Developments in the formulation and reinforcement of concrete 2nd ed edition mindess - The ebook in

Page 1


https://ebookmass.com/product/developments-in-theformulation-and-reinforcement-of-concrete-2nd-ed-edition-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Advanced Concrete Technology, 2nd Edition

Zongjin

Li

https://ebookmass.com/product/advanced-concrete-technology-2ndedition-zongjin-li/

ebookmass.com

The Art of Reinforcement Learning Michael Hu

https://ebookmass.com/product/the-art-of-reinforcement-learningmichael-hu/

ebookmass.com

Thermal Physics of the Atmosphere 1 (Developments in Weather and Climate Science 1) 2nd Edition

Maarten H.P. Ambaum

https://ebookmass.com/product/thermal-physics-of-theatmosphere-1-developments-in-weather-and-climate-science-1-2ndedition-maarten-h-p-ambaum/ ebookmass.com

The Marriage Act John Marrs

https://ebookmass.com/product/the-marriage-act-john-marrs-2/

ebookmass.com

Word For Dummies (For Dummies (Computer/Tech)) 1st Edition

https://ebookmass.com/product/word-for-dummies-for-dummies-computertech-1st-edition-dan-gookin/

ebookmass.com

Meaning and Controversy within Chinese Ancestor Religion 1st Edition Paulin Batairwa Kubuya (Auth.)

https://ebookmass.com/product/meaning-and-controversy-within-chineseancestor-religion-1st-edition-paulin-batairwa-kubuya-auth/

ebookmass.com

Expressive Arts for Social Work and Social Change 1st Edition Tuula Heinonen

https://ebookmass.com/product/expressive-arts-for-social-work-andsocial-change-1st-edition-tuula-heinonen/

ebookmass.com

The refugee woman : partition of Bengal, gender,and the political Paulomi Chakraborty

https://ebookmass.com/product/the-refugee-woman-partition-of-bengalgenderand-the-political-paulomi-chakraborty/

ebookmass.com

(eTextbook PDF) for Microbiology: A Systems Approach 4th Edition

https://ebookmass.com/product/etextbook-pdf-for-microbiology-asystems-approach-4th-edition/

ebookmass.com

Win Every Argument: The Art of Debating, Persuading, and Public Speaking Mehdi Hasan

https://ebookmass.com/product/win-every-argument-the-art-of-debatingpersuading-and-public-speaking-mehdi-hasan/

ebookmass.com

DevelopmentsintheFormulation andReinforcementofConcrete

WoodheadPublishingSeriesinCiviland

StructuralEngineering

Developmentsinthe Formulationand Reinforcementof Concrete

SecondEdition

SidneyMindess

UniversityofBritishColumbia, Vancouver,BC,Canada

WoodheadPublishingisanimprintofElsevier

TheOfficers’ MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom

Copyright©2019ElsevierLtd.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationabout thePublisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/ permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingand usinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-08-102616-8

ForinformationonallWoodheadPublishingpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionEditor: GwenJones

EditorialProjectManager: AnaClaudiaA.Garcia

ProductionProjectManager: PoulouseJoseph

CoverDesigner: MatthewLimbert

TypesetbyMPSLimited,Chennai,India

Listofcontributors

Pierre-ClaudeAı¨tcin ProfessorEmeritus,DepartmentofCivilandBuilding Engineering,Universite ´ deSherbrooke,Sherbrooke,QC,Canada

MarkG.Alexander ConcreteMaterialsandStructuralIntegrityResearchUnit (CoMSIRU),DepartmentofCivilEngineering,UniversityofCapeTown,Cape Town,SouthAfrica

A.K.Al-Tamimi DepartmentofCivilEngineering,CollegeofEngineering,The AmericanUniversityofSharjah,Sharjah,UnitedArabEmirates

N.Banthia DepartmentofCivilEngineering,UniversityofBritishColumbia, Vancouver,BC,Canada

VivekBindiganavile DepartmentofCivilandEnvironmentalEngineering, UniversityofAlberta,Edmonton,AB,Canada

T.W.Bremner DepartmentofCivilEngineering,UniversityofNewBrunswick, Fredericton,NB,Canada

FloraFaleschini DepartmentofCivil,EnvironmentalandArchitectural Engineering ICEA,UniversityofPadova,Padova,Italy;Departmentof IndustrialEngineering DII,UniversityofPadova,Padova,Italy

F.Fouad DepartmentofCivilEngineering,UniversityofAlabamaatBirmingham, Birmingham,AL,UnitedStates

C.Fudge H+HUKLimited,Sevenoaks,UnitedKingdom

M.Geiker DepartmentofStructuralEngineering,NorwegianUniversityof ScienceandTechnology,Trondheim,Norway

M.Genedy DepartmentofCivil,ConstructionandEnvironmentalEngineering, UniversityofNewMexico,Albuquerque,NM,UnitedStates

O.E.Gjørv DepartmentofStructuralEngineering,NorwegianUniversityof ScienceandTechnology,Trondheim,Norway

MeghdadHoseini DepartmentofCivilandEnvironmentalEngineering, UniversityofAlberta,Edmonton,AB,Canada

C.Ishee FloridaDepartmentofTransportation,Tallahassee,FL,UnitedStates

S.Jacobsen DepartmentofStructuralEngineering,NorwegianUniversityof ScienceandTechnology,Trondheim,Norway

DariaJo ´ ´ zwiak-Nied ´ zwiedzka InstituteofFundamentalTechnologicalResearch, PolishAcademyofSciences,Warsaw,Poland

R.Klingner UniversityofTexasatAustin,Austin,TX,UnitedStates

Jean-MartinLessard DepartmentofCivilandBuildingEngineering,Universite ´ deSherbrooke,Sherbrooke,QC,Canada

PaulA.Lessing IdahoNationalLaboratory,IdahoFalls,Idaho,UnitedStates

ChristianMeyer DepartmentofCivilEngineering,ColumbiaUniversity,New York,NY,UnitedStates

SidneyMindess DepartmentofCivilEngineering,UniversityofBritishColumbia, Vancouver,BC,Canada

Lars-OlofNilsson MoistenginstAB,Trelleborg,Sweden

Y.Ohama CollegeofEngineering,NihonUniversity,Japan

DamanK.Panesar DepartmentofCivilandMineralEngineering,Universityof Toronto,Toronto,Ontario,Canada

CarloPellegrino DepartmentofCivil,EnvironmentalandArchitectural Engineering ICEA,UniversityofPadova,Padova,Italy

GiovanniPlizzari DepartmentofCivil,Architectural,Land,Environmentand Mathematics,Universita ` degliStudidiBrescia,Brescia,Italy

M.M.RedaTaha DepartmentofCivil,ConstructionadEnvironmental Engineering,UniversityofNewMexico,Albuquerque,NM,UnitedStates

S.Surana DepartmentofCivilEngineering,UniversityofCapeTown,Cape Town,SouthAfrica

Introduction

SidneyMindess UniversityofBritishColumbia,Vancouver,BC,Canada

Concreteremainsthemostwidelyusedman-madematerialintheworld;indeed,of allmaterials,onlywaterisusedingreaterquantities.Inmanyways,concreteliterallyformsthebasisofourmodernsociety.Almosteveryaspectofourdailylives depends,directlyorindirectly,onconcrete.Weneedonlyconsidertheobvious examples:roads,bridges,tunnels,runways,dams,waterconduits,buildingsofall types,andsoon,torealizeitsimportance.Indeed,ithasbeenestimatedthatconcreteaccountsforabouthalfofallofthemanufacturedmaterialsandproductsthat weproduce(Scrivener,2014).However,itissoubiquitousthatwetendtotakeit forgranted.

