Deploying wireless sensor networks. theory and practice 1st edition mustapha reda senouci - The eboo

Page 1


DeployingWirelessSensorNetworks.Theoryand Practice1stEditionMustaphaRedaSenouci

https://ebookmass.com/product/deploying-wireless-sensornetworks-theory-and-practice-1st-edition-mustapha-redasenouci/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Randomly Deployed Wireless Sensor Networks 1st Edition Xi Chen

https://ebookmass.com/product/randomly-deployed-wireless-sensornetworks-1st-edition-xi-chen/

ebookmass.com

Malware Diffusion Models for Wireless Complex Networks. Theory and Applications 1st Edition Karyotis

https://ebookmass.com/product/malware-diffusion-models-for-wirelesscomplex-networks-theory-and-applications-1st-edition-karyotis/

ebookmass.com

Security in Wireless Communication Networks Yi Qian

https://ebookmass.com/product/security-in-wireless-communicationnetworks-yi-qian/

ebookmass.com

Laboratory Manual for Anatomy & Physiology (Anatomy and Physiology) 5th Edition, (Ebook PDF)

https://ebookmass.com/product/laboratory-manual-for-anatomyphysiology-anatomy-and-physiology-5th-edition-ebook-pdf/

ebookmass.com

Deploying Wireless Sensor Networks

Deploying Wireless Sensor Networks

Theory and Practice

Mustapha Reda Senouci Abdelhamid Mellouk

keyemergingapplicationsandservicesandthecurrentlydeployednetwork infrastructures.

OneofthemostpromisingtechnologieswithintheIoTtodayconsistsof sensornetworks.Itwillbefascinatingtolookbackintheyearsaheadand notethegrowinginterestintheuseofsensornetworksinreal-world applications.Infact,thesekindsofnetworksrepresentan efficienttechnology tomonitorandcollectspecificcharacteristicsinanyenvironment.Several applicationshavealreadybeenenvisioned,inawiderangeofareassuchas military,commercial,emergency,biologyandhealthcareapplications.A sensorisaphysicalcomponentabletoaccomplishthreetasks:identifya physicalquantity,treatanysuchinformationandtransmit thisinformationto asink.Inmostpracticalapplications,sensorsdonotchangetheirlocations oncetheyaredeployedonthesensingfield.Oneofthecriticalandimportant aspectsinthesuccessoftheuseofthesenetworksinreal-lifeapplicationsis correlatedtothedeploymentofsensors.

Duetheemergenceofdifferentkindsofsensorsandtheforeseen proliferationofdifferentandspecifictypesofservicessupportedbythese sensors,theuseofnetworksbasedonalargeamountofsensorshasthe potentialtobecomearealchallengewhentakingseveralkindsofapplications intoaccount.

Thebookfocusesonthecurrentstate-of-the-artresearchresultsand experiencereportsintheareaofdeploymenttechniquesdedicatedtowireless sensornetworks(WSNs).Itdetailsallthedeploymentapproachesusedinthis areainthecaseofstaticandmobileenvironments.Moreover,anin-depth discussionconcerningdeployment-relatedissuessuchasdeploymentcost, coverage,sensorsuncertainty,connectivity,sensorsreliability,network lifetimeandharshdeploymentenvironmentsisprovided.Thisbookshows thatWSNdeploymentfieldisaverydynamicareaintermsoftheoryand application.

Togiveacompletebibliographyandahistoricalaccountoftheresearch thatledtothepresentformofthesubjectwouldhavebeenimpossible.Itis thusinevitablethatsometopicshavebeentreatedinlessdetailthanothers. Thechoicesmadereflectinpartpersonaltasteandexpertise,andinparta preferenceforaverypromisingresearchandrecentdevelopmentsinthefield ofsensordeploymenttechniques.

Thisbookisastart,butalsoleavesmanyquestionsunanswered.Wehope thatitwillinspireanewgenerationofresearchers.

Theauthorshopeyouwillenjoyreadingthisbookandhopetoprovidethe readerswithmanyhelpfulideasandoverviewsforyourownstudy.

