Diabetes and retinopathy: computer-assisted diagnosis volume 2 1st edition ayman s. el-baz - Own the

Page 1


https://ebookmass.com/product/diabetes-and-retinopathycomputer-assisted-diagnosis-volume-2-1st-edition-ayman-s-elbaz/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Diabetes and Retinopathy 1st Edition Ayman S. El-Baz

https://ebookmass.com/product/diabetes-and-retinopathy-1st-editionayman-s-el-baz/

ebookmass.com

Diabetes and Fundus OCT Ayman S. El-Baz (Editor)

https://ebookmass.com/product/diabetes-and-fundus-oct-ayman-s-el-bazeditor/

ebookmass.com

Handbook of Medical Image Computing and Computer Assisted Intervention (Elsevier and Miccal Society) S. Kevin Zhou (Editor)

https://ebookmass.com/product/handbook-of-medical-image-computing-andcomputer-assisted-intervention-elsevier-and-miccal-society-s-kevinzhou-editor/

ebookmass.com

Falling for Fangs (Crowley Lake Chronicles Book 1)

https://ebookmass.com/product/falling-for-fangs-crowley-lakechronicles-book-1-rhiannon-hartley/

ebookmass.com

The Communist Manifesto in the Revolutionary Politics of 1848: A Critical Evaluation David Ireland

https://ebookmass.com/product/the-communist-manifesto-in-therevolutionary-politics-of-1848-a-critical-evaluation-david-ireland/

ebookmass.com

International Financial Management 13th Edition Jeff Madura

https://ebookmass.com/product/international-financial-management-13thedition-jeff-madura/

ebookmass.com

The Spotted Dog Kerry Greenwood

https://ebookmass.com/product/the-spotted-dog-kerry-greenwood/

ebookmass.com

Tokyo Ever After Emiko Jean

https://ebookmass.com/product/tokyo-ever-after-emiko-jean/

ebookmass.com

Everyday Boundaries, Borders and Post Conflict Societies 1st ed. Edition Renata Summa

https://ebookmass.com/product/everyday-boundaries-borders-and-postconflict-societies-1st-ed-edition-renata-summa/

ebookmass.com

https://ebookmass.com/product/playing-with-fire-eagles-nestsecurities-book-2-anna-blakely/

ebookmass.com

DiabetesandRetinopathy

DiabetesandRetinopathy

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-817438-8

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher:StacyMasucci

AcquisitionsEditor:TariK.Broderick

EditorialProjectManager:SamanthaAllard

ProductionProjectManager:MariaBernard

CoverDesigner:MatthewLimbert

TypesetbySPiGlobal,India

Contributors

MichaelD.Abra ` moff DepartmentofElectricalandComputerEngineering;Department ofBiomedicalEngineering;DepartmentofOphthalmologyandVisualSciences,Carver CollegeofMedicine,UniversityofIowa,IowaCity,IA,UnitedStates

GaryAbrams DepartmentofOphthalmology,VisualandAnatomicalSciences,Wayne StateUniversitySchoolofMedicine,Detroit,MI,UnitedStates

MuhammadUsmanAkram DepartmentofComputer&SoftwareEngineering,National UniversityofSciencesandTechnology,Islamabad,Pakistan

YasminaAlKhalil DepartmentofElectricalandComputerEngineering,AbuDhabi University,AbuDhabi,UnitedArabEmirates

MarahAlhalabi DepartmentofElectricalandComputerEngineering,AbuDhabi University,AbuDhabi,UnitedArabEmirates

ImranBasit DepartmentofOphthalmology,ArmedForcesInstituteofOphthalmology, Rawalpindi,Pakistan

EtsuoChihara Sensho-kaiEyeInstitute,Uji,Kyoto,Japan

GalinaDimitrova DepartmentofOphthalmology,CityGeneralHospital“8thof September”,Skopje,NorthMacedonia

AymanEl-Baz BioengineeringDepartment,UniversityofLouisville,Louisville,KY, UnitedStates

AdelElmaghraby ComputerScienceandComputerEngineeringDepartment,University ofLouisville,Louisville,KY,UnitedStates

Marı´aIsabelFerna ´ ndez OphthalmologicalInstituteGo ´ mez-UllaandDepartmentof Ophthalmology,UniversityHospitalofSantiagodeCompostela,Santiagode Compostela,Spain

LuayFraiwan DepartmentofElectricalandComputerEngineering,AbuDhabiUniversity, AbuDhabi,UnitedArabEmirates

WinstonFurtado BioengineeringDepartment,UniversityofLouisville,Louisville,KY, UnitedStates

MohammedGhazal DepartmentofElectricalandComputerEngineering,AbuDhabi University,AbuDhabi,UnitedArabEmirates;BioengineeringDepartment,University ofLouisville,Louisville,KY,UnitedStates

GuruprasadGiridharan BioengineeringDepartment,UniversityofLouisville,Louisville, KY,UnitedStates

FranciscoGo ´ mez-Ulla OphthalmologicalInstituteGo ´ mez-UllaandDepartmentof Ophthalmology,UniversityHospitalofSantiagodeCompostela,Santiagode Compostela,Spain

AnjuGoyal DepartmentofOphthalmology,VisualandAnatomicalSciences,WayneState UniversitySchoolofMedicine,Detroit,MI,UnitedStates

TaimurHassan DepartmentofComputer&SoftwareEngineering,NationalUniversityof SciencesandTechnology,Islamabad,Pakistan;CenterforCyber-PhysicalSystems,Khalifa UniversityofScienceandTechnology,AbuDhabi,UnitedArabEmirates

AshrafKhalil ComputerScienceDepartment,CollegeofEngineering,AbuDhabi University,AbuDhabi,UnitedArabEmirates

AshrafKhallaf BioengineeringDepartment,UniversityofLouisville,Louisville,KY, UnitedStates

DipenKumar WayneStateUniversitySchoolofMedicine,Detroit,MI,UnitedStates

AliH.Mahmoud BioengineeringDepartment,UniversityofLouisville,Louisville,KY, UnitedStates

RayyanManwar DepartmentofBiomedicalEngineering,WayneStateUniversity,Detroit, MI,UnitedStates

JoaquimdeMoura DepartmentofComputerScience;CITIC-ResearchCenterof InformationandCommunicationTechnologies,UniversityofACorun ˜ a,ACorun ˜ a,Spain

JorgeNovo DepartmentofComputerScience;CITIC-ResearchCenterofInformationand CommunicationTechnologies,UniversityofACorun ˜ a,ACorun ˜ a,Spain

MarcosOrtega DepartmentofComputerScience;CITIC-ResearchCenterofInformation andCommunicationTechnologies,UniversityofACorun ˜ a,ACorun ˜ a,Spain

ManuelG.Penedo DepartmentofComputerScience;CITIC-ResearchCenterof InformationandCommunicationTechnologies,UniversityofACorun ˜ a,ACorun ˜ a,Spain

GabrielaSamagaio CITIC-ResearchCenterofInformationandCommunication Technologies;DepartmentofComputerScience,UniversityofACoruna,ACoruna,Spain

HarpalSandhu DepartmentofOphthalmologyandVisualSciences;Departmentof Ophthalmology,SchoolofMedicine,UniversityofLouisville,Louisville,KY,UnitedStates

ShlomitSchaal OphthalmologyandVisualSciencesDepartment,Universityof MassachusettsMedicalSchool,Worcester,MA,UnitedStates

MohamedShaban ElectricalandComputerEngineering,UniversityofSouthAlabama, Mobile,AL,UnitedStates

AbhayShah DepartmentofElectricalandComputerEngineering,UniversityofIowa, IowaCity,IA,UnitedStates

AhmedShalaby BioengineeringDepartment,UniversityofLouisville,Louisville,KY, UnitedStates

AhmedA.Sleman BioengineeringDepartment,UniversityofLouisville,Louisville,KY, UnitedStates

AhmedSoliman BioengineeringDepartment,UniversityofLouisville,Louisville,KY, UnitedStates

JasjitS.Suri AtheroPointLLC;GlobalBiomedicalTechnologies,Inc.,Roseville,CA; DepartmentofElectricalEngineering,IdahoStateUniversity,Pocatello,ID,UnitedStates

FatmaTaher CollegeofTechnologicalInnovation,ZayedUniversity,Dubai,UnitedArab Emirates

AlanTruhan WayneStateUniversityPhysicianGroup,KresgeEyeInstitute,Detroit,MI, UnitedStates

Pla ´ cidoL.Vidal DepartmentofComputerScience;CITIC-ResearchCenterofInformation andCommunicationTechnologies,UniversityofACoruna,ACoruna,Spain

XiaodongWu DepartmentofElectricalandComputerEngineering;Departmentof RadiationOncology,UniversityofIowa,IowaCity,IA,UnitedStates