Concreteproductionisnow,ofcourse,amaturetechnology.TheancientGreeks andRomansbothproducedmortarsthatmaybeconsideredtobetheforerunnersof today’sconcretes,while“modern”concreteshavebeeninusesincethemiddle ofthe19thcentury.Theseconcretesnowconstituteahighlysophisticatedfamilyof materials.Portlandcementitselfisacomplexmaterial,manufacturedbyfirstburninganintimatemixtureoflimestoneandclayorshaleinakilnattemperaturesin therangeof1400 C 1500 C,andthenintergrindingtheresultingclinkerwitha smallamountofgypsum.Toproduceconcrete,thiscementisnowcommonlycombinedwithoneormoresupplementarycementingmaterials,suchasflyash,silica fume,blastfurnaceslag,orlimestonepowder;seeChapter3foramoredetailed accountofthesematerials.Inaddition,modernconcretesusuallycontainoneor morechemicaladmixturestomodifythepropertiesofeitherthefreshorthehardenedconcrete,orboth.Modernconcreteisthusaverycomplex,andstillnot completelyunderstood,system.

Inthedecadesincethefirsteditionofthisbook,thedirectionofconcrete researchhasshiftedsomewhat.Inparticular,thereismuchmoreemphasisonthe sustainability ofthecementandconcreteindustries.TheproductionofPortland cementisasignificantcontributorofgreenhousegases:theproductionof1tof cementleadsonaveragetoabout0.8tofCO2 beingreleasedintotheatmosphere, accountingforbetween7%and8%oftheworldwideproductionofgreenhouse gases.Thishasprovidedarealincentivefortheconcreteindustrytobecomemuch “smarter”aboutconcreteproduction.Thisinvolves,amongstotherthings,an

increasedemphasisondurability.Thefirstsectionofthiseditiondealswiththese sortsofissues.

Inaddition,thereisanincreasinguseofwhatmightbetermed“special”concretesthathavebeendevelopedforparticularapplications.Someoftheprincipal typesoftheseconcretesaredescribedinthesecondsectionofthisbook.Inmost cases,theauthorshavedescribedboththeunderlyingscienceandthepractical applicationsofthesematerials.

Inthissecondedition,thereareseveralnewchapters,dealingwithtopicsthat werenotdealtwithinthefirstedition.Aswell,mostofthechaptersthatappeared inthefirsteditionhavebeensubstantiallyrevised,eitherbytheoriginalauthorsor bynewauthors,toreflectthechangesthathavetakenplacesince2008.Thereare, however,twochaptersthataresimplyreprintedfromthefirstedition:Chapter13 onlightweightconcreteremainsunchanged,asthisareahasnotbeenthesubjectof muchactiveresearchinthepastfewyears.Sadly,thechapteronhigh-strengthconcreteisalsoreprintedinitsoriginalform,duetotheuntimelydeathoftheauthor, Dr.OddE.Gjørv.Thematerialpresentedinthischapterremainscurrent;however, ithasbeensupplementedbyanewchapterdealingwithbothhigh-strengthand ultrahigh-strengthconcretes.

Ihopethatacarefulreadingofthese17chapterswillleadtoabetterunderstandingofthepossibilitiesinherentinconcretetechnologyandprovideareadyreferencetothepropertiesandapplicationsofsomeofthesespecializedconcretes.

Reference

Scrivener,K.L.(2014).Optionsforthefutureofcement. TheIndianConcreteJournal, 88 (7),11 21.

Sustainabilityofconcrete

UniversityofBritishColumbia,Vancouver,BC,Canada

1.1Introduction

Concreteissocommonthatwesimplytakeitforgranted.Itishardtoimaginea worldwithoutconcrete,whenweconsidertheconcretestructures,pavements, airfieldrunways,bridges,sidewalks,dams,offshoredrillingplatforms,andsoon thatconstituteourbuiltenvironment.Infactconcreteis,nexttowater,themost widelyusedmaterialintheworld,asmaybeseenfrom Table1.1

Inconsequenceoftheenormousvolumesofmaterialsusedinthemanufacture ofcementandintheproductionofconcrete,thecementandconcreteindustries togetherareestimatedtoaccountforabout6% 8%ofglobalman-madeCO2 emissions.Thisislikelytoincreaseoverthenextfewdecades,asthe“less developed”countriesinAsia,Africa,andSouthAmericacontinue(orbegin)to industrializeonalargescale.ItshouldbenotedthatintheproductionofPortland cement,onaverageabout0.84tonnesofCO2 areliberatedpertonneofcement produced.Somewhatlessthan40%ofthiscomesfromthecombustionoffuel,the remainderfromthedecompositionofthelimestone(CaCO3)duringcalcination.

Table1.1 Annualworldwideproductionofselectedmaterials,2016(tonnes).a

Concrete30billion(approx.)

Portlandcement4.6billion

Steel1.63billion

Coal7.7billion

Wood3billion(approx.)

Foodproducedforhuman consumption 4billion(approx.)

Wheat730million

Salt280million

Sugar175million

Gold187,200tonnes throughoutallofhuman history,whichwouldoccupya21m3 cube!

aDatadrawnfromvarioussources.

4DevelopmentsintheFormulationandReinforcementofConcrete

WhilethisislessthantheamountofCO2 producedbythegenerationofelectricity fromcoal-firedpowerplants,ortheamountgeneratedintransportation,itisstill significant.

Weliveinaworldoffinitenaturalresourcesandsourcesofenergy.Wemust thereforeconsiderthecementandconcreteindustriesinlightoftheconceptof sustainabledevelopment,whichmaybedefinedas Developmentthatmeetsthe needofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeet theirownneeds (Brundtland,1987).Ofcourse,thisdefinitiongoesfarbeyond merelyconsideringnaturalresourcesandtheenvironment—itrequiresaswell considerationofthesocialandeconomicconsequencesofouractions,asshown schematicallyin Fig.1.1.However,thesebroaderissueswillnotbeconsidered here;thefocuswillbeontheconcreteitself.

Therearenowincreasingpressuresonthecementandconcreteindustriesto makeconcreteinwaysthatminimizeitsenvironmentalimpact(“green”concrete). Thesepressuresinclude:

● morestringentgovernmentregulations,

● pressurefromenvironmentalgroups,

● desirebyownersandarchitectsforever“greener”buildings,and

● impositionofacarbontax.

Ithasthusbecomeimperativetodecreasetheenvironmentalimpactofconcrete structures;itistimetomakethemmoresustainable.Howcanwedothis?

Figure1.1 Theholisticviewofsustainability.

Source:AdaptedfromTheConcreteCentre(2007). Sustainableconcrete.Surrey,United Kingdom:TheConcreteCentre(TheConcreteCentre,2007).

1.1.1Stepstosustainability

Thereareanumberofwaysinwhichwecanimprovethesustainabilityofconcrete (Aıtcin&Mindess,2011),including:

● replacinguptoatleasthalfofthePortlandcementwithsupplementarycementing materials(SCMs);

● makingmuchmoredurableconcretes;

● usinghigherstrengthconcretes;

● designingmoreefficientconcretemixes,withparticularemphasisonthetotalparticle sizedistribution;

● usinggreateramountsoffillers;

● manufacturingcementmoreefficiently;

● usingwastematerialsasfuels;

● usingrecycledconcrete,andotherindustrialwastes,asaggregatesources;

● capturingandstoringorsequesteringCO2 emissions;

● usingcementkilndustincertainapplications;

● usinglesswater;

● improvingstructuraldesignandbuildingcodes.

