Desalination technologies: design and operation 1st edition iqbal m. mujtaba - The full ebook versio

Page 1


https://ebookmass.com/product/desalination-technologies-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Emerging technologies for sustainable desalination handbook Veera Gnaneswar Gude (Editor)

https://ebookmass.com/product/emerging-technologies-for-sustainabledesalination-handbook-veera-gnaneswar-gude-editor/ ebookmass.com

Enabling the Internet of Things: Fundamentals, Design and Applications Muhammad Azhar Iqbal

https://ebookmass.com/product/enabling-the-internet-of-thingsfundamentals-design-and-applications-muhammad-azhar-iqbal/

ebookmass.com

Fusion Reactor Design: Plasma Physics, Fuel Cycle System, Operation and Maintenance 1st Edition Takashi Okazaki

https://ebookmass.com/product/fusion-reactor-design-plasma-physicsfuel-cycle-system-operation-and-maintenance-1st-edition-takashiokazaki/ ebookmass.com

Armies in Revolution John Ellis

https://ebookmass.com/product/armies-in-revolution-john-ellis/

ebookmass.com

I Hate You More Lucy Gilmore

https://ebookmass.com/product/i-hate-you-more-lucy-gilmore-2/

ebookmass.com

Individualism and the Rise of Egosystems. The Extinction Society Matteo Pietropaoli

https://ebookmass.com/product/individualism-and-the-rise-ofegosystems-the-extinction-society-matteo-pietropaoli/

ebookmass.com

Mike Meyers’ CompTIA security+ certification passport, (Exam SY0-501) Dawn Dunkerley

https://ebookmass.com/product/mike-meyers-comptia-securitycertification-passport-exam-sy0-501-dawn-dunkerley/

ebookmass.com

The Palgrave Handbook of Organizational Change Thinkers 2nd Edition David B. Szabla

https://ebookmass.com/product/the-palgrave-handbook-of-organizationalchange-thinkers-2nd-edition-david-b-szabla/

ebookmass.com

Principles of General Organic & Biological Chemistry 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/principles-of-general-organicbiological-chemistry-2nd-edition-ebook-pdf/

ebookmass.com

Chinese Finance Policy for a New Era Dexu

https://ebookmass.com/product/chinese-finance-policy-for-a-new-eradexu-he/

ebookmass.com

DESALINATION TECHNOLOGIES

DesignandOperation

IQBALM.MUJTABA

DepartmentofChemicalEngineering, UniversityofBradford,Bradford,UnitedKingdom

MDTANVIRSOWGATH

DepartmentofChemicalEngineering, BangladeshUniversityofEngineeringandTechnology, Dhaka,Bangladesh

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyany means,electronicormechanical,includingphotocopying,recording,oranyinformation storageandretrievalsystem,withoutpermissioninwritingfromthepublisher.

Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’ s permissionspoliciesandourarrangementswithorganizationssuchastheCopyright ClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedunder copyrightbythePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearch andexperiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledge inevaluatingandusinganyinformation,methods,compounds,orexperiments describedherein.Inusingsuchinformationormethodstheyshouldbemindfulof theirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationof anymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-813790-1

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnitaKoch

EditorialProjectManager: JosePaoloValeroso

ProductionProjectManager: VijayBharath

CoverDesigner: MilesHitchen

TypesetbyTNQTechnologies

Toourfamily

Authors

IqbalM.Mujtaba isaProfessorofComputationalProcessEngineering andiscurrentlyAssociateDean(Learning,TeachingandQuality)ofthe FacultyofEngineeringandInformaticsattheUniversityofBradford.He wastheHeadoftheSchoolofEngineeringattheUniversityofBradford from2016to2018.HeobtainedhisBScEngandMScEngdegreesin ChemicalEngineeringfromBangladeshUniversityofEngineeringand Technology(BUET)in1983and1984,respectively,andobtainedhisPhD fromImperialCollegeLondonin1989.HeisaFellowoftheIChemE,a CharteredChemicalEngineer.HewastheChairoftheEuropeanCommitteeforComputersinChemicalEngineeringEducationfrom2010to 2013andtheChairoftheIChemE’sComputerAidedProcessEngineering SpecialInterestGroupfrom2012to2019.HeiscurrentlyanAssociate Editorfor AsiaPacificJournalofChemicalEngineering,SouthAfricanJournalin ChemicalEngineering,ChemicalProductandProcessModelling andanEditorial BoardMemberof Desalination.

ProfessorMujtabaleadsresearchintodynamicmodeling,simulation, optimization,andcontrolofbatchandcontinuouschemicalprocesseswith specificinterestsindistillation,industrialreactors,refineryprocesses,desalination,wastewatertreatment,andcrudeoilhydrotreatingfocusingon energyandwater.Hehasmanagedseveralresearchcollaborationsand consultancyprojectswithindustryandacademicinstitutionsintheUnited Kingdom,Italy,Hungary,Malaysia,Thailand,India,Qatar,SouthAfrica, Iraq,Jordan,Algeria,China,Libya,Bahrain,andSaudiArabia.Hehas publishedmorethan380technicalpapersandhasdeliveredmorethan75 invitedlectures/seminars/plenaries/keynotes/shortcoursesaroundthe world.Hehassupervised37PhDstudentstocompletionandiscurrently supervising10PhDstudents.Heistheauthor/coauthorof(1) Batch Distillation:DesignandOperation (textbook)publishedbytheImperial CollegePress,London,2004,(2) “WastewatertreatmentbyReverse Osmosis” publishedbyCRCPress,2020.Heisoneoftheco-editorsofthe books(1) ApplicationofNeuralNetworksandOtherLearningTechnologiesin ProcessEngineering,ImperialCollegePress,London,2001,(2) Composite MaterialsTechnology:NeuralNetworkApplications,CRCPress,2009,(3) The Water-Food-EnergyNexus,CRCPress,2017,(4) WaterManagement:Social andTechnologicalPerspective,CRCPress,2018.

