = 360 90 =4.Weindicatethesuccessiveoperationsas C1 ,C 2 1 ,C 3 1 ,C 4 1 Obviously, C 4 1 = E ,where E istheidentityoperator

Wecaneasilyseethatarotationby π/2intheoppositesense,i.e. counterclockwise,whichisindicatedby π/2,givesasimilareffectasa clockwiserotationby3π/2.Indicatingthisas C 1 ,weverifythat C 1 = (a) (b)

Fig.1.1. Symmetryoperationsonasquare:(a)rotationaroundafour-foldaxis, (b)reflectionthroughaplanewhichisperpendiculartothesquareandpassesthrough themiddlesofABandCD.

C 3 1 .Thus, C 1 C1 = E ,i.e. C 1 istheinverseof C1 .Similarly, C 2 isthe inverseof C2 .Furthermore,theseoperatorscommute,i.e. C n 1 C k 1 = C k 1 C n 1 , andthesystem {C1 ,C 2 1 ,C 3 1 ,C 4 1 = E } isclosedundermultiplication.

(ii)Reflections.

Anotheroperationis reflection,i.e.amirrorimageofthesquarewith respecttoaplanethatcontainstheaboveaxisandisperpendiculartothe planeofthesquarepassingthroughthemiddleofitstwooppositesides, e.g.throughthemiddleof AB and CD indicatedas m1 ,seeFig.1.1(b). Therelevantoperatorwillbeindicatedby σx .Thereisanotherreflection correspondingtoasimilarreflectionplanepassingthroughthemiddleof AC and BD,withtherelevantoperatordesignatedas σy .Thereexisttwo additionalsimilarreflectionplanespassingthroughtheoppositecornersof thesquare,onethrough A and C andtheotherthrough B and D ;thesewill bedesignatedas σ1 and σ2 ,respectively.Obviously, σ 2 i = E , i = x,y, 1, 2, i.e.eachoftheseelementsisitsowninverse.

(iii)Inversion(withrespecttoacenter).

An inversion causesatransformationofthecoordinates (x,y,z ) → ( x, y, z ). (1.1)

Onecanseethatinourexample,inversionisnotanewoperation,but itcoincideswitharotationby π .Bothoftheseoperationshavethesame effect:theyinterchange A ↔ C and B ↔ D .Furthermore,onecanshow thattheset

{C1 ,C 2 1 ,C 3 1 ,C 4 1 = E,σx ,σy ,σ1 ,σ2 }

isaclosedsetundermultiplication.Notethattwoelements, X and Y ,do notalwayscommute,i.e.insomecases, X Y = Y X .Anyway,theabove elementsconstituteagroupassociatedwiththesymmetryknownas C4V Itwas,ofcourse,natural,inviewoftheideasoftheancientphilosophers, thatthegeometricsymmetrieswouldberecognizedasthefirstapplications ofgrouptheoryinphysics,inparticularincrystallographyandsolid-state structures.

Nextcomesthenotionofaspacegroup.Bythis,weunderstandthe symmetrygroupwhichischaracteristicofagivenperiodicsystem,asfor exampleanidealcrystal.Thisconsistsofthesetoftransformationswhich carryonepointofthesystemtoanother.Thus,thespacegroupsshould containpointgroups,suchastheones wehaveconsideredaboveaswellas translationtransformations.Thisimposesconditionsonhowtheelements ofthecrystalrepeatthemselvessothattheygeneratethewholecrystal.As

aresult,onlyafractionofthepointgroupsymmetriesarecompatiblewith therequiredspacesymmetry.Thisisbecausethestructureelementsof thepointgroupsymmetries,whenrepeated,mustcoverthewholecrystal. Weallknowthatthewholefloorcanbecoveredbyplacingsidebyside tilesofcertainshapes,e.g.triangles,parallelograms(squares,diamonds)or regularhexagons,seeFig.1.2.Thiscannotbedonebyplacingcirclesor

Fig.1.2. Variousshapesthatcancoverthewholeplane:(a)scalenetrianglescombinedtoformaparallelogram(second-orderaxis),(b)equilateraltriangles(third-order axis),(c)squares(fourth-orderaxis)and(d)hexagons(sixth-orderaxis).Thiscannot beaccomplishedbyusing:(e)regularpentagonsand(f)circlesorellipses.Notethatin eachshape,wehavetwogeometricquantities:twosizeparameters a and b aswellasthe angle φ betweenthem.Thus,(a)wehave a = b and φ arbitrary,andintheothercases, wehave a = b,whiletheanglesare2π/3, π/2and π/3for(b),(c)and(d),respectively.

(a)
(b)
(c)
(d)
(e)
(f )

regularpentagons.Thewholethree-dimensional(3D)spacecanbecovered byproperlyplacingprismswithbasesoftheaboveshapes.