MustaphaRedaSenouci February2016

AbdelhamidMellouk

coverageintheRoI.Sensorsmobilitycouldbeexploitedtoimprovethe randominitialdeployment.Suchapracticeiscalledmovement-assisted sensordeployment,orWSNself-deployment.Moreover,sensorfailuremay causeconnectivityloss,andinsomecases,networkpartitioning.Dynamically repositioningthesensorswhilethenetworkisoperationalisnecessarytodeal withsuchevents.Inotherwords,sensorrelocationcouldbeusedtoprovide WSNswithself-healingcapabilities.Chapter5reviewsrecentliterature pertainingtoWSNself-deploymentandself-healingstrategies. Classificationsofthemostrecentdeploymenttechniquesareprovided. Moreover,differentproposedalgorithmsarecategorized,summarizedand compared.

Attheendofeachchapter,practicalissuesthatneedfurtherresearchare discussed.Insummary,thisbookdiscussesboththeoreticalandpractical aspectsandprovidesguidelinesforeffectivedeploymentofWSNs.

1.1.2. Sensorcoveragemodels

Fromamathematicalpointofview,asensorcoveragemodelisafunction thatacceptsinputfromparameterssuchasthedistances(andtheangles) betweenthesensorsandapointinspace.Theoutputofsuchafunctionisthe coveragemeasure.Theanalysisofsensorcoveragemodelsshowsthe existenceofdifferentclassificationsbasedondistinctgoals[WAN10a].In thisbook,thesemodelsareclassifiedintothreegroups:(i)binarycoverage models;(ii)probabilisticcoveragemodels,and(iii)evidentialcoverage models.AtaxonomyforsensorcoveragemodelsisdepictedinFigure1.2.In whatfollows,wepresentsomecommonlyusedcoveragemodelsindetail.

Binarycoveragemodels

SensorCoverageModels

Probabilisticcoveragemodels Evidentialcoveragemodels

Figure1.2. Ataxonomyforsensorcoveragemodels

Becauseofitssimplicity,thebinarycoveragemodelhasbeenwidelyused [WAN10a].Inthismodel,sensorsaremodeledashavingapredetermined rangeofeffectiveness.Coveragewithintherange,whichistypically characterizedbyadisk(butcanalsobeanyarbitraryshapeoracollectionof shapes),isassumedtobeeffectiveandcoverageoutsideofthegivenrangeis assumedtobenon-effective.Awell-knownvariantofthebinarymodelisthe diskmodel,whereinthesensingareaofasensorisoftenmodeledasadisk withradius R s (sensingrange)centeredatthesensor’slocation.Foranevent thatoccursat p,thefollowingequationcalculatestheprobabilityofdetection ofthateventbyasensor s:

where || sp|| istheEuclideandistancebetween s and p

Thesensorcoveragemodelcharacterizestheobservabilityofphysical phenomenasbyanindividualsensor.Ontheotherhand, networkcoverage canbeperceivedasaconsensusmeasuredeliveredbyanetworkofdistributed sensors.Thenetworkcoverageatpoint p,denoted P p ,isestimatedas:

where P s/ p istheprobabilitythatasensor s detectsaneventat p (equations [1.2]–[1.4]).Inthecaseoftheevidence-basedcoveragemodel[SEN12c],for N sensors,thecombinationofthe Nbbasm1/ p ,..., m N / p usingtheconjunctive ruleyieldsa bbam p with 2 focalsets: {θ1 } andtheFoD Θ.This bba hasthe followingexpression:

1.1.3. Sensorcommunicationmodels

Wirelesssensornodescommunicateviatheirradiomodules.Twonodes aredirectlyconnectediftheycantransmit/receivedatato/fromeachother. Asensorcommunicationmodel(oratransmissionmodel)isamathematical modelthatquantifiesthedirectconnectivitybetweensensornodes.