Dr.MdTanvirSowgath isanAssociateProfessorofChemical EngineeringDepartment,BangladeshUniversityofEngineeringand Technology(BUET),Bangladesh,andiscurrentlytheVisitingAcademicof theSchoolofEngineering,UniversityofBradford,UK.HeisanAssociate MemberoftheIChemE(UK)andisaBUETtechnicalrepresentativefor theBangladeshEnergyRegulatoryCommission(2021).Hewasselectedas technicalcommitteememberfortheBangladeshMinistryofEnvironment (2010,2014),technicalcommitteememberofSylhetGasFieldforthe BangladeshMinistryofEnergyandMineralResource(2014 2015), DepartmentofPublicHealth(2013)andBangladeshEnergyRegulatory Commission(2021).Hehas12yearsofteachingandresearchexperiencein the fieldofChemicalEngineeringasanAssistantProfessorandAssociate ProfessoratBUET.Hehasofferedanumberofcoursesinrecentyearsin (a)UnitoperationofChemicalProcess,(b)FundamentalsofEnvironmentalEngineering,(c)IndustrialPollutionControl,(d)AirPollution Control,(e)OptimizationofChemicalProcess,and(f)ComputerAided ProcessDesign.

Dr.SowgathstudiedhisBScEngineeringdegreeinChemicalEngineeringatBUETandobtainedhisPhDdegreefromtheUniversityof Bradfordin2007.HisPhDdissertationwasentitled “NeuralNetwork basedhybridmodellingandMINLPbasedoptimizationofMSFdesalinationprocesswithingPROMS.” Dr.Sowgathsetthestoneforgraduate levelresearchindesalinationattheUniversityofBradfordwhichhasbeen carriedforwardbyseveralresearchersatBradfordafterhim.

Dr.Sowgath’smainresearchinterestsareinprocessmodeling,dynamic simulation,steadystate,anddynamicoptimizationofchemicalprocesses withspecificinterestsinDesalination,GasProcessing,andRefinery.Hehas supervisedseveralundergraduateandMScprojectsatBUETandhas publishedseveraltechnicalpapersinjournalsandconferenceproceedingsin theareaofDesalination,GasProcessing,Refinery,andFertilizerProcessing.Hiscurrentresearchfocusindesalinationisonfaultdiagnosis,scheduling,andmaintenance.

Preface

Afterair,waterisoneofthemostvitalelementsresponsibleforlifeonthe earth.Throughouthistory,ithasdeterminednotonlywherepeoplelive butalsotheirqualityoflife.Qualitywaterisoneofthekeyfactorsof qualitylife.Thefoodweeat,thehousewelivein,thetransportsweuse, andthethingswecannotdowithoutin24/7/365determineourqualityof lifeandrequiresustainableandsteadywatersupplies.By2030,theglobal waterneedwouldbe6900billionm3/daycomparedto4500billionm3/ dayrequiredin2009.Elevenpercent(11%)oftheworldpopulationdonot havecleanwaterclosetohome.Globally,watercontaminatedwithfecesis themaindrinkingwatersourceforabout2billionpeople.Atpresent,the requirementforfreshwaterisgrowingby64billioncubicmetersayear, whiletheworld’spopulationisrisingbyroughly80millionpeopleeach year.Thegrowingpopulationdemandsincreasingproductionoffoodand thusrequiresanincreasingamountofirrigationwater.Note,over70%of thewaterconsumptionisduetoagriculturaluse.Thesharpincreaseinthe productionofbiofuelsinrecentyearsalsohasasignificantimpactonwater demand.Productionofasingleliterofbiofuelneedsbetween1000and 4000litersofwater.

Asthepopulationcontinuestoriseandisanticipatedtoreachover9 billionby2050,thedemandforfreshwaterwillcontinuetoincrease. Exponentialgrowthinpopulationandimprovedstandardsoflivingrequire increasingamountoffreshwaterandareputtingseriousstrainonthe quantityofnaturallyavailablefreshwateraroundus.Also,thedisproportionaldistributionofwealtharoundtheworldhasaparttoplayinthe demandforwaterasthewasteandexcesswatersupplyofwealthynationsis causingpoverty-strickenregionstosuffer.Ontheotherhand,waterhas beenadeviceusedforreligiousconflictandregionalandlocalbattles, leadingtowavesofmigrationtoothercountries.Globalthirstwillturn millionintowaterrefugees.Thewaterdisputeswillinevitablybecome morecommon,as220riverbasinsgloballyaresharedbytwoormore countries.Extremewatershortagesescalatedsectarianviolenceinmany countries.

Although71%oftheearth’ssurfaceiscoveredbywater,theAncient Mariners’ rime: “Water,watereverywhere/Notanydroptodrink” isin linewith97%oftheplanet’swaterbeingeithersaltyorundrinkable.Ofthe

remaining3%,over2.5%isfrozenandfoundinAntarctica,theArctic,and glaciersandisnoteasilyaccessibleforhumanuse.Thus,theonlyavailable waterforhumanitytouseisaround0.5%oftheEarth’swater,whichis foundinlakes,rivers,andaquifers.Withmostoftheaccessiblewater aroundusbeingsaline,desalinationtechnologyisvitalforoursustainability. Desalinationmarketsgrewsignificantlyinthelastdecades.Asiaisbecoming afast-growingmarketduetoitsenormouspopulationandeconomic growth,leadingtoawaterdemandthatcannotbefulfilledwithconventionalwatersources.Thecommonlyusedindustrialdesalinationprocesses canbeclassifiedbroadlyintotwogroups:(a)thermalprocessesand (b)membraneprocesses.