Clearly,someofthesestrategiesaremoreeffectivethanothers,butcollectively theycanleadtoverylargeefficiencies,frombothanenvironmentalandan economicperspective.Themostsignificantonesare:

● replacingasmuchcementaspossiblewithSCMs;

● usinghigh-strengthconcreteswhereverpracticable,whichwilldecreasetheamountof concreterequiredtosustainstructuralloads;

● increasingthedurabilityofconcrete,toprovidealongerservicelifebeforetheconcrete mustbereplaced;

● producingmuchmoreefficientconcretemixes,byoptimizingtheparticlepacking.

Thesefourwillbedealtwithgreaterdetailbelow.However,itisworthbriefly summarizingtheothereightstrategieshere.

Fillers:ThesearematerialsthatdonotreactchemicallywithPortlandcement butmaynonethelessbebeneficialthroughphysicalaction.Byfarthemostcommon suchmaterialisfinelygroundlimestone(whichisofcoursereadilyavailableat cementplants),thoughothermaterialssuchasfinelygroundquartzcanalsobe used.Fillerssuchasthesecanimprovetheparticlepackingofthesystemand mayacceleratethehydrationprocessinthefirstfewhours;theymayalsoaffectthe concreterheologyandcontributetostrengthanddurability(Lothenbach,LeSaout, Gallucci,&Scrivener,2008).Theyarealso,ofcourse,aneconomicalreplacement forPortlandcement,whichprobablyaccountsfortheirwideuse.NorthAmerican codespermituptoa5%substitutionoflimestone,thoughresearchhasshownthat uptoabout12%maybeaddedwithoutanydeleteriouseffects(Bentz,Irassar, Bucher,&Weiss,2009;Thomasetal.,2010).Worldwide,theaveragelimestone contentiscurrentlyabout7%(Scrivener,John,&Gartner,2016).However,thereis clearlyalimittohowmuchfillerscanreducethecarbonfootprintofcement.

6DevelopmentsintheFormulationandReinforcementofConcrete

Itshouldbenotedthatlimestonedoes,infact,exhibitsomelimitedreactivitywith cementandcouldaseasilybeclassifiedasan(inefficient)SCM.

Moreefficientcementproduction:Thetheoreticalfuelrequirementtoproduce 1tonneofcementisabout1.9GJ.Overthepast50years,therehasbeena significantincreaseintheenergyefficiencyofmoderncementkilns.Stateoftheart kilnscannowachieveanefficiencyofabout63%,sohereisprobablylittlethat canbedonetoimprovethis.However,therewouldcertainlybeconsiderable benefitinupgradingthemanyoldercementplantsthatarestillinservice.

Alternativefuels:Traditionally,coal,gas,andoilhavebeenusedtofirecement kilns.However,largelyforreasonsofeconomy,anumberofotherorganicmaterialsarenowincreasinglybeingusedasfuels:spentsolvents,wasteoil,automobile tires,petroleumcoke,andsoon,dependingonlocalavailability.Ofcourse,thishas noparticulareffectontheamountofenergyrequiredtoproducecementoron greenhousegasemissions.However,thisdoesprovideausefulmeansofusingand disposingofwhatwouldotherwisebewastematerials,aswellasawaytoreduce ouruseoffossilfuels.

Recycledconcreteasaggregate:Concretereclaimedfromthedemolitionofold concretestructuresorconcretepavementsmaybeprocessedtoproduceaggregates suitableforuseinnewconcretestructures.Theprocessingisrelativelystraightforward:crushing,removalofcontaminantmaterials,andwashing.Thismaybe particularlysignificantnearlargeurbanareas,wherenaturalaggregatesourcesmay havebeendepleted.Recycledconcreteaggregatesaremostsuitableforusascoarse aggregate.Concretesmadewithsuchaggregatestendtobeabitweakerandless durablethanconcretesmadewithnaturalaggregates.However,therearemany applicationsinwhichtheseaggregatesmaybeusedeconomicallyandsafely. Again,thisdoeslittletoreducethecarbonfootprint,ortosavefuel,butitdoes helpwiththedisposalofconcretewastes.

Cementkilndust:Thisistheveryfinematerialcollectedbythefiltersystem inacementkiln.Itisnotquitethesameascementclinker,becauseithasnot beencompletelyburnt.Itisproducedinsignificantamounts,approximately 9tonnesper100tonnesofclinker.Whileitisoftentreatedasawastematerial,it canreplacecementinsomeapplications,suchasinsoilstabilization,orinthe productionofcontrolledlow-strengthmaterials(Lachemi,Hossain,Lotfy,Shehata, &Sahmaran,2009).

Usinglesswater:Over1trillionlitersofpotablewaterareusedannuallyinthe productionofconcrete.Areductioninthe w/b ratiowouldnotonlysavewater,but alsoleadtostrongerandmoredurableconcrete.

Improvingbuildingcodes:Concreteisstillspecifiedonthebasisofits28-day (oroccasionally56-dayor90-day)compressivestrength.Durabilityandother performancecharacteristicsarealltoooftentreatedassecondaryconsiderations. Further,themixdesignprocedurestendtobetooprescriptive.Inessence,this generallyleadstotheuseofhighercementcontentsthannecessaryandtendsto stifleinnovationonthepartofconcreteproducers.Itwouldbehelpfulifthemove to performance ratherthan prescriptive standardscouldbeaccelerated.Thiswould

thenprovideincentivestotheconcreteproducerstomakemoreefficientuseof availableresourcestoproduceconcrete.

CaptureandstorageoruseofCO2 emissions:Onewayofreducingtheemission ofCO2 intotheatmosphereisbythecaptureoftheCO2 thatisproducedduring cementmanufacture,andeitherstoring(sequestering)theCO2 orusingitinthe manufactureofconstructionproductsorotherchemicals.Thetechnologyalready existstocaptureCO2 fromthefluegasesinacementplant.Itishopedthatthe capturedCO2 wouldthenbepermanentlystoredinundergroundgeologicalformations,orinjectedatgreatdepthsintotheocean,whereitwouldthendissolve. Unfortunately,thecostsinvolvedinpurifyingtheCO2 andconcentratingitathigh pressurewouldgreatlyincreasethecostofcementproduction,andsothisapproach isunlikelytobefollowedonalargescale.

AmorepromisingpossibilityistousetheCO2 inthecuringofconcreteblocks orotherprecastelements(Shi&Wu,2009).WhenCO2 reactswithfullyhydrated cement(thecarbonationthatoccurswhenconcreteisexposedtotheair),the followingreactionstakeplace.Usingstandardcementchemistrynotation,1

1 CO2 ! CaCO3 1 H2 O

S2 H3 1 3CO2 ! 2SiO2 1 3CaCO3 1 3H2 O

Whilethismaysomewhatimproveconcretestrengthandimpermeability, thesereactionsarenotdesirable.TheyleadtoareductioninthepHofthepore solutionwithintheconcrete;thiscanleadtodepassivationandthencorrosionof thereinforcingbars.

However,ifCO2 isintroducedintothefreshconcreterightaftermixing,asetof differentreactionstakeplace:

S 1 CO2 1 3H2 O ! C3 S2 H3 1 3CC

2C2 S 1 CO2 1 3H2 O ! C3 S2 1 H3 1 CC

Thatis,thesereactionsproducecalciumsilicatehydrateandcalciumcarbonate, butnoCH. Thiswillenhancetheearlystrengthgainoftheconcrete,reduce efflorescence,andreducepermeability.Thistechniquecanbeusedtoreplace,at leastinpart,steamcuringoftheconcrete.Theeconomicfeasibilityofemploying thistechnologyonanindustrialscaleisunderactiveconsideration;asyet,however, itwouldappeartooexpensiveforwidespreaduse.

