https://ebookmass.com/product/digital-manufacturing-the-
Instant digital products (PDF, ePub, MOBI) ready for you
Download now and discover formats that fit your needs...
Customized Production Through 3D Printing in Cloud Manufacturing Lin Zhang
https://ebookmass.com/product/customized-productionthrough-3d-printing-in-cloud-manufacturing-lin-zhang/
ebookmass.com
Smart Materials in Additive Manufacturing, Volume 1: 4D
Printing Principles and Fabrication Mahdi Bodaghi
https://ebookmass.com/product/smart-materials-in-additivemanufacturing-volume-1-4d-printing-principles-and-fabrication-mahdibodaghi/
ebookmass.com
Smart Materials in Additive Manufacturing Volume 1: 4D
Printing Principles and Fabrication Mahdi Bodaghi & Ali Zolfagharian
https://ebookmass.com/product/smart-materials-in-additivemanufacturing-volume-1-4d-printing-principles-and-fabrication-mahdibodaghi-ali-zolfagharian/ ebookmass.com
Game Changer: How Strategic Pricing Shapes Businesses, Markets, and Society Jean-Manuel Izaret
https://ebookmass.com/product/game-changer-how-strategic-pricingshapes-businesses-markets-and-society-jean-manuel-izaret/ ebookmass.com
Hazelwood Ali All five books Ali Hazelwood
https://ebookmass.com/product/hazelwood-ali-all-five-books-alihazelwood/
ebookmass.com
The Project Manager's Guide to Mastering Agile: Principles and Practices for an Adaptive Approach, 2nd Edition
Charles G. Cobb
https://ebookmass.com/product/the-project-managers-guide-to-masteringagile-principles-and-practices-for-an-adaptive-approach-2nd-editioncharles-g-cobb/
ebookmass.com
Power System Protection, 2nd Edition Paul M. Anderson
https://ebookmass.com/product/power-system-protection-2nd-editionpaul-m-anderson/
ebookmass.com
New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?
Christian A. Devaux
https://ebookmass.com/product/new-insights-on-the-antiviral-effectsof-chloroquine-against-coronavirus-what-to-expect-forcovid-19-christian-a-devaux/
ebookmass.com
Wasps of the World: A Guide to Every Family (A Guide to Every Family, 8) Noort
https://ebookmass.com/product/wasps-of-the-world-a-guide-to-everyfamily-a-guide-to-every-family-8-noort/
ebookmass.com
Leora Horn Md Msc
https://ebookmass.com/product/pulmonary-adenocarcinoma-approaches-totreatment-1e-leora-horn-md-msc/
ebookmass.com
DigitalManufacturing
TheIndustrializationof“ArttoPart”3DAdditivePrinting
Thispageintentionallyleftblank
DigitalManufacturing
TheIndustrializationof“ArttoPart”3D AdditivePrinting
Editedby
ChandrakantD.Patel
HPChiefEngineerandSeniorFellow,HPInc.,PaloAlto,CA, UnitedStates
Chun-HsienChen
HP-NTUDigitalManufacturingCorporateLab, SchoolofMechanicalandAerospaceEngineering, NanyangTechnologicalUniversity,Singapore
Elsevier
Radarweg29,POBox211,1000AEAmsterdam,Netherlands
TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates
Copyright©2022ElsevierInc.Allrightsreserved.
Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions.
Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).
MATLABs isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorks doesnotwarranttheaccuracyofthetextorexercisesinthisbook.Thisbook’suseordiscussion ofMATLABs softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipby TheMathWorksofaparticularpedagogicalapproachorparticularuseoftheMATLABs software. Notices
Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,or medicaltreatmentmaybecomenecessary.
Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.
Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.
ISBN:978-0-323-95062-6
ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals
Publisher: MatthewDeans
AcquisitionsEditor: BrianGuerin
EditorialProjectManager: RafaelGuilhermeTrombaco
ProductionProjectManager: PrasannaKalyanaraman
CoverDesigner: MilesHitchen
TypesetbyMPSLimited,Chennai,India
1.5.6Moderncomputers23
1.5.7Computersystemarchitecture23
2.Digitalproductdesignandengineeringanalysis
TianyuZhou,WeidanXiong,YukiObata,CarlosLangeand YongshengMa
2.4Intent-basedsystemicdesign
2.4.1Functionalfeatureapproach70
2.4.2Feature-basedcomputer-aideddesignmodeling73
2.4.3Twotypicaldecision-makingtypes:retrievaland inspirational80
3.Designmethodologiesforconventionalandadditive
XueTingSong,Jo-YuKuoandChun-HsienChen
3.2Designmethodologiesforconventionalmanufacturing
3.2.1DesignforManufacturingandAssemblyguidelines100
3.2.2DesignforManufacturingandAssemblyprocedures101
3.2.3ApplicationsofDesignforManufacturingandAssembly108
