Discrete mathematics and its applications 8th edition, (ebook pdf) - The ebook is available for inst

Page 1


DiscreteMathematicsandItsApplications8th Edition,(EbookPDF)

https://ebookmass.com/product/discrete-mathematics-and-itsapplications-8th-edition-ebook-pdf/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Discrete Mathematics and Its Applications 7th Edition, (Ebook PDF)

https://ebookmass.com/product/discrete-mathematics-and-itsapplications-7th-edition-ebook-pdf/

ebookmass.com

Finite Mathematics & Its Applications 12th Edition, (Ebook PDF)

https://ebookmass.com/product/finite-mathematics-itsapplications-12th-edition-ebook-pdf/

ebookmass.com

Discrete Mathematics with Applications: Fifth Edition Susanna S. Epp

https://ebookmass.com/product/discrete-mathematics-with-applicationsfifth-edition-susanna-s-epp/

ebookmass.com

Desert Armour: Tank Warfare in North Africa: Gazala to Tunisia, 1942–43 Forczyk

https://ebookmass.com/product/desert-armour-tank-warfare-in-northafrica-gazala-to-tunisia-1942-43-forczyk/

ebookmass.com

Gabriele Antonelli: A Dark Mafia Romance (Brutal Attachments Book 5) Z.Z. Brulant

https://ebookmass.com/product/gabriele-antonelli-a-dark-mafia-romancebrutal-attachments-book-5-z-z-brulant/

ebookmass.com

Leibniz and Kant Brandon C. Look (Editor)

https://ebookmass.com/product/leibniz-and-kant-brandon-c-look-editor/

ebookmass.com

A Prophet of the People: Isaiah Shembe and the Making of a South African Church Lauren V. Jarvis

https://ebookmass.com/product/a-prophet-of-the-people-isaiah-shembeand-the-making-of-a-south-african-church-lauren-v-jarvis/

ebookmass.com

Italian Recipes For Dummies 1st Edition Amy Riolo

https://ebookmass.com/product/italian-recipes-for-dummies-1st-editionamy-riolo/

ebookmass.com

Holocaust Education in Primary Schools in the Twenty-First Century: Current Practices, Potentials and Ways Forward 1st ed. Edition Claus-Christian W. Szejnmann

https://ebookmass.com/product/holocaust-education-in-primary-schoolsin-the-twenty-first-century-current-practices-potentials-and-waysforward-1st-ed-edition-claus-christian-w-szejnmann/

ebookmass.com

Head Over Paws Debbie Burns

https://ebookmass.com/product/head-over-paws-debbie-burns/

ebookmass.com

Discrete Mathematics Applications and Its

Eighth Edition

Preface

Inwritingthisbook,Iwasguidedbymylong-standingexperienceandinterestinteaching discretemathematics.Forthestudent,mypurposewastopresentmaterialinaprecise,readablemanner,withtheconceptsandtechniquesofdiscretemathematicsclearlypresentedand demonstrated.Mygoalwastoshowtherelevanceandpracticalityofdiscretemathematicsto students,whoareoftenskeptical.Iwantedtogivestudentsstudyingcomputerscienceallof themathematicalfoundationstheyneedfortheirfuturestudies.Iwantedtogivemathematics studentsanunderstandingofimportantmathematicalconceptstogetherwithasenseofwhy theseconceptsareimportantforapplications.Andmostimportantly,Iwantedtoaccomplish thesegoalswithoutwateringdownthematerial.

Fortheinstructor,mypurposewastodesignaflexible,comprehensiveteachingtoolusing provenpedagogicaltechniquesinmathematics.Iwantedtoprovideinstructorswithapackage ofmaterialsthattheycouldusetoteachdiscretemathematicseffectivelyandefficientlyinthe mostappropriatemannerfortheirparticularsetofstudents.IhopethatIhaveachievedthese goals.

Ihavebeenextremelygratifiedbythetremendoussuccessofthistext,includingitsuse bymorethanonemillionstudentsaroundtheworldoverthelast30yearsanditstranslation intomanydifferentlanguages.Themanyimprovementsintheeightheditionhavebeenmade possiblebythefeedbackandsuggestionsofalargenumberofinstructorsandstudentsatmany ofthemorethan600NorthAmericanschools,andatmanyuniversitiesindifferentpartsofthe world,wherethisbookhasbeensuccessfullyused.Ihavebeenabletosignificantlyimprovethe appealandeffectivenessofthisbookeditiontoeditionbecauseofthefeedbackIhavereceived andthesignificantinvestmentsthathavebeenmadeintheevolutionofthebook.

Thistextisdesignedforaone-ortwo-termintroductorydiscretemathematicscoursetaken bystudentsinawidevarietyofmajors,includingmathematics,computerscience,andengineering.Collegealgebraistheonlyexplicitprerequisite,althoughacertaindegreeofmathematical maturityisneededtostudydiscretemathematicsinameaningfulway.Thisbookhasbeendesignedtomeettheneedsofalmostalltypesofintroductorydiscretemathematicscourses.Itis highlyflexibleandextremelycomprehensive.Thebookisdesignednotonlytobeasuccessful textbook,butalsotoserveasavaluableresourcestudentscanconsultthroughouttheirstudies andprofessionallife.

Adiscretemathematicscoursehasmorethanonepurpose.Studentsshouldlearnaparticular setofmathematicalfactsandhowtoapplythem;moreimportantly,suchacourseshouldteach studentshowtothinklogicallyandmathematically.Toachievethesegoals,thistextstresses mathematicalreasoningandthedifferentwaysproblemsaresolved.Fiveimportantthemesare interwoveninthistext:mathematicalreasoning,combinatorialanalysis,discretestructures,algorithmicthinking,andapplicationsandmodeling.Asuccessfuldiscretemathematicscourse shouldcarefullyblendandbalanceallfivethemes.

1. MathematicalReasoning: Studentsmustunderstandmathematicalreasoninginordertoread, comprehend,andconstructmathematicalarguments.Thistextstartswithadiscussionof mathematicallogic,whichservesasthefoundationforthesubsequentdiscussionsofmethods ofproof.Boththescienceandtheartofconstructingproofsareaddressed.Thetechniqueof vii

mathematicalinductionisstressedthroughmanydifferenttypesofexamplesofsuchproofs andacarefulexplanationofwhymathematicalinductionisavalidprooftechnique.

2. CombinatorialAnalysis: Animportantproblem-solvingskillistheabilitytocountorenumerateobjects.Thediscussionofenumerationinthisbookbeginswiththebasictechniques ofcounting.Thestressisonperformingcombinatorialanalysistosolvecountingproblems andanalyzealgorithms,notonapplyingformulae.

3. DiscreteStructures: Acourseindiscretemathematicsshouldteachstudentshowtowork withdiscretestructures,whicharetheabstractmathematicalstructuresusedtorepresent discreteobjectsandrelationshipsbetweentheseobjects.Thesediscretestructuresinclude sets,permutations,relations,graphs,trees,andfinite-statemachines.

4. AlgorithmicThinking: Certainclassesofproblemsaresolvedbythespecificationofan algorithm.Afteranalgorithmhasbeendescribed,acomputerprogramcanbeconstructed implementingit.Themathematicalportionsofthisactivity,whichincludethespecification ofthealgorithm,theverificationthatitworksproperly,andtheanalysisofthecomputer memoryandtimerequiredtoperformit,areallcoveredinthistext.Algorithmsaredescribed usingbothEnglishandaneasilyunderstoodformofpseudocode.

5. ApplicationsandModeling: Discretemathematicshasapplicationstoalmosteveryconceivableareaofstudy.Therearemanyapplicationstocomputerscienceanddatanetworking inthistext,aswellasapplicationstosuchdiverseareasaschemistry,biology,linguistics, geography,business,andtheInternet.Theseapplicationsarenaturalandimportantusesof discretemathematicsandarenotcontrived.Modelingwithdiscretemathematicsisanextremelyimportantproblem-solvingskill,whichstudentshavetheopportunitytodevelopby constructingtheirownmodelsinsomeoftheexercises.

ChangesintheEighthEdition

Althoughtheseventheditionhasbeenanextremelyeffectivetext,manyinstructorshaverequestedchangestomakethebookmoreusefultothem.Ihavedevotedasignificantamountof timeandenergytosatisfytheirrequestsandIhaveworkedhardtofindmyownwaystoimprove thebookandtokeepitup-to-date.

Theeightheditionincludeschangesbasedoninputfrommorethan20formalreviewers, feedbackfromstudentsandinstructors,andmyinsights.TheresultisaneweditionthatIexpectwillbeamoreeffectiveteachingtool.Numerouschangesintheeightheditionhavebeen designedtohelpstudentslearnthematerial.Additionalexplanationsandexampleshavebeen addedtoclarifymaterialwherestudentshavehaddifficulty.Newexercises,bothroutineand challenging,havebeenadded.Highlyrelevantapplications,includingmanyrelatedtotheInternet,tocomputerscience,andtomathematicalbiology,havebeenadded.Thecompanion websitehasbenefitedfromextensivedevelopment;itnowprovidesextensivetoolsstudentscan usetomasterkeyconceptsandtoexploretheworldofdiscretemathematics.Furthermore,additionaleffectiveandcomprehensivelearningandassessmenttoolsareavailable,complementing thetextbook.

Ihopethatinstructorswillcloselyexaminethisneweditiontodiscoverhowitmightmeet theirneeds.Althoughitisimpracticaltolistallthechangesinthisedition,abrieflistthat highlightssomekeychanges,listedbythebenefitstheyprovide,maybeuseful.