Ofcourse,itmaynotbepossibletoadoptanyoralloftheseeighttechniques onaspecificproject,becauseoflimitationsonmaterialavailability,orspecial requirementsonstrengthand/ordurability.However,engineers,architects, specifiers,andconcreteproducersshouldallbeatleastawareofthepossibleways ofmakingconcretemoresustainable.

Letusnowturntothefourmostsignificantstrategies.

CH
C3
2C3

1.1.2Replacingcementwithsupplementarycementingmaterials

ProbablythemosteffectivewayofreducingboththeemissionofCO2 and energyconsumptionistosubstituteSCMsforaportionofthecement.SCMsare pozzolanic materials:finesiliceousmaterialsthatreactatambienttemperaturewith thecalciumhydroxide(lime)releasedduringthehydrationoftricalciumsilicate anddicalciumsilicate,toformwhatwerefertoassecondaryC S H:

TheC S Hthusproducedisnotverydifferentfromthatproducedbythe hydrationofPortlandcement.Thekineticsofthisreactionaresimilartothoseof C2S.ThustheadditionofapozzolanhasasimilareffecttoincreasingtheC2S contentofthecement:loweringtheamountofearlyheatevolution,reducingthe earlystrength,butnotthelong-termstrength.Sincethepozzolanicreactionshave anoverallincreaseinsolidvolume,theporosityofthepastewilleventuallybe reduced,resultinginhigherstrengthanddurabilitycomparedwithaplainpasteof comparablereaction.PozzolansmaysubstituteforPortlandcementatlevelsupto about50%(orevenhigherforslag).Eachkilogramofsubstitutionwillreduceby about0.8kgtheemissionofCO2.

Originally,naturallyoccurringpozzolanswereused.However,todaythevast majorityofpozzolansareby-products(orwastes)ofotherindustrialprocesses. PozzolanicmaterialsandtheirusesaredescribedingreatdetailinChapter3, SupplementaryCementingMaterialsofthisbook.However,forthesakeof completeness,theprincipaltypesofpozzolanswillbedescribedbrieflyhere.

Naturalpozzolans havebeenusedsinceancienttimes,byboththeGreeksand theRomans.Forexample,boththeParthenonandtheSuezCanalusedpozzolanic volcanicashfromtheGreekislandofSantorini;theEddystonelighthouseused pozzolanfromCivitavecchia,about80kmfromRome.Theywereusedinthe UnitedStatesasfarbackas1910 12forconstructionoftheLosAngelesaqueduct, andlaterinsuchiconicstructuresastheGoldenGatebridge,andtheBonneville Dam.Becausenaturalpozzolansreactquiteslowlyatroomtemperature,theyare notusedatadditionratesgreaterthanabout15%.

Flyash istheinorganic,noncombustibleresidueofpowderedcoalafterburning inpowerplants.ItisthemostextensivelyusedSCM,commonlyatsubstitution levelsofabout15% 25%.However,itcanbeusedatmuchhigherlevelsinmany applications,perhapsupto60%(Malhotra,1994).Likemostpozzolanicmaterials, flyashslowsdowntherateofstrengthdevelopmentatearlyages,butovertime willleadtostrongerandmoredurableconcrete.

Accordingto Scriveneretal.(2016),about0.9billiontonnesofflyashare producedannually,butbecauseoftheveryvariablequalityofflyashes,onlyabout one-thirdofthisamountiscurrentlyusedinconcrete.Further,thereisagradual trendworldwidetophaseoutburningcoaltoproduceelectricity,sincethisproducesverylargeamountsofCO2.Thereisthuslittlechancethatflyashproduction willincreaseatthesamerateascementproduction;indeed,theconverseisfar 8DevelopmentsintheFormulationandReinforcementofConcrete

CH 1 S 1 H ! C S H

morelikely.Insomepartsoftheworld,thereisalreadyashortageofflyash. Comparedtothemassofcementproducedannually(B4.6billiontonnes),flyash willnotbeabletoreducecementproductionanduseinverysignificantamounts.

Blastfurnaceslag isaby-productoftheproductionofpigiron.Itconsistsprimarilyofsilica,alumina,andlime,withacompositionsimilartothatofPortland cementitself.Itcanbesubstitutedforcementuptoperhaps85%,though70%is moretypical.Itisproducedprimarilyinhighlyindustrializedcountries,andso isnoteasilyavailableeverywhere.WhileitisanexcellentSCM,itsproductionis quitelimited,atabout0.33billiont/year;aswell,mostofitisalreadyusedinthe cementandconcreteindustries.Thus,likeflyash,itisunlikelytomakealarge dentintheuseofPortlandcement.

Silicafume isaby-productofthesiliconandferrosiliconindustries.Itisprimarilysilica(SiO2),withsilicacontentsrangingfromabout85%to98%.Itisabout 100timesfinerthanPortlandcementandisthusbyfarthemostreactiveofthe pozzolanicmaterials.Inadditiontoitspozzolanicreactivity,becauseofitsvery fineparticlesize,ithastheabilitytopackbetweenthecementparticles.Itsuseis essentialintheproductionofveryhigh-strength( . 100MPa)concretes;itisalso veryeffectiveinreducingthepermeabilityofconcrete.Itis,unfortunately,also veryexpensive.Becauseofworkabilityproblemsinthefreshconcrete,itis generallyusedatsubstitutionratesofbetween5%and10%.Again,worldwide productionistoosmalltohaveanysignificanteffectontheamountofcement produced.

Metakaolinandcalcinedclay:Kaolin(theclayusedtomakefinechina)isa hydratedaluminosilicate.Whenitisheatedtoabout750 C 850 C,thewateris drivenoff,andthematerialisthencalledmetakaolin.Metakaolinisaveryreactive pozzolan,thoughitisnotaseffectiveassilicafume.Currently,severalnatural depositsofthismaterialarebeingexploitedcommercially.

Ordinaryclayscanalsobedehydratedataboutthesametemperatures,andthey toothenbecomepozzolanic(Antoni,Rossen,Martirena,&Scrivener,2012; Fernandez,Martirena,&Scrivener,2011).Becauseclayreservesaresovast worldwide,theymayeventuallyprovideanalmostunlimitedsourceofSCMs. However,withcalcinedclays,thereareproblemswithaveryhighsurfaceareaand consequenthighwaterdemand;theseneedtobesolvedbeforethematerialcanbe usedwidely.

Ricehuskash isobtainedbyburningricehusksatatemperatureofabout750 C. Theresultingashisprimarilyavitreoussilica,whichishighlypozzolanic.

Otherpozzolans:Thereareanumberofothermaterialsthathavegoodpozzolanicproperties,butwhicharenotcommonlyused.Theseincludeperlite,diatomaceousearth,pulpandpapersludge,spentpot-linersfromaluminumsmelters,and soon.Thesewillnotbediscussedherefurther.