Complementarycapabilities ofphotoacousticimagingtoexisting opticalocularimagingtechniques

DipenKumara,AnjuGoyalb,AlanTruhanc,GaryAbramsb, RayyanManward

a WAYNESTATEUNIVERSITYSCHOOLOFMEDICINE,DETROIT,MI,UNITEDSTATES

b DEPARTMENTOFOPHTHALMOLOGY,VISUAL ANDANATOMICALSCIENCES,WAYNESTATE UNIVERSITYSCHOOLOFMEDICI NE,DETROIT,MI,UNITEDSTATES c WAYNESTATEUNIVERSITY PHYSICIANGROUP,KRESGEEYEINSTITUTE,DETROIT,MI,UNITEDSTATES d DEPARTMENTOF BIOMEDICALENGINEERING,WAYNESTATEUNI VERSITY,DETROIT,MI,UNITEDSTATES

Since1886,whenthefirstpictureofthehumanretinawastaken,ocularimaginghas playedacrucialroleinthediagnosisandmanagementofophthalmicdiseases [1].One ofthebiggestcontributorstotheadvancementofocularimagingistheadoptionofoptical imagingtechniques.Opticalimagingisamethodoflookingintothebodyinanoninvasive way,likeX-rays.However,unlikeradiologicalimagingtechniquesthatuseionizingradiation,opticalimaginguseslightandthepropertiesofphotonstoproducedetailedimages rangingfromstructuresassmallascellsandmoleculestostructuresaslargeastissuesand organs.Thereareplentyofadvantagesofusingopticalimagingcomparedtoradiological imaging.Forone,opticalimagingismuchsaferforpatientssinceitusesnonionizingradiationtoexciteelectronswithoutcausingdamage.Additionally,sinceitisfastandsafe, opticalimagingcanbeusedtomonitoracuteandchronicdiseases,aswellastreatment outcomes.Opticalimagingisalsousefulforimagingsofttissuesincedifferenttypesof tissuesabsorbandscatterlightdifferently.Finally,opticalimagingcanadvantageously usevaryingcolorsoflighttoseeandmeasuremultiplepropertiesoftissuesatatime. Therefore,itisnosurprisethattheopticalimagingmodalitiesoffundusphotography inthe1920s [2],scanninglaserophthalmoscope(SLO)imagingin1981 [3] andoptical coherencetomography(OCT)in1991 [4] havetouteda“goldenage”inophthalmic imagingapplications [5].Althoughthesetechnologieshaveadvancedthefieldofocular imagingandarecommonlyusedinclinicalpractice,theyarenotwithouttheirflaws. Anewtechnology,photoacousticimaging,hasbeenshowntohavepromisingfeatures thatcouldmakeitthenextmajorimagingtechniqueinophthalmology.Additionally, photoacousticimaging(PAI)cancombinewithpreexistingopticalmicroscopicimaging modalitiestoachievemultimodalimagingoftheeye.Inthischapter,wepresentabrief

overviewoffundusphotography,SLO,andOCTwhilediscussingthepotentialofPAIasthe nextmajorocularimagingmodality.

Firstintroducedin1920andextensivelyusedsince1960,fundusphotographycontinuestobeastapletechniqueinophthalmology [2].Initially35mmfilmwasthestandard forfundusphotographybutithaslongbeenreplacedbydigitalacquisition [5].Fundus photographyworksinasimilarmannerasanindirectophthalmoscope.Lightisfocused byaseriesoflensesonaring-shapedaperture,whichthenispassedintoacentralaperture toformaringwhichthenpassesthroughthecameraobjectivelensandcorneatoilluminatetheretina.Thereflectedlightfromtheretinathenpassesthroughadarkholeinthe annulusformedbytheilluminationsystempreviouslydescribed.Thereisminimalreflectionofthelightsourceinthecapturedimagebecausethelightraysofthetwosystemsare independent.Apicturecanthenbetakenbyusingonemirrortointerruptthelightfrom theilluminationsystemsothatthelightfromaflashbulbcanpassintotheeye.Another mirrordropsatthesametimeinfrontoftheobservationtelescopetodirectthereflected lightontofilmoradigitalcharge-coupleddevice(CCD).Monochromaticlightcanalsobe usedratherthanwhitelightsincemonochromaticlightallowsforincreasedcontrastof anatomicaldetailsofthefundus [6].Normallyfundusphotographycanonlycapturea smallfieldofview(FOV)whilethepupilisdilated,butitcanbeincreasedwithasmall aperturestopatthecostofresolution [2].Themaximumfieldofviewis50degreesbut itcanbeincreasedto60degreesifusingamydriaticcamera [2].Additionally,byusing aspecial Montage software,individualimagescanbeputtogethertoformacollagethat cancoverupto110degrees [2].Furthermore,fundusphotographycanbecombinedwith wideangleimagingtoachieveafieldofviewbetween45and140degrees,butthereisproportionallylessretinalmagnification [5].Themainadvantagesoffundusphotographyare easeofuse,fullcolor,lowcostcomparedtootherimagingtechniques,andhighpatient compliance [2].Currently,fundusphotographyisusedtomonitortheprogressionofdiseaseslikediabeticretinopathy,age-relatedmaculardegeneration(ARMD),glaucoma,and neoplasmsoftheeye [5].

InSLO,theretinaisscannedinarectangularpatternofparallelscanninglinesfollowed bytheelectronbeamonaTVorcomputerscreen(rasterpattern) [2] usingamonochromatic,narrowlaserbeam.Thebeamisusuallydeflectedusingoneslowverticalandone fasthorizontalgalvanometerscanner [7].Bymodulatingthescanningbeam,projectionof graphicsintherasterisachieved.Sinceitusesarasterpattern,earlySLOscouldoutputto aTVmonitorandberecordedonvideotapes.TheSLOhasbeenfurtherimprovedbycombiningitwithothertechnologies.Confocalscanninglaserophthalmoscope(cSLO)combinestheprinciplesofconfocalimagingtoincreasecontrastanddepthresolution. Confocalmicroscopywasinventedin1955byMarvinMinsky [8].Confocalmicroscopy usesapinhole(confocalfilter),whichisinanopticallyconjugateplaneinfrontofadetectorandpointilluminationtoremoveout-of-focussignal [2].Muchofthelightthatis reflectedisblockedbythepinholesincelightisonlyreflectedbystructurescloserto thefocalplane.Two-dimensional(2D)imagingoccursinarasterpatternoverthespecimenbutthree-dimensional(3D)imagingispossiblebychangingtheaxialresolution.

Byincreasingthenumericalapertureordecreasingthediameterofthepinholeonecan increasethedepth.Onecanthenscanmanythinsectionsthroughasamplewhichcan becombinedwithSLOtoallowcSLOtoacquiredepthinformation [9].Animprovement tocSLOismultispectralSLOsthatusemultiplelasersofdifferentwavelengths.These laserstendtobecoaxialviaacoupleofdichroiccombiningmirrorsandthegoalistointroducecolortomatchimagesfromfundusphotography.Thelasersareeithermultiplexedor firedsimultaneouslyonanX-Yscanningmirrorthatcausesthelighttofocusonasquare areaofseveralmillimetersontheretina.Thereflectedlightthentraversestoabeamsplitterthatdirectsaportionofthelighttothedetector [2].MultispectralSLOsareusedfor retinalvesseloximetry,reflectometry,angioscotometry,andfundusperimetry [10–14]. Overall,cSLOisadvantageouscomparedtopreviousimagingtechniquessinceitallows forbetterimages,patientcomfort,videocapability,andtheabilitytoimagepupilsthat donotdilatewell.Ithasbeenshowntobeeffectiveindetectingbiomarkersfordiabetic retinopathy [15],age-relatedmaculardegeneration [16],scanningthenerveheadinglaucoma [17],andimagingtheretinalnervefiberlayer(RNFL) [18].Themostcommonuseof theSLOiswithultrawide-fieldimagingof200degreesusingtheOptosSystem.Thisuses anSLOwithanellipsoidallenstovisualizetheperipheralretina.About82%oftheretina canbeimaged.Advantagesincludelowlightlevelforpatientcomfortandgoodimages canoftenbeobtainedwithoutdilationofthepupil.Fundusautofluorescence,fluorescein angiography,andindocyaninegreenangiographycanbedonewiththeOptossystem. AmorerecentadaptationtoSLOisadaptiveopticsSLO(AOSLO).Adaptiveopticswas atechnologyoriginallycreatedforastronomythathasbeencombinedwithSLOtoreduce theeffectsofwavefrontdistortionscausedbyopticalaberrations.Thisisdonebymeasuringthewavefrontdistortionsandcompensatingforthembyusingdevicessuchasa deformablemirror [19].Thesedistortionsdiminishthequalityoftheimagebeing reflectedbytheeyewhichpreventedmicroscopicresolutionofstructuressuchascapillariesandcells [3].AOSLOmostcommonlyusesaShack-Hartmannsensortomeasure thesedistortionsbycalculatingthelocalphaseerrorsinthewavefront.Aphasemodulator,suchasadeformablemirror,canbeusedtocorrecttheseerrorssincethephaseerrors canbeusedtoreconstructthewavefrontwhichinturncancontrolthedeformablemirror. Anotheraspecttohaveahighmagnificationofsmallstructuresisimagestabilization. Recently,eyetrackingandstimulusdeliverymethodhavebeenimplementedinAOSLO toachieveit [20].