1.2Symmetryinthedynamicsofclassicalmechanics

Theroleofthedynamicsymmetries,i.e.thosethatleaveinvariantthe equationsofmotion,wasrecognizedlater.Afirstandveryinteresting examplewasthemotionofaplanetaroundthesun,Kepler’sproblem.The solutiontothisproblemwas,ofcourse,firstobtainedbysolvingNewton’s equationsofmotion,usingtheworldgravitationalattraction,alsoinvented byNewton.Thepredictedorbitswereinverygoodagreementwithobservation.Itisworthwhile,however,tolookatKepler’sproblemfromadifferentperspectiveandmorecarefully(seeFig.1.3).Themainpointsare asfollows:

• Theorbitliesonaplane.

• Theorbitisanellipse(oringeneralaconicsection)withafixedaxis length.

• Thedirectionofthevectorconnectingthetwofocioftheellipseremains fixed.Inotherwords,thepositionoftheperihelion(pointoftheorbit closesttothesun)isfixed.

TheplanarityoftheorbitstemsfromthefactthatNewton’sforceiscentral,whichleadstotheconservationofangularmomentum.Astheangular momentumcannotchangeandtheorbitmustalwayslieatrightanglestoit,

Fig.1.3. InKepler’sdescription,themotionofaplanetaroundthesunisexhibited. Inparticular,theroleoftheR¨ unge–Lenzvector,indictedinthepictureby A,guarantees thestabilityofperihelion,point1inthefigure.

GroupTheory:FiniteDiscreteGroups

theorbitmustbeplanar.Therefore,thesymmetry(centrality)oftheforce leadstotheplanarityoftheorbit.Theconservationofangularmomentumisrelatedtothefactthatthesystemwouldremainunchangedaftera rotationofspace(isotropy).

Thelengthofthelongeraxisisdeterminedbytheenergyofthesystem, whichisconservedbythespecificformofinteractionbetweentwobodies, knownas conservativeforce.Theeccentricityofthe motionisconstant becauseitisdeterminedbytheenergyandangularmomentumofthesystem,bothofwhichareconstant.Butwhyshouldtheperihelionremain constant?

Theanswertothisquestionislessobvious.Ithastodowiththefact thattheattractiveforceisinverselyproportionaltothesquareofthedistancebetweenthetwoobjects, F ∝ 1 r 2 .Asmalldeviationfromthis,even when F ∝ 1 r 2+ ,nomatterhowsmall mightbe,destroysthestabilityof theperihelion.Thisiswhatactuallyoccurswhenwetakeintoaccountthe presenceofotherplanetsorgeneralizeNewton’stheoryusingthegeneral theoryofrelativitydevelopedbyEinstein.1

Theimportantconclusiontobedrawnfromthisisthatbyrecognizingandinvokingsymmetry,theproblemposedbyKeplercanbesolved withoutrequiringthesolutionofadifferentialequation.Wewillnotdiscussthistopichere,butithasbeentreatedelsewhere,e.g.inthebook Vergados(2017).Evenmoreimportantly,theexistenceofsymmetryina systemresultsintheconservationofsomequantitythatcharacterizesthe system.Conversely,theconservationofsomequantitycharacterizingasystemdictatestheexistenceofasymmetrycharacterizingthesystem.This isknownasNoether’stheorem.

1.3Symmetryinquantummechanics

Ashasalreadybeenmentioned,grouptheorybecameamoreusefultoolin solvingproblemsinphysicsafterthedevelopmentofquantummechanics. Here,theresultsweresurprising,especiallyinthecasewherethegroup transformationsleavethesystem’sHamiltonoperatorinvariant.TheanalogueinquantummechanicstoKepler’sproblemishydrogen-likeatoms. Thequantumnumbersthatdescribethestatesofthesystemareexpected

1 Indeed,thefirstindicationthatthegeneraltheoryofrelativityholdstruecamefrom studyingthemovementoftheperihelionofMercury,asthephenomenoncouldnotbe explainedsolelybytheinfluenceoftheotherplanetsonMercury’sorbit.

todependontheorbitalangularmomentumquantumnumber, ,but theymustbeindependentof m,i.e.,theprojectionoftheorbitalangularmomentumonthequantizationaxis.Thisisduetothefactthatthe Hamiltonoperatorremainsunchangedunderrotationin3Dspace.However,theeigenenergiesofthesystemareindependentoftheazimuthal, ; thisisindicativeofagreatersymmetry,whichisrotationin4Dspace, (Vergados,2017).Recognitionofthissymmetryallowsustocalculate theeigenenergiesofthehydrogen-likeatomwithouthavingtosolvethe Schr¨oedingerequation.