Asmaybeseenfromtheabove,thereisaconsiderablevarietyofpossible pozzolanicmaterialsthatcanbeusedinconcrete,varyinginquantity,reactivity, quality,geographiclocation,andcost.Currently,binders(cement 1 SCM)contain, onaverage,about20%ofSCMs:primarilyflyash,slag,andfinelydividedlimestone.However,formany“lowlevel”applications(thatis,thosenotneedinghigh

strengthorspecialdurabilityrequirements),thiscouldbeincreasedtoatleast50%, whilemaintainingadequatequality.ThisalonecouldreduceCO2 emissionsby about15% 20%.Asmentionedabove,thecurrentproductionoftheconventional pozzolansisinsufficienttopermitthisincreaseglobally.However,oncethecalcinedclayscancomeintowidespreaduse,particularlywhencombinedwithground limestone,suchanincreaseintheuseofSCMswouldbequitefeasible.Thisis probablythesinglemosteffectivewayofreducingthecarbonfootprintofconcrete.

1.1.3Improvingconcretedurability

Clearly,ifwewereabletoextendthelifeofconcretestructuressignificantly,this wouldsaveenergyandgreenhousegasemissions,calculatedovertheentire lifecycleofthestructure.Withproperdesignprocedures,theappropriateuseof admixtures,andareducedwater/binderratio,itshouldberelativelystraightforward toincreasetheeffectivelifeofconcretestructuresusingtoday’stechnology. Wealreadyknow how todothis;theproblemistoputthisknowledgetouse universally.Accordingto Aı¨tcinandMindess(2011),“withinthesameglobalCO2 quota,atleasttwiceasmuchdurableconcrete( . 100yearlifecycle)canbeproducedwiththepresenttechnologyandwithoutanymajorfinancialinvestment.The onlyinvestmentwillbetoputintopracticepresenttechnologiesandtoeducatethe industrytochangetheirbadhabits.”Whileuntiltheendofthe20thcenturythe cementandconcreteindustriesfocusedmainlyonlyon compliancewithstandards and profitability,theynowhavetofocusequallyon sustainability,asshownschematicallyin Fig.1.2

Educatingtheindustry.Weknowhowtoproducedurableconcrete!Aftermore thanacenturyofresearchanddevelopment,thebasicsofproducingconcretethat willbedurableunderalmostanycircumstancesarenowwellknownandare describedindetailinnationalandinternationalstandards,suchas ACI201.2R-16 (2016): GuidetoDurableConcrete.However,wecontinuetowasteaconsiderable amountofconcrete(andhencecement)because

● Wedonotusewaterreducersaseffectivelyandsystematicallyasweshould.

● Specificationsforplacingandcuringtheconcreteareoftenpoorlywritten.

● Curingoftheconcreteisoftenratherhaphazardandoftendoesnotproperlyadheretothe guidelines.

● Structuraldesignersfocusmostlyonstrengthanddonotproperlyaccountfordurability considerations.

Collectively,thesesortsoferrorstendtoreducethedurabilityoftheconcrete, leadingtoearlyrepairsorrehabilitationprograms.Itisoftensaidthatthebiggest competitortoconcreteisnotsteelorwood,butbadconcrete.Toproducegoodconcrete,theremustbepropercooperationandcoordinationamongthedesigners,the cementproducers,thespecifiers,andthecontractors.Whilebuildingtrulydurable structuresgenerallyrequiretheuseofmorecementand/oradmixturesinitially, thesecostsaredwarfedbythesavingsfromfewerrepairsandrehabilitations,anda muchlongerservicelife. 10DevelopmentsintheFormulationandReinforcementofConcrete

Profitability

Compliance to standards

Sustainability

Figure1.2 The“Bermudatriangle”ofthecementandconcreteindustriesinthe21st century.

Source:FromAıtcin,P.-C.,&Mindess,S.(2011). Sustainabilityofconcrete.Oxford,United Kingdom:SponPress,pp.301.

Ontheotherhand,onemustberealisticaboutthepotentialsavingsingreenhousegasemissionsthatmightderivefromimprovingdurability.Byfarthelargest durabilityprobleminmodernconcreteconstructionisthecorrosionofsteelreinforcement,dueeithertochlorideingressoratmosphericcarbonation.However, onlyabout25%ofthePortlandcementproducedisusedinreinforcedconcrete (Scriveneretal.,2016),andofcoursenotallofthisreinforcedconcreteisexposed tosevereenvironmentalconditions.Thusfromasustainabilitypointofview,itis mostlytheconcreteusedinmassivestructuressuchasdams,bridges,canals,andso onthatwillbenefitfromincreasedlongevity.

1.1.4Usehigh-strengthconcrete

Usinghigh-strengthconcrete(orhigh-performanceconcrete)withalow w/b ratio instructuralapplicationsismoresustainablethannormalstrengthconcrete.For example,asshownby Aı¨tcinandMindess(2011),aconcretecolumnmadewith 75MPaconcretewouldusehalfasmuchcement,andonlyathirdasmuchaggregate,asthesameunreinforcedcolumnmadewith25MPaconcrete.Ofcourse, thesesavingswouldbelessforbeamsthanforcolumnsbutwouldstillbe substantial.

12DevelopmentsintheFormulationandReinforcementofConcrete

Anadditionaladvantageofusingsuchloww/bconcretesisthatsuchconcretes willbelesspermeabletobothgasesandliquids,renderingthemmuchmoredurable inextremeexposureconditions.Again,however,sinceonlyabout25%ofconcrete isusedinreinforcedconcretestructures(asnotedabove),thereductionsingreenhousegasemissionswillbemodest.

1.1.5Producingmoreefficientconcretemixes

Mostoftheconcretemixesinusetodayarenotoptimized;foranygivenstrength grade,theyseemtofollowa“onesizefitsall”philosophy.However,wenowknow agreatdealmoreaboutparticlepacking,andhowtomakemuchmoreefficient concretemixesthanwedonow.Forinstance,intheproductionofultrahighstrengthconcrete(f 0 c . 100MPa),theparticlesizedistributioniscloselycontrolled, fromtheaggregatedownthroughthecementandthentothesilicafume.Along withtheuseofappropriatesuperplasticizers,thispermitstheproductionofconcrete withstrengthsofwellover200MPa,ata w/b ratiooftheorderof0.2.Thissame principle,thatis,carefulcontroloftheparticlesizedistributiontooptimizethe packingdensityofthesystem,plusamoreeffectiveuseofwaterreducers(dispersants)couldbeusedtoproduce“ordinary”concretesmuchmoreefficiently,with reducedbindercontentsandbetterdurability.Ithasbeenestimatedthatthiscould reducethebindercontentbyuptohalf.

1.1.6Otherpathstosustainability

Theapproachesforimprovingsustainabilitydescribedaboveareallperfectly feasiblewithourcurrentunderstandingandtechnology,atamodestcost.However, thereareanumberofotherstrategiesthatmightalsobefollowed.Thesearenot necessarilyfullydevelopedasyetandmaynotbeeconomicallyviableatthisstage butwillformatleastapartofthe“roadmap”forthefuture.Someofthemore promisingonesinclude

Useofalternateclinkers.Weknowthatweneedtohavecertainproportionsof CaO,SiO2,Al2O3,andFe2O3 intherawkilnfeedinordertoproducePortland cementclinker.Historically,andtothepresentday,theprincipalsourceofCaOhas beenlimestone(CaCO3),anditistheCO2 createdfromthebreakdownofthe limestonewhenitisheatedthataccountsforabout60%oftheCO2 emissions formthemanufactureofcement.However,fromtheternaryphasediagram CaO SiO2 Al2O3,itmaybeseenthatthereareothercombinationsofmaterials thatcouldbeusedtomakecement;theyaresimplynoteconomicallyviableatpresent(Fig.1.3).

