Deep learning for medical image analysis 1st edition s. kevin zhou - Download the ebook and explore

Page 1


https://ebookmass.com/product/deep-learning-for-medical-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Handbook of Medical Image Computing and Computer Assisted Intervention (Elsevier and Miccal Society) S. Kevin Zhou (Editor)

https://ebookmass.com/product/handbook-of-medical-image-computing-andcomputer-assisted-intervention-elsevier-and-miccal-society-s-kevinzhou-editor/

ebookmass.com

Medical image recognition, segmentation and parsing : machine learning and multiple object approaches 1st Edition Zhou

https://ebookmass.com/product/medical-image-recognition-segmentationand-parsing-machine-learning-and-multiple-object-approaches-1stedition-zhou/

ebookmass.com

Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture 1st Edition Xichuan Zhou

https://ebookmass.com/product/deep-learning-on-edge-computing-devicesdesign-challenges-of-algorithm-and-architecture-1st-edition-xichuanzhou/

ebookmass.com

Economics

and Financial

Management

for

Nurses and Nurse Leaders, Third Edition 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/economics-and-financial-management-fornurses-and-nurse-leaders-third-edition-3rd-edition-ebook-pdf/

ebookmass.com

Feminist

Global Health Security Clare Wenham

https://ebookmass.com/product/feminist-global-health-security-clarewenham/

ebookmass.com

(eBook PDF) Managerial Economics in a Global Economy 9th Edition

https://ebookmass.com/product/ebook-pdf-managerial-economics-in-aglobal-economy-9th-edition/

ebookmass.com

Medjugorje and the supernatural : science, mysticism, and extraordinary religious experience Klimek

https://ebookmass.com/product/medjugorje-and-the-supernatural-sciencemysticism-and-extraordinary-religious-experience-klimek/

ebookmass.com

Wiley Abridged Print Companion for Engineering Mechanics: Statics | 9th Edition J.L. Meriam

https://ebookmass.com/product/wiley-abridged-print-companion-forengineering-mechanics-statics-9th-edition-j-l-meriam/

ebookmass.com

The Witch's Betrayal: a Fated Mates Shifter Romance (The Raven Chronicles Book 3) Missy De Graff

https://ebookmass.com/product/the-witchs-betrayal-a-fated-matesshifter-romance-the-raven-chronicles-book-3-missy-de-graff/

ebookmass.com

https://ebookmass.com/product/something-bad-is-going-to-happen-1stedition-jessie-stephens/

ebookmass.com

Deep Learning for Medical Image Analysis

DeepLearningfor MedicalImage Analysis

TheElsevierandMICCAISociety BookSeries

Advisoryboard

StephenAylward (Kitware,UnitedStates)

DavidHawkes (UniversityCollegeLondon,UnitedKingdom)

KensakuMori (UniversityofNagoya,Japan)

AlisonNoble (UniversityofOxford,UnitedKingdom)

SoniaPujol (HarvardUniversity,UnitedStates)

DanielRueckert (ImperialCollege,UnitedKingdom)

XavierPennec (INRIASophia-Antipolis,France)

PierreJannin (UniversityofRennes,France)

Alsoavailable:

Balocco,ComputingandVisualizationforIntravascularImagingand ComputerAssistedStenting,9780128110188

Wu,MachineLearningandMedicalImaging,9780128040768

Zhou,MedicalImageRecognition,SegmentationandParsing, 9780128025819

DeepLearningfor MedicalImage Analysis

HayitGreenspan DinggangShen

AcademicPressisanimprintofElsevier

125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2017ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(other thanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,or fromanyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-810408-8

ForinformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com

Publisher: JoeHayton

AcquisitionEditor: TimPitts

EditorialProjectManager: CharlotteKent

ProductionProjectManager: Julie-AnnStansfield

Designer: MatthewLimbert

TypesetbyVTeX

PART1INTRODUCTION

CHAPTER1AnIntroductiontoNeuralNetworksandDeep Learning .......................................... 3