OCTisanoninvasive,micronlevel,high-resolutionimagingtechniquebasedonthe principleofMichelsoninterferometerthatprovidesreal-timeimagesoftheretina.Asis withMichelsoninterferometer,aninterferencepatternisproducedbysplittinglightinto twoarms:asamplearmfromscanningtheretinaandareferencearmfromamirror.These armsarethenrecombinedbysemitransparentmirrorsandredirectedtoaphotodetector orcamera [21].Iftheinterferenceisconstructivebetweenthetwoarms,thesignalis strongatthedetectorandiftheyaredestructive,thesignalisweakatthedetector. Areflectivityprofile,alsocalledanA-scan,canbegatheredbyscanningthemirrorin thereferencearmwhichcontainsinformationonspatialdimensionsandlocationof

thestructuresintheretina.Across-sectionaltomograph,otherwiseknownasaB-scan, canbeobtainedbycombiningaseriesofA-scans.OCTuseslow-coherenceinterferometry asopposedtoconventionalinterferometrythatuseslongcoherencelength [22].Lowcoherenceinterferometryuseslow-coherencelightwhichislightthatconsistsofabroad rangeoffrequenciesratherthanjustasinglefrequency.Thebroadbandlightallowsfor low-coherenceinterferometrytoshortentheinterferencetomicrometers,perfectfor itsusageinophthalmology.Additionally,itshouldbenotedthatOCTusuallyutilizes near-infrared(NIR)lightsincetherelativelylongwavelengthallowsforNIRtopenetrate deeperthancSLOintoscatteringmedialiketheretina.Sinceitsinceptionin1991,OCT hasmadehugeadvancementsandimprovementstoincreasetherateofimagingandresolutionofOCT.TimedomainOCTs(TDOCTs)havelargelybeenreplacedbyspectral domainorFourier-domainOCT(SD-OCT)sincecurrentstate-of-the-artonescanproducebetween40and70,000A-scansperminute,whichismuchfasterthanTDOCTs [5].Themajoradvantagesofitbeingfasterarethatthescantakeslesstimeanditisless impactedbyartifactsandaberrationscausedbyblinkingoreyemovement [5].LikeSLO, OCThasbeencombinedwithadaptiveoptics(AO-OCT)todecreasetheaberrations causedbyimperfectionsinthecurvatureofthecorneaandlens [23].Also,AO-OCThas theadvantageofhigheraxialresolutioncomparedtoAO-SLO [23].OCTusedtobelimited bythefactthatitcouldnotbeusedforbloodflowanalysisduetoapoordelineationof bloodvesselsfromthescatteringoflightaserythrocytesmovethroughthem [24].However,threetypesofOCThaveshownpromiseinthisregard:DopplerOCT,OCTangiography(OCTA),andvisiblelightOCT(vis-OCT).DopplerOCTcombinesOCTwiththe principlesoftheDopplereffectwhichresultsinimprovedresolutionandsensitivitythat allowsfortheevaluationofbloodflow,thevolumeofretinalandchoroidalvasculature, abnormalitiesinchoroidalvasculature [25],andabnormalitiesinretinalandchoroidal vessels [26].OCTAcameaboutduetotheimprovementsinOCTsensitivityandspeedover theyearswhichhasledtobetterdelineationofbloodvessels [27].OCTAcomparesconsecutiveB-scanstakenatratesofseveralhundredHz.TheadvantagesofOCTAarethatit doesnotrequiretheuseoffluoresceindyessuchassodiumfluoresceinandindocyanine green [28],theabilityforrepeatedscans,andtheabilitytoanalyzeflowinaspecificaxial locationoftheretinaorchoroid [29].Vis-OCT,whichusesvisiblelightratherthanNIR,has alsorecentlygainedattentionduetobetteraxialresolutionthanNIR-basedOCTsandbetterimagecontrastduetoscatteringpropertiesoftissuesinvisiblelight,albeitatthecostof imagedepth [30].Ontopofvisualizing3Dretinalstructure,vis-OCTcanquantifyblood oxygensaturation(sO2)inretinalcirculation [25].Duetoitsabilitytoshowcrosssections oftissuelayersatmicrometerresolution,OCTisheavilyusedinophthalmologyasa methodtoassessstructuralchangesintheretinaindiseasessuchasdiabeticretinopathy, veinocclusion,age-relatedmaculardegeneration,glaucoma,multiplesclerosis,andother diseasesthathaveocularsequelae.OCTisverysensitiveindetectingmacularedemaand ismoreaccuratethanclinicalexamination.OCThassignificantlyreducedfalsepositive referralsfordiabeticmacularedema(DME)duringdiabeticscreenings [31].Additionally, OCThasgiveninsightintoabnormalitiesatthejuncturebetweenvitreousandthemacula

inpatientswithDMEwhichcouldinfluencemanagementandprognosis [32].Furthermore,OCTisalsousefulintheearlydetectionofuveiticmacularedema [33] withtheidentificationofspecificOCTpatternsassociatedwiththedisease [34].Anotherdiseasethat OCTisusedforisARMD.FluoresceinangiographyhasbeenlargelyreplacedbyOCTasthe imagingmethodformonitoringARMDtreatmentandtheneedforfurtheranti-VEGF treatment [35].OCTisalsoheavilyusedincasesofglaucoma.Glaucomaprogressionis associatedwithRNFLandganglioncellthinning [36],soOCTcanbeusedforglaucoma detectionandprogression [37] .WhilemostofOCTtechnologyisfocusedonimagingof theretinaorpathologiesrelatedtotheretina,enhanced-depthimagingOCT(EDIOCT)canevaluatechoroidalthicknessandpo steriorsegmentinflammatorydisorders [5] .Asidefrommonitoringthechoroid,ithasbeenshowntobeusefulinmonitoring otherocularinflammatorydiseasessuchasVogtKoyanagiHaradadisease [38],sarcoidosis [39] ,birdshotchorioretinopathy [40],andinfectiouschoroiditis [41] .However, OCThasbeenwellestablishedinophthalmology;ithasalsobeenusedinothermedicaldisciplinessuchasdermatology [42–55] .

Whilefundusphotography,SLO,andOCTarestillconsistentlyusedtodayinophthalmology,theyarenotwithouttheirproblemsandlimitations.Tostart,fundusphotography requirespupildilationwithshort-actingmydriaticdropswhichcancausediscomfortfor patients [5].Therehavebeenrecentadvancementsincamerasthatdonotrequiremydriaticdropsbutthesecanbeaffectedbymediaopacity,suchascataracts,somydriatic camerasarestillthecamerasofchoice.Mydriaticcamerasareespeciallydesiredifthere isaneedtoimagetheperipheryoftheretina [56].Evenmoresothandiscomforttopatients, thesetechnologiessufferfromalackofquantitativedata,lackofabilitytotakephotographsofhighquality,poordepthresolution,difficultyincomparingserialphotographs, andtheneedtosubjectpatientstohigh-intensitylighttoilluminatetheretina [2].Asfor SLO,oneofthelimitationsisthatinvoluntaryeyemovementsaffectimagequality. AsolutiontothisistrackingSLO(TSLO)whichusesahigh-speedretinaltrackerto significantlyimproveimagequality [56].AnotherlimitationofSLOisthatcurrentcommercialSLOs,suchasOptosortheHeidelbergwidelens,donotprovideimagesoftheeyefrom oratoora [57].Additionally,thereisadistortionoftheimageontheperipheryoftheimage sinceitistakinga2Dimageofa3Dglobe [58].Also,themeasurementsoftheeye,such asdistanceandarea,maynotbetheactualdimensionsoftheeyesinceitdoesnotstandardizetheimagetoanyaxisoftheeye [5].Artifactsontheimagecanalsobecausedby severalthings:eyelashes,cataracts,intraocularlensimplants,pigmentsintheanteriorsegmentoftheeye,andvitreousopacitiestonameafew [59].Furthermore,thecostofequipmentandmaintenanceofSLOcanbealargebarrier [5].Finally,therearethelimitationsof OCT.OCTbyitselfisunabletomeasuresO2 andRPEmelanin.WhileOCTAexists,itis restrictedbyitslimitedfieldofview,lackofinformationonfillorflowspeed,andmotion artifacts [60].Vis-OCTsuffersfromlimitedimagedepthandcancausediscomfortforeye imaging [23].Finally,sinceallthreetechniquesareopticalscattering-basedmodalities, measurementsofbloodoxygensaturationintheeyeareaffectedbylightscattering,and fundusphotographyandSLOalsoneedtousecontrastagentstomeasurethem [61].