In Fig.1.4,thesametypeofternaryphasediagramshowsmoresimplythe approximatecompositionsofslags,flyash,andanorthite(CaAl2Si2O8).Portland cementclinkercouldbeblendedwithanappropriatecombinationofoneormore ofthesecementitiousmaterials,againwithaconsiderablereductioninCO2 emissions.ThisisalreadydoneonalargescaleinplacessuchasBelgiumandthe Netherlands,andthereisnoreasonwhythispracticeshouldnotbecomemuch morewidespreadelsewhere.

Figure1.3 TheCaO SiO2 Al2O3 phasediagram.Theshadedarearepresentsthe compositionareaofPortlandcementclinker.

Source:FromAı¨tcin,P.-C.,&Mindess,S.(2011). Sustainabilityofconcrete.Oxford,United Kingdom:SponPress,pp.301.

Forexample,Portlandcementclinkersbasedlargelyonbelite(impureC2S)can bemadeusingessentiallythesameequipmentandtechnologyasareusedtomake Portlandcement.Theirmaindrawbackisthattheygainstrengthveryslowlycomparedtoordinarycement.Thisis,however,anadvantageiftheyareusedinmass concrete,wherealowrateofheatevolutionduringhydrationisdesirable.Another possiblealternativeistoaddye’elimite(Ca4Al2Si2O8),alsoknownascalciumsulfoaluminate,tobeliticclinkers(Scriveneretal.,2016).Calciumsulfoaluminate cementshavebeendevelopedmostlyinChinabutarestilltooexpensiveexceptfor certainnichemarkets,forinstanceincertainstuccoapplications.

Performanceversusprescriptivespecifications.Inourapproachtomixdesign, westillrelymostlyon prescriptive specifications.Thatis,specificationsmostoften includerequirementssuchasminimumbindercontent,maximum w/b ratio,typeof cement,typesand/oramountsofadmixturesandfillermaterials,andsoon. Unfortunately,whilesuchspecificationsserveduswellinthepast.,particularly whenthecementandconcreteindustrieswerelesssophisticated,theyinhibitthe mostefficientuseofthemanymaterialsavailabletomakeupaconcretemixture.

Figure1.4 Schematicrepresentationofthecompositionofslag,classFandclassCflyash, anorthite,andnaturalclays.

Source:FromAıtcin,P.-C.,&Mindess,S.(2011). Sustainabilityofconcrete.Oxford,United Kingdom:SponPress,pp.301.

Suchspecificationsalsotendtobeveryconservative,andarenotveryreceptiveto newmaterialsorprocesses.

Itwouldbemuchmoreefficient,intermsofbothsustainabilityandconcrete qualityingeneraltomovemoreaggressivelyto performance-based specifications. Thereareanumberofdifferentdefinitionsofperformance-basedspecifications, buttheiressenceiscontainedwithinCanadianStandardCSAA23.1whichreads inpart:

Aperformanceconcretespecificationisamethodofspecifyingaconstruction productinwhichafinaloutcomeisgiveninmandatorylanguage,inamannerthat theperformancerequirementscanbemeasuredbyacceptedindustrystandardsand methods.Theprocesses,materialsoractivitiesusedbythecontractors, subcontractors,manufacturers,andmaterialssuppliersarethenlefttotheir discretion.

Theintentisclear:toprescribetherequiredpropertiesofboththefreshand hardenedconcretes,butwithoutsayinghowtheyaretobeachieved.Properlywrittenperformance-basedspecificationswouldpermitconcreteproducerstobemore

Class F fly ash
Natural clays
Portland cement clinker
Anorthite Slag
Class C fly ash

imaginative,competitive,andinnovativeintheiruseofmaterials,suchasSCMs, admixtures,blendedcements,mineralfillers,locallyavailablematerials,andsoon. Theywouldalsoprovideawayofintroducingdurabilityconcernsmoreexplicitly intothedesignofconcretemixtures.Aswell,implicitinthemovetoperformancebasedspecifications,isthenecessityfortheowner,thecontractor,andthematerials suppliertoworktogether.Theownerspecifiestherequiredproperties(whichcould evenincludeacarbonfootprint),thesupplierassumestheresponsibilityfordeliveringtheappropriateconcretetothesite,andthecontractorassumesresponsibility forplacingandcuringtheconcreteproperly.

1.1.7Water

Theissuesdiscussedabovedealingwithconcretesustainabilityhavefocused largelyontheproductionanduseofcementandtheconsequentCO2 emissions (the“carbonfootprint”ofconcrete).However,weshouldnotignorehowmuch waterisusedintheproductionofconcrete.Ithasbeenshownthat,in2012, concreteproductionwasresponsibleforabout9%oftheglobaluseofindustrial water(Miller,Horvath,&Monteiro,2018),correspondingtoabout1.7%oftotal globalwaterwithdrawal.Thisisanonnegligibleamountofwater,particularlyin thosepartsoftheworldthatalreadyexperiencingwatershortages.

1.1.8Education

Finally,wemustconsidertheeducationofthenextgenerationofcivilengineers andarchitects.ThechallengeofreducingCO2 emissionsinthecementandconcrete industriesisnotaninsurmountableone.Asdescribedabove,weknowhowto producemorecementclinkerwithlesslimestone,andweknowhowtoproduce severaltimesasmuchconcretewiththesameamountofcementclinker.Thusthe challengeisnotsomuchatechnologicaloneasitisamatterofeducation. However,thiswillnotbeaneasytask;thecementandconcreteindustriesarebased ontradition,codes,andexperience,butnotoninnovation.

Traditionally,untiltheendofthe20thcentury,theteachingofthedesignof concretestructureswasbasedmostlyonthe28-daycompressivestrength(f 0 c )and theelasticmodulusoftheconcrete.Littleattentionwaspaidtothe“materials science”oftheconcreteitself.Durabilitywasverymuchasecondaryissue,and theconceptofsustainabilityhadnotreallypenetratedtheconsciousnessofcivil engineersandarchitects.However,withthecurrentemphasisonsustainabilityas oneofthemajordesignfeaturesforalltypesofstructures,thismustchange.Of course,thestructuraldesignitselfmustdependonthelawsofphysics,whichare immutable.Thereisthusnoprospectofmakingsignificantchangestothecarbon footprintofconcretestructuresbychangingdesignprocedures,exceptperhapsby goingtohigherstrengthconcretesinsomecases,ortweakingthefactorsof safetyasweimprovequalitycontrol.Anyrealimprovementstosustainabilitymust thereforecomefromchangesinthematerialsthemselves,intermseitheroftheir manufactureortheirdurability.

16DevelopmentsintheFormulationandReinforcementofConcrete

Unfortunately,neithercivilengineeringcurriculanorarchitecturalcurricula placemustemphasisonconstructionmaterialsingeneralandcertainlynotonthe detailsofthechemistryandmicrostructureofconcrete.Itisdifficulttofindroom inthecurriculumforaproperstudyofmaterials,giventhecompetitionwithdesign andmanagementissues.Ofcourse,wehavenowamuchbetterunderstandingof thechemistryofcementsandadmixtures,andtheirinteractions.Thebinderswe nowproducearemoredurableandsustainablethanthoseofthelastcentury.What isneededistointroducethematerialsscienceofcementandconcretetostructural engineersandarchitects,alongwiththeappropriatechemistryandphysics.We mustalsomovetheteachingofconcretetechnologyawayfromprescriptivespecificationsandtowardperformancespecifications.Thequestionishowandwhere.