Heung-IlSuk

1.1 Introduction.........................................3

1.2 Feed-ForwardNeuralNetworks........................4

1.2.1Perceptron....................................4

1.2.2Multi-LayerNeuralNetwork.....................5

1.2.3LearninginFeed-ForwardNeuralNetworks........6

1.3 ConvolutionalNeuralNetworks........................8

1.3.1ConvolutionandPoolingLayer...................8

1.3.2ComputingGradients...........................9

1.4 DeepModels........................................11

1.4.1VanishingGradientProblem.....................11

1.4.2DeepNeuralNetworks..........................12

1.4.3DeepGenerativeModels........................14

1.5 TricksforBetterLearning.............................20

1.5.1RectifiedLinearUnit(ReLU)....................20

1.5.2Dropout......................................20

1.5.3BatchNormalization............................21

1.6 Open-SourceToolsforDeepLearning...................22 References..........................................22 Notes..............................................24

CHAPTER2AnIntroductiontoDeepConvolutionalNeural NetsforComputerVision ......................... 25 SurajSrinivas,RaviK.Sarvadevabhatla, KondaR.Mopuri,NikitaPrabhu, SrinivasS.S.KruthiventiandR.VenkateshBabu

2.1 Introduction.........................................26

2.2 ConvolutionalNeuralNetworks........................27

2.2.1BuildingBlocksofCNNs.......................27 2.2.2Depth........................................29

2.2.3LearningAlgorithm............................30 v

3.4.1AnatomyDetectionandSegmentationin3D........71

3.4.2LandmarkDetectionin2Dand3D................74

4.3.3LearningStageII:CNNBoosting.................90

4.3.4Run-TimeClassification.........................92

4.4 Results.............................................93

4.4.1ImageClassificationonSyntheticData............93

4.4.2Body-PartRecognitiononCTSlices..............95

4.5 DiscussionandFutureWork...........................99 References..........................................100

CHAPTER5AutomaticInterpretationofCarotidIntima–Media ThicknessVideosUsingConvolutionalNeural Networks .......................................... 105 NimaTajbakhsh,JaeY.Shin,R.ToddHurst, ChristopherB.KendallandJianmingLiang

5.1 Introduction.........................................106

5.2 RelatedWork........................................107

5.3 CIMTProtocol......................................109

5.4 Method.............................................109

5.4.1ConvolutionalNeuralNetworks(CNNs)...........109

5.4.2FrameSelection................................110

5.4.3ROILocalization...............................112

5.4.4Intima–MediaThicknessMeasurement............115

5.5 Experiments.........................................117

5.5.1Pre-andPost-ProcessingforFrameSelection.......118

5.5.2ConstrainedROILocalization....................118

5.5.3Intima–MediaThicknessMeasurement............121

5.5.4End-to-EndCIMTMeasurement..................123

5.6 Discussion..........................................124

5.7 Conclusion..........................................128 Acknowledgement...................................128 References..........................................128 Notes..............................................131

CHAPTER6DeepCascadedNetworksforSparselyDistributed ObjectDetectionfromMedicalImages ........... 133 HaoChen,QiDou,LequanYu,JingQin,LeiZhao, VincentC.T.Mok,DefengWang,LinShiand Pheng-AnnHeng

6.1 Introduction.........................................134

6.2 Method.............................................136

6.2.1CoarseRetrievalModel.........................136

6.2.2FineDiscriminationModel......................139

6.3 MitosisDetectionfromHistologyImages................139

6.3.1Background...................................139

6.3.2TransferLearningfromCross-Domain.............140

6.3.3DatasetandPreprocessing.......................140

6.3.4QuantitativeEvaluationandComparison...........141

6.3.5ComputationCost..............................142

6.4 CerebralMicrobleedDetectionfromMRVolumes.........143

6.4.1Background...................................143

6.4.23DCascadedNetworks.........................144

6.4.3DatasetandPreprocessing.......................146

6.4.4QuantitativeEvaluationandComparison...........147

6.4.5SystemImplementation.........................149

7.1 DeepVoting:ARobustApproachTowardNucleus LocalizationinMicroscopyImages.....................156

7.1.1Introduction...................................156

7.1.2Methodology..................................158

7.1.3WeightedVotingDensityEstimation..............162

7.1.4Experiments...................................163

7.1.5Conclusion....................................165

7.2 StructuredRegressionforRobustCellDetectionUsing ConvolutionalNeuralNetwork.........................165

7.2.1Introduction...................................165

7.2.2Methodology..................................166

7.2.3ExperimentalResults...........................169 7.2.4Conclusion....................................171