Whenlightisreceivedbytheeye,itisprocessedbyboththeretinalpigmentepithelium (RPE)andtheretinawhichconsumesalargeamountofoxygenandenergy [62].Therefore,theretinaneedssupportingvasculaturewhichithasfromretinalandchoroidal circulation.Normallythesevasculaturesystemsbringoxygenandnutrientstotheretina [63],andstudieshaveshownthatvariationsinthesO2 andRPEmelaninplayaroleinoculardiseasessuchasdiabeticretinopathy [64],glaucoma [65],retinalvenousocclusion [66], andARMD [67].Thus,therehasbeenanincreasedeffortinthepastdecadetoquantifythe sO2 andRPEmelaninconcentrationintheeye.Fortunately,bothbloodandmelanin, withinthevisiblelightspectralrange,havehighopticalabsorptioncoefficientswhich allowthemtobemeasured [68].PAIhasbeenshowntomeasureopticalabsorptionpropertiesofbothbloodandmelanininanoninvasiveandprecisewayinotherlocationsofthe body [69,70].Therefore,PAIisarecenttechnologyforophthalmologyduetoitspotential clinicaluseinmeasuringretinalandchoroidalsO2 andtheRPEmelanin.Photoacoustic imaginghasbeenwellstudiedinseveralpreclinicalimagingapplications [71–80].Itis basedonthephotoacousticeffect,whichisthegenerationofultrasoundwavesdueto theabsorptionoflightandthermalexpansion [81].TheprimaryPAItechniqueisphotoacoustictomography(PAT).PATstartsbyusingalasertoilluminateandexcitethesample whereshort(nanosecond)laserpulsesareusedthatsatisfythestressandthermalconfinements.Thesamplethenexhibitsphotoacousticeffectasitabsorbsenergyfromthelaser whichresultsinheatemission,transientthermoelasticexpansion,andleadstogeneration ofultrasoundwave [69,70].Thegeneratedacousticwaveisdetectedbyultrasoundtransducersandrecordedasafunctionoftimewhichthenisconvertedbasedonthesound speedinthesampleintoaone-dimensionaldepth-resolvedimage,alsocalledan A-line.ByaligningtheA-linesbasedontheirspatiallocation,atransverselinearscan ofthepointlaserilluminationonthesamplecanmakea2Dimage.Fromtherea2Draster scanofthepointofilluminationcreatesa3Dimage.PATcanbecategorizedasphotoacousticcomputedtomography(PACT)orphotoacousticmicroscopy(PAM).PACTusesan arrayofultrasonictransducers(multiplesingleelement,linear,phased,ring,circular,or sphericalarrays)todetectPAwavesemittedfromanobjectatmultipleviewangles [82] whilePAMusestherasterscanningmethod [83].Eventhoughahigherpenetrationdepth canbeachievedusingPACT,itcomesattheexpenseofcoerceresolution,system,and computationalcosts [84].Ontheotherhand,higherresolutionPAMsystemscanbeclassifiedbasedontheirspatialresolutionorthetypeofscanningtheyusewithlimitedpenetrationdepth.Forspatialresolution,PAMsystemscanbeeitheracousticresolution wheretheimagingresolutionisbasedonthefocusoftheultrasonicdetector [85] oropticalresolutionwheretheresolutionisdeterminedbytheopticalfocalspot [86].Asforthe scanningclassifications,thereismechanicalscanningwhichsimultaneouslytranslates theopticalilluminationandultrasounddetectionforvolumetricimaging [87] andoptical scanningwherethereisasetofgalvanometerswhichmaintaintheultrasounddetection stationarywhiletheyscanafocusedopticalillumination [87].Currently,PAiscapableof imagingstructuresinboththeanteriorandposteriorsegmentsoftheeye.Originally,ithad beenusedtoexamineocularstructuressuchastheirisorretinalvasculaturequalitatively

[88],butcurrentPAIfocusesonthequantificationofpropertieslikesO2 [87] orretinaloxygenmetabolicrate(rMRO2) [89] intheeye.ThemajorstructurethatPAIcurrentlyfocuses onintheanteriorsegmentoftheeyeistheiris,specificallytheredbloodcellsinthemicrovasculatureandmelaninoftheiris [62].Whilebothmechanical-scanning acoustic-resolutionPAM(AR-PAM)andoptical-resolutionPAM(OR-PAM)havebeen usedtoimagetheiris,onlymechanical-scanningOR-PAMhasbeenabletoobtain high-resolutionimagesofirismicrovasculature [90].Thesystemworksbyfocusinglaser illuminationlightontotheirismicrovasculatureusingamicroscopeobjectivelens [91] Awatertankisplacedoverthesubject’seyesothatafocusedultrasonicdetectorcan receivetheultrasonicsignalsemittedfromtheiris [91] .Additionally,sO2 oftheiris microvasculaturecanbemeasuredbyusingtwo excitationwavelengthsthathavedifferentoxy-hemoglobinanddeoxy-hemoglobinabsorptioncoefficients [91].Irismelanin hasalsobeenmeasuredbyPAIusingmechanical-scanningOR-PAM [91] .However, unlikethesO2 oftheirismicrovasculatureonlyqualitativemeasuringofirismelanin hasbeenperformed [84].Insteadoftheiris,thefocusofPAIintheposteriorsegment istheredbloodcellsintheretinalandchoro idalmicrovasculaturealongwithmelanin intheRPE [62] .Bothmechanical-scanningOR-PAMandAR-PAMhavebeenusedto imagetheposteriorsegmentoftheeye [92],buttheresolutionistoolowtovisualize themicrovasculatureinAR-PAM [92] andinOR-PAMthelensattenuatestheultrasonic signalsresultinginreducedsignal-to-noiseratio(SNR)oftheimages [93].Toovercome this,optical-scanningPAmicroscopy(OS-PAM)wasdeveloped [87] .UnlikemechanicalscanningOR-PAM,OS-PAMusesapulsedlasercoupledtoa1 2-single-modeoptical fiber [87] .Oneoftheoutputsallowedforthecompens ationoflaserintensityvariation, whiletheotherwasdirectedtothecorneausingapairofgalvanometermirrorsanda pairoftelescopelenses [87].Additionally,OS-PAMusesanultrasonicneedletransducer todetectPAwaves,thuseliminatingtheneedforawatertank [62].Moreover,theneedle preventsmajorsignalattenuat ionresultinginhighSNRimages [62] .Lastly,althoughit hasnotbeenusedinPAIoftheeye,contrastagentsimprovePAimagequality [94] and extendthescopeofPAItothegeneticandmolecularlevel [95].Someofthecontrast agentsusedlikeEvansblue [96],indocyaninegreen [97],andnanoparticles [98] are alreadycommonophthalmiccontrastagentst husinvitingthepossibilityofusingthem withocularPAM.

Unfortunately,whilePAIshowsalotofpromiseasanupcomingocularimagingmodality,itisrelativelynewandhasmanylimitationsthatneedtobeaddressedbeforetheclinicaltranslation.First,photoacousticsignaldetectionrequiresphysicalcontactwiththe eye.Whetheritisawatertankoraneedletransducerwithultrasonicgel,bothcause patientdiscomfortandarenotsuitableforclinicalsettings [62].Additionally,physical motionforsaccadesorheadmovementcandisruptPAI.Whiletherehavebeenstrides takentofixthisproblem,therearemanyconcernsabouttheperformancestabilityand detectionsensitivitywiththesenoncontactPAmethods [62].Second,OS-PAMstill requiresextendedimagingdepthforboththeretinaandthechoroid,highresolution forRPEmelanin,andfastimagingspeedstoreducemotionartifacts.Fordepth,optical

clearingagentscouldbeused [99] buttheyarenotusableforinvivoimagingandNIRlight couldbeusedbutthehigh-powerexcitationisasafetyconcern [100].Forimprovingthe resolutionofPA,onecouldpotentiallyincreasethelateralresolutionbyusingthesyntheticaperturetechnique [101].Asforaxialresolution,abroadultrasonicbandwidthdoes increasetheaxialresolution;however,highersensitivityinOS-PAMisachievedwithanarrowerbandwidth [102].Abalanceneedstobedeterminedtomaximizebothaxialresolutionanddetectionsensitivity.Finally,higherimagingspeedcouldreducemotionartifacts andwhileincreasingthelaserrepetitionratecanincreaseimagingspeed,itislimitedby theultrasoundpropagationtimefromtheposterioreye.Lastly,beforePAIcanbeclinically adapted,itrequiresnumerousanimalstudiestoconfirmthelongitudinalperformance stabilityofPAmeasurementsintheeye.Furthermore,thereislimitedknowledgeabout PAIfortheearlydetectionofoculardisease [62].Finally,studieshaveshownthatvisual stimulationoftheretinacanresultinchangestoretinalvesseldiameter,bloodflow, andsO2 [103].Therefore,furtherstudiesareneededtoshedlightontheeffectofvisual lightilluminationonOS-PAMaccuracy.

