Defects in two-dimensional materials rafik addou - Download the ebook in PDF with all chapters to re

Page 1


https://ebookmass.com/product/defects-in-two-dimensional-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Two-Dimensional-Materials-Based Membranes: Preparation, Characterization, and Applications Gongping Liu

https://ebookmass.com/product/two-dimensional-materials-basedmembranes-preparation-characterization-and-applications-gongping-liu/

ebookmass.com

Two-Dimensional Materials for Nonlinear Optics: Fundamentals, Preparation Methods, and Applications Qiang Wang

https://ebookmass.com/product/two-dimensional-materials-for-nonlinearoptics-fundamentals-preparation-methods-and-applications-qiang-wang/

ebookmass.com

Elements of Structures and Defects of Crystalline Materials Tsang-Tse Fang

https://ebookmass.com/product/elements-of-structures-and-defects-ofcrystalline-materials-tsang-tse-fang-2/

ebookmass.com

Love In Harbor Falls: A Small Town Romance (Harbor Falls Series Book 1) Sandi Lynn

https://ebookmass.com/product/love-in-harbor-falls-a-small-townromance-harbor-falls-series-book-1-sandi-lynn/

ebookmass.com

Joe Higgins Search 02-Search for the Gatherers Irene Hill

https://ebookmass.com/product/joe-higgins-search-02-search-for-thegatherers-irene-hill/

ebookmass.com

Disruptive Technology and the Law of Naval Warfare James Kraska

https://ebookmass.com/product/disruptive-technology-and-the-law-ofnaval-warfare-james-kraska/

ebookmass.com

Stay Present (Kincaid Brothers Book 6) Kaylee Ryan

https://ebookmass.com/product/stay-present-kincaid-brothersbook-6-kaylee-ryan/

ebookmass.com

Yoga For Regular Guys: The Best Damn Workout On The Planet! Diamond Dallas Page

https://ebookmass.com/product/yoga-for-regular-guys-the-best-damnworkout-on-the-planet-diamond-dallas-page/

ebookmass.com

The Domestic Dog: Its Evolution, Behavior and Interactions with People 2nd

https://ebookmass.com/product/the-domestic-dog-its-evolution-behaviorand-interactions-with-people-2nd/

ebookmass.com

Transforms Public Engagement with Science 1st Edition Adam

https://ebookmass.com/product/organic-public-engagement-howecological-thinking-transforms-public-engagement-with-science-1stedition-adam-s-lerner/

ebookmass.com

DEFECTSINTWO-DIMENSIONAL MATERIALS

MaterialsToday DEFECTSIN TWO-DIMENSIONAL MATERIALS

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-820292-0

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: MatthewDeans

AcquisitionsEditor: KaylaDosSantos

EditorialProjectManager: RachelPomery

ProductionProjectManager: DebasishGhosh

Designer: ChristianJ.Bilbow

TypesetbyVTeX

Listofcontributors ix

Abouttheeditors xi

Preface xiii

1.Introduction

2.Physicsandtheoryofdefectsin2D materials:theroleofreduceddimensionality HANNU-PEKKAKOMSAAND

2.1Introduction7

2.2Classificationofdefects8

2.3Insightsintotheatomicstructuresofdefects fromscanningtunnelingandtransmission electronmicroscopyexperiments10

2.4Productionofdefectsintwo-dimensional materialsunderelectronandion irradiation11

2.5Examplesofdefectsintwo-dimensional materials12

2.6Theoreticalaspectsofthephysicsofdefects inbulkcrystallinesolidsandtwo-dimensional materials18

2.7Calculationsofdefectformationenergiesand electronicstructureusingthesupercell approach21

2.8Electronicstructureof2Dmaterialswith defects26

2.9Pointdefectsandvibrationalpropertiesof2D materialsfromatomisticsimulations32

2.10Conclusionsandoutlook34 References37

3.Defectsintwo-dimensionalelemental materialsbeyondgraphene

PAOLADEPADOVA,BRUNOOLIVIERI,CARLOOTTAVIANI, CLAUDIOQUARESIMA,YIDU, MIECZYSŁAWJAŁOCHOWSKI,ANDMARIUSZKRAWIEC

3.1Introduction43

3.2Borophene45

3.3Silicene49

3.4Germanene52

3.5Stanene55

3.6Plumbene57

3.7Phosphorene59

3.8Arsenene(h-As)andAntimonene (h-Sb)64

3.9Bismuthene70

3.10Seleneneandtellurene72

3.11Gallenene75

3.12Hafnene77

3.13Conclusionsandoutlook78 References79

4.Defectsintransitionmetal dichalcogenides

4.1Introduction89

4.2Pointdefects89

4.3Impurities94

4.4Linedefects104

4.5Controlofdefectsandtheir applications107

4.6Summary109 References110

5.Realizationofelectronicgradegraphene andh-BN

VITALIYBABENKOANDSTEPHANHOFMANN

5.1Challengesoverview:growth,transfer,and integration119

5.2Apparatusandmethodology overview121

5.3Scalablegrowthbychemicalvapor deposition124

RAFIKADDOUANDLUIGICOLOMBO
STEPHENMCDONNELLANDPETRAREINKE

5.4Materialoptimization136

5.5Conclusionsandoutlook149 References149

6.Realizationofelectronic-grade two-dimensionaltransitionmetal dichalcogenidesbythin-filmdeposition techniques

6.1Currentchallengesintransitionmetal dichalcogenidesynthesis159

6.2Currentsynthesistechniques161

6.3Controllingnucleationandcrystal growth170

6.4Materialsengineering175

6.5Summary182 References183

7.Materialsengineering–defecthealing& passivation

7.1Introduction195

7.2Defectformationandhealingin2D TMDs196

7.3Defectengineeringbychemicaltreatment andapplications201

7.4Defectcontrolbyexternalsources207

7.5Futureperspectives213 References214

8.Nonequilibriumsynthesisandprocessing approachestotailorheterogeneityin2D materials

DAVIDB.GEOHEGAN,KAIXIAO,ALEXA.PURETZKY,

8.1Introduction221

8.2Non-equilibriumsynthesis–effectsof chemicalpotentialontheheterogeneityof 2Dmaterials224