ChangesintheEighthEdition

Thisneweditionofthebookincludesmanyenhancements,updates,additions,andedits,all designedtomakethebookamoreeffectiveteachingtoolforamoderndiscretemathematics course.Instructorswhohaveusedthebookpreviouslywillnoticeoverallchangesthathavebeen madethroughoutthebook,aswellasspecificchanges.Themostnotablerevisionsaredescribed here.

OverallChanges

▶ Expositionhasbeenimprovedthroughoutthebookwithafocusonprovidingmoreclarity tohelpstudentsreadandcomprehendconcepts.

▶ Manyproofshavebeenenhancedbyaddingmoredetailsandexplanations,andbyremindingthereaderoftheproofmethodsused.

▶ Newexampleshavebeenadded,oftentomeetneedsidentifiedbyreviewersortoillustratenewmaterial.Manyoftheseexamplesarefoundinthetext,butothersareavailable onlyonthecompanionwebsite.

▶ Manynewexercises,bothroutineandchallenging,addressneedsidentifiedbyinstructorsorcovernewmaterial,whileothersstrengthenandbroadenexistingexercise sets.

▶ Moresecondandthirdlevelheadshavebeenusedtobreaksectionsintosmallercoherentparts,andanewnumberingschemehasbeenusedtoidentifysubsectionsofthe book.

▶ Theonlineresourcesforthisbookhavebeengreatlyexpanded,providingextensivesupportforbothinstructorsandstudents.Theseresourcesaredescribedlaterinthefront matter.

TopicCoverage

▶ Logic Severallogicalpuzzleshavebeenintroduced.Anewexampleexplainshowto modelthe n-queensproblemasasatisfiabilityproblemthatisbothconciseandaccessible tostudents.

▶ Settheory Multisetsarenowcoveredinthetext.(Previouslytheywereintroducedin theexercises.)

▶ Algorithms Thestringmatchingproblem,animportantalgorithmformanyapplications,includingspellchecking,key-wordsearching,string-matching,andcomputational biology,isnowdiscussed.Thebrute-forcealgorithmforsolvingstring-matchingexercisesispresented.

▶ Numbertheory Theneweditionincludesthelatestnumericalandtheoreticdiscoveriesrelatingtoprimesandopenconjecturesaboutthem.TheextendedEuclideanalgorithm,aone-passalgorithm,isnowdiscussedinthetext.(Previouslyitwascoveredin theexercises.)

▶ Cryptography Theconceptofhomomorphicencryption,anditsimportancetocloud computing,isnowcovered.

▶ Mathematicalinduction Thetemplateforproofsbymathematicalinductionhas beenexpanded.Itisnowplacedinthetextbeforeexamplesofproofbymathematical induction.

▶ Countingmethods Thecoverageofthedivisionruleforcountinghasbeenexpanded.

▶ Datamining Associationrules—keyconceptsindatamining—arenowdiscussed inthesectionon n-aryrelations.Also,theJaccardmetric,whichisusedtofindthe distancebetweentwosetsandwhichisusedindatamining,isintroducedinthe exercises.

▶ Graphtheoryapplications Anewexampleillustrateshowsemanticnetworks,an importantstructureinartificialintelligence,canbemodeledusinggraphs.

▶ Biographies

NewbiographiesofWiles,Bhaskaracharya,delaVall ´ ee-Poussin, Hadamard,Zhang,andGentryhavebeenadded.Existingbiographieshavebeenexpandedandupdated.ThisaddsdiversitybyincludingmorehistoricallyimportantEastern mathematicians,majornineteenthandtwentiethcenturyresearchers,andcurrentlyactive twenty-firstcenturymathematiciansandcomputerscientists. FeaturesoftheBook

ACCESSIBILITY

Thistexthasproventobeeasilyreadandunderstoodbymanybeginningstudents.Therearenomathematicalprerequisitesbeyondcollegealgebraforalmostall thecontentsofthetext.Studentsneedingextrahelpwillfindtoolsonthecompanionwebsite forbringingtheirmathematicalmaturityuptothelevelofthetext.Thefewplacesinthebook wherecalculusisreferredtoareexplicitlynoted.Moststudentsshouldeasilyunderstandthe pseudocodeusedinthetexttoexpressalgorithms,regardlessofwhethertheyhaveformally studiedprogramminglanguages.Thereisnoformalcomputerscienceprerequisite.

Eachchapterbeginsataneasilyunderstoodandaccessiblelevel.Oncebasicmathematical conceptshavebeencarefullydeveloped,moredifficultmaterialandapplicationstootherareas ofstudyarepresented.

FLEXIBILITY

Thistexthasbeencarefullydesignedforflexibleuse.Thedependence ofchaptersonpreviousmaterialhasbeenminimized.Eachchapterisdividedintosectionsof approximatelythesamelength,andeachsectionisdividedintosubsectionsthatformnatural blocksofmaterialforteaching.Instructorscaneasilypacetheirlecturesusingtheseblocks.

WRITINGSTYLE

Thewritingstyleinthisbookisdirectandpragmatic.Precisemathematicallanguageisusedwithoutexcessiveformalismandabstraction.Carehasbeentakento balancethemixofnotationandwordsinmathematicalstatements.

MATHEMATICALRIGORANDPRECISION

Alldefinitionsandtheoremsinthistext arestatedextremelycarefullysothatstudentswillappreciatetheprecisionoflanguageand rigorneededinmathematics.Proofsaremotivatedanddevelopedslowly;theirstepsareall carefullyjustified.Theaxiomsusedinproofsandthebasicpropertiesthatfollowfromthem areexplicitlydescribedinanappendix,givingstudentsaclearideaofwhattheycanassumein aproof.Recursivedefinitionsareexplainedandusedextensively.

WORKEDEXAMPLES

Over800examplesareusedtoillustrateconcepts,relatedifferenttopics,andintroduceapplications.Inmostexamples,aquestionisfirstposed,thenits solutionispresentedwiththeappropriateamountofdetail.

APPLICATIONS

Theapplicationsincludedinthistextdemonstratetheutilityofdiscrete mathematicsinthesolutionofreal-worldproblems.Thistextincludesapplicationstoawide varietyofareas,includingcomputerscience,datanetworking,psychology,chemistry,engineering,linguistics,biology,business,andtheInternet.

ALGORITHMS

Resultsindiscretemathematicsareoftenexpressedintermsofalgorithms;hence,keyalgorithmsareintroducedinmostchaptersofthebook.Thesealgorithms areexpressedinwordsandinaneasilyunderstoodformofstructuredpseudocode,whichis describedandspecifiedinAppendix3.Thecomputationalcomplexityofthealgorithmsinthe textisalsoanalyzedatanelementarylevel.

HISTORICALINFORMATION

Thebackgroundofmanytopicsissuccinctlydescribed inthetext.Briefbiographiesof89mathematiciansandcomputerscientistsareincludedas

footnotes.Thesebiographiesincludeinformationaboutthelives,careers,andaccomplishments oftheseimportantcontributorstodiscretemathematics,andimages,whenavailable,aredisplayed.

Inaddition,numeroushistoricalfootnotesareincludedthatsupplementthehistoricalinformationinthemainbodyofthetext.Effortshavebeenmadetokeepthebookup-to-dateby reflectingthelatestdiscoveries.

KEYTERMSANDRESULTS

Alistofkeytermsandresultsfollowseachchapter.The keytermsincludeonlythemostimportantthatstudentsshouldlearn,andnoteverytermdefined inthechapter.

EXERCISES

Thereareover4200exercisesinthetext,withmanydifferenttypesofquestionsposed.Thereisanamplesupplyofstraightforwardexercisesthatdevelopbasicskills,a largenumberofintermediateexercises,andmanychallengingexercises.Exercisesarestated clearlyandunambiguously,andallarecarefullygradedforlevelofdifficulty.Exercisesetscontainspecialdiscussionsthatdevelopnewconceptsnotcoveredinthetext,enablingstudentsto discovernewideasthroughtheirownwork.

Exercisesthataresomewhatmoredifficultthanaveragearemarkedwithasinglestar, ∗ ; thosethataremuchmorechallengingaremarkedwithtwostars, ∗∗ .Exerciseswhosesolutions requirecalculusareexplicitlynoted.Exercisesthatdevelopresultsusedinthetextareclearly identifiedwiththerightpointinghandsymbol, .Answersoroutlinedsolutionstoalloddnumberedexercisesareprovidedatthebackofthetext.Thesolutionsincludeproofsinwhich mostofthestepsareclearlyspelledout.

REVIEWQUESTIONS

Asetofreviewquestionsisprovidedattheendofeachchapter. Thesequestionsaredesignedtohelpstudentsfocustheirstudyonthemostimportantconcepts andtechniquesofthatchapter.Toanswerthesequestionsstudentsneedtowritelonganswers, ratherthanjustperformcalculationsorgiveshortreplies.

SUPPLEMENTARYEXERCISESETS

Eachchapterisfollowedbyarichandvaried setofsupplementaryexercises.Theseexercisesaregenerallymoredifficultthanthoseinthe exercisesetsfollowingthesections.Thesupplementaryexercisesreinforcetheconceptsofthe chapterandintegratedifferenttopicsmoreeffectively.

COMPUTERPROJECTS

Eachchapterisfollowedbyasetofcomputerprojects.The approximately150computerprojectstietogetherwhatstudentsmayhavelearnedincomputing andindiscretemathematics.Computerprojectsthataremoredifficultthanaverage,fromboth amathematicalandaprogrammingpointofview,aremarkedwithastar,andthosethatare extremelychallengingaremarkedwithtwostars.