ThebiggestadvantageofOS-PAMisthatmultimodalimagingisachievablebycombiningOS-PAMwithotherimagingmodalities.Thedevelopmentofmultimodalmicroscopic imagingtechniqueshasbecomeincreasinglyimportantinthebiomedicalcommunityas itprovidescomprehensivephysiologicalinformationaboutbiologicaltissues [104].In thecaseofocularimaging,mostopticalimagemodalitiesworkbydetectingthescattering oflightreflectedfromtheeyeorfluorescentlightstimulatedinthesample.Theproblemis thatthesemodalitiesrequiretheback-travelingofphotonsfromthesample,sotheycannotmeasuretheopticalabsorption.Therefore,OS-PAMcomplementsthesemodalities wellbecauseitiscurrentlytheonlyopticalabsorption-basedimagingmodality [84].Thus, bycombiningthetwo,onecangetanatomicalinformation,likecellularlayerorganization oftheretina,frompreexistingocularimagingtechniquesandmolecularinformation, likesO2,fromOS-PAMwhichgivesaquantitative,holisticimageoftheeye.OS-PAM canbecombinedwithautofluorescenceimaging [105],fluoresceinangiography [65], SLO [84],andmostimportantlyOCT.OCTaddstoOS-PAMbyallowingfordetailed, high-resolution,retinalandchoroidalstructuralinformation [105].Additionally,byusing repeatedOCTscanning,completeretinalvasculaturemappingispossible [106].Furthermore,OCTcanquantitativelymeasureretinalbloodflowrateandvelocitybydetectingthe Dopplerphaseshiftsproducedbymovingblood [107].Finally,OCTcanbeusedtoguide OS-PAMsothatanareaofinterestonposteriorsegmentcanbeimaged [108].

Ocularimaginghascomealongwaysincethefirstimageoftheretinain1886.The additionofopticalimagingmodalitiestoophthalmologyhasintroducedfasterandmore precisemethodsforphysicianstomonitoranddiagnoseocularpathologies.Whilefundus photography,SLO,andOCThaveadvancedocularimagingtoalargedegree,theyhave clearlimitationsinbeingopticalscattering-basedimagingmodalitiesaspresentedin Table1.Therefore,theintroductionofphotoacousticimagingtoophthalmologycould leadtothedevelopmentofanovel,stand-alonemodalityand/oracomplimentarymodalitytoOCTandSLOthatcouldadvancethefieldofocularimaging.

Table1 Listofophthalmologicalimagingmodalitiesandtheirapplications, advantages,andlimitations.

TechnologyApplicationsAdvantagesLimitations

Fundus photography

Retinalfundusimaging, diabetes,ARMD,glaucoma, neoplasmsoftheeye

SLORetinalvesseloximetry, reflectometry, angioscotometry,fundus perimetrydiabeticretinopathy, age-relatedmacular degeneration,scanningthe nerveheadinglaucoma,and imagingtheretinalnerve fiberlayer

OCTMacularedema,macular degeneration,glaucoma, multiplesclerosis

Quickandsimpletechniqueto master,trueviewoftheretina, observesalargerretinalfieldat anyonetimecomparedwith ophthalmoscopy,highpatient compliance,abletomonitor progressionofdiseases,andlow costcomparedtootherimaging modalities

Highlateralresolution,fast imaging,high-qualityimages, patientcomfort,andvideo capability

Imageproducedis2D,difficulty observingandassessing abnormalitiesduetolackof depthappreciationonimages, lessmagnificationandimage clarity,conditionssuchas cataractsreduceimageclarity, artifacterrorsmayproduce unusualimages

Lowdepthresolution,high maintenancecost,affectedby motionartifacts,distortionof imageattheperipheryandlight scatteringaffectssO2

Highlateralanddepth resolution

PAOMsO2 andRPEimagingOpticalabsorptionbased, mediumdepthperception, andmultimodalimagingwith othermodalities

References

BasedOCThaspoordelineation ofbloodvesselsandlimitedfield ofviewinOCTangiography

Onlyopticalabsorptionimaging, currentlyrequiresphysical contact,needsmoretesting beforeclinicallyavailable

[1] A.Taruttis,V.Ntziachristos,Advancesinreal-timemultispectraloptoacousticimaginganditsapplications,Nat.Photonics9(4)(2015)219.

[2] B.I.Gramatikov,Moderntechnologiesforretinalscanningandimaging:anintroductionforthe biomedicalengineer,Biomed.Eng.Online13(1)(2014)52.

[3] R.H.Webb,G.W.Hughes,Scanninglaserophthalmoscope,IEEETrans.Biomed.Eng.7(1981) 488–492.

[4] D.Huang,etal.,Opticalcoherencetomography,Science254(5035)(1991)1178–1181.

[5] A.Bajwa,R.Aman,A.K.Reddy,Acomprehensivereviewofdiagnosticimagingtechnologiesto evaluatetheretinaandtheopticdisk,Int.Ophthalmol.35(5)(2015)733–755.

[6] D.Y.Lin,etal.,Thesensitivityandspecificityofsingle-fieldnonmydriaticmonochromaticdigital fundusphotographywithremoteimageinterpretationfordiabeticretinopathyscreening:acomparisonwithophthalmoscopyandstandardizedmydriaticcolorphotography,AmJ.Ophthalmol. 134(2)(2002)204–213.

[7] R.H.Webb,Opticsforlaserrasters,Appl.Opt.23(20)(1984)3680–3683.

[8] M.Minsky,Memoironinventingtheconfocalscanningmicroscope,Scanning10(4)(1988)128–138.

[9] P.Vieira,etal.,Tomographicreconstructionoftheretinausingaconfocalscanninglaserophthalmoscope,Physiol.Meas.20(1)(1999)1.

[10] P.Vieira,etal.,Truecolourimagingofthefundususingascanninglaserophthalmoscope,Physiol. Meas.23(1)(2001)1.

[11] A.E.Elsner,etal.,Reflectometrywithascanninglaserophthalmoscope,Appl.Opt.31(19)(1992) 3697–3710.

[12] A.Remky,E.Beausencourt,A.E.Elsner,Angioscotometrywiththescanninglaserophthalmoscope. Comparisonoftheeffectofdifferentwavelengths,Invest.Ophthalmol.Vis.Sci.37(11)(1996) 2350–2355.

[13] A.Lompado,etal.,Multispectralconfocalscanninglaserophthalmoscopeforretinalvesseloximetry,in:SpectralImaging:Instrumentation,Applications,andAnalysis,InternationalSocietyfor OpticsandPhotonics,2000.

[14] A.Remky,etal.,Blue-on-yellowperimetrywithascanninglaserophthalmoscope:smallalterations inthecentralmaculawithaging,JOSAA18(7)(2001)1425–1436.

[15] W.Wykes,A.Pyott,Y.Ferguson,Detectionofdiabeticretinopathybyscanninglaserophthalmoscopy,Eye8(4)(1994)437.

[16] A.Manivannan,etal.,Clinicalinvestigationofaninfrareddigitalscanninglaserophthalmoscope, Br.J.Ophthalmol.78(2)(1994)84–90.

[17] G.Seymenog ˘ lu,E.Bas ¸ er,B. Ozturk,Comparisonofspectral-domainopticalcoherencetomography andHeidelbergretinatomographIIIopticnerveheadparametersinglaucoma,Ophthalmologica 229(2)(2013)101–105.

[18] E.W.Chan,etal.,DiagnosticperformanceoftheISNTruleforglaucomabasedontheHeidelberg retinaltomograph,Transl.Vis.Sci.Technol.2(5)(2013)2.

[19] J.Liang,D.R.Williams,D.T.Miller,Supernormalvisionandhigh-resolutionretinalimagingthrough adaptiveoptics,JOSAA14(11)(1997)2884–2892.

[20] S.A.Burns,etal.,Large-field-of-view,modular,stabilized,adaptive-optics-basedscanninglaser ophthalmoscope,JOSAA24(5)(2007)1313–1326.

[21] C.A.Puliafito,etal.,Imagingofmaculardiseaseswithopticalcoherencetomography, Ophthalmology102(2)(1995)217–229.

[22] A.Fercher,K.Mengedoht,W.Werner,Eye-lengthmeasurementbyinterferometrywithpartially coherentlight,Opt.Lett.13(3)(1988)186–188.