InNorthAmerica,atypicalcivilengineeringstudentwillfaceabout2100hours ofclassroominstruction,spreadover4years.Thistimemustsomehowbedivided amongthemanydisciplinesthatnowfallundertheumbrellaofcivilengineering: structuralanalysisanddesign,hydraulics,watersupplyandtreatment,soilmechanics,constructionmanagement,transportation,environmentaldesign,materialsof construction,afewhumanitiescourses,plusperhapscoursesineconomics,legal issues,andsoon.Alloftheseareprecededbycoursesinmathematics,physics,and chemistry,toprovidethepropermathematicalandscientificbasisforthe“engineering”partofthecurriculum.Ofcourse,eachsubdisciplinestrivestogetitsproper shareoftheavailabletime.Giventhiswealthofcompetinginterests,materials educationhasgenerallyreceivedshortshrift,withperhapsoneortwocourses intendedtocoverthebasicsofmaterialsscience,andabriefoverviewofcivil engineeringconstructionmaterials:cementandconcrete,timber,asphalt,steel,and aluminum.Insomeuniversities,theremaybeanelectivecoursedealingspecificallywithcementandconcrete,butthisisnotuniversallythecase.

Therearenoeasywaystochangethis.AtleastinNorthAmerica,thereis littleornoprospectofdefininganewengineeringcurriculumwithafocuson constructionmaterials,andinparticularcementandconcrete.Thecementand concreteindustriesinEuropeandNorthAmericaarewelldeveloped,andthereis noparticularincentiveforthemtochangetheirways.Whileonecantrytoencouragecontinuingeducationforpracticingengineers,itisdifficulttorequireaspecific focusoncementandconcrete,eventhoughthereisagreatdealofverygoodonline materialavailable.Onecanonlyhopethatindevelopingcountries,wheremuchof thelaborforceinconcreteconstructionislargelyuntrained,muchmorefocuswill beplacedonproperlyeducatingthenextgenerationofengineersandarchitectsin thescienceofconcrete.

References

ACI201.2R-16.(2016). Guidetodurableconcrete.FarmingtonHills,MI:American ConcreteInstitute.

Aı¨tcin,P.-C.,&Mindess,S.(2011). Sustainabilityofconcrete.Oxford,UnitedKingdom: SponPress,301pp.

Antoni,M.,Rossen,J.,Martirena,F.,&Scrivener,K.(2012).Cementsubstitutionbya combinationofmetakaolinandlimestone. CementandConcreteResearch, 42(12), 1579 1589.

Bentz,D.P.,Irassar,E.F.,Bucher,B.E.,&Weiss,W.J.(2009).Limestonefillersconserve cement.Part1. ConcreteInternational, 31(11),41 46,No.12,pp.35 39. Brundtland,G.(Ed.),(1987). Ourcommonfuture:Theworldcommissiononenvironment anddevelopment.Oxford,UnitedKingdom:OxfordUniversityPress,300pp. Fernandez,R.,Martirena,F.,&Scrivener,K.L.(2011).Theoriginofthepozzolanicactivity ofcalcinedclayminerals:Acomparisonbetweenkaolinite,illiteandmontmorillonite. CementandConcreteResearch, 41(1),113 122.

Lachemi,M.,Hossain,K.M.A.,Lotfy,A.,Shehata,M.,&Sahmaran,M.(2009).CLSM containingcementkilndust. ConcreteInternational, 31(6),47 52. Lothenbach,B.,LeSaout,G.,Gallucci,E.,&Scrivener,K.L.(2008).Influenceoflimestone onthehydrationofPortlandcements. CementandConcreteResearch, 38(6),848 860. Malhotra,V.M.(1994). CANMETinvestigationsdealingwithhighvolumeflyashin concrete AdvancesinConcreteTechnology (2nded.,pp.445 482).Ottawa,ON, Canada:CANMET.

Miller,S.A.,Horvath,A.,&Monteiro,P.J.M.(2018).Impactsofboomingconcrete productiononwaterresourcesworldwide. NatureSustainability, 1,69 76.

Scrivener,K.L.,John,V.M.,&Gartner,E.M.(2016). Eco-efficientcements:Potential, economicallyviablesolutionsforalow-CO2,cement-basedmaterialsindustry.Paris: UnitedNationsEnvironmentalProgramme,52pp. Shi,C.,&Wu,Y.(2009).CO2 curingofconcreteblocks. ConcreteInternational, 31(2), 39 43.

TheConcreteCentre.(2007). Sustainableconcrete.Surrey,UnitedKingdom:TheConcrete Centre.

Thomas,M.D.A.,Hooton,D.,Cail,K.,Smith,B.A.,deWal,J.,&Kazanis,K.C.(2010). FieldtrialsofconcreteproductswithPortlandlimestonecement. Concrete International, 32(1),35 41.

Furtherreading

CanadianStandardCSAd23.2.(2004). Concretematerialsandmethodsofconcreteconstruction.Toronto,ON,Canada:CanadianStandardsAssociation.

Krausmann,F.,Gingrich,S.,Eisenmenger,N.,Erb,K.-H.,Haberl,H.,&Fischerr-Kowalski, M.(2009).Growthinglobalmaterialsuse,GDPandpopulationduringthe20th century. EcologicalEconomics, 68(10),2696 2705.

Schmidt,W.,Alexander,M.,&John,V.(2018).Educationforsustainableuseofcement basedmaterials. CementandConcreteResearch, 114,103 114.

Scrivener,K.L.(2014).Optionsforthefutureofcement. TheIndianConcreteJournal, 88 (7),11 21.

Steinberger,J.K.,Krausmann,F.,&Eisenmenger,N.(2010).Globalpatternsofmaterials use:Asocioeconomicandgeophysicalanalysis. EcologicalEconomics, 69(5), 1148 1158.

Recycledmaterialsinconcrete

CarloPellegrino1,FloraFaleschini1 andChristianMeyer2,* 1UniversityofPadova,Padova,Italy, 2ColumbiaUniversity,NewYork,NY,UnitedStates

2.1Introduction

OnSeptember25,2015,theUnitedNationsestablished17sustainabledevelopment (SD)goalsthathavebeenadoptedbymanycountriesasapartofthenew2030 AgendaforSustainableDevelopmentofourplanet(UnitedNations,2015),that officiallycameintoforceonJanuary1,2016.Actionsfromgovernments,civil society,andprivatecompaniesneedtobepursuedforthesegoalstobereached, andtheyrelatealsotothefieldof greenbuildings.Howcantheyimpactthese goals?ThereareseveralwaysinwhichgreenbuildingsmaycontributetoSDgoals, ashighlightedbytheWorldGreenBuildingCouncil.Forinstance,theapplication ofcirculareconomyprinciples,loweringenvironmentalemissionsfromconstruction,andcreatingclimateresilientinfrastructures,highlydurableovertime,are viablemethodstoachievesustainabilityofconstruction.

Inthiscontext,improvingsustainabilityofconstructionmaterialsisgaining increasingattention,andtheobjectiveoflimitingthehighimpactoftheconstructionindustrybecomesachallengeofparamountimportance.Worldwide,the productionofconcreteand,moregenerallyspeaking,cement-basedmaterials considerablyexceeds10billiontonnes,withanincreasingtrendassociatedwiththe emergingmarketsfromdevelopingcountries.There,theurbanizationandindustrializationareaccompaniedbyanincreasingdemandforinfrastructures.In2012, about3.8Gtonofcement,17.5Gtonofaggregates,andover2Gtonofwaterwere consumedworldwideforconcretemanufacture,leadingtoacontributionof8.6% oftheglobalanthropogeniccarbonemissions(Miller,Horvath,&Monteiro,2016). Byfar,concreteisacknowledgedasthemostproducedmanufacturedmaterialin theworldbyweight(Monteiro,Miller,&Horvath,2017).Thepricetotheenvironmentofthewidespreaddiffusionofconcreteisgreat,andtheseeffectsareexpected toimpactdevelopingcountriesmorethanothersduringthenextyears.Several concurrentcausesthatcontributetotheenvironmentalburdensofconcretecanbe summarizedas

ThischapterdrawsuponthatofProf.C.Meyer,whowasthesolechapterauthorinthe1stedition. DevelopmentsintheFormulationandReinforcementofConcrete.DOI: https://doi.org/10.1016/B978-0-08-102616-8.00002-2 Copyright © 2019ElsevierLtd.Allrightsreserved.