Numerousstudieshavebeencarriedoutinthepastdecadestodevelop moresustainabletechnologicalsolutionsthatwouldmeettheincreasing waterdemand.Theongoingobjectiveisstillbeingtheimprovementin design,operation,andcontrolofdesalinationprocessestoensurequality water(intermsofsalinityandotherdissolvedsolidssuchasboron)atamore economicalpricewithalowerenvironmentalimpact.

Theearliertextbook FundamentalsofSaltWaterDesalination publishedin 2002byElsevieroutlinesthefundamentalconceptsinthermalandmembranedesalinationwithsimpleprocesscalculations.Theworldhas considerablymovedsincethenintheresearchandapplicationofdesalinationtechnologiesformakingfreshwater.Itistherighttimethatanew bookiswrittenhighlightingrecentdevelopmentsindesalination.This bookhighlightsthestateoftheartinmodel-basedtechniquesusedin evaluatingvariousdesalinationprocesses(intermsofdesign,operation, control)inadditiontohighlightingexperimentalresearchpublishedinthe lastdecades.Forboththermalandmembranedesalinationprocesses,several modelsfromsimpletodetailedhigh fidelityarepresentedwithcasestudies. Severaloptimizationproblemswithsingle-tomultiobjectivefunctions (productivity,profit,energyconsumption,performanceratio)arehighlightedandexplainedwithexamples.

Hybriddesalinationsystemscombiningboththermalandmembrane processeswithpowergenerationsystemsareconsideredbetter(intermsof economics,energyconsumption,andoperational flexibility)thandualpurpose(powerandwater)evaporationplants.Thisbookhighlightsthe recentdevelopmentsinhybriddesalinationprocesses.

Thefutureglobalenergycrisishasledseveralcountriestosetupplansto diversifytheirenergyresources.Alternativedesalinationprocessesrelying onrenewableenergysources(RESs)suchassolar,wind,andgeothermal

Preface xvii

energyarebeinginvestigatedtodesalinateseawateranddevelopinnovative energy-efficientdesalinationtechnologieswithsignificantlylessenvironmentalaffectintermsofgreenhousegasemissionsandcarbonfootprint. Variousmethods(experimentaltosimplecalculations)toevaluatethe economicviabilityofcouplingRESwithdesalinationplantshavebeen broughttothepublicdomaininrecentyears.Thisbookalsohighlightsthe useofvariousrenewableenergiesindesalination.

ApplicationofArtificialIntelligence(AI)includingArtificialNeural Network(ANN)techniques,inallaspectsofprocessengineering(including desalination)activities,frommodeling,optimization,parameterestimation, faultdiagnosis,errordetection,datareconciliationtocontrol,hasreceived considerableattentioninrecentyears.NNtechniqueshaveshowngreat promiseovertherecentyearstosolveproblemsthathaveproventobe difficultforthestandardtechniqueusingdigitalcomputers.Theapplication ofNNinthecontextofdesalinationisalsohighlightedinthisbook.

Thisbookconsistsof14Chaptersandmorethan50%ofthisbookwill includeourownresearchindesalinationprocesses(boththermaland membrane)since2003.Severalcasestudiesondesign,operation,control, faultdetection,anddiagnosisarepresentedtogiveaclearandbetter understandingofdifferentdesalinationprocesses.Thebookwillnotonlybe usefulforundergraduateteachingbutalsoforpostgraduateresearchand industrialpractitionersindesalinationfortheyearstocome.

ProfessorIqbalMMujtaba UniversityofBradford,UK

Professor(Associate)MdTanvirSowgath BangladeshUniversityofEngineering&Technology,Bangladesh

CHAPTER1 Introduction

Demandon finiteresourcesisincreasing,andtheglobalpopulationis expectedtoexceed9billionby2050.AccordingtotheInstitutionof ChemicalEngineers(IChemE,UK),thefourkeychallengeareasthesocietywillconfrontinthecomingdecadesare(https://www.icheme.org/ knowledge/policy/chemical-engineering-matters/):

• Water

• Energy

• Foodandnutrition

• Healthandwell-being

1.1Worldwaterdemandandcrisis

Waterisoneofthemostvitalelementsresponsibleforlifeontheearth. Throughouthistory,notonlyhasitdeterminedwherepeoplelivebutalso theirqualityoflife(Rosenbaum,2009).Asthepopulationcontinuesto growandisexpectedtoreachover9billionby2050(GEReportsStaff, 2017),thedemandforcleanwaterwillcontinuetoincrease.Exponential growthinpopulationandimprovedstandardsoflivingrequireincreasing amountoffreshwaterandareputtingseriousstrainonthequantityof naturallyavailablefreshwateraroundus.TheAncientMariners’ rime: “Water,watereverywhere/Notanydroptodrink” isinlinewith97%of theplanet’swaterbeingeithersaltyorundrinkable.Oftheremaining3%, over2.5%isfrozenandfoundinAntarctica,theArctic,andglaciersandis noteasilyaccessibleforhumanuse.Thustheonlyavailablewaterforhumanitytouseisaround0.5%oftheEarth’swater,whichisfoundinlakes, rivers,andaquifers(Fig.1.1).