PART3MEDICALIMAGESEGMENTATION

JeffreyJ.Nirschl,AndrewJanowczyk,EliotG.Peyster, ReneeFrank,KennethB.Margulies, MichaelD.FeldmanandAnantMadabhushi

8.2.1DataSetDescription............................183

8.2.2ManualGroundTruthAnnotations................183

8.2.3Implementation................................183

8.2.4TrainingaModelUsingEngineeredFeatures.......185

8.2.5Experiments...................................186

8.2.6TestingandPerformanceEvaluation...............188

8.3 ResultsandDiscussion................................188

8.3.1Experiment1:ComparisonofDeepLearningand RandomForestSegmentation....................188

8.3.2Experiment2:EvaluatingtheSensitivityofDeep LearningtoTrainingData.......................188

8.4 ConcludingRemarks.................................191 Notes..............................................191 DisclosureStatement.................................191 Funding............................................192 References..........................................192

CHAPTER9DeformableMRProstateSegmentationviaDeep FeatureLearningandSparsePatchMatching .... 197 YanrongGuo,YaozongGaoandDinggangShen

9.1 Background.........................................197

9.2 ProposedMethod....................................199

9.2.1RelatedWork..................................199

9.2.2LearningDeepFeatureRepresentation.............201

9.2.3SegmentationUsingLearnedFeatureRepresentation.206

9.3 Experiments.........................................211

9.3.1EvaluationofthePerformanceofDeep-Learned Features......................................212

9.3.2EvaluationofthePerformanceofDeformableModel216

9.4 Conclusion..........................................219 References..........................................219

CHAPTER10CharacterizationofErrorsinDeepLearning-Based BrainMRISegmentation .......................... 223 AkshayPai,Yuan-ChingTeng,JosephBlair, MichielKallenberg,ErikB.Dam,StefanSommer, ChristianIgelandMadsNielsen

10.1 Introduction.........................................224

10.2 DeepLearningforSegmentation.......................225

10.3 ConvolutionalNeuralNetworkArchitecture..............226

10.3.1BasicCNNArchitecture.........................226

10.3.2Tri-PlanarCNNfor3DImageAnalysis............227

PART4MEDICALIMAGEREGISTRATION

CHAPTER11ScalableHighPerformanceImageRegistration FrameworkbyUnsupervisedDeepFeature RepresentationsLearning 245 ShaoyuWang,MinjeongKim,GuorongWuand DinggangShen

11.1

11.2.2LearnIntrinsicFeatureRepresentationsby UnsupervisedDeepLearning.....................250

11.2.3RegistrationUsingLearnedFeatureRepresentations.255 11.3 Experiments.........................................258

11.3.1ExperimentalResultonADNIDataset.............259

11.3.2ExperimentalResultonLONIDataset.............260

11.3.3ExperimentalResulton7.0-TMRImageDataset....263 11.4 Conclusion..........................................265

12.4 RegressionStrategy..................................276

12.4.1ParameterSpacePartitioning.....................276

12.4.2MarginalSpaceRegression......................277

12.5 FeatureExtraction....................................277

12.5.1LocalImageResidual...........................277

12.5.23-DPointsofInterest...........................279

12.6 ConvolutionalNeuralNetwork.........................280

12.6.1NetworkStructure..............................280

12.6.2TrainingData..................................281

12.6.3Solver........................................282

12.7 ExperimentsandResults..............................283

12.7.1ExperimentSetup..............................283

12.7.2Hardware&Software...........................285

12.7.3PerformanceAnalysis...........................286

12.7.4ComparisonwithState-of-the-ArtMethods.........288

12.8 Discussion..........................................292 Disclaimer..........................................294 References..........................................294

PART5COMPUTER-AIDEDDIAGNOSISANDDISEASE QUANTIFICATION

CHAPTER13ChestRadiographPathologyCategorizationvia

TransferLearning ................................. 299

IditDiamant,YanivBar,OferGeva,LiorWolf, GaliZimmerman,SivanLieberman,EliKonenand HayitGreenspan