3.2.4LimitationsofDesignforManufacturingandAssembly110
3.3Aparadigmshift 112
3.3.1DesignforX112
3.3.2DesignforAdditiveManufacturing113
3.3.3Trendofhybridmanufacturingproduction116
3.4Designmethodologiesforadditivemanufacturing 117
3.4.1NotableDesignforAdditiveManufacturingresearch works117
3.4.2DesignstagesofageneralDesignforAdditive Manufacturingframework119
3.4.3ChallengesofDesignforAdditiveManufacturing136
3.5Summary 140 References 140
4.Additivemanufacturingfordigitaltransformation 145
YuYingClarrisaChoong
Listofabbreviation 145
4.1Introductiontoadditivemanufacturing 146
4.1.1Definitionsandterminologies146
4.1.2Overviewoftheadditivemanufacturingmarket147
4.1.3Industrydriversforadditivemanufacturingadoption150
4.2Additivemanufacturingprocesschain 152
4.2.1Levelofadditivemanufacturingimplementation152
4.2.2Design,optimization,andsimulation154
4.2.3Materialselection155
4.2.4Manufacturing155
4.2.5Postprocessing155
4.2.6Processmonitoringandvalidation157
4.3Additivemanufacturingtechnologiesandprocesses 158
4.3.1Vatphotopolymerization158
4.3.2Materialextrusion164
4.3.3Materialjetting165
4.3.4Sheetlamination168
4.3.5Powderbedfusion170
4.3.6Binderjetting173
4.3.7Directedenergydeposition174
4.4Casestudiesofadditivemanufacturingduringthe COVID-19pandemic 176
4.4.1Providingrapidemergencyresponses177
4.4.2Masscustomizations178
4.4.3Agileoperationsandacceleratedproductions178
4.4.4Preservingsustainabilityandcontinuity178
4.5Summary 180 References 180
5.Simulationandoptimizationforadditive manufacturing 183
HowWeiBenjaminTeo,KimQuyLe,KokHongGregoryChua andHejunDu
Abbreviations 183 Symbols 183
5.1Introduction 185
5.1.1Macroscalemodeling186
5.1.2Mesoscalemodeling187
5.1.3Microscalemodeling187
5.1.4Parametersoptimization188
5.1.5Objectives188
5.2Areviewofmodelsemployinginadditivemanufacturing simulations 188
5.2.1Powderinteraction189
5.2.2Heattransferandmeltpooldynamics191
5.2.3Lightsourcesimulation195
5.2.4Crystallization/microstructuresimulation198
5.2.5Summary206
5.3Topologyoptimization 207
5.3.1Structuraloptimization208
5.3.2Typesoftopologyoptimizationmethodologies210
5.3.3Topologyoptimizationworkflowforadditive manufacturing211
5.3.4Availablecommercialsoftwarefortopology optimization214
5.4Summary 216 References
6.Polymermaterialsforadditivemanufacturing
JiaAn
Listofabbreviation
6.1Introduction
6.1.1Molecularmaterial relatedclassifications222
6.1.2Molecularstructure relatedclassifications223
6.1.3Polymerclassificationforadditivemanufacturing223
6.2Thermosets 224
6.2.1Curing224
6.2.2Curingcharacteristics225
6.2.3Dynamiccovalentbonds229
6.3Thermoplastics 229
6.3.1Polymermelt229
6.3.2Rheologicalproperties231
6.3.3Thermalproperties232
6.4Printabilityin3Dprinting 234
6.4.1Layering234
6.4.2Energyandmaterialbonding236
6.5Characteristicsof3Dprintedparts 240
6.5.1Porosity241
6.5.2Anisotropy241
6.5.3Heterogeneity242
7.Metaladditivemanufacturing
Abbreviations
7.2Classificationofmetaladditivemanufacturingtechnology
7.3Preparationandcharacterizationtechniquesformetal additivemanufacturingfeedstock
7.3.1Powderpreparationtechniques258 7.3.2Powdercharacterizationtechniques260
7.4Mechanicalpropertiesstandardtestingformetallic additivemanufacturingcomponents
7.4.4Fatigueperformance268
7.5Defectsinmetallicadditivemanufacturingcomponents
7.5.1Defectcategories270
7.5.2Defectsdetectiontechniques277
7.6Postprocessing
7.6.1Removalofadhesivepowders,supportstructures,and substrateplates281
7.6.2Heattreatment283
8.Theemergingfrontiersinmaterialsforfunctional three-dimensionalprinting
JiaMinLee,SweeLeongSing,GuoDongGoh, GuoLiangGoh,WeiLongNgandWaiYeeYeong
8.2.1Overviewofthecompositeindustry303
8.2.2Compositesforthree-dimensionalprinting304
8.2.3Challengesandpotentialsincompositesmaterials foraerospaceindustry307
8.3Biomaterialsforbioprinting 310
8.3.1Overviewofbioprinting310
8.3.2Bioinksforbioprinting311
8.3.3Challengesandpotentialinbioprintingofbiomaterials313
8.4Ceramicsforbiomedicalimplants 315
8.4.1Overviewofthree-dimensionalprintedceramic implants315
8.4.2Ceramicmaterialsbythree-dimensionalprintingfor biomedicalimplants316
8.4.3Challengesandpotentialinceramicsfor three-dimensionalprinting319
8.5Conductivematerialsforelectronicprinting 322
8.5.1Overviewofthree-dimensionalprintedelectronics322
8.5.2Materialsforthree-dimensionalprintingofelectronics325
8.5.3Challengesandpotentialinthree-dimensionalprinting electronics328
8.6Summaryandmovingforward
9.Three-dimensional(3D)printingforbuildingand