Fig.1.2 showsthedemandofwaterindifferentregionsoftheworld.By theyear2030,theglobalneedsofwaterwouldbe6900billionm3/day comparedto4500billionm3/dayrequiredin2009(2030WaterResources Group,2009).Currentlythedemandforfreshwaterisincreasingby64 billioncubicmetersayearwhiletheworld’spopulationisgrowingby roughly80millionpeopleeachyear.Thegrowingpopulationdemands

DesalinationTechnologies

ISBN978-0-12-813790-1

https://doi.org/10.1016/B978-0-12-813790-1.00015-3

Figure1.1 Distributionofglobalwater. (Adaptedfrom https://www.sciencelearn.org.nz/resources/723-water-origins ,accessedonApril30, 2021.)

Figure1.2 Globalwaterconsumption(billionsm3 peryear)byregion. (Adaptedfrom http://12.000.scripts.mit.edu/mission2017/social-solutions-to-energy-and-water-problems/ (accessedonApril30,2021).)

increasingproductionoffoodandthusrequiresincreasingamountof irrigationwater(ElimelechandPhilip,2011; EuropeanEnvironment Agency,2012).Over70%ofthewaterconsumptionisduetoagricultural use(Fig.1.3).Note,thesharpincreaseintheproductionofbiofuelsin recentyearshasalsosignificantimpactonthewaterdemand.Between1000

Figure1.3 Wateruseintheworld. (https://blogs.worldbank.org/opendata/chartglobally-70-freshwater-used-agriculture ,accessedonApril30,2021,andadapted.)

and4000Lofwaterareneededtoproduceasingleliterofbiofuel(http:// www.worldometers.info/water/ accessedonJuly19,2018). Table1.1 showsthewaterconsumptionforproducingdifferenttypesoffoods.Increaseinwaterdemand(forallpurposes)increasesthedemandofenergy (Mujtabaetal.,2017)duetothefactthatcurrentlymostofthedesalting technologiesrequiressignificantamountofenergy.Atpresent,morethan 20%oftheworld’spopulationliveinareasofphysicalscarcity(Fig.1.4). Moreover,aroundonequarteroftheworld’spopulationfaceeconomic watershortagewheretheircountrieslacktheappropriateinfrastructureto takewaterfromthesource(UN,2007).

Thedisproportionaldistributionofwealtharoundtheworldhasapart toplayonthedemandforwater,asthewasteandexcesswatersupplyof wealthynationsiscausingpoverty-strickenregionstosuffer.Ontheother hand,waterhasbeenadeviceusedforreligiousconflictandregionaland localbattlesleadingtowavesofmigrationtoothercountries(U.S.National AcademyofSciences,1999; Kreamer,2012; Mujtabaetal.,2018).Global thirstwillturnmillionintowaterrefugees.Thedisputesoverwaterwill inevitablybecomemorecommon,as220riverbasinsgloballyaresharedby twoormorecountries(TheIndependent,2001).Asthepricesofimported

Table1.1 Waterconsumptionforproducingdifferenttypesoffoods. FoodstuffQuantityWaterconsumption,liters

Chocolate1kg17,196

Beef1kg15,415

Sheepmeat1kg10,412

Butter1kg5,553

Chickenmeat1kg4,325

Cheese1kg3,178

Rice1kg2,497

Cotton1@250g2,495

Pasta(dry)1kg1,849

Bread1kg1,608

Pizza1unit1,239

Apple1kg822

Potatoes1kg287

Milk1 250mLglass255

Cabbage1kg237 Egg1196

IMechE,adaptedfrom https://www.theguardian.com/news/datablog/2013/jan/10/how-much-waterfood-production-waste#data accessedonSeptember25,2018.

Figure1.4 Areasofphysicalandeconomicwaterscarcity. (Adaptedfrom http://ses. wsu.edu/wp-content/uploads/2017/10/water.pdf ,GlobalWaterInitiative,GEFInternationalWaterConference,accessedonApril30,2021.)

watergoup,manycountries(e.g.,Singapore)dependentonthepotable watersupplyfromothercountries(e.g.,Malaysia)turnedtonewtechnologytomakepotablewaterfromreclaimedwater.Scarcityofwatercan leadtoriots(Fig.1.5).Withoutmoreeffectivewatermanagementsystems,

Figure1.5 WaterwarinIndia(2009).May25,2009. (Adaptedfrom http://www. treehugger.com/clean-water/violence-over-water-already-happening-in-india.html (accessedonDecember30,2018).)

lackofwateravailabilitywillbecomeaproblemthreateningnationalsecurityinmanycountriesimportanttotheUnitedStates(Busby,2017). ExtremewatershortagesescalatedthesectarianviolenceinYemenand playedaveryimportantroleintheinstigationandthecontinuationofthe civilwar.Thelinkbetweentheenvironmentalproblemsandconflictis alreadywellestablishedandgiventheextremewatershortages,theMiddle Eastisparticularlyvulnerabletoenvironmentallyinducedinstabilities (Shahi,2016; ShahiandVachkova,2018).

Interestingly,arecentUNreportestimatedthatthreeoutoffourjobs thatmakeuptheglobalworkforceareeitherheavilyormoderately dependentonwater.Thismeansthatwatershortagesandproblemsof accesstowaterandsanitationcouldlimiteconomicgrowthandjobcreationinthecomingdecades.Thereportalsohighlightsthatwaterandjobs areinextricablylinkedtoeconomic,environmental,orsocialperspective. Thisreportbreaksnewgroundbyaddressingthepervasiverelationship betweenwaterandjobstoanextentnotyetseeninanyotherreport (https://en.unesco.org/news/water-drives-job-creation-and-economicgrowth-says-new-report,accessedonDecember30,2018).