Thearrivalofquantummechanicswasthemainreasonforthefamiliarityofphysicistswithgrouptheory,whichhadalreadybeendevelopedby mathematicians.

Inquantumtheory,invarianceprinciplespermitevenmorefar-reaching conclusionsthaninclassicalmechanics.Inquantummechanics,thestate ofaphysicalsystemisdescribedbyarayinaHilbertspace, |Ψ .Asymmetrytransformationgivesrisetoalinearoperator, R ,thatactsonthese statesandtransformsthemintonewstates.Justasinclassicalphysics,the symmetrycanbeusedtogeneratenewallowedstatesofthesystem.However,inquantummechanics,thereisanewandpowerfultwistduetothe linearityofthesymmetrytransformationandthesuperpositionprinciple. Thus,if |Ψ isanallowedstate,thensois |R Ψ ,where R istheoperator intheHilbertspacecorrespondingtothesymmetrytransformation R.So far,thisissimilartoclassicalmechanics.However,wecannowsuperpose thesestates,i.e.constructanewallowedstate: |Ψ + |R Ψ .(Thereisno classicalanalogueforsuchasuperposition,e.g.thesuperpositionoftwo orbitsoftheEarth.)

Quantummechanicsalsorevealedanewkindofsymmetry:thatofthe exchangeofidenticalparticles.Thisledtoaclassificationofallelementary particlesas(a)Bosons,characterizedbyintegralspin.Then,thewavefunctiondescribingamany-identical-particlessystemmustbeinvariantunder theinterchangeofanytwoparticles;(b)Fermions,withhalf-integralspin, whosewavefunctionchangessignwhenanytwoparticlesareinterchanged. Thequantumstatisticsofacollectionofsuchparticlesisdifferent,with profoundimplicationsfortheirbehaviorinaggregate.

Atthisstage,EugeneWignerplayedaverycrucialrole,connecting grouptheorywithquantummechanics.Inaddition,agreatcontribution towardthefamiliarityofphysicistswithgrouptheorycanbeattributedto HeisenbergandWeyl,mainlyforshowingtheequivalenceofSchr¨odinger’s versionofquantummechanicswiththatofHeisenberg.

GroupTheory:FiniteDiscreteGroups

Onecaninterpretasymmetrytransformationasachangeinour pointofviewwhenlookingatasystemthatdoesnotaltertheresults ofpossibleexperiments.Inquantummechanics,weknowthat(pure) statesaredenotedbywavefunctions |Ψ intheHilbertspace.Thesefunctionsaremembersofavectorspaceequippedwithascalarproduct,2 i.e.

Ψf |Ψi = Ψi |Ψf ∗ .Themeasurablequantitiesarenotthewavefunctions themselves,buttheexpectationvaluesofanyobservablequantity.The probabilityofobtaininganexpectationvalueaftermeasurementdepends onthetransitionprobabilitiesbetweenstates,whichisgivenbythesquare ofthemodulusoftheoverlapoftwowavefunctions, | Ψf |Ψi 2 |.Hence, asymmetrytransformshouldkeeptheseprobabilitiesinvariant.So,ina quantumscenario,wedefineassymmetrytransformationsthosewhichpreservetransitionprobabilitiesbetweenthestates.

Sofar,thediscussionhasbeenaboutthetransitionprobabilities,but howdotheindividualstatesthemselvestransformunderasymmetrytransformation?TheanswertothisparticularquestionwasprovidedbyWigner. Wigner’stheorem:Anysymmetrytransformationcanberepresentedon theHilbertspaceofphysicalstates3 byanoperatorwhichiseitherlinear andunitaryorantilinearandantiunitary.

Forasymmetryoperator U ,thetheoremcanbestatedas:

or

Thetheoremwasstatedandprovedforthefirsttimein1931byWigner himselfinhisbook(Wigner,1959).Ithasthereafterbeenprovedbymany

2 Thescalarproductisdefinedthroughanintegral,e.g.inonedimension,as f |g = +∞ −∞ f ∗ (x)g (x)dx.Thesefunctionsmustsatisfythecondition f |f < ∞ andsimilarly for g .Thus,theycanbenormalized: f |f = g |g =1.Theserelationscaneasilybe generalizedin3D.

3 Mathematically,however,physicalstatesaredenotedby“rays”intheHilbertspace. Asetofnormalizedstateswhoseelementsdifferonlybyacomplexphasearecalled rays,i.e.,thestates ψ and eiθ ψ aremembersofthesameray R forsomereal θ .They correspondtothesamephysicalstate.Hence,asymmetrytransformationisaraytransformation T suchthatif T : R1 → TR1 and T : R2 → TR2 ,itfollowsthat

U ΨA |U ΨB = ΨA |ΨB ,U =unitary(1.2)
U ΨA |U ΨB

people,themostprominentbeingBargmann,Ulhornand,morerecently, (Weinberg,1996).