MingyangLi,XuZhang,YiWeiDanielTay, GuanHengAndrewTing,BingLuandMingJenTan Listofabbreviations
9.1Introduction
9.1.1Digitaltransformationandautomationinbuildingand construction345
9.1.2Shorthistoryofconstructionthree-dimensionalprinting347
9.1.3Technologytrendsandneeds—why3Dprinting?348
9.2Currentconcreteprintingtechnologies 350
9.2.1Gantry-basedsystems350
9.2.2Arm-basedsystems352
9.2.3Multirobotprintingsystems354
9.2.4Printingprocesscontrol355
9.3Freshandhardenpropertiesofthree-dimensional printableconcrete 355
9.3.1Differentmaterialsusedandtheireffecton three-dimensionalprintingtechnology356
9.3.2Freshpropertiesofthree-dimensionalprintable concretematerials360
9.3.3Hardenpropertiesofthree-dimensionalprintable materials363
9.3.4Three-dimensionalconcreteprintingparameters366
9.4Three-dimensionalconcreteprintedapplicationsand casestudy 368
9.4.1Applicationsofthree-dimensionalprintingin buildingandconstruction370
9.4.23Dconcreteprintingtechnologydevelopedby NTUSingapore372
9.5Sustainablerawmaterialsinconcreteprinting 373
9.5.1Sustainablematerialsforcementreplacement375
9.5.2Sustainablematerialsfornaturalsandreplacement376
9.5.3Sustainablematerialsinspray-basedthree-dimensional printing378
TuanTranandXuanZhang Abbreviations
10.3Applicationsinadditivemanufacturingprocesses 404
10.3.1PBFprocesses404
10.3.2DEDprocesses414
10.3.3Materialextrusionprocesses415
10.3.4Otheradditivemanufacturingprocesses420
10.4Qualityandfeedbackcontrol 422
10.4.1Processparameters422
10.4.2Signalprocessingandfeedbackcontrol422
10.4.3Applicationsofmachinelearninginadditive manufacturingprocessandprocessmonitoring428
10.5Standardsandtoolkits 431
10.5.1Standards431 10.5.2Toolkits435
10.6Insightsandfutureoutlook
Thispageintentionallyleftblank
Listofcontributors
JiaAn SingaporeCentrefor3DPrinting,SchoolofMechanicalandAerospace Engineering,NanyangTechnologicalUniversity,Singapore
ChaoCai StateKeyLaboratoryofMaterialsProcessingandDieandMould Technology,HuazhongUniversityofScienceandTechnology,Wuhan,China; HP-NTUDigitalManufacturingCorporateLab,SchoolofMechanicaland AerospaceEngineering,NanyangTechnologicalUniversity,Singapore
Chun-HsienChen HP-NTUDigitalManufacturingCorporateLab,SchoolofMechanical andAerospaceEngineering,NanyangTechnologicalUniversity,Singapore
YuYingClarrisaChoong LRQALimited,Singapore
KokHongGregoryChua SingaporeCentrefor3DPrinting,Nanyang TechnologicalUniversity,Singapore
HejunDu HP-NTUDigitalManufacturingCorporateLab,NanyangTechnological University,Singapore;SingaporeCentrefor3DPrinting,NanyangTechnological University,Singapore;SchoolofMechanicalandAerospaceEngineering, NanyangTechnologicalUniversity,Singapore
GuoDongGoh SingaporeCentrefor3DPrinting,SchoolofMechanicaland AerospaceEngineering,NanyangTechnologicalUniversity,Singapore
GuoLiangGoh SingaporeCentrefor3DPrinting,SchoolofMechanicaland AerospaceEngineering,NanyangTechnologicalUniversity,Singapore
Jo-YuKuo DepartmentofIndustrialDesign,NationalTaipeiUniversityof Technology,Taipei,Taiwan
CarlosLange DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada
KimQuyLe HP-NTUDigitalManufacturingCorporateLab,Nanyang TechnologicalUniversity,Singapore
JiaMinLee HP-NTUDigitalManufacturingCorporateLab,SchoolofMechanical andAerospaceEngineering,NanyangTechnologicalUniversity,Singapore
MingyangLi SingaporeCentrefor3DPrinting,SchoolofMechanicaland AerospaceEngineering,NanyangTechnologicalUniversity,Singapore
BingLu SingaporeCentrefor3DPrinting,SchoolofMechanicalandAerospace Engineering,NanyangTechnologicalUniversity,Singapore
YongshengMa DepartmentofMechanicalandEnergyEngineering,Southern UniversityofScienceandTechnology,Shenzhen,China
WeiLongNg HP-NTUDigitalManufacturingCorporateLab,SchoolofMechanical andAerospaceEngineering,NanyangTechnologicalUniversity,Singapore
YukiObata DivisionofMechanicalandAerospaceEngineering,Facultyof Engineering,HokkaidoUniversity,Sapporo,Hokkaido,Japan
SweeLeongSing SingaporeCentrefor3DPrinting,SchoolofMechanicaland AerospaceEngineering,NanyangTechnologicalUniversity,Singapore; DepartmentofMechanicalEngineering,NationalUniversityofSingapore, Singapore
XueTingSong HP-NTUDigitalManufacturingCorporateLab,Schoolof MechanicalandAerospaceEngineering,NanyangTechnologicalUniversity, Singapore
MingJenTan SingaporeCentrefor3DPrinting,SchoolofMechanicaland AerospaceEngineering,NanyangTechnologicalUniversity,Singapore;HP-NTU DigitalManufacturingCorporateLab,SchoolofMechanicalandAerospace Engineering,NanyangTechnologicalUniversity,Singapore