1.2Wastewater,reclamationandreuse,social perception

Astheworldpopulationgrows,theheavilyindustrializedworldweliveor strivetolivecontinuestogeneratevastamountofwastewaterplaguedwith industrialeffluents,sewage,andmanyharmful,somecarcinogenic,byproducts,whichareoftensimplydisposedofinriversandoceans.An estimatedminimumlethaldoseofphenolis140mg/(kgofbodyweight)in humans(Binghametal.,2001).TheEuropeanFoodStandardsAgency (EFSA)established0.5mg/(kgofbodyweight)/dayforphenol(EFSA, 2013).Globally,morethan2billionpeopledrinkcontaminatedwater whichtransmitsdiseasessuchasdiarrhea,cholera,dysentery,typhoid,and polioandcauseoverhalfamilliondiarrhealdeatheachyear(http://www. who.int/news-room/fact-sheets/detail/drinking-water,accessedonJuly 20,2018).Theyuckfactor,thetermssuchas recycledsewage and toilet-to-tap usedbymediaincharacterizingreclaimedwater,givessignificantnegative imagestoaugmentreclaimedwastewaterreuse,especiallyfordrinkingand agriculturalproductionpurposes(Miller,2006; Chenetal.,2015).Even thoughinthecountrylikeIndia,UrineTherapywaspromotedin1978by thePrimeMinisterofIndiaMr.Desai(https://en.wikipedia.org/wiki/

Urine_therapy,accessedonDecember30,2018),theyuckfactorisstill dominatinginmanypartsoftheworldwhenitcomestotheuseoftreated wastewater(Ravishankaretal.,2018)(Fig.1.6).AccordingtoCNNnews (March19,2019)severewatershortagescouldplungeEnglandinto ‘jawsof death’ in25yearsandaccordingtoBBCnews(May10,2013)London ‘coulddrinktreatedsewage’ (Fig.1.7). Table1.2 showstheuseoftreated andnontreatedwastewaterindifferentcountries.

1.3Sustainablewatersupplyandmanagement

Exponentialgrowthinpopulationandthefundamentalrighttohavebasic foodandstandardsoflivingrequireincreasingamountsofwaterandenergy.Thequantityofavailablefreshwaterandenergysourcesthatdirectly affectthecostofproduction(irrigationandenergy)andthetransportation (energy)offoodarediminishing.Inaddition,thereisincreasedwater pollutionduetoindustrialusesofwater.Thedirectuseofsuchwaterfor humanconsumptionaswellasirrigationforfoodproductionisprohibitive andrequirestechnologicalsolutions.Asnotedearlier,currently70%ofthe totalwaterconsumptionisforagriculturalpurpose.Securingsustainable water,food,andenergysuppliesaremoreimportantchallengestodayfor scientistsandengineersthaneverbefore.Therefore,tostartmanagingthese resourcescarefullyisnotonlyalocalizedproblembutglobalizedtoo.The managementofwaterincludes(a)cost-effectiveandsustainableproduction offreshwaterviawatertreatmentofriverorreservoirwaterorvia

Figure1.6 Factorsinfluencingtherespondents’ decisiontonotbuyreclaimed water. (Adaptedfrom Ravishankaretal.(2018).)

Figure1.7 PredictedwatershortageanduseoftreatedwaterinLondon. (CNNand BBCnews.)

Table1.2 Purposesandratesofusingwastewaterinsomecountries.

CountryPurposeRateNotes

PakistanAgricultural96%Nontreatedwastewater

TunisiaAgricultural86%Treatedwastewater

SingaporeMunicipal45%

NamibiaMunicipal29%NamibiaandSingaporehavethemost importantwaterreuseforhuman consumptionreclamationprojects

Industrial51%

GermanyIndustrial69%

USIndustrial45%TheUnitedStatesandGermanyhavea largernumberofrecyclingandreuse projectsacrossvariousindustries

Adaptedfrom JiménezandAsano(2008)

desalinationofseawater,(b)wastewatertreatmentandreuse,(c)efficient andcost-effectivewaternetworkfordistribution,(d)effectiveuseofwater inagricultureandindustries,and(e)waterdemandmanagement.

Althoughthisbookisdedicatedonthetechnicalaspectsoffreshwater productionbydesalination,someoftheaboveaspectsofwater

managementwillbebrieflyreferredhere(detailscanbefoundin Mujtaba etal.(2017, 2018)).

1.3.1Wastewatertreatmentandreuse

Inthelast50years,asharpincreaseinthevolumeofindustrialeffluents (andsewage)beinggeneratedanddisposedofintoriversandoceansis witnessedcausingsignificantharmonourecosystem.Withthecontinued populationriseamarkedshortagefordrinkingwaterisalsonoticed. Becauseofthesecompetingaspects,thereisaneverincreasingandurgent needfor findingbetter,faster,andcheapermethodsfortransforming wastewaterintodrinkablewateroratleastcleanerwaterthatcanbeusedin variousapplicationssuchasdomestic,agriculture,andindustry. Mujtaba etal.(2018) notedseveralwastewatertreatmentprocesses.