Acommonlyassumedcommunicationmodelisthediskconnectivity modelaccordingtowhichasensornodecancommunicatewithothernodes locatedwithinadiskitselfcenteredwithintheradiusofitscommunication range Rc .Inotherwords,twosensorsareabletocommunicatedirectlyifthey arewithinonecommunicationhopofeachother.Thismodelconsiders networkconnectivitymainlyfromageometricperspective,whichsimplifies theanalysis.However,itremainslimitedandunrealistic.Indeed,empirical studies[NIK93,SEN14a]showthatthereisnoclearcut-off boundary betweensuccessfulandunsuccessfulcommunication.

Inpractice,theattenuationexperiencedbyawirelesssignalatagiven distanceisdescribedbythepathloss,whereasshadowingdescribesrandom

1.1.4. Wirelesssensornetworks

AWSNconsistsofspatiallydistributedsensors,andoneormoresink nodes(alsocalledbasestations).Sensorsmonitor,inreal-time,physical conditions,suchastemperature,vibration,ormotion,andproducesensory data.Asensornodecouldbehavebothasdataoriginatoranddatarouter.A sink,ontheotherhand,collectsdatafromsensors.Forexample,inanevent monitoringapplication,sensorsarerequiredtosenddatatothesink(s)when theydetecttheoccurrenceofeventsofinterest.Thesinkmaycommunicate withtheend-userviadirectconnections,theInternet,satellite,oranytypeof wirelesslinks.Figure1.6depictsatypicalWSNarchitecture.Notethatthere maybemultiplesinksandmultipleend-users.

Figure1.6. TypicalWSNarchitecture.Foracolorversionofthefigure, seewww.iste.co.uk/senouci/wireless.zip

AsafundamentalissueinWSNs,deploymentisaresearchtopicthathas attractedmuchattentioninrecentyears[DHI02,ZOU03b,VIE04,LIN05, ZHA06,WU07a,YOU08,AIT09,WAN10a,ABA11,BHU12,AKB13, AMM14,SEN15c].Indeed,thenumberandlocationsofsensors,deployed inaRoI,determinethetopologyofthenetwork,whichwillfurtherinfluence manyofitsintrinsicproperties,suchasitscoverage,connectivity,costand lifetime.Consequently,theperformanceofaWSNdependstoalargeextent onitsdeployment.

Inpractice,specialcasesofWSNsareencounteredsuchaswireless multimediasensornetworks(WMSNs),underwaterwirelesssensornetworks (UWSNs),wirelessundergroundsensornetworks(WUSNs),wirelessbody sensornetworks(WBSNs)andwirelesssensor-actornetworks(WSANs).

– environmentalapplications:WSNshavewidelybeenusedfor environmentalandwildlifemonitoring[MO09,DYO10].Some environmentalapplicationsofWSNsincludetrackingthemovementsof birdsoranimals,automaticirrigation,precisionagriculture,andpollution studies[ZHA04b,WER06,KIM08].Asanexample,WSNsareemployed inFIRESENSE[FIR15],whichisaSpecificTargetedResearchProject (STReP)oftheEuropeanUnion’s7thFrameworkProgrammeEnvironment. FIRESENSEaimstodevelopanautomaticearlywarningsystemtomonitor areasofarchaeologicalandculturalinterestremotelyfromtheriskof fireand extremeweatherconditions;

– homeapplications:WSNscanhelptocreateasmartenvironmentby interconnectingvariousdevicesinresidentialspaceswithconvenientcontrol ofvariousapplicationsathome.Anexampleofsmartenvironmentsisthe smartkindergartenproject[CHE02],whichusesWSNstocreateasmart environmentforearlychildhoodeducation;

– healthcareapplications:WSNshaveenabledarapiddevelopmentof telemedicinesystems,whichprovideremotemonitoringofpatientsandtheir vitalparameters[YAN06a].Somepotentialmedicalapplicationsincluderealtimecontinuouspatientmonitoring,homemonitoringforchronicpatients, andcollectionoflong-termdatabasesofclinicaldata.Anexampleprojectis theCodeBlue[LOR04]thatdevelopsaWSNformonitoringandtrackingof patients.Also,infirmandelderlypeoplecanbenefitgreatlyfromhealthcare applicationsofWSNs,bringingabetterqualityoflifeandevensavinglives

Figure1.8. Thenodeandtheprotectiveshell[JUU15]

throughWSNtechnology.Forinstance,AlarmNet[WOO08]isaWSN designedforlong-termhealthmonitoringinassisted-livingenvironments. AlarmNetisextensibleandadaptstotheindividualcontextandbehavior patternsoftheresidents.