8.3Straininducedphenomenain2D materials234

8.4Heterogeneityintroducedbythe self-assemblyofnanoscale‘building blocks’241

8.5Theeffectsofkineticenergyondefectsand doping:hyperthermalimplantationforthe formationofJanusmonolayers247

8.6Summaryandoutlook250 References252

9.Two-dimensionalmaterialsunderion irradiation:fromdefectproductionto structureandpropertyengineering

MAHDIGHORBANI-ASL,SILVANKRETSCHMER,AND ARKADYV.KRASHENINNIKOV

9.1Introduction259

9.2Responseoftwo-dimensionalmaterialstoion irradiation:theoreticalaspects261

9.3Experimentsonionirradiationof two-dimensionalmaterials273

9.4Applications285

9.5Summary,challenges,andoutlook289 References291

10.Tailoringdefectsin2Dmaterialsfor electrocatalysis

LEPINGYANG,YUCHIWAN,ANDRUITAOLV

10.1Introduction303

10.2Defect-tailored2Delectrocatalystsfor hydrogenevolutionreaction(HER)304

10.3Defect-tailored2Delectrocatalystsforoxygen evolutionreaction(OER)311

10.4Defect-tailored2Delectrocatalystsfor nitrogenreductionreaction(NRR)317

10.5Defect-tailored2Delectrocatalystsforcarbon dioxidereductionreaction(CO2 RR)325

10.6Challengesandperspectivesofdefect engineeringfor2Delectrocatalysts330 References332

11.Devicesanddefectsintwo-dimensional materials:outlookandperspectives

AMRITESHRAI,ANUPAMROY,AMITHRAJVALSARAJ, SAYEMACHOWDHURY,DEEPYANTITANEJA, YAGUOWANG,LEONARDFRANKREGISTER,AND SANJAYK.BANERJEE

11.1Introduction339

11.2Defectcharacterizationin2DTMDsusing ultrafastpump-probespectroscopy341

11.3Devicesfabricatedon2DCVD-grown TMDs348

11.4DevicesfabricatedonMBE-grown TMDs355

11.52DvanderWaals(vdW) heterostructures359

11.6Enhancing2Ddeviceperformanceusing defectengineering364

11.7Theoreticalinvestigationofdefectsin2D TMDs378 References387

12.Concludingremarks RAFIKADDOUANDLUIGICOLOMBO

Index 411

Listofcontributors

RafikAddou UniversityofTexasatDallas,Richardson,TX,UnitedStates

VitaliyBabenko DepartmentofEngineering,UniversityofCambridge,Cambridge,UnitedKingdom

SanjayK.Banerjee MicroelectronicsResearch CenterandDepartmentofElectricalandComputerEngineering,TheUniversityofTexasat Austin,Austin,TX,UnitedStates

SayemaChowdhury MicroelectronicsResearch CenterandDepartmentofElectricalandComputerEngineering,TheUniversityofTexasat Austin,Austin,TX,UnitedStates

RebekahChua DepartmentofPhysics,National UniversityofSingapore,Singapore,Singapore

LuigiColombo UniversityofTexasatDallas, Richardson,TX,UnitedStates

PaolaDePadova IstitutodiStrutturadellaMateriaCNR(ISM-CNR),Rome,Italy

LNF-INFN,Frascati,Rome,Italy

YiDu ISEM-AIIMandInnovationCampus,UniversityofWollongong,Wollongong,NSW,Australia

DavidB.Geohegan FunctionalHybridNanomaterialsGroup,CenterforNanophaseMaterialsSciences,OakRidgeNationalLaboratory,OakRidge, TN,UnitedStates

MahdiGhorbani-Asl Helmholtz-ZentrumDresdenRossendorf,InstituteofIonBeamPhysicsandMaterialsResearch,Dresden,Germany

StephanHofmann DepartmentofEngineering, UniversityofCambridge,Cambridge,United Kingdom

YuLiHuang DepartmentofPhysics,NationalUniversityofSingapore,Singapore,Singapore

MieczysławJałochowski InstituteofPhysics,Maria Curie-SklodowskaUniversity,Lublin,Poland

Hannu-PekkaKomsa DepartmentofApplied Physics,AaltoUniversity,Aalto,Finland

AzimkhanKozhakhmetov ThePennsylvaniaState University,UniversityPark,PA,UnitedStates

ArkadyV.Krasheninnikov Helmholtz-Zentrum Dresden-Rossendorf,InstituteofIonBeamPhysics andMaterialsResearch,Dresden,Germany DepartmentofAppliedPhysics,AaltoUniversity, Aalto,Finland

MariuszKrawiec InstituteofPhysics,MariaCurieSklodowskaUniversity,Lublin,Poland

SilvanKretschmer Helmholtz-ZentrumDresdenRossendorf,InstituteofIonBeamPhysicsandMaterialsResearch,Dresden,Germany

Yu-ChuanLin ThePennsylvaniaStateUniversity, UniversityPark,PA,UnitedStates FunctionalHybridNanomaterialsGroup,Center forNanophaseMaterialsSciences,OakRidgeNationalLaboratory,OakRidge,TN,UnitedStates

ChenzeLiu FunctionalHybridNanomaterials Group,CenterforNanophaseMaterialsSciences, OakRidgeNationalLaboratory,OakRidge,TN, UnitedStates

RuitaoLv StateKeyLaboratoryofNewCeramicsandFineProcessing,SchoolofMaterialsScienceandEngineering,TsinghuaUniversity,Beijing,China

StephenMcDonnell DepartmentofMaterialsScienceandEngineering,UniversityofVirginia, Charlottesville,VA,UnitedStates

BrunoOlivieri CNR-ISAC,Rome,Italy

CarloOttaviani IstitutodiStrutturadellaMateriaCNR(ISM-CNR),Rome,Italy

AlexA.Puretzky FunctionalHybridNanomaterialsGroup,CenterforNanophaseMaterialsSciences,OakRidgeNationalLaboratory,OakRidge, TN,UnitedStates

ClaudioQuaresima IstitutodiStrutturadella Materia-CNR(ISM-CNR),Rome,Italy

AmriteshRai MicroelectronicsResearchCenter andDepartmentofElectricalandComputerEngi-

neering,TheUniversityofTexasatAustin,Austin, TX,UnitedStates

LeonardFrankRegister MicroelectronicsResearch CenterandDepartmentofElectricalandComputerEngineering,TheUniversityofTexasat Austin,Austin,TX,UnitedStates