Amosaetal.(2018) focusedonmodel-basedevaluationofporeblockingbehaviorsoflowpressuremembranesforwastewatertreatment. MathabaandDaramola(2018) discussedSodalite-andChitosan-based compositemembranematerialsformetalremovalfromthewastewater. Al-Obaidietal.(2018a) highlightedROprocessfortheremovalof phenoliccompoundsfromwastewaterusingmodel-basedtechniques. AlObaidietal.(2018b) consideredsimultaneousremovalofeightselected organicandinorganiccompoundsfromwastewaterusingROprocess.The contaminantswere:dimethylphenol,chlorophenol,phenol,methylorange dye,aniline,ammonium,cyanide,andsulfate.

Jarullahetal.(2018) introducedindustrialthreephaseoxidationreactor forwastewatertreatment,while Dahroug(2018) consideredelectrolytic treatmentofwastewaterforreusepurpose.Inactivationofwaterborne pathogensinmunicipalwaterusingozonewasdescribedby Mechaetal. (2018). Zachariaetal.(2018) providedanoverviewofGTL(Gas-toLiquid)processwaterproductionandthepotentialofphotocatalyticwater treatmentinremovingnonoxygenatedhydrocarbons(anorganiccontaminantmostpredominantlyfoundintheGTLprocesswater).

Adsorptionisawidelyusedtechniquefortheremovalofpollutantsasit isasimpleandrelativelyeconomicmethod.Adsorptionisaprocessthat takesplacewhenagasorliquidsoluteaccumulatesonthesurfaceofasolid oraliquid(adsorbent),formingamolecularoratomic film(theadsorbate). Man-madedyesareextensivelyusedinmanyindustriessuchaspaper, pharmaceutical,cosmetics,paint,leather,food,andtextileindustries.The azodyesareamongthebiggestclassofdyes,correspondingtomorethan 60%ofmanufacturedsyntheticdyes.Amongtheazodyes,methyleneblue

(MB)isthemostcommonlyuseddyeinpapercoloringandintextile industriesitisthemaincontributorsofgeneratingwastewatergenerators. Hassanetal.(2018) consideredbiosorptionofmethylenebluedyefrom wastewaterusingAnisetearesidue.Adsorptionisalsooneofthemore effectivemethodsforremovingheavymetalsfromindustrialwastewaters. El-tahhan(2018) studiedtheeffectivenessofusingactivatedcharcoaland treatedricehusk(TRH)toremoveChromiumionfromsynthetic wastewatersusingbatchand fixedbedcolumnadsorptiontechniques. Waterpollutionbyammonianitrogen(NH3 N)isduetoagricultural runoff,releasingofuntreatedlandfillleachateandsewage,urbanactivities, etc.Over-enrichmentofammonianitrogencauseseutrophication,depletionofdissolvedoxygenandbringstoxicitytoaquaticorganisms.Among severalmethods,adsorptionmethodhasagainbeenfoundtobethemost convenientandeconomicalmethodtoremovesuchpollutantfrom wastewater(Zahrimetal.,2018).

Anaerobicdigestion(AD)isabiologicalprocessforthetreatmentof wastewaterwithhighorganiccontentandisamongthewidelyapplied first steptreatmenttechnologiesinreducingthepollutionoftheseeffluents. However, Apolloetal.(2018) focusedonintegratingphotocatalytic degradationtreatmenttechniquewithADfortreatingwastewater contaminatedwithmethyleneblue.Theyusedphotodegradationasthe first steppretreatmentforimprovedsubstratebiodegradabilityfollowedbyAD asthesecondstep.Inbothprocesses,naturalzeolitewasemployedasa biomassandcatalystsupport.Petrochemicalindustryconsumesalotof waterandconsequentlyhugeamountsofmonoethyleneglycol(MEG) containingwastewaters(characterizedwithachemicaloxygendemand (COD)rangingfrom500to30,000mg/L)aregeneratedwhichaffect negativelyontheenvironment,health,andundoubtedlycontaminatethe waterstreams.Thechallengeoftreatingpetrochemicalwastewatereffluents willremainachallengeforthenextfewdecadesandtheapplicationofAD processforenergyproductionintermsofethanol,hydrogen,andmethane frompetrochemicalwastewaterisapromisingtechnology. Tawfikand Elreedy(2018) consideredsimultaneoustreatmentandbioenergyproductionfrompetrochemicalwastewatercontainingMEGandphenol.Mostof agro-industrialeffluentcontainshugeamountsoffatsandoils(Tawfikand Elsamadony,2018).Thelipidscontentintheend-of-pipeeffluentmainly dependsontherawmaterialsandtypeofindustry,i.e.,woolscouringand olivemillgeneratesevereeffluentswithlipidsconcentrations(5 25g/L), sunfloweroilmillwastewater(0.2 1.3g/L),dairywastewater(0.9 2.0g/L),

andslaughterhouseseffluents(0.35 0.52g/L). TawfikandElsamadony (2018) consideredADfortreatinglipid-richwastewater.Combinationof adsorptionandtheanaerobicdigestionoflipid-richwastewaterwasalso recommendedbytheauthorsasanexcellentapproachtomitigatethelongchainfattyacids(LCFAs)toxicity.

Mathematicalmodelsarepowerfultoolsthatthedesignersofbiological wastewatertreatmentsystemscanusetoinvestigatetheperformanceof potentialsystemsunderavarietyofconditions(Mustafaetal.,2018).They areparticularlyusefulforthosewhoareworkingwithsystemsinwhich carbonoxidation,nitrification,anddenitrificationareaccomplishedwitha single-sludgesystem.Duetocomplexandcompetingandparallelreactions insuchsystemsitisdifficulttointuitivelyestimatetheirresponsetochanges insystemconfigurationorload.