YiWeiDanielTay SingaporeCentrefor3DPrinting,SchoolofMechanicaland AerospaceEngineering,NanyangTechnologicalUniversity,Singapore
ChorHiongTee HP-NTUDigitalManufacturingCorporateLaboratory,Schoolof MechanicalandAerospaceEngineering,NanyangTechnologicalUniversity, Singapore;RehabilitationResearchInstituteofSingapore,SchoolofMechanical andAerospaceEngineering,NanyangTechnologicalUniversity,Singapore
HowWeiBenjaminTeo HP-NTUDigitalManufacturingCorporateLab,Nanyang TechnologicalUniversity,Singapore
GuanHengAndrewTing SingaporeCentrefor3DPrinting,SchoolofMechanical andAerospaceEngineering,NanyangTechnologicalUniversity,Singapore
TuanTran HP-NTUDigitalManufacturingCorporateLab,SchoolofMechanical andAerospaceEngineering,NanyangTechnologicalUniversity,Singapore, Singapore
WeidanXiong GuangdongLaboratoryofArtificialIntelligenceandDigital Economy(SZ),ShenzhenUniversity,Shenzhen,China
WaiYeeYeong HP-NTUDigitalManufacturingCorporateLab,SchoolofMechanical andAerospaceEngineering,NanyangTechnologicalUniversity,Singapore
XuZhang SingaporeCentrefor3DPrinting,SchoolofMechanicalandAerospace Engineering,NanyangTechnologicalUniversity,Singapore
XuanZhang SingaporeCentrefor3DPrinting,SchoolofMechanicaland AerospaceEngineering,NanyangTechnologicalUniversity,Singapore,Singapore
KunZhou HP-NTUDigitalManufacturingCorporateLab,SchoolofMechanical andAerospaceEngineering,NanyangTechnologicalUniversity,Singapore
TianyuZhou DepartmentofMechanicalEngineering,UniversityofAlberta, Edmonton,AB,Canada
Preface
The21stcenturycyber-physicalageisdrivingaseamlessintegrationofdigitalandphysicalsystems.Inthatcontextthecurrentfactoriesareundergoing digitaltransformationtobecomedigitalfactories.Thesedigitalfactories canbebestdescribedasanintegrationofoperationaltechnologies—the manufacturingmachinesandprocesses—withinformationtechnologies. Indeed,theriseofdigitalfactoriesissynonymouswiththefourthindustrial revolution.However,thegamechangerinthefourthindustrialrevolutionis theintegrationof3Dadditiveprintingasoperationaltechnologyintothefactoriestofabricateparts.Now,thedigitalfactorycanbecalleda3Ddigital factorymadeupofadvancedoperationaltechnologiessuchas3Dadditive printingdevices,robotics,andinformationtechnologies.
The3Ddigitalfactoriesoftomorrowbearagreatpromiseincreatinga novel21stcenturyproduction consumptionmodelthatservicestheneedsof thecustomersbasedontheirindividualizedneeds.Indeed,thison-demand abilityof3Ddigitalfactoriesnotonlyprovidescustomizedoutcomesforthe customersbutalsoreduceswaste,akeyadvantageinlightofthesocial, economic,andecologicaltrends.Furthermore,theabilityof3Dadditive manufacturingtechnologiestocreatephysicalcontoursandshapesthatwere hithertonotpossibleopensupimmensepossibilitiesinsystemoptimization todriveperformanceandenergyefficiency.Asanexample,adesignercan considershapeoptimizationatdesignandanalysistimeforapumpimpeller tomaximizethe“airtowater”pumpefficiency—aratioofpumpwork (productofpressuredropandvolumeflowinJoulespersecond)andpower intothepump(Joulespersecond).Oncetheimpellerisoptimizedindigital design,thedesignercansendthedigitalfiletoa3Dadditiveprinterinadigitalfactory.Thepartturnedaroundinamatterofhourscannowbetriedout beforecommittingtolargenumbers.Indeed,thedesignercan“print”multipleimpellersinonebatch,afeathithertonotpossible.
Wecontendthattoimbueaholisticknowledgeof3Dadditiveprinting, onemusttakeanend-to-end“arttopart”perspectivethatcoversdesign, device,andthe3Ddigitalfactory.Thisbookisthefirstvolumeofthe DigitalManufacturinghandbookseries.Theserieswillconsistoftwoseparatevolumesintendedtocoverthecontinuumofdesign,device,andthe3D digitalfactory.Theobjectiveistoprovidetheessentialknowledgenecessary forthe21stcenturycyber-physicalengineertobewellversedinthe3D“art
topart”digitalmanufacturingpipeline.Volume1isfocusedondesignand therangeof3Dadditivemanufacturingtechnologies.Itcoversthefundamentalsandmechanisticinsightsofkeytechnologiesandmaterialscience, beforeendingwithcomputationalsimulation,characterizationtechniques, monitoring,andinspectionprocesses.Volume2focusesonthedifferent devicesandagentsatthefactorylevelincludingautonomousrobots,artificial intelligence,machinelearning,andcyber-physicalsystems.Italsopresents newbusinessmodelsworkingtowardasustainablenetzerooperationsand economy.Thechaptersaremostlyindustry-focusedwithrelevantreal-world casestudiestoeducatestudentsandtrainindustryprofessionalsandleaders.