[23] M.Pircher,R.J.Zawadzki,ReviewofadaptiveopticsOCT(AO-OCT):principlesandapplicationsfor retinalimaging,Biomed.Opt.Express8(5)(2017)2536–2562.

[24] W.Drexler,etal.,Opticalcoherencetomographytoday:speed,contrast,andmultimodality, J.Biomed.Opt.19(7)(2014)071412.

[25] J.A.Izatt,etal.,InvivobidirectionalcolorDopplerflowimagingofpicoliterbloodvolumesusing opticalcoherencetomography,Opt.Lett.22(18)(1997)1439–1441.

[26] R.A.Leitgeb,etal.,Real-timemeasurementofinvitroflowbyFourier-domaincolorDoppleroptical coherencetomography,Opt.Lett.29(2)(2004)171–173.

[27] M.Ang,etal.,Opticalcoherencetomographyangiography:areviewofcurrentandfutureclinical applications,GraefesArch.Clin.Exp.Ophthalmol.256(2)(2018)237–245.

[28] S.S.Gao,etal.,Opticalcoherencetomographyangiography,Invest.Ophthalmol.Vis.Sci.57(9) (2016)OCT27–OCT36.

[29] P.A.Keane,S.R.Sadda,Retinalimaginginthetwenty-firstcentury:stateoftheartandfuturedirections,Ophthalmology121(12)(2014)2489–2500.

Chapter1 •Complementarycapabilitiesofphotoacousticimaging11

[30] X.Shu,L.J.Beckmann,H.F.Zhang,Visible-lightopticalcoherencetomography:areview,J.Biomed. Opt.22(12)(2017)121707.

[31] H.Koizumi,M.C.Pozzoni,R.F.Spaide,Fundusautofluorescenceinbirdshotchorioretinopathy, Ophthalmology115(5)(2008)e15–e20.

[32] T.Otani,S.Kishi,Y.Maruyama,Patternsofdiabeticmacularedemawithopticalcoherencetomography,AmJ.Ophthalmol.127(6)(1999)688–693.

[33] A.Hassenstein,A.A.Bialasiewicz,G.Richard,Opticalcoherencetomographyinuveitispatients,Am J.Ophthalmol.130(5)(2000)669–670.

[34] N.N.Markomichelakis,etal.,Patternsofmacularedemainpatientswithuveitis:qualitativeand quantitativeassessmentusingopticalcoherencetomography,Ophthalmology111(5)(2004) 946–953.

[35] I.Krebs,etal.,Activityofneovascularlesionstreatedwithbevacizumab:comparisonbetweenopticalcoherencetomographyandfluoresceinangiography,GraefesArch.Clin.Exp.Ophthalmol. 246(6)(2008)811–815.

[36] I.I.Bussel,G.Wollstein,J.S.Schuman,OCTforglaucomadiagnosis,screeninganddetectionofglaucomaprogression,Br.J.Ophthalmol.98(Suppl.2)(2014)ii15–ii19.

[37] J.W.Jeoung,etal.,Macularganglioncellimagingstudy:glaucomadiagnosticaccuracyofspectraldomainopticalcoherencetomography,Invest.Ophthalmol.Vis.Sci.54(7)(2013)4422–4429.

[38] I.Maruko,etal.,SubfovealchoroidalthicknessaftertreatmentofVogt–Koyanagi–Haradadisease, Retina31(3)(2011)510–517.

[39] Y.S.Modi,etal.,Multimodalimagingofsarcoidchoroidalgranulomas,J.OphthalmicInflamm. Infect.3(1)(2013)58.

[40] P.A.Keane,etal.,Characterizationofbirdshotchorioretinopathyusingextramacularenhanced depthopticalcoherencetomography,JAMAOphthalmol.131(3)(2013)341–350.

[41] D.Goldenberg,etal.,Vitreal,retinal,andchoroidalfindingsinactiveandscarredtoxoplasmosis lesions:aprospectivestudybyspectral-domainopticalcoherencetomography,GraefesArch.Clin. Exp.Ophthalmol.251(8)(2013)2037–2045.

[42] A.Hojjatoleslami,M.R.N.Avanaki,OCTskinimageenhancementthroughattenuationcompensation,Appl.Opt.51(21)(2012)4927–4935.

[43] M.R.N.Avanaki,etal.,SpatialcompoundingalgorithmforspecklereductionofdynamicfocusOCT images,IEEEPhoton.Technol.Lett.25(15)(2013)1439–1442.

[44] S.Hojjatoleslami,M.Avanaki,A.G.Podoleanu,Imagequalityimprovementinopticalcoherence tomographyusingLucy–Richardsondeconvolutionalgorithm,Appl.Opt.52(23)(2013)5663–5670.

[45] M.R.Avanaki,etal.,Quantitativeevaluationofscatteringinopticalcoherencetomographyskin imagesusingtheextendedHuygens–Fresneltheorem,Appl.Opt.52(8)(2013)1574–1580.

[46] M.R.N.Avanaki,etal.,Investigationofbasalcellcarcinomausingdynamicfocusopticalcoherence tomography,Appl.Opt.52(10)(2013)2116–2124.

[47] M.R.N.Avanaki,A.Hojjat,A.G.Podoleanu,Investigationofcomputer-basedskincancerdetection usingopticalcoherencetomography,J.Mod.Opt.56(13)(2009)1536–1544.

[48] S.Adabi,etal.,Universalinvivotexturalmodelforhumanskinbasedonopticalcoherencetomograms,Sci.Rep.7(1)(2017)1–11.

[49] M.R.N.Avanaki,A.Hojjatoleslami,Skinlayerdetectionofopticalcoherencetomographyimages, Optik124(22)(2013)5665–5668.

[50] S.Adabi,etal.,Opticalcoherencetomographytechnologyandqualityimprovementmethodsfor opticalcoherencetomographyimagesofskin:ashortreview,Biomed.Eng.Comput.Biol. 8(2017).1179597217713475.

[51] A.Taghavikhalilbad,etal.,Semi-automatedlocalizationofdermalepidermaljunctioninoptical coherencetomographyimagesofskin,Appl.Opt.56(11)(2017)3116–3121.

[52] M.Faiza,etal.,High-resolutionwavelet-fractalcompressedopticalcoherencetomographyimages, Appl.Opt.56(4)(2017)1119–1123.

[53] M.R.Avanaki,A.Podoleanu,En-facetime-domainopticalcoherencetomographywithdynamic focusforhigh-resolutionimaging,J.Biomed.Opt.22(5)(2017)056009.

[54] Z.Turani,etal.,Opticalradiomicsignaturesderivedfromopticalcoherencetomographyimagesto improveidentificationofmelanoma,CancerRes.79(8)(2019)2021–2030.

[55] S.Adabi,etal.,Anoverviewofmethodstomitigateartifactsinopticalcoherencetomographyimagingoftheskin,SkinRes.Technol.24(2)(2018)265–273.

[56] T.J.Bennett,C.J.Barry,Ophthalmicimagingtoday:anophthalmicphotographer’sviewpoint—a review,Clin.Exp.Ophthalmol.37(1)(2009)2–13.

[57] D.X.Hammer,etal.,Compactscanninglaserophthalmoscopewithhigh-speedretinaltracker,Appl. Opt.42(22)(2003)4621–4632.

[58] B.Chou,Limitationsofthepanoramic200Optomap,Optom.Vis.Sci.80(10)(2003)671–672.

[59] R.F.Spaide,Peripheralareasofnonperfusionintreatedcentralretinalveinocclusionasimagedby wide-fieldfluoresceinangiography,Retina31(5)(2011)829–837.

[60] R.W.Dunphy,etal.,Structuralfeaturesanteriortotheretinarepresentedinpanoramicscanning laserfundusimages,OphthalmicSurg.LasersImagingRetina39(2)(2008)160–163.

[61] M.Zhang,etal.,Projection-resolvedopticalcoherencetomographicangiography,Biomed.Opt. Express7(3)(2016)816–828.

[62] W.Liu,H.F.Zhang,Photoacousticimagingoftheeye:aminireview,Photo-Dermatology4(3)(2016) 112–123.

[63] D.-Y.Yu,S.J.Cringle,Oxygendistributionandconsumptionwithintheretinainvascularisedand avascularretinasandinanimalmodelsofretinaldisease,Prog.Retin.EyeRes.20(2)(2001)175–208.

[64] P.A.Campochiaro,Molecularpathogenesisofretinalandchoroidalvasculardiseases,Prog.Retin. EyeRes.49(2015)67–81.

[65] S.H.Hardarson,E.Stefa ´ nsson,Retinaloxygensaturationisalteredindiabeticretinopathy,Br.J. Ophthalmol.96(4)(2012)560–563.