1.3.2Waternetworkfordistribution

Wastewatertreatmentprocessesareoftenseenasbolt-onorend-of-pipe operationinprocessindustries.Inreality,the firstpriorityshouldbeto ensurethatthewastewatergeneratedisminimizedbeforefocusingon wastewatertreatmentsystemsasanyreductioninwastewaterwillresultin reductioninbotheffluenttreatmentandfreshwatercosts(WangandSmith, 1994).Inpetroleumrefinery,wastewaterisgeneratedbytheprocesses whenwateriscontactedwithprocessmaterialsindesalting,streamstripping,andmanywashingoperationsthroughouttherefinery.Also,wastewaterisgeneratedbytheutilitysystemfromboilerfeedwatertreatment processes,boilerblowdown,coolingtowerblowdown,etc.Iffundamental changestoprocessesarenotconsideredtoreducetheirinherentdemandfor water,thentherearefewpossibilitiesforreducingwastewater(Wangand Smith,1994)suchas:

(i) Re-use. Wastewaterbeingreuseddirectlyinotheroperationsprovided thelevelofcontaminationdoesnotinterferewiththeprocess.Reuse mightrequirewastewaterbeingblendedwithwastewaterfromother operationsand/orfreshwater(Mananetal.,2006).

(ii) Regenerationandre-use. Wastewatercanberegeneratedbypartialtreatmenttoremovethecontaminantsandthenreusedinotheroperations. Again,reuseafterregenerationmightrequireblendingwithwastewater fromotheroperationsand/orfreshwater. Nyamayedenga(2018) consideredregenerationandreuseofindustrialwastewatertominimize overallfreshwaterusage.

Waternetworksynthesisanddesigntasksaddresstheminimizationof freshwaterdemandofaparticularprocesssystematicallywhichinvolve:(1) watertargetingand(2)networkdesign.Thewatertargetingstagedeterminestheminimumfreshwaterandwastewater flowsforanetwork, basedonspecifiedconcentrationand flowratelimits.Networkdesign wouldtheninvolvethedevelopmentofadetailedallocationstrategy amongtheindividualwater-consuming(Sink)andwater-producingprocesses(Source)(Alnourietal.,2017).

Mananetal.(2006) usedthewatercascadeanalysis(WCA)technique, basedonthepinchanalysisconcept,tominimizethewatertargetsforthe SultanIsmailMosqueattheUniversitiTeknologiMalaysia.TheWCA providedanumericalalternativetothegraphicalwatertargetingtechnique knownasawatersurplusdiagramwhichpredictedsavingsof65.1%fresh waterand51.5%wastewaterwithreuseonly,andupto85.5%freshwater and67.7%wastewaterwithreuseandregeneration. Tanetal.(2007) highlightedanewapproachfortheretrofitofwaternetworkwith regenerationwhichenabledfurtherreductionoftheutilitytargetstobe achievedinanexistingwaternetworkviawaterreuse,recycling,and regeneration. NyamayedengaandMujtaba(2014) appliedWCAtechnique tominimizeoverallfreshwaterusageinKarimbaWineryinZimbabwe whichrealized27%and68.8%reductioninfreshwater flowandwastewater generation,respectively.

Buabeng-Baidooetal.(2018) investigatedthewaterreuse/recycle opportunitiesinalarge-scalemilkprocessingplant(AmulDiary)inIndia usingprocessintegrationtechnique.Thecomplexdiarysystemswith multiplecontaminants(Fig.1.8)resultsinsuperstructureoptimization integratingthewaternetwork(WN)modelwiththeregenerationmodel. Note,theIndiandairysectoristhelargestintheworldandconsumes around62billionm3/yroffreshwater.Thestudyreportedasignificant reductioninthetotalcostofthenetwork,duetothesignificantreduction infreshwaterconsumption(byover20%)andwastewatergeneration(by over53%).

Industriesashighlightedaboveoften findsignificantchallengestohave sustainablestand-alonewatersuppliescompoundedwithanywastewater disposalobligationsresultinginheavyeconomicandenvironmentalpenalty.Whentherearewater-usingandwater-consumingsystemswithin geographicproximity(Fig.1.9),thispenaltycanbereducedbyhaving sharedwaterschemesbetweencoexistingclusterofindustries/plantsoften knownasanEcoIndustrialPark(EIP).ResourcescanbesharedinEIPsby

Figure1.8 Watertargetingandnetworkdesignforamuldairy. (Adaptedfrom Buabeng-Baidooetal.(2018).)

Figure1.9 Ecoindustrialparkwithsharedwaterresources. (Adaptedfrom Alnourietal. (2017).)

fosteringplant-to-plantinteractions.EffectivewatermanagementinEIPs heavilydependsontheimplementationofwaternetworkdesignschemes incorporatingwastewaterreuseandregeneration(Alnourietal.,2017; Fadziletal.,2018).

1.3.3Effectiveuseofwaterinagriculture

Asmentionedearlieronaverageover70%ofwaterconsumptionisdueto agriculturaluseintheworld(Fig.1.3),irrigationbeingthelargestconsumer ofwatertotalingover85%ofthetotalavailablewaterinthedeveloping countries(Aminetal.,2011).Andasignificantamountofwatergoesinthe productionofriceasitisthemostcommonfoodforoverhalftheworld population.Therefore,itisessentialtoimprovewaterproductivityaswell aswateruseefficiency.Note,asmallimprovementofwateruseinrice productionwillleadtosignificantsavingsinwater.As25%oftheworld’ s populationwheretheircountrieslacktheappropriateinfrastructuretotake waterfromsource(UN,2007),thesocioeconomicconditionandwater scarcity(Fig.1.4)insignificantpartoftheworldmustbringarevolutionin

irrigationrequiringmeasurestochangewaterdemandsandincreaseefficiencyinwateruse. PrecisionAgriculture isgettingthemomentuminthis respect(Milellaetal.,2019).