● Chapters1 4 areforeveryonewhocouldbeapractitionerofengineering,finance,marketing,orabusinessleaderplanningtobuild3Ddigital factories.Itstartsfromahistoricalperspectiveindigitalmanufacturing (Chapter1)tothedevelopmentofvariousdigitaldesignpracticesand engineeringanalysistechniques(Chapter2).Thesubsequentchapters delveintotheevolutionofdesignmethodologiesinmanufacturing (Chapter3)withtheadventofkeyadditivemanufacturingtechnologies (Chapter4).
● Chapters5 10 areforthosewhowanttogodeeperintospecificareas, suchassimulationanddesignoptimization(Chapter5),polymermaterials(Chapter6),metals(Chapter7),biomedicalandconductivematerials (Chapter8),concreteprinting(Chapter9),andprocessmonitoring (Chapter10).Thesechapterswillrequireundergraduatelevelknowledge inanyfieldofengineeringorscience.
Dissectionofthe3Dprintenginerevealsthatitisastackofscience, engineeringfundamentals,andtechnologies.Thereforeourobjectiveisto provideastate-of-the-arthandbookwhichincorporatesallaspectsof3D printingwithimmensedepthinscienceandengineeringfundamentals,and breadthinarangeoftechnologies.Wehopethesebookswillserveasaonestopresourceforthosewithinterestin3Dadditiveprintingtopractitioners ofanyart.
Acknowledgments
ThisbookissupportedundertheRIE2020IndustryAlignmentFund— IndustryCollaborationProjects(IAF-ICP)FundingInitiative,aswellascash andin-kindcontributionfromtheindustrypartner,HPInc.,throughtheHPNTUDigitalManufacturingCorporateLab.
TheeditorswouldliketoexpresstheirdeepestgratitudetoKhooLi Phengforhisvisionofthisproject.Theythankalltheauthorswhohavecontributedtothedevelopmentofthisbook.Thisprojectwouldnothavebeen possiblewithouttheirpartnersfromtheSingaporeCentreof3D-Printing (SC3DP),NanyangTechnologicalUniversity,Singapore.
Meanwhile,theeditorsaregratefultothedirectorsofHP-NTUDigital ManufacturingCorporateLab,MichaelJ.ReganandTanMingJen,fortheir strongsupports.Theyextendagreatmanythankstotheeditorialteammembers:KuoJo-Yu,SongXueTing,FrankieTeeChorHiong,andClarrisaYu YingChoong.
Lastly,theeditorsarethankfultothecolleaguesatElsevier,particularly, BrianGuerin(AcquisitionEditor),RafaelGuilhermeTrombaco(Editorial ProjectManager),andPrasannaKalyanaraman(ProductionProjectManager) fortheirwarmsupportandpainstakingefforts,whichhaveensuredthe smoothpublicationofthisbook.
Thispageintentionallyleftblank
Chapter1
Ahistoricalperspectiveon industrialproductionand outlook
ChorHiongTee1,2
1HP-NTUDigitalManufacturingCorporateLaboratory,SchoolofMechanicalandAerospace Engineering,NanyangTechnologicalUniversity,Singapore, 2RehabilitationResearchInstitute ofSingapore,SchoolofMechanicalandAerospaceEngineering,NanyangTechnological University,Singapore
Abbreviations
2D 2-dimensional
3D 3-dimensional
AEM AssemblabilityEvaluationMethod
AM additivemanufacturing
APT AutomaticallyProgramedTool
CAD computer-aideddesign
CAE computer-aidedengineering
CAM computer-aidedmanufacturing
CAD/CAM computer-aideddesignandmanufacturing
CAPP computer-aidedprocessplanning
CIM computer-integratedmanufacturing
CNC computernumericalcontrol
CPS cyber-physicalsystem
CPU centralprocessingunit
DCS distributedcomputersystem
DfMA DesignforManufactureandAssembly
DNC Directnumericalcontrol
ENIAC ElectronicNumericalIntegratorandComputer
ERP enterpriseresourceplanning
FMS flexiblemanufacturingsystem
GT grouptechnology
GUI graphicuserinterface
I4.0 Industrie4.0
IC integratedcircuit
ICT InformationandCommunicationTechnology
I/O input/output
IoT InternetofThings
IR4 FourthIndustrialRevolution
MIT MassachusettsInstituteofTechnology
NC numericalcontrol
OS operatingsystem
RAM random-accessmemory
ROM read-onlymemory
SLA service-levelagreement
1.1Introduction
Imagineadayinthefuture;youareseatedinaquietcafesippingacupof aromaticDarjeelingteaandbitingintoasoft,creamysliceofbuttercake. Youdelicatelysavorinthefamiliartextureandsweetness,fillingyoursenses withadelightfulreminiscencethatbroughtagrintoyourface.Curiously, thisexistentialconnectionbetweenmemoriesandthephysicalpresenceis conceivedbya3-dimensional(3D)printer.Printedlayersofmolecules boundtogethertoformchemicalchainsandstructures,triggeringdifferent receptorsinyournervoussystemtokindlebackthatintimatemomentin time.Theconceptofprintingcustom-designededible“foodforthesoul” doessoundabsurdtoday,butcanitbeourrealityinthefuture?