Unitarytransformationsarecommonlyusedanddiscussedextensively inthisbook.Theantiunitaryoperatorsareencounteredinthecaseoftime reversal,seeSection2.5.Onecanshowthatanantiunitaryoperatorcan bewrittenasaproductofaunitaryoperatorandthecomplexconjugation operation(Vergados,2018,Section12.4.2).

WealsoowetoWigneranotherinterestingapproachtoquantum mechanics:

Ifwedenoteas x allthecoordinatesthatdescribeasystem,thetimeindependentSchr¨ odingerdifferentialequationmaytakethefollowingform:

where H (x)istheHamiltoniandescribingthesystem.Inthisspace,we consideralineartransformation,whichisanelementofagroup, A ∈ G:

Thisimpliesatransformation TA infunctionalspace:

aswasobtainedbyWigner.Then,Eq.(1.4)becomes

Thus,Eq.(1.4(remainsunchangedaslongas

Thisisequivalentto

Infact,fromEqs.(1.8)and(1.7),onefinds

Now,consideringa representationof TA , TA → T (A),insomebasis,we showthat

, where T (H )istherepresentationoftheoperator H inthesamebasis.

GroupTheory:FiniteDiscreteGroups

Let ψi (x)beanorthogonalbasisinfunctionalspace.Then,

T (H )ij = ψi (x)|H |ψj (x) ≡ Hij ,T (A)ij = ψi (x)|TA |ψj (x) ,

Hij = T (H )ij = dxψ ∗ i (

)|H |ψj (x)= dxψ ∗ i (A 1 x)|H |ψj (A 1 x) = dx ψ ∗ i (x )|H (x )|ψj (x )= Hij

ij =

(

)

T (A)=(T (A))+ T (H )T (A)

FollowingWigner,wemakethereasonableassumptionthattherepresentationisunique,then T (A) ⇒ Γ(A), Γ+ (A)=Γ 1 (A)=Γ(A 1 ) ⇔ T (H ) =Γ 1 (A)T (H )Γ(A) ⇒ Γ(A)T (H )= T (H )Γ(A). (1.12)

InordertosolveEq.(1.4)thefollowingstrategyisused:Weexpand thefunction ψ inthebasis ψi , ψ = i αi ψi

Equation(1.4)nowbecomes:

.

Takingthescalarproductofbothsidesoftheequationwith ψj |,we find i αi ψj |H |ψi = i αi E ψj ψi = Eαj ⇒ i αi (Hji Eδij )=0

or,inmatrixform,

Eq.(1.13)isequivalentto(1.4).

Itissufficient,therefore,tosolveEq.(1.13).If,byutilizingthesymmetry,wehitthebull’seyewhenselectingthebasis,wewillbeabletoreduce thematrix(H ),i.e.

sincetheHamiltoniancannotmixstatesofdifferentsymmetry.Thisholds truethankstoanotherfamoustheorembyWigner,whichwillemergeas ourgrouptheoryevolves,seeSection6.2.Please,bepatient!

Forthemoment,justbesatisfiedthatallwehavetodoisdiagonalize matricesofsmallerdimensions.

Wemaythereforeconcludethatgrouptheoryisrecognizedasauseful toolforthecomprehensionandstudyofvarioussystems.Recognitionof symmetryinasystemrelievesusofthenecessitytosolvecomplexequationsinordertodiscoverthesystem’scharacteristics.Thisholdstrueeven whenthesymmetryisnotabsolute,butapproximate.Inthatcase,the symmetrywillhelpusfindanapproximatesolution,whichmaythenbe usedasabasisforfindingamoreaccuratesolutionwithperturbationtheory.Thematriceswhichmustbediagonalizedinthatcaseareconsiderably smaller.Moreover,theexistenceofsymmetryallowsustofindtheformof theHamiltonoperator,whenthatisnotalreadyknown.Inthisbook,we payspecialattentionto“geometricsymmetries”andtheiruseinquantum mechanicsproblems(normalmodes,etc.).

Somepeoplemayarguethatphysicistsneednotconcernthemselves withtheabstractgrouptheorythatamathematicianmightdealwith,but therealizationinsomewayoftheabstractgroupelements,i.etheirrepresentation,whichisnothingbutmatricesthatfollowthesamemultiplication ruleswiththeabstractelements.Weconsideritnecessary,however,todiscussthestructureofabstractgroups,despitethedifficultyposedforthose whoarenotmathematicallyinclined.Itis,afterall,necessarytointroduce aminimumofmathematicalconceptsbeforewegoontotheirapplications. ThisiswhatwewilldonextinChapter2.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.