COMPUTATIONSANDEXPLORATIONS

Asetofcomputationsandexplorationsis includedattheconclusionofeachchapter.Theseexercises(approximately120intotal)aredesignedtobecompletedusingexistingsoftwaretools,suchasprogramsthatstudentsorinstructorshavewrittenormathematicalcomputationpackagessuchasMapleTM orMathematicaTM . Manyoftheseexercisesgivestudentstheopportunitytouncovernewfactsandideasthrough computation.(Someoftheseexercisesarediscussedinthe ExploringDiscreteMathematics companionworkbooksavailableonline.)

WRITINGPROJECTS

Eachchapterisfollowedbyasetofwritingprojects.Todothese projectsstudentsneedtoconsultthemathematicalliterature.Someoftheseprojectsarehistoricalinnatureandmayinvolvelookinguporiginalsources.Othersaredesignedtoserveas gatewaystonewtopicsandideas.Allaredesignedtoexposestudentstoideasnotcoveredin depthinthetext.Theseprojectstiemathematicalconceptstogetherwiththewritingprocessand

helpexposestudentstopossibleareasforfuturestudy.(Suggestedreferencesfortheseprojects canbefoundonlineorintheprinted Student’sSolutionsGuide.)

APPENDICES

Therearethreeappendicestothetext.Thefirstintroducesaxiomsforreal numbersandthepositiveintegers,andillustrateshowfactsareproveddirectlyfromtheseaxioms.Thesecondcoversexponentialandlogarithmicfunctions,reviewingsomebasicmaterial usedheavilyinthecourse.Thethirdspecifiesthepseudocodeusedtodescribealgorithmsin thistext.

SUGGESTEDREADINGS

Alistofsuggestedreadingsfortheoverallbookandforeach chapterisprovidedaftertheappendices.Thesesuggestedreadingsincludebooksatorbelow thelevelofthistext,moredifficultbooks,expositoryarticles,andarticlesinwhichdiscoveries indiscretemathematicswereoriginallypublished.Someofthesepublicationsareclassics,publishedmanyyearsago,whileothershavebeenpublishedinthelastfewyears.Thesesuggested readingsarecomplementedbythemanylinkstovaluableresourcesavailableonthewebthat canbefoundonthewebsiteforthisbook.

HowtoUseThisBook

Thistexthasbeencarefullywrittenandconstructedtosupportdiscretemathematicscourses atseverallevelsandwithdifferingfoci.Thefollowingtableidentifiesthecoreandoptional sections.Anintroductoryone-termcourseindiscretemathematicsatthesophomorelevelcan bebasedonthecoresectionsofthetext,withothersectionscoveredatthediscretionofthe instructor.Atwo-termintroductorycoursecanincludealltheoptionalmathematicssectionsin additiontothecoresections.Acoursewithastrongcomputerscienceemphasiscanbetaught bycoveringsomeoralloftheoptionalcomputersciencesections.Instructorscanfindsample syllabiforawiderangeofdiscretemathematicscoursesandteachingsuggestionsforusingeach sectionofthetextcanbefoundinthe Instructor’sResourceGuide availableonthewebsitefor thisbook.

Instructorsusingthisbookcanadjustthelevelofdifficultyoftheircoursebychoosing eithertocoverortoomitthemorechallengingexamplesattheendofsections,aswellas themorechallengingexercises.Thechapterdependencychartshownheredisplaysthestrong dependencies.Astarindicatesthatonlyrelevantsectionsofthechapterareneededforstudy ofalaterchapter.Weakdependencieshavebeenignored.Moredetailscanbefoundinthe Instructor’sResourceGuide

Chapter 9* Chapter 10* Chapter 11

7

Ancillaries

1

2*

3*

4*

5*

6*

12

13

8

STUDENT’SSOLUTIONSGUIDE

Thisstudentmanual,availableseparately,contains fullsolutionstoallodd-numberedexercisesintheexercisesets.Thesesolutionsexplainwhy aparticularmethodisusedandwhyitworks.Forsomeexercises,oneortwootherpossible approachesaredescribedtoshowthataproblemcanbesolvedinseveraldifferentways.Suggestedreferencesforthewritingprojectsfoundattheendofeachchapterarealsoincludedin thisvolume.Alsoincludedareaguidetowritingproofsandanextensivedescriptionofcommonmistakesstudentsmakeindiscretemathematics,plussampletestsandasamplecribsheet foreachchapterdesignedtohelpstudentsprepareforexams.

INSTRUCTOR’SRESOURCEGUIDE

Thismanual,availableonthewebsiteandin printedformbyrequestforinstructors,containsfullsolutionstoeven-numberedexercisesin thetext.Suggestionsonhowtoteachthematerialineachchapterofthebookareprovided, includingthepointstostressineachsectionandhowtoputthematerialintoperspective.It alsoofferssampletestsforeachchapterandatestbankcontainingover1500examquestionsto choosefrom.Answerstoallsampletestsandtestbankquestionsareincluded.Finally,sample syllabiarepresentedforcourseswithdifferingemphasesandstudentabilitylevels.

Acknowledgments

Iwouldliketothankthemanyinstructorsandstudentsatavarietyofschoolswhohaveused thisbookandprovidedmewiththeirvaluablefeedbackandhelpfulsuggestions.Theirinput hasmadethisamuchbetterbookthanitwouldhavebeenotherwise.Iespeciallywanttothank JerroldGrossmanandDanJordanfortheirtechnicalreviewsoftheeightheditionandtheir “eagleeyes,”whichhavehelpedensuretheaccuracyandqualityofthisbook.Bothhaveproofreadeverypartofthebookmanytimesasithasgonethroughthedifferentstepsofproduction andhavehelpedeliminateolderrataandpreventedtheinsertionofnewerrata.

ThanksgotoDanJordanforhisworkonthestudentsolutionsmanualandinstructor’s resourceguide.Hehasdoneanadmirablejobupdatingtheseancillaries.JerroldGrossman, theauthoroftheseancillariesforthefirstseveneditionsofthebook,hasprovidedvaluable assistancetoDan.Iwouldalsoliketoexpressmygratitudetothemanypeoplewhohavehelped createandmaintaintheonlineresourcesforthisbook.Inparticular,specialthanksgotoDan JordanandRochusBoernerfortheirextensiveworkimprovingonlinequestionsfortheConnect Site,describedlaterinthispreface.

Ithankthereviewersofthiseighthandallpreviouseditions.Thesereviewershaveprovided muchhelpfulcriticismandencouragementtome.Ihopethiseditionlivesuptotheirhigh expectations.Therehavebeenwellinexcessof200reviewersofthisbooksinceitsfirstedition, withmanyfromcountriesotherthantheUnitedStates.Themostrecentreviewersarelisted here.

RecentReviewers

BarbaraAnthony SouthwesternUniversity

PhilipBarry UniversityofMinnesota,Minneapolis

BenkamBobga UniversityofNorthGeorgia

MiklosBona UniversityofFlorida

SteveBrick UniversityofSouthAlabama

KirbyBrown QueensCollege

JohnCarter UniversityofToronto

NarendraChaudhari NanyangTechnologicalUniversity

TimChappell PennValleyCommunityCollege

AllanCochran UniversityofArkansas

DanielCunningham BuffaloStateCollege

H.K.Dai

OklahomaStateUniversity

GeorgeDavis GeorgiaStateUniversity

AndrzejDerdzinski TheOhioStateUniversity

RonaldDotzel UniversityofMissouri-St.Louis

T.J.Duda ColumbusStateCommunityCollege

BruceElenbogen UniversityofMichigan,Dearborn

NormaElias PurdueUniversity, Calumet-Hammond

HerbertEnderton UniversityofCalifornia,LosAngeles

AnthonyEvans WrightStateUniversity

KimFactor MarquetteUniversity

MargaretFleck UniversityofIllinois,Champaign

MelissaGaddini

RobertMorrisUniversity

PeterGillespie FayettevilleStateUniversity

JohannesHattingh GeorgiaStateUniversity

JamesHelmreich MaristCollege

KenHolladay UniversityofNewOrleans

JerryIanni LaGuardiaCommunityCollege

MilagrosIzquierdo LinkopingUniversity

RaviJanardan UniversityofMinnesota,Minneapolis

NorlizaKatuk UniversityofUtaraMalaysia

MonikaKiss SaintLeoUniversity

WilliamKlostermeyer UniversityofNorthFlorida

PrzemoKranz UniversityofMississippi

JaromyKuhl UniversityofWestFlorida

LoredanaLanzani UniversityofArkansas,Fayetteville

FredericLatour CentralConnecticutStateUniversity

StevenLeonhardi WinonaStateUniversity

ChunleiLiu ValdostaStateUniversity

XuLiutong BeijingUniversityofPostsand Telecommunications

VladimirLogvinenko DeAnzaCommunityCollege

TamsenMcGinley SantaClaraUniversity

RamonA.Mata-Toledo JamesMadisonUniversity

TamaraMelnik ComputerSystemsInstitute

OsvaldoMendez UniversityofTexasatElPaso

DarrellMinor ColumbusStateCommunityCollege

KathleenO’Connor QuinsigamondCommunityCollege

KeithOlson UtahValleyUniversity

DimitrisPapamichail TheCollegeofNewJersey

YongyuthPermpoontanalarp KingMongkut’sUniversityof Technology,Thonburi

GalinPiatniskaia UniversityofMissouri,St.Louis

ShawonRahman UniversityofHawaiiatHilo

EricRawdon UniversityofSt.Thomas

StefanRobila MontclairStateUniversity

ChrisRodger AuburnUniversity

SukhitSingh TexasStateUniversity,SanMarcos

DavidSnyder TexasStateUniversity,SanMarcos

WasinSo SanJoseStateUniversity

BogdanSuceava CaliforniaStateUniversity,Fullerton

ChristopherSwanson AshlandUniversity

BonSy QueensCollege

FerejaTahir IllinoisCentralCollege

K.A.Venkatesh PresidencyUniversity

MatthewWalsh Indiana-PurdueUniversity,Fort Wayne

SheriWang UniversityofPhoenix

GideonWeinstein WesternGovernorsUniversity

DavidWilczynski UniversityofSouthernCalifornia

JamesWooland FloridaStateUniversity

Ialsowanttothankthemanystudentswhohaveprovidedsuggestionsandreportederrata. ThestudentsinthediscretemathematicscoursesIhavetaughtatMonmouthUniversity,both undergraduateandgraduatecomputersciencestudents,havehelpedmeimprovethebookin manyways.