Physiologicalneeds,suchasfood,water,sleep,homeostasis,sex,andair, arethemostfundamentalbiologicalrequirementsforphysicalsurvival, accordingtoAmericanclinicalpsychologistAbrahamMaslow [1].Sadly, ourcurrentstateofproductionpracticesandlimitednaturalresourcesare inadequatetosustainandprovisioneveryoneonplanetEarthanylonger. TheUnitedNationsFoodandAgricultureOrganizationestimatedthatthe worldpopulationwouldsurpass9.1billionby2050 [2].Whatifweareable todesignand3Dprint“sustenanceforourbody,”rightdowntotheexact dosageofmicronutrientswithoutexhaustingtheEarth’snaturalresources. Canthatbeourrealityonedaytoo?Indeed,cansuchneed-basedprovisioningbeextendedtothecreationofphysicalgoods?Whatifweareableto designand3Dprintaphysicalobjectusingtherightmaterials,inappropriate proportionsgiventheultimatefunctionalperformance,toachieveagiven objectivewhentheneedarises?
Throughouthistory,wehaverationalizedtechnologyasanapplicationof science [3].Ourancestorsdesignedmechanicaltoolsandinventedtechnologytohelpeasetheburdenofphysicallaborandgivethemaccessto rawmaterialsandenergyresourcestomakeobjectstheydesired.Today, technologyhasempowereduswiththecapacitytopushpastboundariesand constructaworldbeyondourimagination.Indeed,themoderntechnologydrivensocietywehavecreatedhasbroughtaboutgreatimprovementsin qualityoflife.
However,theincessantpopulationgrowth,coupledwithincreasedpercapita consumptionanddwindlingnaturalresourceswillposegreatchallengestothe qualityofourcurrentlivelihoodandthelivesoffuturegenerations.Externalities, suchasenvironmentalpollution,arebecomingaburdentosociety.Wecannot expecttomeetthefutureneedsofsocietysimplybyextendingexistinginfrastructuresandconductingbusinessasusualwithareactivestancetowardresourceand environmentalconcerns.Inthefuturetheroleoftechnologywillbetoreinvent theconsumption productionmodelandmanufacturingprocessestomitigatethe impactontheenvironmentandslowdowntheconsumptionofthefinitepoolof globalnaturalresources [4].
Istechnologyinnovationaboonorabanetohumanity?Tofindthe answer,weneedtounderstandthedifferentrelativeformsoftechnology, howeverydiscoveryandinventionframeandtransformthecourseofour survival,livelihood,andhabitsoverthecenturiesand,finally,wheretheart ofinnovationswillbringusinthefuture.
1.2Preindustrialization
BackintheStoneAge,ourancientforefathersusedrockstocreatesimple handtoolsandweaponsforhunting.Centurieslater,theyacquiredtheskills offarmingandlearnedtobuildhand-operatedcontraptionstoharnessnatural energyandaidcropproduction.Farmanimalswereputtouseinthefieldto easeintensivelaborwork.Agriculturewasatechnologythatsoonbecame theirprimaryformofeconomiclivelihood.Closedcommunitieswereforged andthesocietyatlargebecameknownastheagrariansociety [5]
1.2.1Craftproduction
Europewaswidelyruledunderclassical-styledfeudalismbetweenthe10th and13thcenturies.Toreceiveprotection,mostfarmerswouldworkandstay onlandownedbyvenallordsandnoblemen,henceleavingmanyofthem withlittlesavings.Tosupplementtheirneeds,smallgroupsofentrepreneurs respondedbymakingfarmingtoolsandhouseholditemstotradeatthelocal market.Productswereoftenhandcraftedandtailoredtothecustomers’needs thatledtotheconceptionofanewtradecalledthecottageindustry.Many ofthemeventuallywentontobecomehighlyskilledcraftsmenandartisans whowereabletocommandhighpricesfortheirworkassupplieswereusuallysmallerthandemand.Handcraftedgoodswere,however,inconsistentin quality,hadlowreliability,andrequiredmanualassembly.
1.2.2Agriculturalrevolution
Farmerscontinuedtodevisebettertoolsandexploredmoreeffectivefarming techniquestoyieldhealthiercrops,betterharvests,andmorefoodsupplies.
Europesawasuddenspikeinitspopulation astheinfantmortalityratedropped becausethepeoplewereeatinghealthierandcontractingfewerdiseases.Mostof themeventuallybecameindependentfarmersandsmalllandowners.
GreatBritainimplementedtheEnclosureActsintheearly17thCentury, comprisingaseriesofUnitedKingdomActsofParliament.Itgrantedlegal propertyrightstoprivatepossessionofthelandthatwaspreviouslyconsideredpublic [6].Asaresult,wealthylordsandlandproprietorswereableto purchaseandclaimprivateownershipofcommonfieldsandlargecomplex farms.Small-scalefarmerswereconsequentlyforcedtogiveuptheirland andtraveledintourbantownsandcitiestolookforwork.Manyofthem endeduptoilingawayaslaborersinindustrialestablishmentsasthecountry experienceditsFirstIndustrialRevolution.