PetraReinke DepartmentofMaterialsScience andEngineering,UniversityofVirginia,Charlottesville,VA,UnitedStates

JoshuaA.Robinson ThePennsylvaniaStateUniversity,UniversityPark,PA,UnitedStates

AnupamRoy MicroelectronicsResearchCenter andDepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin,Austin, TX,UnitedStates

NicholasA.Simonson ThePennsylvaniaState University,UniversityPark,PA,UnitedStates

DeepyantiTaneja MicroelectronicsResearchCenterandDepartmentofElectricalandComputer Engineering,TheUniversityofTexasatAustin, Austin,TX,UnitedStates

AndrewThyeShenWee DepartmentofPhysics, NationalUniversityofSingapore,Singapore,Singapore

RiccardoTorsi ThePennsylvaniaStateUniversity, UniversityPark,PA,UnitedStates

AmithrajValsaraj MicroelectronicsResearchCenterandDepartmentofElectricalandComputer Engineering,TheUniversityofTexasatAustin, Austin,TX,UnitedStates

YuchiWan StateKeyLaboratoryofNewCeramicsandFineProcessing,SchoolofMaterialsScienceandEngineering,TsinghuaUniversity,Beijing,China

YaguoWang DepartmentofMechanicalEngineeringandTexasMaterialsInstitute,TheUniversity ofTexasatAustin,Austin,TX,UnitedStates

KaiXiao FunctionalHybridNanomaterialsGroup, CenterforNanophaseMaterialsSciences,Oak RidgeNationalLaboratory,OakRidge,TN,United States

LepingYang StateKeyLaboratoryofNewCeramicsandFineProcessing,SchoolofMaterialsScienceandEngineering,TsinghuaUniversity,Beijing,China

YilingYu FunctionalHybridNanomaterialsGroup, CenterforNanophaseMaterialsSciences,Oak RidgeNationalLaboratory,OakRidge,TN,United States

Abouttheeditors

RafikAddou isaresearchscientistatthe UniversityofTexasatDallas,USA,where heleadseffortsonunderstandingtheinterfaceandsurfacescienceofgraphene, transitionmetaldichalcogenides,andother emerging2Dmaterialsfornano-andoptoelectronics.HeearnedaBScinPhysicsfrom MohamedPremierUniversity,Oujda,Morocco,andMScinMaterialsPhysicsfrom Aix-MarseilleUniversity,France.In2010,he receivedhisPhDdegreeinMaterialsSciencefromEcoledesMines(Nancy,France) inassociationwithEmpaMaterialsScience andTechnologyLaboratory(Thun,Switzerland).BeforejoiningUTD,Dr.Addouwas attheUniversityofSouthFlorida(Tampa FL,USA)asapostdoctoralresearchfellowin Physicswherehestudiedthesurfacephysics ofgraphene.

LuigiColombo istheDirectorofStrategicProgramsandAdjunctProfessorinthe DepartmentofMaterialsScience&EngineeringattheUniversityofTexasatDallas,USA. Foralmost40years,heworkedonavarietyofmaterialsresearchanddevelopment programsanddeviceintegrationatTexasInstrumentsinDallas,TX,USA.From2008to 2013,incollaborationwiththeRuoffgroup attheUniversityofTexasatAustin,USA, hediscoveredanddevelopedalargearea graphenefilmgrowthusingacatalyticCVD processonCusubstrates.

Preface

Thisbook, DefectsinTwo-DimensionalMaterials,providesa reviewof thefundamentalphysicsandchemistryofdefectsin2D materialsandtheireffectsonthechemical,electronic,opto-electronic,andmechanicalandotherphysicalpropertiesrelevant toapplications.Theprimaryobjectiveisto reviewdefectspresentinavarietyof2D materials,suchastransitionmetaldichalcogenides(TMD),graphene,hexagonalboron nitride(h-BN),andelemental2Dmaterialsbeyondgraphene(e.g.silicene,phosphorene,bismuthene,tellurene,hafnene,etc.). Techniquestocharacterizedefectsin2DM willbeintroducedthroughoutthebook.The discussionsalsohighlighthowunderstandingandcontrollingthesedefectscanprovideapathwaytonovelapplicationsrequiringdefectengineering,enablingscientiststo tunethepropertiesof2Dmaterialstorealize specializedapplications.

Largenumberofreviewpapersandarticlesarebeingpublishedeveryyearon conventionalandnewlydiscovered/synthetized2Dmaterialsfromtheorytoexperimentandapplications.Thisbookmakesit easyforexpertsandnon-expertstokeepup withthelatestreports,discoveries,anddevelopmentsthatinvolvedefectsin2Dmaterials.

Thebookisdesignedtocovergrowth,theoryofdefects,identificationandcharacterizationofdefects,defecthealingandpassivation,defectcreationbyirradiationandannealing,defectengineeringforcatalysisand theroleofdefectsinelectronicdevices.This bookissuitableforbothacademiaandin-

dustryworkinginthedisciplinesofmaterialsscienceandengineeringandmaybeof interesttophysicists,chemists,andelectrical engineersaswellasbeginnerstothefield.

Theeditorswouldliketothankallthe contributorsofthebookfromalloverthe world.Especiallythemainprincipalinvestigatorsforacceptingtoparticipatetothis effort:ArkadyV.Krasheninnikov(HelmholtzZentrumDresden-Rossendorf,Germany),Paola dePadova(ISM-CNR,Italy),StephenMcDonnellandPetraReinke(UniversityofVirginia,USA), VitaliyBabenko andStephan Hofmann(UniversityofCambridge,UK),AndrewT.S.Wee(NationalUniversityofSingapore),JoshuaRobinson(PennStateUniversity,USA),DavidGeohegan(OakRidge NationalLab,USA),RuitaoLv(Tsinghua, China)andSanjayBanerjee(Universityof TexasatAustin,USA).Theeditorsalso thankSilvanKretschmer(Helmholtz-Zentrum Dresden-Rossendorf,Germany)forthebook cover.

Finally,RafikAddouthankshiswife, Sara,daughter,Yasmin,parents,Joudiaand Mimoun,andsisters,Hanan,Wissamand Sanaaforpatienceandunconditionalsupport.LuigiColombowouldliketothankhis patientwife,Sumico,duringtheeditingof thisbook.