TherearemanypeopletothankatMcGraw-HillHigherEducation,thepublisherofthis book,aswellaspeoplewhodidtheproductionworkatAptara.Iwouldalsoliketothankthe originaleditoratRandomHouse,WayneYuhasz,whoseinsightsandskillshelpedensurethe book’ssuccess,aswellasallthemanyotherpreviouseditorsofthisbook.

IwanttoexpressmydeepappreciationtoNoraDevlin,theProductDeveloperwhohas gonefarbeyondherassigneddutiestosupporttheauthor.Shehasdisplayedmanyskillsand virtuesworkingtosolveawidevarietyofproblemsthathaveariseninthedevelopmentofthis newedition.

IamalsogratefultoPeggySelle,theContentProductManager,whomanagedtheproductionprocess.Shehaskepttheproductionontrackandhashelpedresolvemanyissuesthathave ariseduringthisprocess.ThanksgotoSaritaYadav,SeniorProductManagerofAptara,and hercolleaguesatAptara,whoworkeddiligentlytoensuretheproductionqualityofthisedition.

IalsowanttoexpressmyappreciationtothemanyothersintheScience,Engineering,and Mathematics(SEM)DivisionofMcGraw-HillHigherEducationfortheirvaluablesupportfor thisneweditionandtheassociatedmediacontent,including

▶ MikeRyan,VP,Portfolio&LearningContent,HigherEducation

▶ KathleenMcMahon,ManagingDirector,Mathematics&PhysicalSciences

▶ CarolineCelano,Director,Mathematics

▶ AlisonFrederick,MarketingManager

▶ RobinReed,LeadProductDeveloper

▶ SandyLudovissey,Buyer

▶ EgzonShaqiri,Designer

▶ TammyJuran,AssessmentContentProjectManager

▶ CynthiaNorthrup,DirectorofDigitalContent

▶ RuthCzarnecki-Lichstein,BusinessProductManager

▶ MeganPlatt,EditorialCoordinator

▶ LoraNeyensandJolynnKilburg,ProgramManagers

▶ LorraineBuczek,ContentLicensingSpecialist

KennethH.Rosen

0.1

OnlineResources

Extensiveefforthasbeendevotedtoproducingvaluablewebresourcesforthisbook.Instructorsshouldmakeaspecialefforttoexploretheseresourcestoidentifythosetheyfeel willhelptheirstudentslearnandexplorediscretemathematics.Theseresourcesareavailablein theOnlineLearningCenter,whichisavailabletoallstudentsandinstructors,andtheConnect Site,designedforinteractiveinstruction,whichinstructorscanchoosetouse.TouseConnect, studentspurchaseonlineaccessforaspecifictimeperiod.

TheOnlineLearningCenter

TheOnlineLearningCenter(OLC),accessibleat www.mhhe.com/rosen,includesan InformationCenter,a StudentSite,andan InstructorSite.Keyfeaturesofeachareaaredescribedhere.

0.1.1TheInformationCenter

TheInformationCentercontainsbasicinformationaboutthebookincludingtheexpandedtable ofcontents(includingsubsectionheads),thepreface,descriptionsoftheancillaries,andasamplechapter.Italsoprovidesalinkthatcanbeusedtosubmiterratareportsandotherfeedback aboutthebook.

0.1.2StudentSite

TheStudentSitecontainsawealthofresourcesavailableforstudentuse,includingthefollowing,tiedintothetextwhereverthespecialiconsdisplayedbelowarefoundinthetext:

▶ ExtraExamples Youcanfindalargenumberofadditionalexamplesonthesite,cov- Extra Examples eringallchaptersofthebook.Theseexamplesareconcentratedinareaswherestudents oftenaskforadditionalmaterial.Althoughmostoftheseexamplesamplifythebasic concepts,more-challengingexamplescanalsobefoundhere.Manynewextraexamples havebeenrecentlyaddedfortheeighthedition.Eachiconinthebookcorrespondsto oneormoreextraexamplesonthewebsite.

▶ InteractiveDemonstrationApplets Theseappletsenableyoutointeractivelyexplore Demo howimportantalgorithmswork,andaretieddirectlytomaterialinthetextwithlinkages toexamplesandexercises.Additionalresourcesareprovidedonhowtouseandapply theseapplets.

▶ SelfAssessments Theseinteractiveguideshelpyouassessyourunderstandingof14 Assessment keyconcepts,providingaquestionbankwhereeachquestionincludesabrieftutorial followedbyamultiple-choicequestion.Ifyouselectanincorrectanswer,adviceisprovidedtohelpyouunderstandyourerror.UsingtheseSelfAssessments,youshouldbe abletodiagnoseyourproblemsandfindappropriatehelp.

▶ WebResourcesGuide Thisguideprovidesannotatedlinkstohundredsofexternal Links websitescontainingrelevantmaterialsuchashistoricalandbiographicalinformation, puzzlesandproblems,discussions,applets,programs,andmore.Theselinksarekeyed tothetextbypagenumber.

AdditionalresourcesintheStudentSiteinclude:

▶ ExploringDiscreteMathematics Thisancillaryprovideshelpforusingacomputeralgebrasystemtodoawiderangeofcomputationsindiscretemathematics.Eachchapterprovides adescriptionofrelevantfunctionsinthecomputeralgebrasystemandhowtheyareused,programstocarryoutcomputationsindiscretemathematics,examples,andexercisesthatcanbe workedusingthiscomputeralgebrasystem.Twoversions, ExploringDiscreteMathematics withMapleTM and ExploringDiscreteMathematicswithMathematicaTM ,areavailable.

▶ ApplicationsofDiscreteMathematics Thisancillarycontains24chapters—eachwith itsownsetofexercises—presentingawidevarietyofinterestingandimportantapplications coveringthreegeneralareasindiscretemathematics:discretestructures,combinatorics,and graphtheory.Theseapplicationsareidealforsupplementingthetextorforindependentstudy.

▶ AGuidetoProof-Writing Thisguideprovidesadditionalhelpforwritingproofs,askill thatmanystudentsfinddifficulttomaster.Byreadingthisguideatthebeginningofthe courseandperiodicallythereafterwhenproofwritingisrequired,youwillberewardedas yourproof-writingabilitygrows.(Alsoavailableinthe Student’sSolutionsGuide.)

▶ CommonMistakesinDiscreteMathematics Thisguideincludesadetailedlistofcommonmisconceptionsthatstudentsofdiscretemathematicsoftenhaveandthekindsoferrors theytendtomake.Youareencouragedtoreviewthislistfromtimetotimetohelpavoid thesecommontraps.(Alsoavailableinthe Student’sSolutionsGuide.)

▶ AdviceonWritingProjects ThisguideoffershelpfulhintsandsuggestionsfortheWriting Projectsinthetext,includinganextensivebibliographyofhelpfulbooksandarticlesfor research,discussionofvariousresourcesavailableinprintandonline,tipsondoinglibrary research,andsuggestionsonhowtowritewell.(Alsoavailableinthe Student’sSolutions Guide.)

0.1.3InstructorSite

ThispartofthewebsiteprovidesaccesstoalloftheresourcesontheStudentSite,aswellas theseresourcesforinstructors:

▶ SuggestedSyllabi Detailedcourseoutlinesareshown,offeringsuggestionsfor courseswithdifferentemphasesanddifferentstudentbackgroundsandabilitylevels.

▶ TeachingSuggestions Thisguidecontainsdetailedteachingsuggestionsforinstructors,includingchapteroverviewsfortheentiretext,detailedremarksoneachsection, andcommentsontheexercisesets.

▶ PrintableTests PrintabletestsareofferedinTeXandWordformatforeverychapter, andcanbecustomizedbyinstructors.

▶ PowerPointLectureSlidesandPowerPointFiguresandTables AnextensivecollectionofPowerPointlecturenotesforallchaptersofthetextareprovidedforinstructor use.Inaddition,imagesofallfiguresandtablesfromthetextareprovidedasPowerPoint slides.

0.1.4Connect

Acomprehensiveonlinelearningpackagehasbeendevelopedinconjunctionwiththetext.A high-leveldescriptionofthissitewillbeprovidedhere.Interestedinstructorsandstudentscan findoutmoreaboutConnectfromMcGraw-HillHigherEducation.Wheninstructorschooseto usethisoption,studentsintheirclassesmustobtainaccesstoConnectforthistext,eitherby purchasingacopyofthetextbookthatalsoincludesaccessprivilegesorbypurchasingaccess onlywiththeoptionofbuyingaloose-leafversionofthetextbook.

InstructorswhoadoptConnecthaveaccesstoafull-featuredcoursemanagementsystem. Coursemanagementcapabilitiesareprovidedthatallowinstructorstocreateassignments,automaticallyassignandgradehomework,quiz,andtestquestionsfromabankofquestionstied directlytothetext,createandedittheirownquestions,managecourseannouncementsanddue dates,andtrackstudentprogress.