1.3FirstIndustrialRevolution
Anindustrialrevolutionisgenerallydefinedastheincreaseofindustrialproductionthatwasbroughtaboutandcharacterizedbytheuseofmachinesand newenergysources.GreatBritainbecamethebirthplaceofWesternindustrializationinthe1700s,mainlybecauseithadapoliticallystablesociety,an amplesupplyofslavelaborandavastdepositofnaturalresourcessuchas coalandironorethatwerecheaptomine [7].
AsGreatBritainrosetobecometheworld’sdominantcolonialpower,coloniesaroundtheglobeundertheBritishEmpireruleprovidedadditionalsources ofrawmaterialstothesefactoriesandoperatedasmarketplacestotrademanufacturedgoods [7].Machinesandmechanizationhelpedimprovetransportationand facilitateddeeperminingformorenaturalresources.Industrializationsoon replacedagricultureasthefoundationofsociety’seconomicstructure.
1.3.1Mechanization
Burningcoalprovidedthenecessaryheatenergytoconvertatankofwater intosteam.Thesteamwasconvertedtomechanicalenergyandchanneled outtopowermachinesinindustrialmillsandfactories.Thereforesteam becamethenewformofenergysourcethatsubstitutedconventionalwater, wind,andanimal-poweroperations.Steam-poweredmachinerysuchasthe spinningjenny,acottonspinningmachinethatrevolutionizedthetextile industrybyincreasinghumanproductivityandefficiency,helpedboostcosteffectivemanufacturing [7].Machine-madegoodssoonreplacedhandcrafted productsastheywerecheapertoproduceandmoreconsistent.
1.3.2Laissez-fairecapitalism
Inthelate1700s,ScottisheconomistAdamSmithpublishedhisseminal book TheWealthofNation.Hepostulatedatheorythateveryindividualin
Ahistoricalperspectiveonindustrialproductionandoutlook Chapter|1 5
thesociety,whenactedactivelyinlookingoutforthemselvesandtheirselfinterests,wouldenduphelpingthecommunityatlarge [8].Theyhadcreated wealthforthemselvesandforthecountry,thecitizensofwhichworkedhard tobetterthemselvesandtheirfinances.Inaddition,hestressedthatitwas importanttoembracetheideaofafreemarketthatwassubsequentlyconstruedasaneconomicsystembasedonsupplyanddemandwithlittleorno governmentcontrol.Thegovernmentshouldonlyplaytheroleofthe“invisiblehand”tothreekeyfunctions:protectingnationalborders,enforcingcivil law,andengaginginpublicworkslikeeducation.AgroupofFrencheconomistsknownasthePhysiocratssharedasimilarsentimentandlatercoined theterm“laissez-faire”thattranslatedas“leavealone.”
Industrialistsandwealthycapitalists,popularlyknownasthebourgeoisie atthetime,perceivedtheideaofafreemarketasanopportunitytogain moreprofitandcollectivelypumpedtheirrichesintoconstructingmanyprivatelyownedfactories,mines,andmills.Theyinevitablygainedcontrol overwhattheirestablishmentsproduced,howthegoodsweremade,and whotheytraded.Consequentlyshiftingtheeconomicdecision-makingand meansofproductionawayfromgovernmentinterventionsandintotheir hands.Beinginpower,wealthyindividualsenjoyedprivilegesintariffsand subsidies,shapedtraderegulations,andimposeddominanceonthepoorand powerless.
1.3.3Socialandenvironmentalimpact
Manytownsandcitiessawaninfluxofjobseekersasmoreandmorefarmersabandonedtheirlandinthecountryside.Themajorityofthemendedup toilingawayinindustrialestablishmentsownedbygreedycapitalistswho werelargelymotivatedbyproduction,selfishprofits,andindividualistic principles [7].Sadly,astheBritishgovernmentcontributedverylittleingoverningtheproductionBritish’snaturalresourcesandthelivelihoodofits peopleatthattime,manyofthelaborersandevenchildrenendedupbeing gravelyexploitedbytheiremployers.Deathcausedbyindustrialaccidents happenedveryoftenasmostofthemwerenottrainedtooperatesteampoweredmachineriessafelyandwarnedoftheinherentdangers.Moreover, livingconditionsandsanitationwereseverelyinadequateandpoorlyprovisioned.Themortalityrateescalatedwiththewidespreadofunknowndiseases.Burningofcoalinthesteam-poweredfactorieschokedthe environmentanddangerouslyaffectedtheairquality,whiletheskywas oftenengulfedinthickcloudsofblacksmogemittedfromtheirchimneys.
Thedistributionofwealth,atthetime,wasverymuchdictatedbythe anarchicrulesofthemarketandtheeconomy.Thetrendresultedinacontinualwideningofincomegapsbetweentheproprietors(thecapitalists)andthe laborers(theproletariat).Bytheearly1800s,socialismeventuallybecame formalizedinEuropeasaresponsetotheeconomicsystemanditsapparent
shortcomings.Itaspiredtoresolvesocioeconomicdiscrepanciesandcreatea moreequitabledistributionofincomeamongthepeople.