RafikAddou ResearchScientist LuigiColombo AdjunctProfessor&DirectorofStrategic Projects August2021

1 Introduction

RafikAddouandLuigiColombo

UniversityofTexasatDallas,Richardson,TX,UnitedStates

Two-dimensional(2D)materialshavebeenextensivelystudiedoverseveraldecadesbutespeciallysincetheisolationofgraphenenowover15yearsagobyNobelLaureatesKonstantin NovoselovandAndreK.Geim[1].Thisdiscoveryhasledtoasignificantlevelofeffort acrosstheworldnotonlytounderstandthefundamentalpropertiesofgraphenebutalsoreintroduceandexpandthestudytoothertwo-dimensionalmaterialssuchashexagonalboron nitride(h-BN)andtransitionmetaldichalcogenides(TMDs)[2].Thesearchfornewand“better”2Dmaterialshasalsoledtodiscoveryandgrowthofnewelementaltwo-dimensional materials.Theexpansiontoothertwo-dimensionalmaterialswasdrivenprincipallybythe needtocovertheelectromagneticspectrumwithmaterialsfromthefarinfrared(IR)tothe ultra-violet(UV)tomeetstringentcurrentandfutureapplicationsrequirements.

Graphenewithitszerobandgapcanbeusefulformanyapplicationsbuthighperformance electronicdevicestypicallyneedabandgaptoachievelowdeviceoffcurrents.Elemental2D materials[3]withnarrowbandgapscouldbeusedforsomeelectronicapplicationsrequiringnarrowbandgaps, < 1 eV,butitistheTMDswiththeirtunablebandgapsandpotential forheterostructurefabrication[4]thatareattractiveformanyelectronicandoptoelectronic applicationsincludingtransistorstohelpscalecomplementarymetaloxidesemiconductor (CMOS)devices.Finally,hexagonalboronnitride(h-BN),sometimesreferredtoaswhite graphite,aninsulatorwhichisthe2Dmaterialwiththehighestbandgap,about6eV,isa highlysoughtmaterialbecauseofitsexceptionallowinterfacetrapdensityandabilityto screenchargesfromsubstrates[5].

Fromamaterialsscienceperspective,thesuccessoftheelectronicsandoptoelectronics industryislargelyduetotheavailabilityoflargelowdefectdensitysinglecrystalsofSi, III–V,andII–VIcompounds.Further,theelectronicpropertiesofthesematerialshavebeen controlledbyintrinsicandextrinsicdopingatlevelsbelow 1014 cm 3 .Theabilitytocontrol impurities,dopingandalloyingofthesematerialshasenabledtheelectronicsindustryover thelastsevendecadestoharnesselectronictransportandelectro-opticaleffectswithunparalleledsuccess.Whiledefectchemistryandcontrolareverymatureinthesecubicsystems, thescientificcommunityisnowfacedwithasimilarchallengefor2Dmaterials.Thisbook reviewsthestatusofdefectsanddefectchemistryin2Dmaterialsaswellaschallengesand opportunitiesforthefabricationofnewdevicesandapplications.

Duringtheearlydaysof2Dmaterialsdevelopmentthefocuswasonusingsmallvery high-qualityexfoliatedgraphenefromgraphiticcarbonsourcestodevelopbasicunderstandingofthefundamentalproperties.However,asmanufacturinggrowthprocessesweredevelopedtoaddressthelackoflargeareafilmsofanyofthe2Dmaterialsandevaluatethemfor variousapplications,anotherchallengecametolight,defects.Aswillbedescribedindetail inthisbook,eventhough2Dmaterialsareatomicallythin,thereisarichnessofdefectsasin thecaseof3Dcrystals.

Thesuccessoftheelectronicsindustryisbasedonthesimultaneouscreationofthehighest crystallinequalitymaterialsinconjunctionwithprecisecontrolofdefects.Controlofdefects insemiconductorshasenabledtheindustrytofabricatemanydifferenttypesofelectronicdevicesfromsimpletransistorstoCMOSdevicestohigh-electronmobilitytransistors(HEMT) usingIII–Vcompoundheterostructures,andhigh-performanceinfrareddetectorsusingII–VI compounds.Thefabricationofthesedeviceswasenabledbythegrowthofthehighestqualitybulkcrystalsand/orthinfilmsand/ortheirheterostructuresandcontrolofinterfacesand pointdefectstomanipulatetransportofelectronsandholes,andbandstructure.Thebasic understandingofdefectsanddefectchemistryinthebulk,andinterfacesofsemiconducting heterostructuresandsemiconductorswithdielectricshasledtothefabricationofnotonly high-performancedevicesbutalsoreliabledevicessupportingafewtrillion-dollarelectronicsindustry.

Thesuccessof2Dmaterialsforelectronicapplicationswillalsolargelydependonour abilitytonotonlygrowthehighestqualitymaterialsbutalsocontroldefectsandsurfaces toasimilardegreeasintraditionalelectronicmaterialsinproductiontoday.Underideal conditions,defectsin2Dmaterialsarelikethosein3Dsemiconductormaterialswithone majordistinction,2Dmaterialshavetwosurfacesand“nobulk”.Inotherwords,surfaces playacriticalroleinthedefectformation,types,characteristics,andmethodstocontrolthem. Thehopeformanyapplicationsistotakeadvantageofthelowsurfacestatedensitydueto thesp2bondingnatureofthe2Dmaterials,andtheatomicallythinnatureforelectrostatic controlofscaledtransistors.