InstructorscancreatetheirownassignmentsusingConnect.Theyselecttheparticularexercisesfromeachsectionofthebookthattheywanttoassign.Theycanalsoassignchapters fromtheSmartBookversionofthetext,whichprovidesanadaptivelearningenvironment.Studentshaveaccesstotheinteractiveversionofthetextbook,theonlinehomeworkexercises,and SmartBook.

InteractiveTextbook Studentshaveaccesstoaneasy-to-useinteractiveversionofthetextbook whentheyuseConnect.Theinteractivesiteprovidesthefullcontentofthetext,aswellasthe manyextraresourcesthatenrichthebook.Theresourcesincludeextraexamples,interactive demonstrations,andself-assessments.

HomeworkandLearningManagementSolution Anextensivelearningmanagementsolution hasbeendevelopedthatinstructorscanusetoconstructhomeworkassignments.Approximately 800onlinequestionsareavailable,includingquestionsfromeverysectionofthetext.These questionsaretiedtothemostcommonlyassignedexercisesinthebook.

Theseonlinequestionshavebeenconstructedtosupportthesameobjectivesasthecorrespondingwrittenhomeworkquestions.ThischallengehasbeenmetbystretchingthecapabilitiesofdifferentquestiontypessupportedbytheConnectplatform.

SmartBook ConnectalsoprovidesanotherextendedonlineversionofthetextintheMcGrawHillSmartBookplatform.TheSmartBookversionofthetextincludesasetofobjectivesforeach chapterofthetext.Acollectionofquestions,calledprobes,isprovidedtoassessstudentunderstandingofeachobjective.Studentsaredirectedtotheappropriatepartofthetexttoreview thematerialneededforeachoftheseobjectives.SmartBookprovidesanadaptivelearningenvironment;itselectsprobesforstudentsbasedontheirperformanceansweringearlierprobes. InstructorscanassignSmartBookasassignmentsorcanhavetheirstudentsuseSmartBookas alearningtool.

TotheStudent

Whatisdiscretemathematics? Discretemathematicsisthepartofmathematicsdevoted tothestudyofdiscreteobjects.(Here discrete meansconsistingofdistinctorunconnectedelements.)Thekindsofproblemssolvedusingdiscretemathematicsinclude:

▶ Howmanywaysaretheretochooseavalidpasswordonacomputersystem?

▶ Whatistheprobabilityofwinningalottery?

▶ Istherealinkbetweentwocomputersinanetwork?

▶ HowcanIidentifyspame-mailmessages?

▶ HowcanIencryptamessagesothatnounintendedrecipientcanreadit?

▶ Whatistheshortestpathbetweentwocitiesusingatransportationsystem?

▶ Howcanalistofintegersbesortedsothattheintegersareinincreasingorder?

▶ Howmanystepsarerequiredtodosuchasorting?

▶ Howcanitbeprovedthatasortingalgorithmcorrectlysortsalist?

▶ Howcanacircuitthataddstwointegersbedesigned?

▶ HowmanyvalidInternetaddressesarethere?

Youwilllearnthediscretestructuresandtechniquesneededtosolveproblemssuchasthese.

Moregenerally,discretemathematicsisusedwheneverobjectsarecounted,whenrelationshipsbetweenfinite(orcountable)setsarestudied,andwhenprocessesinvolvingafinitenumberofstepsareanalyzed.Akeyreasonforthegrowthintheimportanceofdiscretemathematics isthatinformationisstoredandmanipulatedbycomputingmachinesinadiscretefashion.

WHYSTUDYDISCRETEMATHEMATICS?

Thereareseveralimportantreasonsfor studyingdiscretemathematics.First,throughthiscourseyoucandevelopyourmathematical maturity:thatis,yourabilitytounderstandandcreatemathematicalarguments.Youwillnot getveryfarinyourstudiesinthemathematicalscienceswithouttheseskills.

Second,discretemathematicsisthegatewaytomoreadvancedcoursesinallpartsofthe mathematicalsciences.Discretemathematicsprovidesthemathematicalfoundationsformany computersciencecourses,includingdatastructures,algorithms,databasetheory,automatatheory,formallanguages,compilertheory,computersecurity,andoperatingsystems.Studentsfind thesecoursesmuchmoredifficultwhentheyhavenothadtheappropriatemathematicalfoundationsfromdiscretemathematics.Onestudentsentmeane-mailmessagesayingthatsheused thecontentsofthisbookineverycomputersciencecourseshetook!

Mathcoursesbasedonthematerialstudiedindiscretemathematicsincludelogic,settheory, numbertheory,linearalgebra,abstractalgebra,combinatorics,graphtheory,andprobability theory(thediscretepartofthesubject).

Also,discretemathematicscontainsthenecessarymathematicalbackgroundforsolvingproblemsinoperationsresearch(includingdiscreteoptimization),chemistry,engineering, biology,andsoon.Inthetext,wewillstudyapplicationstosomeoftheseareas.

Manystudentsfindtheirintroductorydiscretemathematicscoursetobesignificantlymore challengingthancoursestheyhavepreviouslytaken.Onereasonforthisisthatoneoftheprimarygoalsofthiscourseistoteachmathematicalreasoningandproblemsolving,ratherthana discretesetofskills.Theexercisesinthisbookaredesignedtoreflectthisgoal.Althoughthere areplentyofexercisesinthistextsimilartothoseaddressedintheexamples,alargepercentage

oftheexercisesrequireoriginalthought.Thisisintentional.Thematerialdiscussedinthetext providesthetoolsneededtosolvetheseexercises,butyourjobistosuccessfullyapplythese toolsusingyourowncreativity.Oneoftheprimarygoalsofthiscourseistolearnhowtoattack problemsthatmaybesomewhatdifferentfromanyyoumayhavepreviouslyseen.Unfortunately,learninghowtosolveonlyparticulartypesofexercisesisnotsufficientforsuccessin developingtheproblem-solvingskillsneededinsubsequentcoursesandprofessionalwork.This textaddressesmanydifferenttopics,butdiscretemathematicsisanextremelydiverseandlarge areaofstudy.Oneofmygoalsasanauthoristohelpyoudeveloptheskillsneededtomaster theadditionalmaterialyouwillneedinyourownfuturepursuits.

Finally,discretemathematicsisanexcellentenvironmentinwhichtolearnhowtoreadand writemathematicalproofs.InadditiontoexplicitmaterialonproofsinChapter1andChapter5, thistextbookcontainsthroughoutmanyproofsoftheoremsandmanyexercisesaskingthestudenttoprovestatements.Thisnotonlydeepensone’sunderstandingofthesubjectmatterbutis alsovaluablepreparationformoreadvancedcoursesinmathematicsandtheoreticalcomputer science.

THEEXERCISES

Iwouldliketooffersomeadviceabouthowyoucanbestlearndiscrete mathematics(andothersubjectsinthemathematicalandcomputingsciences).Youwilllearn themostbyactivelyworkingexercises.Isuggestthatyousolveasmanyasyoupossiblycan. Afterworkingtheexercisesyourinstructorhasassigned,Iencourageyoutosolveadditional exercisessuchasthoseintheexercisesetsfollowingeachsectionofthetextandinthesupplementaryexercisesattheendofeachchapter.(Notethekeyexplainingthemarkingspreceding exercises.)

KeytotheExercises nomarkingAroutineexercise

∗ Adifficultexercise

∗∗ Anextremelychallengingexercise

Anexercisecontainingaresultusedinthebook(Table1onthe followingpageshowswheretheseexercisesareused.)

(Requirescalculus)Anexercisewhosesolutionrequirestheuseoflimitsorconcepts fromdifferentialorintegralcalculus

Thebestapproachistotryexercisesyourselfbeforeyouconsulttheanswersectionatthe endofthisbook.Notethattheodd-numberedexerciseanswersprovidedinthetextareanswers onlyandnotfullsolutions;inparticular,thereasoningrequiredtoobtainanswersisomittedin theseanswers.The Student’sSolutionsGuide,availableseparately,providescomplete,worked solutionstoallodd-numberedexercisesinthistext.Whenyouhitanimpassetryingtosolvean odd-numberedexercise,Isuggestyouconsultthe Student’sSolutionsGuide andlookforsome guidanceastohowtosolvetheproblem.Themoreworkyoudoyourselfratherthanpassively readingorcopyingsolutions,themoreyouwilllearn.Theanswersandsolutionstotheevennumberedexercisesareintentionallynotavailablefromthepublisher;askyourinstructorifyou havetroublewiththese.

WEBRESOURCES AllusersofthebookareabletoaccesstheonlineresourcesaccessibleviatheOnlineLearningCenter(OLC)forthebook.YouwillfindmanyExtraExamplesdesignedtoclarifykeyconcepts,SelfAssessmentsforgauginghowwellyouunderstand coretopics,InteractiveDemonstrationsthatexplorekeyalgorithmsandotherconcepts,aWeb ResourcesGuidecontaininganextensiveselectionoflinkstoexternalsitesrelevanttothe worldofdiscretemathematics,extraexplanationsandpracticetohelpyoumastercoreconcepts,addedinstructiononwritingproofsandonavoidingcommonmistakesindiscretemathematics,in-depthdiscussionsofimportantapplications,andguidanceonutilizingMapleTM and

MathematicaTM softwaretoexplorethecomputationalaspectsofdiscretemathematics.Places inthetextwheretheseadditionalonlineresourcesareavailableareidentifiedinthemarginsby specialicons.Formoredetailsontheseandotheronlineresources,seethedescriptionofthe companionwebsiteimmediatelyprecedingthis“TotheStudent”message.