KarlMarx,aGermanphilosopher,economist,andsociologist,wrote Das Kapital tocriticallyexposethecapitalistsystemandthewaysworkerswere exploitedbythecapitalistmodeofproduction [9].Headvocatedtheideaof asocialistsocietywhereacommunityoffreeindividualswouldworkwith themeansofproductionincommonandthatallindividuals’laborpower wouldbeconsciouslyappliedasthecombinedlaborpowerofthecommunity.Asaresult,theproductiveforceswouldincreasewiththeall-round developmentoftheindividualandallthespringsofcooperativewealth wouldflowmoreabundantly [9].Interestingly,Marx’sworkwasacontrast totheclassicalpolitical-economicwritingsofSmithandhiscontemporaries.
Regardless,theBritishpopulationandeconomycontinuedtogrowand flourishwiththecontinualriseofindustrialization.Meanwhile,therestof EuropeandtheUnitedStatesfollowedsuitwithastrongfocusonpurescienceundertheirgameplanandpathedavarietyoftechnologicalinventions soonafter [7].Suchinnovationswouldultimatelyexpandexistingindustries andcreatenewones,suchassteel,oilandgas,andthepowergrids.
1.4SecondIndustrialRevolution
Advancesinmaterialscienceengineeringanddiscoveriesofnewenergy sourcesledGermanyandtheUnitedStatestobecomegloballeadersofinnovativeindustrializationintheearly1800s [7].Steel,beinglighterandcheapertoproduce,replacedironasanalternativematerialintheconstructionand manufacturingindustries.Combustionenginesrunningonnaturaloilandgas substitutedsteamenginesthatdrovethegrowthoftheautomobileandaviationindustries.Electricitybroughtnewpossibilitiesinthedevelopmentof telecommunications,whilepowerdistributioncentersmanagedenergysuppliestohomesandfactories.
Appliedscienceopenedmanyopportunitiestoall,especiallyforthe manufacturingindustry.Bythemid-1800s,establishedfactoriesinthe UnitedStateswerefacingsupplyissuesasdemandsforproductqualityand quantitygrew.Motivatedbytheprospectsandbenefitsofrationalethinking, businessproprietorsadoptedthescientificapproachinearlymanufacturing andoperationsmanagementinhopetoboosttheirfactories’efficiencyand productivity.
1.4.1Divisionoflabor
BeforetheadventoftheSecondIndustrialRevolution,businessproprietors weregenerallyobliviousandunconcernedaboutthewaygoodsweremanufacturedonthefactoryshopfloor [10].Theyentrustedalltechnicaltasksto theseniorworkers,whotookontheresponsibilityofformulatingtheideal
processplanningbasedsolelyontheirskillsetsandworkexperiences.The planswereoftentediousandconvoluted.Suchwordofmouthclosedwork processessoonaffectednotonlytheshopflooroperationsbutalsotheproductqualityandquantity.Juniorworkerswereunabletoreferenceimportant informationastherewerenoproperlydocumentedstandardguidelinesand benchmarks.Businessproprietorsrealizedthatthiscouldbeananthropogenicproblemandeventuallyimplementedamorerationalizedapproachto resolvethesituation.
Intheearly1900s,AmericanauthorFrederickW.Taylorpublisheda monographcalled ThePrincipleofScientificManagement,wherehelaidout hisviewsonhowanorganizationcouldbecoordinatedthroughscientific managementpracticestobenefiteveryone [11].IntriguedbyTaylor’s approach,businessproprietorsadoptedTaylor’ssetofprinciplesintothe planningandoperationsonthefactoryshopfloors.Manybeganreplacing manualconstructionofindividualproductsbuiltbyhighlyskilledhandswith mechanizedproductionprocesses.Productpartsandhumanlaborbecame fragmentedandsimplified,followedbyacarefulsystemizationofwork sequences.Thisselectivebreakdownoftasksandsequenceswaseventually knownasthedivisionoflabor [10].
Ultimately,unskilledworkerscoulduseasetofstandardizedmachine tools,jigs,andgaugestorepeatedlymanufactureidenticalpartsbysimply followingaseriesofinstructions.Thepreciselymachinedpieceswouldprovideasmootherandquickerassemblyafterward.Precisionmanufacturingin theautomotiveindustryallowedoperatorstoproduceaninterchangeablepart thatreplacesaspecificfaultycomponentofacaroranengine [12],hence savingthemtimeandcostsofreplacingitwithanentirelynewoneinstead. Theconceptofinterchangeablepartsmanufacturingwaslatercoinedasthe Americansystemofmanufacturing [13].Itensurednotonlybetterproduct qualitycontrolbutalsoincreasedthevolumeandspeedofproduction,reducinglaborandmanufacturingcosts.
1.4.2Massproduction
Indeed,theconceptofdivisionoflabor,precisionmanufacturing,interchangeableparts,andotherproductionmethodsbasedonscientificstudies andreasoninghelpedmanufacturingestablishmentsincreasetheirprofitand productivity.Manyeventuallystartedtostreamlinetheirmanufacturingprocessesandimplementedtheideaofthemanualassemblyline.Asaresult, factoriescouldchurnoutlargequantitiesofstandardproductsinarelatively shortamountoftime.Thismanufacturingprocesswaswidelyknownas massproduction [13].
Amanualassemblylinewouldconsistofaseriesofsequentially arrangedmachines.Abaseproductpartwouldtravelfromonemachineto thenextalongamechanicalconveyor.Operatorsassignedateachstation