[66] O.B.Olafsdottir,etal.,Retinaloximetryinprimaryopen-angleglaucoma,Invest.Ophthalmol.Vis. Sci.52(9)(2011)6409–6413.

[67] S.H.Hardarson,E.Stefansson,Oxygensaturationincentralretinalveinocclusion,AmJ.Ophthalmol.150(6)(2010)871–875.

[68] T.T.Berendschot,etal.,Influenceofluteinsupplementationonmacularpigment,assessedwithtwo objectivetechniques,Invest.Ophthalmol.Vis.Sci.41(11)(2000)3322–3326.

[69] S.L.Jacques,Opticalpropertiesofbiologicaltissues:areview,Phys.Med.Biol.58(11)(2013)R37.

[70] M.Xu,L.V.Wang,Photoacousticimaginginbiomedicine,Rev.Sci.Instrum.77(4)(2006)041101.

[71] M.Nasiriavanaki,etal.,High-resolutionphotoacoustictomographyofresting-statefunctional connectivityinthemousebrain,Proc.Natl.Acad.Sci.111(1)(2014)21–26.

[72] J.Yao,etal.,Noninvasivephotoacousticcomputedtomographyofmousebrainmetabolisminvivo, NeuroImage64(2013)257–266.

[73] M.Mozaffarzadeh,etal.,Linear-arrayphotoacousticimagingusingminimumvariance-baseddelay multiplyandsumadaptivebeamformingalgorithm,J.Biomed.Opt.23(2)(2018)026002.

[74] J.Xia,etal.,Wide-fieldtwo-dimensionalmultifocaloptical-resolutionphotoacoustic-computed microscopy,Opt.Lett.38(24)(2013)5236–5239.

[75] A.-R.Mohammadi-Nejad,etal.,Neonatalbrainresting-statefunctionalconnectivityimaging modalities,Photoacoustics10(2018)1–19.

[76] S.Mahmoodkalayeh,etal.,Lowtemperature-mediatedenhancementofphotoacousticimaging depth,Sci.Rep.8(1)(2018)4873.

[77] N.Meimani,etal.,Anumericalanalysisofasemi-drycouplingconfigurationinphotoacoustic computedtomographyforinfantbrainimaging,Photo-Dermatology7(2017)27–35.

[78] R.Manwar,M.Hosseinzadeh,A.Hariri,K.Kratkiewicz,S.Noei,R.Mohammad,N.Avanaki,Photoacousticsignalenhancement:towardsutilizationoflowenergylaserdiodesinreal-timephotoacousticimaging,Sensors18(10)(2018)3498.

[79] L.Mohammadi,H.Behnam,M.Nasiriavanaki,Modelingskull’sacousticattenuationanddispersion onphotoacousticsignal,in:PhotonsPlusUltrasound:ImagingandSensing,InternationalSociety forOpticsandPhotonics,2017.

[80] M.Zafar,etal.,Developmentoflow-costfastphotoacousticcomputedtomography:systemcharacterizationandphantomstudy,Appl.Sci.9(3)(2019)374.

[81] J.Yao,etal.,Label-freeoxygen-metabolicphotoacousticmicroscopyinvivo,J.Biomed.Opt.16(7) (2011)076003.

[82] A.Fatima,etal.,Reviewofcostreductionmethodsinphotoacousticcomputedtomography,PhotoDermatology15(2019)100137.

[83] S.Hu,etal.,Functionaltranscranialbrainimagingbyoptical-resolutionphotoacousticmicroscopy, J.Biomed.Opt.14(4)(2009)040503.

[84] B.T.Cox,etal.,Quantitativespectroscopicphotoacousticimaging:areview,J.Biomed.Opt.17(6) (2012)061202.

[85] L.V.Wang,L.Gao,Photoacousticmicroscopyandcomputedtomography:frombenchtobedside, Annu.Rev.Biomed.Eng.16(2014)155–185.

[86] M.Xu,L.V.Wang,Universalback-projectionalgorithmforphotoacousticcomputedtomography, Phys.Rev.E71(1)(2005)016706.

[87] W.Xing,etal.,Integratedoptical-andacoustic-resolutionphotoacousticmicroscopybasedonan opticalfiberbundle,Opt.Lett.38(1)(2013)52–54.

[88] K.Maslov,etal.,Optical-resolutionphotoacousticmicroscopyforinvivoimagingofsinglecapillaries,Opt.Lett.33(9)(2008)929–931.

[89] W.Song,etal.,Integratingphotoacousticophthalmoscopywithscanninglaserophthalmoscopy, opticalcoherencetomography,andfluoresceinangiographyforamultimodalretinalimaging platform,J.Biomed.Opt.17(6)(2012)061206.

[90] S.Jiao,etal.,Photoacousticophthalmoscopyforinvivoretinalimaging,Opt.Express18(4)(2010) 3967–3972.

[91] S.N.Hennen,etal.,Photoacoustictomographyimagingandestimationofoxygensaturationof hemoglobininoculartissueofrabbits,Exp.EyeRes.138(2015)153–158.

[92] S.Hu,etal.,Label-freephotoacousticophthalmicangiography,Opt.Lett.35(1)(2010)1–3.

[93] J.M.Thijssen,H.J.M.Mol,M.R.Timmer,Acousticparametersofoculartissues,UltrasoundMed. Biol.11(1)(1985)157–161.

[94] G.P.Luke,D.Yeager,S.Y.Emelianov,Biomedicalapplicationsofphotoacousticimagingwithexogenouscontrastagents,Ann.Biomed.Eng.40(2)(2012)422–437.

[95] W.Li,X.Chen,Goldnanoparticlesforphotoacousticimaging,Nanomedicine(London,England) 10(2)(2015)299–320.

[96] J.Yao,etal.,Evansbluedye-enhancedcapillary-resolutionphotoacousticmicroscopyinvivo, J.Biomed.Opt.14(5)(2009)054049.

14DiabetesandRetinopathy

[97] G.Kim,etal.,Indocyanine-green-embeddedPEBBLEsasacontrastagentforphotoacousticimaging,J.Biomed.Opt.12(4)(2007)1–8.

[98] X.Yang,etal.,Nanoparticlesforphotoacousticimaging,WileyInterdiscip.Rev.Nanomed.Nanobiotechnol.1(4)(2009)360–368.

[99] Y.Zhou,J.Yao,L.V.Wang,Opticalclearing-aidedphotoacousticmicroscopywithenhancedresolutionandimagingdepth,Opt.Lett.38(14)(2013)2592–2595.

[100] P.Hai,etal.,Near-infraredoptical-resolutionphotoacousticmicroscopy,Opt.Lett.39(17)(2014) 5192–5195.

[101] M.-L.Li,etal.,Improvedinvivophotoacousticmicroscopybasedonavirtual-detectorconcept,Opt. Lett.31(4)(2006)474–476.

[102] T.Ma,etal.,Systematicstudyofhigh-frequencyultrasonictransducerdesignforlaser-scanning photoacousticophthalmoscopy,J.Biomed.Opt.19(1)(2014)16015.

[103] W.Song,etal.,Multimodalphotoacousticophthalmoscopyinmouse,J.Biophotonics6(6–7)(2013) 505–512.

[104] S.Z.Jiao,F.Hao,Multimodalmicroscopyforcomprehensivetissuecharacterizations,in:Advanced Biophotonics:TissueOpticalSectioning,CRCPress,2016,pp.475–505.

[105] E.J.Ferna ´ ndez,etal.,Ultrahighresolutionopticalcoherencetomographyandpancorrectionforcellularimagingofthelivinghumanretina,Opt.Express16(15)(2008)11083–11094.

[106] Y.Jia,etal.,Split-spectrumamplitude-decorrelationangiographywithopticalcoherencetomography,Opt.Express20(4)(2012)4710–4725.

[107] W.Liu,etal.,MeasuringretinalbloodflowinratsusingDoppleropticalcoherencetomography withoutknowingeyeballaxiallength,Med.Phys.42(9)(2015)5356–5362.

[108] H.F.Zhang,C.A.Puliafito,S.Jiao,Photoacousticophthalmoscopyforinvivoretinalimaging:current statusandprospects,OphthalmicSurg.LasersImaging42(2011)S106–S115.

DipenKumar iscurrentlyasecond-yearmedicalstudentat WayneStateSchoolofMedicineinDetroit,Michigan.He graduatedfromtheUniversityofIllinoisatUrbanaChampaignin2017majoringinbioengineeringwitha minorinchemistry.Hisinterestsincludeophthalmology, surgicalmedicine,andtheapplicationsoftechnologyin medicine.