THEVALUEOFTHISBOOK

Myintentionistomakeyoursubstantialinvestmentinthis textanexcellentvalue.Thebook,theassociatedancillaries,andcompanionwebsitehavetaken manyyearsofefforttodevelopandrefine.Iamconfidentthatmostofyouwillfindthatthetext andassociatedmaterialswillhelpyoumasterdiscretemathematics,justassomanyprevious studentshave.Eventhoughitislikelythatyouwillnotcoversomechaptersinyourcurrent course,youshouldfindithelpful—asmanyotherstudentshave—toreadtherelevantsections ofthebookasyoutakeadditionalcourses.Mostofyouwillreturntothisbookasausefultool throughoutyourfuturestudies,especiallyforthoseofyouwhocontinueincomputerscience, mathematics,andengineering.Ihavedesignedthisbooktobeagatewayforfuturestudiesand explorations,andtobecomprehensivereference,andIwishyouluckasyoubeginyourjourney.

1.1

TheFoundations: LogicandProofs

Therulesoflogicspecifythemeaningofmathematicalstatements.Forinstance,these ruleshelpusunderstandandreasonwithstatementssuchas“Thereexistsaninteger thatisnotthesumoftwosquares”and“Foreverypositiveinteger n,thesumofthepositiveintegersnotexceeding n is n(n + 1)∕2.”Logicisthebasisofallmathematicalreasoning, andofallautomatedreasoning.Ithaspracticalapplicationstothedesignofcomputingmachines,tothespecificationofsystems,toartificialintelligence,tocomputerprogramming,to programminglanguages,andtootherareasofcomputerscience,aswellastomanyotherfields ofstudy.

Tounderstandmathematics,wemustunderstandwhatmakesupacorrectmathematical argument,thatis,aproof.Onceweproveamathematicalstatementistrue,wecallitatheorem. Acollectionoftheoremsonatopicorganizewhatweknowaboutthistopic.Tolearnamathematicaltopic,apersonneedstoactivelyconstructmathematicalargumentsonthistopic,and notjustreadexposition.Moreover,knowingtheproofofatheoremoftenmakesitpossibleto modifytheresulttofitnewsituations.

Everyoneknowsthatproofsareimportantthroughoutmathematics,butmanypeoplefind itsurprisinghowimportantproofsareincomputerscience.Infact,proofsareusedtoverify thatcomputerprogramsproducethecorrectoutputforallpossibleinputvalues,toshowthat algorithmsalwaysproducethecorrectresult,toestablishthesecurityofasystem,andtocreate artificialintelligence.Furthermore,automatedreasoningsystemshavebeencreatedtoallow computerstoconstructtheirownproofs.

Inthischapter,wewillexplainwhatmakesupacorrectmathematicalargumentandintroducetoolstoconstructthesearguments.Wewilldevelopanarsenalofdifferentproofmethods thatwillenableustoprovemanydifferenttypesofresults.Afterintroducingmanydifferent methodsofproof,wewillintroduceseveralstrategiesforconstructingproofs.Wewillintroducethenotionofaconjectureandexplaintheprocessofdevelopingmathematicsbystudying conjectures.

PropositionalLogic

1.1.1Introduction

Therulesoflogicgiveprecisemeaningtomathematicalstatements.Theserulesareusedtodistinguishbetweenvalidandinvalidmathematicalarguments.Becauseamajorgoalofthisbook istoteachthereaderhowtounderstandandhowtoconstructcorrectmathematicalarguments, webeginourstudyofdiscretemathematicswithanintroductiontologic.

Besidestheimportanceoflogicinunderstandingmathematicalreasoning,logichasnumerousapplicationstocomputerscience.Theserulesareusedinthedesignofcomputercircuits, theconstructionofcomputerprograms,theverificationofthecorrectnessofprograms,andin manyotherways.Furthermore,softwaresystemshavebeendevelopedforconstructingsome, butnotall,typesofproofsautomatically.Wewilldiscusstheseapplicationsoflogicinthisand laterchapters.

1.1.2Propositions

Ourdiscussionbeginswithanintroductiontothebasicbuildingblocksoflogic—propositions. A proposition isadeclarativesentence(thatis,asentencethatdeclaresafact)thatiseither trueorfalse,butnotboth.

EXAMPLE1 Allthefollowingdeclarativesentencesarepropositions.

1.Washington,D.C.,isthecapitaloftheUnitedStatesofAmerica. Extra Examples 2.TorontoisthecapitalofCanada.

3.1 + 1 = 2.

4.2 + 2 = 3.

Propositions1and3aretrue,whereas2and4arefalse.

SomesentencesthatarenotpropositionsaregiveninExample2.

EXAMPLE2 Considerthefollowingsentences.

1.Whattimeisit?

2.Readthiscarefully.

3. x + 1 = 2.

4. x + y = z.

Sentences1and2arenotpropositionsbecausetheyarenotdeclarativesentences.Sentences3 and4arenotpropositionsbecausetheyareneithertruenorfalse.Notethateachofsentences3 and4canbeturnedintoapropositionifweassignvaluestothevariables.Wewillalsodiscuss otherwaystoturnsentencessuchastheseintopropositionsinSection1.4. ◂

Weuseletterstodenote propositionalvariables (or sententialvariables),thatis,variables thatrepresentpropositions,justaslettersareusedtodenotenumericalvariables.Theconventionallettersusedforpropositionalvariablesare p,q,r,s, … . The truthvalue ofaproposition

Source:NationalLibraryof Medicine

ARISTOTLE(384 B C E.–322 B C E.) AristotlewasborninStagirus(Stagira)innorthernGreece.Hisfather

Links wasthepersonalphysicianoftheKingofMacedonia.BecausehisfatherdiedwhenAristotlewasyoung, Aristotlecouldnotfollowthecustomoffollowinghisfather’sprofession.Aristotlebecameanorphanata youngagewhenhismotheralsodied.Hisguardianwhoraisedhimtaughthimpoetry,rhetoric,andGreek. Attheageof17,hisguardiansenthimtoAthenstofurtherhiseducation.AristotlejoinedPlato’sAcademy, wherefor20yearsheattendedPlato’slectures,laterpresentinghisownlecturesonrhetoric.WhenPlatodiedin 347 B.C.E.,AristotlewasnotchosentosucceedhimbecausehisviewsdifferedtoomuchfromthoseofPlato. Instead,AristotlejoinedthecourtofKingHermeaswhereheremainedforthreeyears,andmarriedtheniece oftheKing.WhenthePersiansdefeatedHermeas,AristotlemovedtoMytileneand,attheinvitationofKing PhilipofMacedonia,hetutoredAlexander,Philip’sson,wholaterbecameAlexandertheGreat.Aristotletutored AlexanderforfiveyearsandafterthedeathofKingPhilip,hereturnedtoAthensandsetuphisownschool, calledtheLyceum.

Aristotle’sfollowerswerecalledtheperipatetics,whichmeans“towalkabout,”becauseAristotleoftenwalkedaroundashe discussedphilosophicalquestions.AristotletaughtattheLyceumfor13yearswherehelecturedtohisadvancedstudentsinthe morningandgavepopularlecturestoabroadaudienceintheevening.WhenAlexandertheGreatdiedin323 B.C.E.,abacklashagainst anythingrelatedtoAlexanderledtotrumped-upchargesofimpietyagainstAristotle.AristotlefledtoChalcistoavoidprosecution. HeonlylivedoneyearinChalcis,dyingofastomachailmentin322 B.C.E.

Aristotlewrotethreetypesofworks:thosewrittenforapopularaudience,compilationsofscientificfacts,andsystematic treatises.Thesystematictreatisesincludedworksonlogic,philosophy,psychology,physics,andnaturalhistory.Aristotle’swritings werepreservedbyastudentandwerehiddeninavaultwhereawealthybookcollectordiscoveredthemabout200yearslater.They weretakentoRome,wheretheywerestudiedbyscholarsandissuedinneweditions,preservingthemforposterity.

istrue,denotedbyT,ifitisatrueproposition,andthetruthvalueofapropositionisfalse,denotedbyF,ifitisafalseproposition.Propositionsthatcannotbeexpressedintermsofsimpler propositionsarecalled atomicpropositions

Theareaoflogicthatdealswithpropositionsiscalledthe propositionalcalculus or propositionallogic.ItwasfirstdevelopedsystematicallybytheGreekphilosopherAristotlemorethan 2300yearsago.

Wenowturnourattentiontomethodsforproducingnewpropositionsfromthosethatwe Links alreadyhave.ThesemethodswerediscussedbytheEnglishmathematicianGeorgeBoolein 1854inhisbook TheLawsofThought. Manymathematicalstatementsareconstructedbycombiningoneormorepropositions.Newpropositions,called compoundpropositions,areformed fromexistingpropositionsusing logicaloperators.

Definition1 Let p beaproposition.The negationofp,denotedby ¬p (alsodenotedby p),isthestatement

“Itisnotthecasethat p.”

Theproposition ¬p isread“not p.”Thetruthvalueofthenegationof p, ¬p,istheopposite ofthetruthvalueof p.

Remark: Thenotationforthenegationoperatorisnotstandardized.Although ¬p and p arethe mostcommonnotationsusedinmathematicstoexpressthenegationof p,othernotationsyou mightseeare ∼p, p, p′ ,Np,and !p

EXAMPLE3 Findthenegationoftheproposition

“Michael’sPCrunsLinux” andexpressthisinsimpleEnglish. Extra Examples

Solution: Thenegationis

“ItisnotthecasethatMichael’sPCrunsLinux.”

Thisnegationcanbemoresimplyexpressedas

“Michael’sPCdoesnotrunLinux.”

EXAMPLE4 Findthenegationoftheproposition

“Vandana’ssmartphonehasatleast32GBofmemory” andexpressthisinsimpleEnglish.

Solution: Thenegationis

“ItisnotthecasethatVandana’ssmartphonehasatleast32GBofmemory.”