Thebookstartswithachapterby H.-P.KomsaandA.V.Krasheninnikov onanoverviewof recentadvancesandcurrentunderstandingofthephysicsofdefectsin2DMs.Inthischapter theauthorsdiscussthechangesinthetheoreticaldescriptionofnativeandextrinsicdefects, andthereduceddimensionalityofsomedefects:forexample,agrainboundaryisalinedefect in2D,andedgedislocationisapointdefect.Interstitialatomsdonotexistinthemajorityof 2Dmaterials(e.g.graphene,h-BN,MoS2 ),asitisenergeticallymorefavorablefortheatomto takeanadatompositionratherthanbeembeddedintotheatomicnetwork.Theauthorsalso discusstheplausibilitythatvariousspeciescanbeadsorbedatthereactivedanglingbondsof theatomsnexttovacancies(e.g.,hydrogenornitrogenatoms)in2DMoS2 andotherTMDs. These“defects”cangiverisetoshallowoccupiedstatesclosetoconductionbandminimum (CBM)oremptystatesnexttovalencebandminimum(VBM).Theauthorsfurtherdiscuss howthegeometryof2Dmaterialsrequiresmakingchangesinthetheoreticaldescription ofchargedpointandlinedefects,asthescreening/electrostaticsisstronglyanisotropicand inhomogeneous,andtheresultsmaydependontheshapeofthesimulationcellandelectrostaticcorrectionschemeused.Theauthorsfurtherstatethattheenvironmentshouldalsobe carefullyaccountedfor,bothinmodifyingthescreeningandbychoosingthevaluesofatom chemicalpotentialsmatchingtheexperimentalsituation.

Thethirdchapterby PaoladePadovaetal.on“Defectsintwo-dimensionalelementalmaterialsbeyondgraphene”presentsanextensivereviewofelemental2Dmaterialsbeyond graphenesuchasBorophene,Silicene,Germanene,Stanene,Plumbene,Phosphorene,Arsenene,AntimoneneBismuthene,SeleneneandTellurene.Here,theauthorsreviewdifferent typesofstructuralpointdefects,includingStone-Wales,singlevacancy,andbi-vacancies,as wellasgrainboundaries(lines)andadatomsasdescribedbasedontheoreticalandexperimentalpublishedreports.Thediscussionextendstohighlightingthatsomeoftheseemerging 2Dmaterialsshownon-trivialtopologicalbehaviorduetothepresenceofdefectsthatcould beofgreatinterestfortheirpotentialuseinseveralelectronicapplications.

Thefourthchapterisby StephenMcDonnellandPetraReinke on“Defectsintransitionmetal dichalcogenides”providesthereaderwithanoverviewoftheroleofdefectsontheproperties ofTMDmaterials.Theauthorslistthevarioustypesofdefectsuniqueto2Dmaterialsand provideexamplesfromtheexperimentaldatabaseandpointoutthatthecommunityisstill alongwayfromsynthesizingtrulyhigh-purityfilmscomparabletosilicon.Inthelongterm, achievinghighpuritymaterialwillsignificantlysimplifypropertyengineeringofTMDs,but inthenearterm,wemustcontinuetothoroughlycharacterizethematerialsandcontinue toconsiderbothrandom/uncontrolledandengineereddefectswheninterpretingtheirfunctionalproperties.

Tocomplementthechaptersondefects,twochaptershavebeendedicatedtocrystal growthofgraphene,h-BNandTMDs.WhileChapter 5 writtenby VitaliyBabenkoandStephan Hofmann reviewsthegrowthofelectronicgradegrapheneandh-BN,Chapter 6 writtenby YuChuanLinetal. reviewsthegrowthofelectronicgradeTMDthinfilms.Overthelastdecade orsoalargeefforthasbeendedicatedtothedevelopmentoflarge-scalecrystalgrowthof 2Dmaterials.Bottom-upthinfilmapproachesarebeingdevelopedfor2Dmaterialstomeet industrialrequirementsandextensiveeffortsarealsobeingdedicatedtotheunderstanding andcontrolofdefectsinsyntheticmaterialsasopposedtonaturallyoccurring2DmaterialslikegraphiteandsomeMoS2 .HexagonalboronnitrideandmanyotherTMDshavenot beenfoundinnature.Theseprocessesaredevelopedtoreplacetheexfoliatedprocessfor graphene,h-BNandTMDsextensivelyusedtogeneratesamplesforfundamentalstudies. Today,waferscaleprocessessuchascatalyticchemicalvapordepositionofgrapheneand h-BNhavebeendevelopedandnumerousvapordepositionprocessesarebeingdeveloped forTMDs.Theauthorsofthesetwochaptersreviewanddescribeindepthvariousprocesses usedtogrowlargearea2Dmaterialsfilmswithcontrolleddefectdensitiestomeetthemany deviceperformancerequirements.

ThepreviouschaptersongrowtharefollowedbyChapter 7 by DavidB.Geoheganetal. on“Nonequilibriumsynthesisandprocessingapproachestotailorheterogeneityin2Dmaterials”wheredefectsarestudiedwithrespecttonucleationandgrowthwherestochastic variationsinchemicalpotential,temperature,fluxofdifferentspeciespushthesynthesis environmentoutofequilibrium.Cooperativeeffects,suchasstrainaccumulationduetocoalescencewithothercrystallinedomainsduringgrowth,canalsoinducebothlocalizedand long-rangeheterogeneities.Inthecaseof2DTMDmaterialssucheffectsaremanifestedas changesinoptoelectronicproperties.Theauthorsgoontodescribeasynergisticapproachto revealthesyntheticoriginsofheterogeneityin2DTMDmaterialsthatinvolvesacombination of:(1)temporally-andspatially-resolvedinsitudiagnosticsofgrowthenvironment,using primarilyopticalspectroscopicandelectronmicroscopytechniques,(2)acorrelationbetween

spectroscopicmapsofoptoelectronicpropertiesandatomisticcharacterizationofheterogeneity,usingprimarilyZ-contrastscanningtransmissionelectronmicroscopy,and(3)correlated theoryofelectronicandvibrationalproperties,leadingtocomputationalmodelingsimulationsofsynthesisdynamics.Theauthorsthendiscussrecentprogressontheroleofkinetic energyondefectgenerationinatomicallythin2DTMDcrystalsfortheformationofJanus TMDmonolayers.

InChapter 8 “Materialsengineering–defecthealing&passivation”theauthors YuLi Huangetal.reviewstrategiesondefecthealingandpassivationasappliedtoTMDmaterials. Theydiscusstheformationofintrinsicdefectsandself-healingwithsmallmolecules(e.g., O2 )aswellasviachemicaltreatments,e.g.,decorationwithorganiclayers,whichresultin improveddevice.Thermalannealing,electronbeamirradiation,plasmatreatment,andencapsulation,arealsodiscussed.Theyconcludethechapterwithanoutlookonthechallenges andopportunitiesfordefectminimizationin2Dmaterials,withafocusonTMDs.