Dr.AnjuGoyal isanassociateprofessorofOphthalmology anddirectorofMedicalStudentEducationatKresgeEye Institute,theDepartmentofOphthalmologyofWayneState UniversitySchoolofMedicine.ShecompletedherOphthalmologyresidency,followedbyaGlaucomafellowship,at WayneStateUniversity.Upongraduationin2005,Dr.Goyal becameanactivememberofthefaculty,servingasdirector oftheResidents’Clinic.In2011,Dr.GoyalbecamethedirectoroftheOphthalmologyClinicalElectiveforWayneState UniversitySchoolofMedicinestudents.Shehasdeveloped multipleinnovativeprogramsforstudenteducationand mentorshipthatarelocallyandnationallyrecognized.As principalinvestigatoronhergrantVisionDetroit,Dr.Goyal workedtouniteneededophthalmiccareandhealth-care educationforDetroit’sunderservedcommunity.Dr.Goyalisapeer-electedmemberof theAssociationofUniversityProfessorsinOphthalmologyMedicalStudentEducator’s CouncilandisactivelyinvolvedinjointcommitteeworkwiththeAmericanAcademy ofOphthalmology.Additionally,sheservesasaNationalEyeInstitute’sNationalEye HealthEducationProgramStrategicPlanningCommitteeMember.Dr.Goyalisamember oftheAlphaOmegaAlphaMedicalHonorSociety,theWayneStateUniversitySchoolof MedicineAlumniBoardofGovernors,recipientoftheWayneStateUniversitySchoolof Medicine’sCollegeTeachingAward,theAmericanAcademyofOphthalmologySecretariat AwardandDistinguishedServiceAward,theLawrenceM.Weiner,MDAwardforTeaching andService,theLawrenceStocker,MDAwardforCompassionateMedicine,HourDetroit magazine’sTopDocAwards,andtheKresgeEyeInstituteDistinguishedAlumniAward.

AlanTruhan isfromDetroitandwenttoWayneStateUniversityhehasaBFAwithafocusonphotography.Heworked atbothKresgeEyeInstituteinDetroitandNorthwestern MemorialHospitalinChicago.Heisnowthemanagerof theImagingandTestingDepartmentatKresge/WSUPG.

Dr.GaryAbrams isaprofessorofOphthalmologyanddirectoroftheLigonResearchCenterofVisionattheKresgeEye InstituteofWayneStateUniversity.Hereceivedhismedical educationattheUniversityofOklahomaandcompleteda residencyinOphthalmologyattheMedicalCollegeofWisconsinandafellowshipinvitreoretinalsurgeryattheBascom PalmerEyeInstituteoftheUniversityofMiami.HewasChair ofOphthalmologyattheKresgeEyeInstituteofWayneState Universityfor17yearsandheldpriorfacultyappointmentsat theBascomPalmerEyeInstituteandtheMedicalCollegeof Wisconsin.Dr.Abramshaspublishedmorethan200articles andbookchapters.Hereceivedthe2005PaulKayserInternationalAwardinRetinaResearch(SchepensInternational Society),the2015PyronAwardinRetinaResearch (AmericanSocietyofRetinaSpecialists),andtheSecretariatandLifeAchievementHonor AwardsfromtheAmericanAcademyofOphthalmology.HewaspresidentoftheAssociationforResearchinVisionandOphthalmology(ARVO)andtheAssociationofUniversity ProfessorsofOphthalmology(AUPO).HeservedaschairmanoftheARVOFoundationfor EyeResearch,wasamemberoftheExecutiveCommitteeoftheClubJulesGonin,andcurrentlyservesontheEditorialBoardofthejournalRetina.

Chapter1 •Complementarycapabilitiesofphotoacousticimaging17

RayyanManwar receivedhisPhDfromUniversityofWindsor,Windsor,Ontarioin2017.Hisbachelor’sisinElectrical andElectronicEngineeringfromIslamicUniversityofTechnology(IUT),Gazipur,Bangladeshin2011.Currently,heisa postdoctoralfellowatOPIRALab,WayneStateUniversity, Detroit,MI.HisresearchinterestsincludeMEMS-based design,fabrication,andcharacterization,photoacoustic andultrasoundimaging.

Intraretinalfluidmapgeneration inopticalcoherencetomography images

Pla ´ cidoL.Vidala,b,JoaquimdeMouraa,b,JorgeNovoa,b, ManuelG.Penedoa,b,MarcosOrtegaa,b

a DEPARTMENTOFCOMPUTERSCIE NCE,UNIVERSITYOFACORUN A,ACORUN A,SPAIN

b CITIC-RESEARCHCENTEROFINFORMATIONANDCOMMUNICATIONTECHNOLOGIES, UNIVERSITYOFACORUN A,ACORUN A,SPAIN

1Introduction

Computer-aideddiagnosis(CAD)hasbecome,thankstotheadvancementsincomputing andthetransferencetootherfields,oneofthemaintoolsintheassistanceofthediagnosis process.Thesesystemsnotonlyreducethetimethatanexpertclinicianneedstoassessa givenpathologyandperformtheirdiagnostic,butalsoallowthemtomakedecisions basedonanindependentsystem.Thismeansisolatingtheresultsfromthesubjectivity ofthehumanexpertaswellasincreasingtherepeatabilityoftheresults,reducingthis waytheerrorrateinacriticalfieldasisthemedicalone[1–3].

Currently,theeyefundusrepresentsoneofthemoststudiedpartsofthehumanbody, asitrepresentstheinternalpartthatiseasiesttoaccessandanalyze.Additionally,pathologiesnotonlyfromthevisualsystem,butalsofromothersystemscanbedetectedthat contributetothefunctionalityofthisorgan.Thiscanbeeasilyseenintheretina,theneurosensorypartoftheeye,asitcomprisesboththevascularandtheneuralsystem.Thus, pathologiesthatdirectlyorindirectlyaffectprocessesinvolvingthesetwosystemsmay leavetheirfootprintintheretinalstructures.Asanexampleofrelevantdiseasesofthe nervoussystemthatleavetheirfootprintintheretina,wecanfindParkinson[4, 5], Alzheimer[6, 7],andmultiplesclerosis[8, 9]amongothersofsimilarseverityandprevalence.Regardingdiseasesofthevascularsystem,pathologieslikehypertension[10, 11], diabetes[12],andatherosclerosis[13, 14]amongothersalsodegeneratetheretinalstructuresandcanbedetectedbymeansoftheretinalanalysis.Giventhegreatamountof relevantdiseaseswithasignificantimpactonthequalityoflifeofthepatientsthatcan bedetectedandstudiedinthisorganandtheeasetoaccessandanalyzeitsconstituent structures,theeyefundushassensiblygainedimportanceamongtheproposalofnew CADmethodologies.

2Opticalcoherencetomography:Backgroundand

significance

Currently,oneofthemainmeanstoanalyzetheocularstructuresistheopticalcoherence tomography(OCT)[15, 16].Thismedicalimagemodalityisabletogeneratecrosssectionalimagesofthelivingtissueinanoninvasiveway.Todoso,thedeviceprojects alow-coherencebeamoflighttowardthetargettissuesand,bymeansofanalyzingthe phaseandamplitudeofthereferencelightsourcecomparedtothereflectedone[17],they createarepresentationofthesetissues.Thismedicalimagingtechnique,despiteitslower tissuepenetrationcapabilities,isabletoofferimageswithasuperiorresolution(inthe orderofmicrons)withrespecttoothercapturetechniquessuchasultrasoundsorMRI. Thisenhancedresolutionmakesthismodalityperfectfortheanalysisofthecomplex eyestructures.

TheOCTscanscanbedividedintothreedifferenttypes:A-Scan,B-Scan,andC-Scan (Fig.1).AnA-Scanrepresentsthereflectedamplitudesalongtheaxisofthepropagated light,aB-ScanisaseriesofA-Scansthatcreatethe2Dcross-sectionalimageoftheanalyzed tissues,andaC-ScanisagroupofB-Scansthatallowtoobtaina3Dviewofthecovered section.Toimprovethequalityoftheimages,theseOCTsystemsusuallyscanthesame sectionmultipletimes.Inthisway,andbymeansofproprietaryalgorithms,theygenerate afinalOCTscanwithbetterqualityandlessnoise.Thisstrategyrequiresthepatient remainstillduringalongercapturingprocess,whichinsomecasesanddespitethemodernautomaticalignmenttechniquesimplementedinthedevicesisnotpossible.Inthese cases,loweringthequalityscansistheonlyviableoption.Intheseparticularcasesandto improvethequalityoftheimagesdespitethecaptureconditions,automaticdenoising methodologiesareoftenaddedasapreprocessingstepintheseCADsystems[18].

FIG.1 DifferentpartsofanOCTvolume.EachB-Scanisaccompaniedwiththecorrespondingnear-infrared reflectanceretinographyoftheeyefundusindicatingthesectionoftheretinatheOCTscansweretakenfrom.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Diabetes and retinopathy: computer-assisted diagnosis volume 2 1st edition ayman s. el-baz - Own the by Education Libraries - Issuu