Thisnegationcanalsobeexpressedas

“Vandana’ssmartphonedoesnothaveatleast32GBofmemory” orevenmoresimplyas

“Vandana’ssmartphonehaslessthan32GBofmemory.”

TABLE1 The TruthTablefor theNegationofa Proposition.

Table1displaysthe truthtable forthenegationofaproposition p.Thistablehasarowfor eachofthetwopossibletruthvaluesof p.Eachrowshowsthetruthvalueof ¬p corresponding tothetruthvalueof p forthisrow.

Thenegationofapropositioncanalsobeconsideredtheresultoftheoperationofthe negationoperator onaproposition.Thenegationoperatorconstructsanewpropositionfrom asingleexistingproposition.Wewillnowintroducethelogicaloperatorsthatareusedtoform newpropositionsfromtwoormoreexistingpropositions.Theselogicaloperatorsarealsocalled connectives

Definition2 Let p and q bepropositions.The conjunction of p and q,denotedby p ∧ q,istheproposition “ p and q.”Theconjunction p ∧ q istruewhenboth p and q aretrueandisfalseotherwise.

Table2displaysthetruthtableof p ∧ q.Thistablehasarowforeachofthefourpossible combinationsoftruthvaluesof p and q.Thefourrowscorrespondtothepairsoftruthvalues TT,TF,FT,andFF,wherethefirsttruthvalueinthepairisthetruthvalueof p andthesecond truthvalueisthetruthvalueof q.

Notethatinlogictheword“but”sometimesisusedinsteadof“and”inaconjunction.For example,thestatement“Thesunisshining,butitisraining”isanotherwayofsaying“Thesun isshininganditisraining.”(Innaturallanguage,thereisasubtledifferenceinmeaningbetween “and”and“but”;wewillnotbeconcernedwiththisnuancehere.)

EXAMPLE5

Definition3

Findtheconjunctionofthepropositions p and q where p istheproposition“Rebecca’sPChas morethan16GBfreeharddiskspace”and q istheproposition“TheprocessorinRebecca’sPC runsfasterthan1GHz.”

Solution: Theconjunctionofthesepropositions, p ∧ q,istheproposition“Rebecca’sPChas morethan16GBfreeharddiskspace,andtheprocessorinRebecca’sPCrunsfasterthan 1GHz.”Thisconjunctioncanbeexpressedmoresimplyas“Rebecca’sPChasmorethan 16GBfreeharddiskspace,anditsprocessorrunsfasterthan1GHz.”Forthisconjunction tobetrue,bothconditionsgivenmustbetrue.Itisfalsewhenoneorbothoftheseconditions arefalse. ◂

Let p and q bepropositions.The disjunction of p and q,denotedby p ∨ q,istheproposition “ p or q.”Thedisjunction p ∨ q isfalsewhenboth p and q arefalseandistrueotherwise.

Table3displaysthetruthtablefor p ∨ q.

TABLE2 TheTruthTablefor theConjunctionofTwo Propositions.

TABLE3 TheTruthTablefor theDisjunctionofTwo Propositions.

EXAMPLE6

Theuseoftheconnective or inadisjunctioncorrespondstooneofthetwowaystheword or isusedinEnglish,namely,asan inclusiveor.Adisjunctionistruewhenatleastoneofthe twopropositionsistrue.Thatis, p ∨ q istruewhenboth p and q aretrueorwhenexactlyone of p and q istrue.

Translatethestatement“Studentswhohavetakencalculusorintroductorycomputersciencecan takethisclass”inastatementinpropositionallogicusingthepropositions p:“Astudentwho hastakencalculuscantakethisclass”and q:“Astudentwhohastakenintroductorycomputer sciencecantakethisclass.”

Solution: Weassumethatthisstatementmeansthatstudentswhohavetakenbothcalculusand introductorycomputersciencecantaketheclass,aswellasthestudentswhohavetakenonly oneofthetwosubjects.Hence,thisstatementcanbeexpressedas p ∨ q,theinclusiveor,or disjunction,of p and q. ◂

EXAMPLE7 Whatisthedisjunctionofthepropositions p and q,where p and q arethesamepropositionsas inExample5?

Solution: Thedisjunctionof p and q, p ∨ q,istheproposition

Extra Examples “Rebecca’sPChasatleast16GBfreeharddiskspace,ortheprocessorinRebecca’sPC runsfasterthan1GHz.”

ThispropositionistruewhenRebecca’sPChasatleast16GBfreeharddiskspace,whenthe PC’sprocessorrunsfasterthan1GHz,andwhenbothconditionsaretrue.Itisfalsewhenboth oftheseconditionsarefalse,thatis,whenRebecca’sPChaslessthan16GBfreeharddisk spaceandtheprocessorinherPCrunsat1GHzorslower.

Besidesitsuseindisjunctions,theconnective or isalsousedtoexpressan exclusiveor Unlikethedisjunctionoftwopropositions p and q,theexclusiveorofthesetwopropositionsis truewhenexactlyoneof p and q istrue;itisfalsewhenboth p and q aretrue(andwhenboth arefalse).

Definition4 Let p and q bepropositions.The exclusiveor of p and q,denotedby p ⊕ q (or p XOR q),is thepropositionthatistruewhenexactlyoneof p and q istrueandisfalseotherwise.

GEORGEBOOLE(1815–1864) GeorgeBoole,thesonofacobbler,wasborninLincoln,England,in Links November1815.Becauseofhisfamily’sdifficultfinancialsituation,Boolestruggledtoeducatehimselfwhile supportinghisfamily.Nevertheless,hebecameoneofthemostimportantmathematiciansofthe1800s.Althoughheconsideredacareerasaclergyman,hedecidedinsteadtogointoteaching,andsoonafterward openedaschoolofhisown.Inhispreparationforteachingmathematics,Boole—unsatisfiedwithtextbooks ofhisday—decidedtoreadtheworksofthegreatmathematicians.WhilereadingpapersofthegreatFrench mathematicianLagrange,Boolemadediscoveriesinthecalculusofvariations,thebranchofanalysisdealing withfindingcurvesandsurfacesbyoptimizingcertainparameters.

Source:LibraryofCongress Washington,D.C.20540 USA[LC-USZ62-61664]

In1848Boolepublished TheMathematicalAnalysisofLogic,thefirstofhiscontributionsto symboliclogic.In1849hewasappointedprofessorofmathematicsatQueen’sCollegeinCork, Ireland.In1854hepublished TheLawsofThought,hismostfamouswork.Inthisbook,Boole introducedwhatisnowcalled Booleanalgebra inhishonor.Boolewrotetextbooksondifferentialequationsandondifference equationsthatwereusedinGreatBritainuntiltheendofthenineteenthcentury.Boolemarriedin1855;hiswifewasthenieceof theprofessorofGreekatQueen’sCollege.In1864Boolediedfrompneumonia,whichhecontractedasaresultofkeepingalecture engagementeventhoughhewassoakingwetfromarainstorm.

EXAMPLE8

ThetruthtablefortheexclusiveoroftwopropositionsisdisplayedinTable4.

Let p and q bethepropositionsthatstate“Astudentcanhaveasaladwithdinner”and“Astudent canhavesoupwithdinner,”respectively.Whatis p ⊕ q,theexclusiveorof p and q?

Solution: Theexclusiveorof p and q isthestatementthatistruewhenexactlyoneof p and q istrue.Thatis, p ⊕ q isthestatement“Astudentcanhavesouporsalad,butnotboth,with dinner.”Notethatthisisoftenstatedas“Astudentcanhavesouporasaladwithdinner,”without explicitlystatingthattakingbothisnotpermitted. ◂

EXAMPLE9 Expressthestatement“IwilluseallmysavingstotraveltoEuropeortobuyanelectriccar”in propositionallogicusingthestatement p:“IwilluseallmysavingstotraveltoEurope”andthe statement q:“Iwilluseallmysavingstobuyanelectriccar.”

Solution: Totranslatethisstatement,wefirstnotethattheorinthisstatementmustbeanexclusiveorbecausethisstudentcaneitheruseallhisorhersavingstotraveltoEuropeoruseall thesesavingstobuyanelectriccar,butcannotbothgotoEuropeandbuyanelectriccar.(This isclearbecauseeitheroptionrequiresallhissavings.)Hence,thisstatementcanbeexpressed as p ⊕ q

1.1.3ConditionalStatements

Wewilldiscussseveralotherimportantwaysinwhichpropositionscanbecombined.

Definition5 Let p and q bepropositions.The conditionalstatementp → q istheproposition“if p,then q.”Theconditionalstatement p → q isfalsewhen p istrueand q isfalse,andtrueotherwise. Intheconditionalstatement p → q, p iscalledthe hypothesis (or antecedent or premise)and q iscalledthe conclusion (or consequence).

Thestatement p → q iscalledaconditionalstatementbecause p → q assertsthat q istrue Assessment ontheconditionthat p holds.Aconditionalstatementisalsocalledan implication. Thetruthtablefortheconditionalstatement p → q isshowninTable5.Notethatthestatement p → q istruewhenboth p and q aretrueandwhen p isfalse(nomatterwhattruthvalue q has).

TABLE4 TheTruthTablefor theExclusiveOrofTwo Propositions.

TABLE5 TheTruthTablefor theConditionalStatement p → q.

Youmighthavetrouble understandinghow “unless”isusedin conditionalstatements unlessyoureadthis paragraphcarefully.