MahdiGhorbani-Asletal. inChapter 9 presentareviewon “Two-dimensionalmaterialsunder ionirradiation:fromdefectproductiontostructureandpropertyengineering” wheretheydiscuss theeffectsofionirradiationof2Dmaterialsandtheroleofreduceddimensionality.They goontocomparetheimpactofionson3Dand2Dmaterials.Theprimaryobjectiveofthis chapteristoreviewanddiscusstheeffectofionbeamson2Dmaterialsandhowtheycanbe usedtoengineertheirstructureandproperties.Itshouldbenotedthattheworkreviewedin thischapterismostlyongrapheneandMoS2 giventhelimiteddataonother2Dmaterials.

Chapter 10 by LepingYangetal.isdedicatedto“Tailoringdefectsin2Dmaterialsforelectrocatalysis”wheretheauthorssummarizethestate-of-the-artadvancesindefectengineeringof 2Dmaterialsforelectrocatalyticapplicationsinvolvinghydrogenevolutionreaction(HER), oxygenevolutionreaction(OER),carbondioxidereductionreaction(CO2 RR),andnitrogen reductionreaction(NRR).Thechallengesthatthecommunityfacesinthisveryfertilefield aretuningsurfaceelectronicstatestooptimizethereactionenergybarriers,theincorporation ofsufficientactivesitestoimprovethesurfaceelectrochemicalreactivity,andenhancingthe electricalconductivitytoaccelerateelectrontransportamongthereactioninterfaces.

Thelastchapterofthebookbeforethesummaryby A.Raietal. on“Devicesanddefects intwo-dimensionalmaterials:outlookandperspectives”presentsacomprehensivereview on2Dmaterials-baseddevicesandeffectsofdefects,interfaces,interfacialdefects,anddielectricsonelectronicdevicecharacteristicsandtransport.Theyreportondevicesfabricated onCVDandMBEgrown2Dfilmsandusingheterostructuresformedusingavarietyof 2Dmaterials.TheypresentaplethoraofdataontheeffectofmanydielectricsonthedevicepropertiesofTMDsbaseddevices.TheyalsodiscussthefabricationofVanderWaals heterostructureswhereanyatomicallythin2Dmaterialcanbestacked,rotated(twisted)to achievethedesiredbandstructurethusleadingtounprecedentedadvancementinelectronics.ThechapterconcludeswithareviewonthetheoreticalinvestigationofdefectsinTMDs.

References

[1]ScientificBackgroundontheNobelPrizeinPhysics2010,ClassforPhysicsoftheRoyalSwedishAcademyof Sciences. https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2010.pdf,2010.

[2]K.S.Novoselov,D.Jiang,F.Schedin,T.J.Booth,V.V.Khotkevich,S.V.Morozov,A.K.Geim,Two-dimensional atomiccrystals,ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica102(30)(2005) 10451–10453.

[3]N.R.Glavin,R.Rao,V.Varshney,E.Bianco,A.Apte,A.Roy,E.Ringe,P.M.Ajayan,Emergingapplicationsof elemental2Dmaterials,AdvancedMaterials32(7)(2020).

[4]F.N.Xia,H.Wang,D.Xiao,M.Dubey,A.Ramasubramaniam,Two-dimensionalmaterialnanophotonics,Nature Photonics8(12)(2014)899–907.

[5]C.R.Dean,A.F.Young,I.Meric,C.Lee,L.Wang,S.Sorgenfrei,K.Watanabe,T.Taniguchi,P.Kim,K.L.Shepard, J.Hone,Boronnitridesubstratesforhigh-qualitygrapheneelectronics,NatureNanotechnology5(10)(2010) 722–726.

Physicsandtheoryofdefectsin2D materials:theroleofreduced dimensionality

Hannu-PekkaKomsaa andArkadyV.Krasheninnikovb,a

a DepartmentofAppliedPhysics,AaltoUniversity,Aalto,Finland b Helmholtz-Zentrum Dresden-Rossendorf,InstituteofIonBeamPhysicsandMaterialsResearch,Dresden,Germany

2.1Introduction

Defectsincrystallinesolidsareunavoidable.Indeed,thesecondlawofthermodynamics statesthatacertainamountofdisordershouldbepresentinanymaterialatfinitetemperatures,providedthatthesystemisinthermodynamicequilibrium.Moreover,theconcentrationofdefectsinsyntheticmaterialscanbewellabovetheequilibriumvaluedepending uponthepreparationprocess.Typicallymaterialsgrownundernearequilibriumconditions attemperaturesclosetooratthemeltingpointtendtohavelowerdefectdensitiesthanmaterialgrownundernon-equilibriumconditions.Defectscanalsoappearduetoexternalfactors, suchaspressureorirradiationwithenergeticparticles.Defectsstronglyinfluencethebehaviorofcrystallinesolids,somuchsothatbothscientistsandengineershavedevotedtheir careerstonotonlyreducethem,butcontrolthemwithgreataccuracy[1].Specifically,defects cancompletelygoverntheelectronic,optical,thermal,andmechanicalpropertiesofthesolid. Althoughtheword“defect”hasnegativeconnotation,imperfectionsincrystalsdonot alwayshavedetrimentaleffectsonmaterialsproperties[2],withthemostprominentexamplebeingthedopingofsemiconductorsbycontrollableintroductionofimpuritiesusingion implantationorcolorcentersinwide-gapsemiconductors[3].Otherexamplesincludethe pinningofmagneticvorticesondefectsintype-IIsuperconductors[4],orthepossibilityto controlmechanicalstrengthandductilityofmetalsbyintroducingdislocations,grainboundariesandimpurities[5].Toemphasizetheversatileandimportantroleofdefects,itistemptingtoquotefromtheAshcroft-Mermin’stextbook[6]:“Likehumandefects,thoseofcrystals comeinaseeminglyendlessvariety,manydrearyanddepressing,andafewfascinating.”

2.Physicsandtheoryofdefectsin2Dmaterials:theroleofreduceddimensionality

Asforirradiation-induceddefects,theycaneasilybeproducedinirradiation-hostileenvironments,suchasopenspaceorfission/fusionreactors.Moreover,thetreatmentsofsolids withbeamsofenergeticionsandelectronshavebeenshowntobeveryusefulfortailoring propertiesofmaterialsaftersynthesis.Theseaspectshavestimulatedhugeinterestnotonly inthephysicsofdefects,butalsointheirproductionmechanismsunderirradiation,includingknock-onorballisticdamage,electronicexcitationsand,inlow-dimensionalmaterials, irradiation-inducedchemicaletching.