● extractionofbulknaturalresources(e.g.,gravel,sand,minerals)thatmightinducelocal abioticdepletionandlandconsumptionortransformation;

● environmentalemissionsduetotransportationofresourcesandproducts;

● largeconsumptionofenergy,fossilresources,andwaterduringcementproductionand concretemanufacture;and

● generationofagreatamountofwastewhentheservicelifeofstructuresisexhausted.

Abioticdepletionproblemshavebeenrecordedinmanyterritories,mainlyin highlyurbanizedareas,thatis,wheretheavailabilityoraccessibilityofnatural resourcesisscarceifcomparedtothehighdemandofresources(Habert,Bouzidi, Chen,&Jullien,2010;Ioannidou,Nikias,Brie ` ere,Zerbi,&Habert,2015).In addition,typicallytheattitudeofthepopulationtowardquarryingoperationis negative,duetothedisturbancethatitcauses(e.g.,noise,dust,impactonland transformation).Forsuchreasons,otheractivitiesaregenerallypreferredinan urbanarearatherthanaquarry,thusleadingtoaninverserelationbetweenthe urbanizationofanareaandtheeaseofaccesstobulkresources.

Localdepletionofresourcesisdirectlyrelatedtotransportationemissions, becausedistancestobecoveredareextendedwhenrawmaterialsarenoteasily accessible.Lifecycleassessment(LCA)studieshaveshownhowimpactsdueto transportationareofthesameorderofmagnitudeasthoseduetothewholesupply chainofnaturalaggregates(Faleschini,Zanini,Pellegrino,&Pasinato,2016).

Accordingto USGS(2018a),thereisashortageofquarriesinsomeurbanand industrializedareasoftheUnitedStates,duetolocalzoningregulationsandland developmentalternatives,andhence,forthoseareas,longerdistancesoftravelfor thedeliveryofmaterialtothejobsitearerequired.Forthisreasonariseinpricesin andnearmetropolitanareasisalsoobserved.Differentlyfromnaturalaggregates, oftenthosecomingfromconstructionanddemolitionwaste(C&DW)recyclingare easilyavailableinmetropolitanareas,duetothepresenceofmobilerecycling plantsclosetojobsites.Eventhoughthereisevidenceofpooraccessibilityof naturalaggregatesindenselypopulatedareasoftheUnitedStates,thepercentage oftotalaggregatesuppliedbyrecycledmaterialsremainedverysmallin2017.

Cementiswellknowntobemainlyresponsibleforthehighcarbonfootprintof concrete.Indeed,thecarbonfootprintofcementcanbequantifiedintherangeof about0.5 1tonneCO2/tonneofcement(Josa,Aguado,Cardim,&Byars,2007), dependingontheamountofclinkerincludedintheblendedbinder.Portlandcement isbyfartheleastsustainablecementtype,whereasblendedcementsincluding,for example,pozzolanssuchasricehuskash(RHA)orcoalflyashpermitsignificant emissionssavings.Itisworthrecallingthatin2017,around86.3millionmetric tonnesofPortlandcementwasproducedintheUnitedStates,in98plantslocated in34States,plustwoplantsinPuertoRico,whereastheworldwideproductionis about4100millionmetrictonnes(USGS,2018b).Eventhoughgreateffortsto reducethehighenvironmentalimpactofconcretehavebeenmadeduringthelast century,stillcementproductionaloneisresponsibleformorethan7%ofCO2 emissions,worldwide.Forinstance,intheUnitedStates,manyplantshaveinstalled emissions-reductiontechnologiestocomplywiththe2010NationalEmissions

StandardsforHazardousAirPollutantslimits,whichwentintoeffectinSeptember 2015(EPA,2015).Forthesamereason,in2017,precalcinerdrykilntechnology wasaddedintwoplants.However,theabovestrategiestoimprovetheefficiencyof thecementsupplychainandemissions-reductiontechnologiescannotbepursued alone.Infact,arecentstudyhasshownhowconcreteproductionwasresponsible for9%ofglobalindustrialwaterwithdrawalsin2012,thisbeinganonnegligible amountofwater,ifweconsiderthatwaterconsumptionisgrowingattwicetherate oftheglobalpopulation.Accordingtoglobalconcreteproductionprojections,in 2050itisexpectedthat75%ofthewaterdemandforconcreteproductionwill likelyoccurinregionsthatmayexperiencewaterstress(Miller,Horvath,& Monteiro,2018).

Lastly,greatamountsofC&DWsareexpectedtobegeneratedinthenextyears, duetotheagingoftheexistingbuiltenvironmentindevelopedcountries,andthe needfornewinfrastructuresindevelopingcountries.Particularly,inthefirst case,thehugeexistingbuiltstockisexperiencingaconstantdecreaseinits key-performanceindicators,duetoagingand,insomecases,lackofadequate maintenance.Moreover,theriskoffailureorserviceabilityimpairmentdueto disasterevents(e.g.,earthquakes)isseverelyincreasedinanobsoletebuiltenvironment,whosefragilityincreasesprogressively.Thispotentiallyimpliesenormous burdensintermsofwasteproduction,consumptionofnaturalresources,andcarbon footprint.

Itisworthnoting,however,thatconcretedoesnothaveonlynegativeimpacts ontheenvironment,becauseofitsabilitytorecapturesomeCO2 overtime,dueto carbonation.

Themainresultsoftheanalysisoftheaboveobservationsconvergeon identifyingPortlandcementasbeingmainlyresponsibleforthehighenvironmental emissionsduetoconcreteproduction.Toalesserextent,naturalaggregatesand waterconsumptionalsonegativelyaffectconcretesustainability.Accordingly, strategiestoachieve environmentallyfriendlyconcretes canbeidentified,andthey canbesummarizedasfollows:

● LimitthecontentofPortlandcementinfavorofblendedcements,throughtheincreasein useofsupplementarycementingmaterials(SCMs).Amongthem,thosethatare by-productsofindustrialprocesses,suchasflyashandgroundgranulatedblast-furnace slag(GGBFS),shouldbepreferredovernaturalpozzolans.

● Userecycledmaterialsinplaceofnaturalresources.Sinceaggregateconstitutesabout 70%ofconcretevolume,aneffectiverecyclingstrategycansubstituterecycledforvirgin materialstomaketheindustrymoresustainable.Amongtherecycledcomponentstobe includedinthemixdesign,thosecharacterizedbythelowestdeliverydistanceshouldbe preferred,tolimittransportationemissionsandcosts.

● Reusewashwaterandlimitwaterwithdrawals.Therecyclingofwashwaterisreadily achievedinpracticeandisalreadyrequiredbylawinsomecountries.

● Improveconcreteproperties.Anincreaseinmechanicalstrengthandsimilarproperties canleadtoareductionofmaterialsneeded.Forexample,doublingtheconcretestrength forcompression-controlledmembersmaycuttherequiredamountofmaterialinhalf.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.