Becauseconditionalstatementsplaysuchanessentialroleinmathematicalreasoning,avarietyofterminologyisusedtoexpress p → q.Youwillencountermostifnotallofthefollowing waystoexpressthisconditionalstatement:

“if p,then q ”“ p implies q ” “if p, q ”“ p onlyif q ” “ p issufficientfor q ” “asufficientconditionfor q is p ” “ q if p ”“ q whenever p ” “ q when p ”“ q isnecessaryfor p ” “anecessaryconditionfor p is q ”“ q followsfrom p ” “ q unless ¬p ”“ q providedthat p ”

Ausefulwaytounderstandthetruthvalueofaconditionalstatementistothinkofanobligationoracontract.Forexample,thepledgemanypoliticiansmakewhenrunningforofficeis

“IfIamelected,thenIwilllowertaxes.”

Ifthepoliticianiselected,voterswouldexpectthispoliticiantolowertaxes.Furthermore,if thepoliticianisnotelected,thenvoterswillnothaveanyexpectationthatthispersonwilllower taxes,althoughthepersonmayhavesufficientinfluencetocausethoseinpowertolowertaxes. Itisonlywhenthepoliticianiselectedbutdoesnotlowertaxesthatvoterscansaythatthe politicianhasbrokenthecampaignpledge.Thislastscenariocorrespondstothecasewhen p is truebut q isfalsein p → q.

Similarly,considerastatementthataprofessormightmake:

“Ifyouget100%onthefinal,thenyouwillgetanA.”

Ifyoumanagetoget100%onthefinal,thenyouwouldexpecttoreceiveanA.Ifyoudonot get100%,youmayormaynotreceiveanAdependingonotherfactors.However,ifyoudoget 100%,buttheprofessordoesnotgiveyouanA,youwillfeelcheated.

Remark: Becausesomeofthedifferentwaystoexpresstheimplication p implies q canbe confusing,wewillprovidesomeextraguidance.Torememberthat“p onlyif q”expressesthe samethingas“if p,then q,”notethat“p onlyif q”saysthat p cannotbetruewhen q isnottrue. Thatis,thestatementisfalseif p istrue,but q isfalse.When p isfalse, q maybeeithertrueor false,becausethestatementsaysnothingaboutthetruthvalueof q.

Forexample,supposeyourprofessortellsyou

“YoucanreceiveanAinthecourseonlyifyourscoreonthefinalisatleast90%.”

Then,ifyoureceiveanAinthecourse,thenyouknowthatyourscoreonthefinalisat least90%.IfyoudonotreceiveanA,youmayormaynothavescoredatleast90%onthe final.Becarefulnottouse“q onlyif p”toexpress p → q becausethisisincorrect.Theword “only”playsanessentialrolehere.Toseethis,notethatthetruthvaluesof“q onlyif p”and p → q aredifferentwhen p and q havedifferenttruthvalues.Toseewhy“q isnecessaryfor p ” isequivalentto“if p,then q,”observethat“q isnecessaryfor p”meansthat p cannotbetrue unless q istrue,orthatif q isfalse,then p isfalse.Thisisthesameassayingthatif p istrue, then q istrue.Toseewhy“p issufficientfor q”isequivalentto“if p,then q,”notethat“p is sufficientfor q”meansif p istrue,itmustbethecasethat q isalsotrue.Thisisthesameas sayingthatif p istrue,then q isalsotrue.

Torememberthat“q unless ¬p”expressesthesameconditionalstatementas“if p,then q,”notethat“q unless ¬p”meansthatif ¬p isfalse,then q mustbetrue.Thatis,thestatement“q unless ¬p”isfalsewhen p istruebut q isfalse,butitistrueotherwise.Consequently, “ q unless ¬p”and p → q alwayshavethesametruthvalue.

EXAMPLE10

WeillustratethetranslationbetweenconditionalstatementsandEnglishstatementsin Example10.

Let p bethestatement“Marialearnsdiscretemathematics”and q thestatement“Mariawillfind agoodjob.”Expressthestatement p → q asastatementinEnglish.

Solution: Fromthedefinitionofconditionalstatements,weseethatwhen p isthestatement

Extra Examples “Marialearnsdiscretemathematics”and q isthestatement“Mariawillfindagoodjob,” p → q representsthestatement

“IfMarialearnsdiscretemathematics,thenshewillfindagoodjob.”

TherearemanyotherwaystoexpressthisconditionalstatementinEnglish.Amongthemost naturaloftheseare

“Mariawillfindagoodjobwhenshelearnsdiscretemathematics.”

“ForMariatogetagoodjob,itissufficientforhertolearndiscretemathematics.” and

“Mariawillfindagoodjobunlessshedoesnotlearndiscretemathematics.” ◂

Notethatthewaywehavedefinedconditionalstatementsismoregeneralthanthemeaning attachedtosuchstatementsintheEnglishlanguage.Forinstance,theconditionalstatementin Example10andthestatement

“Ifitissunny,thenwewillgotothebeach” arestatementsusedinnormallanguagewherethereisarelationshipbetweenthehypothesis andtheconclusion.Further,thefirstofthesestatementsistrueunlessMarialearnsdiscrete mathematics,butshedoesnotgetagoodjob,andthesecondistrueunlessitisindeedsunny, butwedonotgotothebeach.Ontheotherhand,thestatement

“IfJuanhasasmartphone,then2 + 3 = 5” istruefromthedefinitionofaconditionalstatement,becauseitsconclusionistrue.(Thetruth valueofthehypothesisdoesnotmatterthen.)Theconditionalstatement

“IfJuanhasasmartphone,then2 + 3 = 6”

istrueifJuandoesnothaveasmartphone,eventhough2 + 3 = 6isfalse.Wewouldnotuse theselasttwoconditionalstatementsinnaturallanguage(exceptperhapsinsarcasm),because thereisnorelationshipbetweenthehypothesisandtheconclusionineitherstatement.Inmathematicalreasoning,weconsiderconditionalstatementsofamoregeneralsortthanweusein English.Themathematicalconceptofaconditionalstatementisindependentofacause-andeffectrelationshipbetweenhypothesisandconclusion.Ourdefinitionofaconditionalstatement specifiesitstruthvalues;itisnotbasedonEnglishusage.Propositionallanguageisanartificial language;weonlyparallelEnglishusagetomakeiteasytouseandremember.

Theif-thenconstructionusedinmanyprogramminglanguagesisdifferentfromthat usedinlogic.Mostprogramminglanguagescontainstatementssuchas if p then S,where p isapropositionand S isaprogramsegment(oneormorestatementstobeexecuted). (Althoughthislooksasifitmightbeaconditionalstatement, S isnotaproposition,but ratherisasetofexecutableinstructions.)Whenexecutionofaprogramencounterssuch astatement, S isexecutedif p istrue,but S isnotexecutedif p isfalse,asillustratedin Example11.

EXAMPLE11

Whatisthevalueofthevariable x afterthestatement

if 2 + 2 = 4 then x := x + 1

if x = 0beforethisstatementisencountered?(Thesymbol:= standsforassignment.Thestatement x := x + 1meanstheassignmentofthevalueof x + 1to x.)

Solution: Because2 + 2 = 4istrue,theassignmentstatement x := x + 1isexecuted.Hence, x hasthevalue0 + 1 = 1afterthisstatementisencountered.

CONVERSE,CONTRAPOSITIVE,ANDINVERSE Wecanformsomenewconditional statementsstartingwithaconditionalstatement p → q.Inparticular,therearethreerelated conditionalstatementsthatoccursooftenthattheyhavespecialnames.Theproposition q → p iscalledthe converse of p → q.The contrapositive of p → q istheproposition ¬q → ¬p.The proposition ¬p → ¬q iscalledthe inverse of p → q.Wewillseethatofthesethreeconditionalstatementsformedfrom p → q,onlythecontrapositivealwayshasthesametruthvalue as p → q.

Wefirstshowthatthecontrapositive, ¬q → ¬p,ofaconditionalstatement p → q always hasthesametruthvalueas p → q.Toseethis,notethatthecontrapositiveisfalseonlywhen ¬p isfalseand ¬q istrue,thatis,onlywhen p istrueand q isfalse.Wenowshowthatneitherthe converse, q → p,northeinverse, ¬p → ¬q,hasthesametruthvalueas p → q forallpossible truthvaluesof p and q.Notethatwhen p istrueand q isfalse,theoriginalconditionalstatement isfalse,buttheconverseandtheinversearebothtrue. Rememberthatthe contrapositive,but neithertheconverseor inverse,ofaconditional statementisequivalent toit.

Whentwocompoundpropositionsalwayshavethesametruthvalues,regardlessofthetruth valuesofitspropositionalvariables,wecallthem equivalent.Hence,aconditionalstatement anditscontrapositiveareequivalent.Theconverseandtheinverseofaconditionalstatement arealsoequivalent,asthereadercanverify,butneitherisequivalenttotheoriginalconditional statement.(WewillstudyequivalentpropositionsinSection1.3.)Takenotethatoneofthemost commonlogicalerrorsistoassumethattheconverseortheinverseofaconditionalstatement isequivalenttothisconditionalstatement.

WeillustratetheuseofconditionalstatementsinExample12.

EXAMPLE12

Extra Examples

Findthecontrapositive,theconverse,andtheinverseoftheconditionalstatement

“Thehometeamwinswheneveritisraining.”

Solution: Because“q whenever p”isoneofthewaystoexpresstheconditionalstatement p → q, theoriginalstatementcanberewrittenas

“Ifitisraining,thenthehometeamwins.”

Consequently,thecontrapositiveofthisconditionalstatementis

“Ifthehometeamdoesnotwin,thenitisnotraining.”

Theconverseis

“Ifthehometeamwins,thenitisraining.”

Theinverseis

“Ifitisnotraining,thenthehometeamdoesnotwin.”

Onlythecontrapositiveisequivalenttotheoriginalstatement.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.