Nano-structuredmaterialsalsohavedefectsandimpurities.Thereduceddimensionality ofthesesystems,however,makesthephysicsofdefectsquitedifferentfromthatinbulk systems.Thisisparticularlyrelevanttotwo-dimensionalmaterials(2DMs),whichsincethe isolation[7]ofasinglesheetofgraphenebyA.GeimandK.Novoselov,havebeenatthe forefrontofresearchduetoauniquecombinationoftheirelectronic,optical,andmechanical propertiesandpotentialapplicationsinnanoelectronics,photonics,catalysis,aswellasenergystorageandconversion,andmore,seeRefs.[8–11]foranoverview.Thefamilyofthe experimentallysynthesized2DMsincludesnowaboutahundredmembers,withthemost prominentonesamongthem(inadditiontographene)beinghexagonalboronnitride(hBN)[12]andtransitionmetaldichalcogenides(TMDs)[13].

In2DMs,evenwhentheformationenergyofdefectsishighasinthecaseofgraphene,so thattheequilibriumconcentrationofdefectsisnegligibleoverawiderangeoftemperatures, imperfectionscanappearduetotheinteractionwiththeenvironment[14–16],as2DMshave averyhighsurface-to-volumeratio,Fig. 2.1(a,b).Moreover,anyspeciesonthesurfaceof 2DMscanhavestrongeffectonthematerialproperties,whiletheprocessesonthesurfaces ofbulksystemsarenormallycompletelyignoredinthecontextofpoint(andfrequentlyline) defects.

Inthischapter,wefirstgiveabriefoverviewofthetypesofdefectsinbulksystemsand 2DMswiththemainfocusonthedifferencesoriginatingfromthereduceddimensionalityof thelatter.Webrieflydiscusshowthegeometryof2DMsalsomakesitpossibletodeliberately introducedefectswithnearlyatomicspatialresolutionusingfocusedionandelectronbeams, whichalsohelpsinimagingthedefectsusingscanningprobeandtransmissionelectronmicroscopy.Wealsodiscussthechangeswhichshouldbemadeinthetheoreticaldescriptionof nativeandextrinsicdefects.Finallywebringforththechallengesinthisfieldandtheissues whichstilllackbasicunderstanding.Westressthatourmaingoalisnottogiveacomplete overviewofallpossibledefectsinall2DMs,buttoanalyzegeneraltrendsandillustratethem byafewexamples.

2.2Classificationofdefects

Priortodiscussingdefectsin2DMs,itisinstructivetogiveageneraldefinitionofdefects incrystallinematerialsandtheirclassification.Thesimplestnotionofadefectinacrystalline solidistheideaofastructuralimperfection(e.g.,missingatomorpresenceofanimpurity), thatisadeviationfromtheperfectorder(periodicity).Amorerigorousdefinitioncanbe formulatedasfollows:“Astructuraldefectisaconfigurationinwhichanatom(orgroupof atoms)doesnotsatisfythestructurerulespertainingtotheidealreferencesystemormaterial”.

FIGURE2.1 (a)Schematicillustrationofavacancyformationinabulkcrystallinesolid.Theeffectsoftheenvironmentarenormallyneglected.Thegreyarearepresentsthesupercellusedindefectsimulations.(b)Formationof avacancyina2DM.Unlessvacuumisperfect,thereactivedanglingbondsatthevacancycanpickupatomsfrom theenvironment,makingtheequilibriumvacancyconcentrationdependentonthechemicalenvironment.Notethat inideal2DMs,likegrapheneorh-BN,adatomsplaytheroleoftheinterstitialsasinbulkcrystals.(c)Impactofan energeticionontoabulktarget.Theionkineticenergyistransferredballisticallytothetargetatoms,whichresults inatomdisplacement,alongwithtemperatureandpressurerise,andultimatelytodefectformation.Theatomsare coloredaccordingtotheirkineticenergyfromblue(zeroenergy)tohigh(red)energies.(d)Impactofanionontoa 2DM.Whilealltheionenergyisdepositedintothebulksystems,onlyafractionofionenergyistransferredtothe 2Dtarget.Besides,aconsiderableamountofthedepositedenergyistakenawaybysputteredatoms.

Defectscanbeclassifiedaccordingtotheir dimensionality.Correspondingly,in bulk systems,onecandifferentiatebetween:

•Pointdefectsor0Ddefects,e.g.,vacancies;

•Lineardefectsor1Ddefects,e.g.,dislocations;

•Planardefectsor2Ddefects,e.g.,grainboundaries;

•Volumedefectsor3Ddefects,e.g.,voids.

Wenoteherethatedgedislocationscouldalsobeconsidered2Ddefectsduetotheaddedor removedhalf-planeora3Ddefectduetofinitethicknessofthehalf-plane.Thegivenexamplesfrombulksolidsmaynotbeappropriateinthecaseof2DMs.Theedgedislocationsin 2DMsare0Ddefects,sincethedislocationlinecannotexistperpendiculartothelayer,andthe sameistruefordisclinations.Screwdislocationscannotbepresentinthecaseofmonolayers either,butcanconnectlayersinmultilayerstructures[17–19].Similarly,grainboundariesin 2DMsbecome1Ddefects.Voidsin2Dsystemsareholesformedby,e.g.,agglomerationof vacancies.

2.Physicsandtheoryofdefectsin2Dmaterials:theroleofreduceddimensionality

Pointdefectscanbefurthercharacterizedaccordingtothe chemicalcontent:

•Intrinsicdefects,e.g.,vacancies,self-interstitials;

•Extrinsicdefects,e.g.,impurityatoms;

•Antisitedefectsincompoundsolids;

•Isotopes.

Notethatimpurityatomscanbeinbothsubstitutionalandinterstitialpositions,thatis, theycanoccupythepositionsofhostatoms,orbebetweenthem.Asforisotopes,allthe atomsinthiscasearechemicallyequivalent,butdifferentmassesoftheisotopeatomsaffectvibrationalandindirectlyelectronicproperties,givingrise,e.g.,totheisotopeeffectin superconductors.