Environmentalsustainabilityisanabsolutelyessentialcomponent requiredforprecisionfarmingorsite-specificmanagementwhichrequires quicksoilspatialvariabilitydescription(relatingtopropertiessuchassalt concentration,texture,potentialtoholdplantnutrients)fordecisionmakingontherightinputattherightplace,attherighttimeandinthe rightamountorsite-specificzonemanagement(Aminetal.,2011).

ThemodernGIStechniqueisplayingasignificantroleinmanaging waterinagriculturallands.Itcancollect,store,andprocessinformationon wateruseforcropsresultinginreliableandvalidatedproceduresfor decision-making(planningofwaterallocationpolicyinirrigationsystem)as currentlyitisthemostefficienttoolforspatialdatamanagementandutilizationallowinggreaterunderstandingofthespatialvariance(Aminetal., 2011).

1.3.4Waterdemandmanagement

Ashighlightedearlier,theavailabilityoffreshwaterforoursurvivalisa criticalglobalchallengeandcertainlybeimpactedbytheclimatechange. RussellandFielding(2010) emphasizedthatwaterdemandmanagementis veryimportantinreducingthevulnerabilityoffreshwatersuppliesdueto climatechange.Certainly,the fieldofpsychologytogetherwithenvironmentalpsychologycanmakeasignificantcontributionintermsofmanagingresidentialwaterdemandespeciallyinplaceswithoutmeteredsupply ofwater(forexample,meteredwatersupplyisinplaceintheUnited Kingdomonlyforlimitednumberofhousesandfornewhouses).

Waterdemandmanagementorwaterconservationbehaviorrelatesto actionsthateitherreducetheamountofwatertobeusedorincreasethe efficiencyofwatertobeusedforanypurpose.Therearetwotypesofwater conservationbehaviors,namely,efficiencybehaviorsandcurtailmentbehaviors.Installationofwatersavingshowerheadsorrainwatertankor considering cleanvessels/reactorsonlywhenneeded inmanufacturingprocesses (forexample,indairyordyeindustries)facilitatingongoingwatersavings refertoefficiencybehaviors(Gerogiadisetal.,2000; Ahmetovicetal., 2010; RussellandFielding,2010).Incontrast,curtailmentbehaviorsare linkedtoindividualactionsthatcanreducewaterwhilewashingclothes, takingshowers,brushingteeth,cleaningdishes,wateringthegarden,and washingthecar(RussellandFielding,2010).

1.4Freshwaterproductionbydesalinationprocesses

Theunderlyingprincipleofdesalinationprocessescanbedescribedby Fig.1.10 wheretheseawaterorbrackishwaterfeedwithacertainpercentageofsalinityissplitintotwoseparatestreamswiththeaidofenergy. Thedesalinatedstreamisthedesiredproduct(freshwater)streammeeting specifiedamountofsaltandthehighlyconcentratedbrinestreamisthe wasteproductstreamtobedisposedof. Fig.1.11 showsthesourcesofwater usedindesalinationplants,withseawaterbeingthelargestvolumeofwater thatundergoesdesalinationtreatmenttobecomedrinkableandbrackish waterbeingthesecondlargest. Table1.3 showsthetypicalcompositionof seawaterwithasalinityof36,000ppm.Thesalinityisthetotalsalt

Rawwatersourcesusedindesalinationplants. (Adaptedfrom Zhouand Tol(2005).)

Figure1.10 Generalrepresentationofadesalinationprocess.
Figure1.11

Table1.3 Compositionofasampleofseawater.

Adaptedfrom El-DessoukyandEttouney(2002)

concentration,whichisequaltothequantityofdrysolidsperkilogramor literofseawater(g/L).Salinitycanalsobeexpressedaspartspermillion (ppm).Sinceallthesaltsinwaterarealmostcompletelydissociated,itis importanttoknowtheconcentrationofthoseions.However,thechemical compositionofoceansandseasisnotconstantanddependsonthelocation. Forthatreason,differentseawatershavedifferentcompositionandtemperature.Theionspresentinthelargestamountarethesodiumand chlorineones;however,othersaltsaredissolvedintheseawaterapartfrom thesodiumchloride(Filippini,2018). Table1.4 showstheclassificationof watersourcesbasedontotaldissolvedsolids.Note,therearelargevolumes ofbrackishwaterinChina.By2030Chinaissettohaveawatershortageof 60billioncubicmeters;thereforetheChinesegovernmenthasincreased

Table1.4 Classificationofwatersourcesintermsofquantityofdissolvedsolids (Filippini,2018).

WaterclassificationTotaldissolvedsolids

High-qualitydrinkablewatera <200ppm

Drinkablewatera 200 500ppm

Freshwater500 1,000ppm

Mildlybrackishwater1,000 5,000ppm

Moderatelybrackishwater5,000 15,000ppm

Heavilybrackishwater15,000 32,000ppm

Lowsalinityseawater32,000 37,000ppm

Highsalinityseawater >37,000 aAssuggestedbytheWorldHealthOrganisation(WHO,2011).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.