1.2.WSNdeploymentstrategies

OneofthefundamentaldesignissuesinWSNsiswheretoplacethe sensorsintheRoI.Thelocationofasensormayaffectthefulfillmentofthe system’srequirementsandmultiplenetworkperformancemetrics.Careful sensorplacementcanbeaveryeffectiveoptimizationmeansforachievingthe desireddesigngoals.Forexample,thecoverageobjectiveregardshowto ensurethateachofthetargetpointsintheRoIiscoveredbytheWSN.The sensorsneedtobeplacedneithertooclosetoeachothersothatthesensing capabilityofthenetworkisfullyutilizedandatthesametimenottoofar fromeachothertoavoidtheformationofcoverageholes.Agooddeployment willenableabetterperformanceoninformationgatheringand communication.

SensorscangenerallybeplacedintheRoIeitherdeterministicallyor randomly.Thechoiceofthedeploymentschemedependshighlyonthetype ofsensors,application,andtheenvironmentthatthesensorswilloperatein [YOU08,WAN09,WAN10a].Deterministicdeploymentschemesare optimalassensorsareplacedatpredeterminedcoordinatestoguarantee networkefficiency;however,theyareimpracticalandsometimesimpossible forlarge-scaleWSNapplications.Fortheseapplications,sensorsmaybe deployedfromaplane,deliveredinanartilleryshell,rocketormissile,or catapultedfromashipboard[AKY02].Inthesecases,theWSNhasthe utmostchallengeofguaranteeingproperareacoverageandconnectivityupon deployment[AKY02,YOU08].Suchcasesrequireimplementationof additionalcomplexprotocolstoensureefficientnetworkoperation,which maximizenetworklifetimeanddecreasefrequencyofre-deployment. RandomdeploymentofWSNswillbediscussedinChapter2.Chapters3 and4discussdeterministicdeploymentandfusion-baseddeterministic deployment,respectively.

Usingmobilesensors,somedeploymentstrategieshaveadvocated dynamicadjustmentofsensors’locationwhichallowsadynamicdeployment

RoI,isalsoanimportantissue.Thedistributionoftherequestedevent detectionprobabilitywillnotbeuniformasitwilldependontheapplication, theRoIandtheeventcharacteristics.Therequestedevent-detection probabilitydistributioncanalsobeinfluencedbygeographicalfactors.In manyrealworldWSNapplications,suchassurveillanceapplications,the supervisedRoImayrequirehighdetectionprobabilitiesincertainsensitive areas.However,forsomenotsosensitiveareas,relativelylowdetection probabilitiesarerequiredtoreducethenumberofdeployedsensors(e.g. Figure1.9).Forexample,ina fire-detectionsystem,highdetection probabilities(closeto1)arerequestedforhigh-riskareas(e.g.thosecloseto chemicaldeposits),andlowdetectionprobabilitiesforlow-riskareas.Inthis case,thecoveragerateisthepercentageoftheRoIwherethegenerated detectionprobabilitiesareequalorgreaterthantherequireddetection probabilities.

Figure1.9. Non-uniformcoveragescenario.Foracolorversionofthe figure,seewww.iste.co.uk/senouci/wireless.zip

1.3.4. Deploymentcost

Themoresensorsareusedthehigheristheoverallcostofthenetwork.As thelattermustbetakenintoconsideration,thenumberofdeployedsensorsis oneoftheimportantmetricsthatneedstobeconsideredwithinWSN deploymentprocesses.Almostallthepapersdedicatedtooptimalsensor deploymentconsiderachievingthespecifiedgoalswithminimumcost.In

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Deploying wireless sensor networks. theory and practice 1st edition mustapha reda senouci - The eboo by Education Libraries - Issuu