Pointdefectscanalsobeclassifiedaccordingtothelocalnumberofatomsinacertain volume(areain2DMs):Whenlocallytherearefeweratomsthaninthepristinelattice,one cantalkaboutvacancy-typedefects,andwhentheoppositeholds,aboutinterstitials.Atthe sametime,thenumberofatomscanbethesameasintheperfectlattice,buttheycanbe arrangedinadifferentway,dueto,e.g.bondrotations(notethatsuchconfigurationshavea higherenergy).Examplesofsuchdefects,alsoreferredtoasWignerdefects[20],arebound vacancy-interstitialpairsingraphite[20]andsilicon[21],orStone-Walesdefects[22]inthe sp2 -hybridizedcarbonsystems.Thelattercanrelativelyeasilybeannealed,as,forexample, contrarytovacanciesandinterstitials,theydonotrequiremigrationofthedefects,andthey maystoreaconsiderableamountofenergy.

Onecanalsoclassifydefectsaccordingtotheir origin:forinstancenativedefects(vacanciesandinterstitials)maynaturallyexistinthespecimenatfinitetemperatures(itisassumed thatthesystemisinequilibrium)ortheycanbeinducedbyhigh-temperatureannealingina specificatmosphereorirradiation–theso-called“irradiation-induceddefects”.Thiswording isfrequentlyusedtoemphasizethattheconcentrationofdefectsiswellabovetheequilibriumvalue,whileitisfundamentallyimpossibletosayifaparticularvacancy(oranyother defect)wasproducedduetoathermalfluctuationortheimpactofanenergeticparticle.In thecaseofhigh-temperatureannealing,suchasvacanciesinmulti-componentII–VIandIII–V systemsannealedunderdifferentpressuresofoneofthecomponents,thedefectconcentrationmaybeclosetoequilibriumattheelevatedtemperature,butwellabovetheequilibrium concentrationatroomtemperature.

2.3Insightsintotheatomicstructuresofdefectsfromscanningtunnelingand transmissionelectronmicroscopyexperiments

Variousexperimentaltechniquescanbeusedtoprobedefectsin2DMs,seeChapter 3 for details.Defectsandimpuritiescanbedetectedusingopticalspectroscopy[23]orbyX-ray absorptionspectroscopyandrelatedmethods(XAFS,XANES)basedonprobingthedefectinducedelectronicstatesbyexcitingcoreelectronsintheatomsnexttothedefect[24].Also Ramanspectroscopycanbeusedtoidentifythepresenceofdefectsinthesampleandto assessdefectconcentration[25,26].

High-resolutiontransmissionelectronmicroscopy(HR-TEM)andscanningtransmission electronmicroscopy(STEM)haveproventobeveryefficienttoolstogetinsightsintothe

atomicstructureofdefects.Infact,thequickprogressintheinvestigationofdefectsin2DMs canbepartlycreditedtotherecentimpressivedevelopments[27–29]inaberration-corrected HR-TEM(asevidentfromthe2020KavliPrizeinNanoscienceawardedexactlyforthese developments)andtheverynatureofany2Dsystem.TheTEMstudiesofbulkmaterials assumefabricationofathin(yetpreservingthemorphologyofthebulksystem)sample,followedbythereconstructionofitsatomicstructurefromtheTEMimage,whereonespotcan correspondtoacolumnofatoms.TEMcharacterizationof2DMsdoesnotrequirethis,asthe structureisalreadyatomicallythin,andeveryatomcandirectlybe“seen”.Moreover,byfocusingelectronbeamonspecificareas(essentiallyonsingleatom),andusingelectronenergy lossspectroscopy(EELS),itispossiblenowtoidentifyimpurityatomsinsubstitutionalpositions[30]andgettheinformationonthelocalelectronicstructure/bondingconfigurations [29,31],magneticstates[32],andevenphonons[33].

Thebombardmentofthesamplebytheenergeticelectrons(inthe30-200keVrange)may leadtosampledamage.Ononehand,fastorexcessivedamagemayhindertheexperiments, butontheotherhand,theabilitytocreatedefectsondemandisidealwhenonewantsto studydefects.

Nowadays,eventhefullthree-dimensionalstructure,yieldinginformationaboutrippling andbendingarounddefectscanbeobtainedusingSTEMwithtilting(tomography)and computer-aidedreconstructiontechniquestakingadvantageof(S)TEMimagesimulations [34,35].Recently,ithasalsobecomepossibletoextractchargedensityandelectricfieldmaps arounddefectsusingelectronholographyandelectronptychography[36,37].

Theuniquegeometryof2DMs(surfaceonly),enablesonetodirectly“see”thedefects usingscanningprobemicroscopy(scanningtunnelingmicroscopy,STM,andatomicforce microscopy,AFM,whichcanbothbereferredtoasscanningprobemicroscopy,SPM)techniques.ByscanningtheSTMtipbias,denotedscanningtunnelingspectroscopy(STS),itis alsopossibletoobtainenergy-resolvedinformationontheelectronicstatesclosetothetip and,forinstance,findtheenergiesofdefectstateswithinthebandgap.Theobtainedspectraoftencloselyresemblethelocaldensityofstates,whichcanbereadilycomparedtothose obtainedfromelectronicstructurecalculations.SinceSTM/STSyieldsspatially-resolvedand energy-resolvedinformationabouttheelectrondensity,itthuscomplementsthemoredirect structuralinformationobtainedfrom(S)TEM.STMisalsolargelynon-destructivemethod, andthusenablesindepthstudiesofelectrondynamicsin/aroundthedefects,e.g.,defect chargingorTomonaga-Luttingerliquid[38,39].Ontheotherhand,theinterpretationofSTM imagesisoftenmorecomplicated,asitprobestunnelingcurrenttolocalelectronicstatesina certainenergyrange,nottheatoms,andmayrequirecomparisonwiththecalculatedimages.

2.4Productionofdefectsintwo-dimensionalmaterialsunderelectronandion irradiation

Thereduceddimensionalityof2DMsalsoaffectthebehaviorofthesesystemsunderimpactsofenergeticparticles,suchaselectronsandions.Herewebrieflytouchuponthemain aspectsoftheirradiationresponseof2DMs,whilethedetailedanalysisoftheexperimental

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.