13.1 Introduction.........................................300

13.2 ImageRepresentationSchemeswithClassical(Non-Deep) Features............................................303

13.2.1ClassicalFiltering..............................304

13.2.2Bag-of-Visual-WordsModel.....................305

13.3 ExtractingDeepFeaturesfromaPre-TrainedCNNModel..306

13.4 ExtendingtheRepresentationUsingFeatureFusionand Selection...........................................309

13.5 ExperimentsandResults..............................309

13.5.1Data.........................................309

13.5.2ExperimentalSetup.............................310

13.5.3ExperimentalResults...........................310

13.6 Conclusion..........................................315 Acknowledgements..................................317 References..........................................318

CHAPTER14DeepLearningModelsforClassifying

GustavoCarneiro,JacintoNascimentoand AndrewP.Bradley

15.5.1ParticipantDataandPreprocessing................360

PART6OTHERS

CHAPTER16DeepNetworksandMutualInformation MaximizationforCross-ModalMedicalImage Synthesis 381

RavitejaVemulapalli,HienVanNguyenand S.KevinZhou

16.1 Introduction.........................................382

16.2 SupervisedSynthesisUsingLocation-SensitiveDeep Network............................................384

16.2.1Backpropagation...............................386

16.2.2NetworkSimplification.........................387

16.2.3Experiments...................................388

16.3 UnsupervisedSynthesisUsingMutualInformation Maximization.......................................390

16.3.1GeneratingMultipleTargetModalityCandidates....392

16.3.2FullImageSynthesisUsingBestCandidates........393

16.3.3RefinementUsingCoupledSparseRepresentation...396

16.3.4ExtensiontoSupervisedSetting..................396

16.3.5Experiments...................................397

16.4 ConclusionsandFutureWork..........................401 Acknowledgements..................................401 References..........................................401 Note...............................................403

CHAPTER17NaturalLanguageProcessingforLarge-Scale MedicalImageAnalysisUsingDeepLearning .... 405 Hoo-ChangShin,LeLuandRonaldM.Summers

17.1 Introduction.........................................406

17.2 FundamentalsofNaturalLanguageProcessing ............407

17.2.1PatternMatching...............................407

17.2.2TopicModeling................................410

17.3 NeuralLanguageModels..............................411

17.3.1WordEmbeddings..............................411

17.3.2RecurrentLanguageModel......................412

17.4 MedicalLexicons....................................414

17.4.1UMLSMetathesaurus...........................414 17.4.2RadLex.......................................414

17.5 PredictingPresenceorAbsenceofFrequentDiseaseTypes.414 17.5.1MiningPresence/AbsenceofFrequentDiseaseTerms414 17.5.2PredictionResultandDiscussion.................415

17.6 Conclusion..........................................419

Contributors

R.VenkateshBabu IndianInstituteofScience,Bangalore,India

YanivBar

Tel-AvivUniversity,Ramat-Aviv,Israel

JosephBlair UniversityofCopenhagen,Copenhagen,Denmark

AndrewP.Bradley UniversityofQueensland,Brisbane,QLD,Australia

GustavoCarneiro UniversityofAdelaide,Adelaide,SA,Australia

HaoChen

TheChineseUniversityofHongKong,HongKong,China

ErikB.Dam

BiomediqA/S,Copenhagen,Denmark

IditDiamant

Tel-AvivUniversity,Ramat-Aviv,Israel

QiDou

TheChineseUniversityofHongKong,HongKong,China

MichaelD.Feldman

UniversityofPennsylvania,Philadelphia,PA,UnitedStates

ReneeFrank UniversityofPennsylvania,Philadelphia,PA,UnitedStates

YaozongGao UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

BogdanGeorgescu

SiemensMedicalSolutionsUSA,Inc.,Princeton,NJ,UnitedStates

OferGeva

Tel-AvivUniversity,Ramat-Aviv,Israel

FlorinC.Ghesu

SiemensMedicalSolutionsUSA,Inc.,Princeton,NJ,UnitedStates; Friedrich-AlexanderUniversityErlangen–Nürnberg,Erlangen,Germany

HayitGreenspan

Tel-AvivUniversity,Ramat-Aviv,Israel

YanrongGuo

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

Pheng-AnnHeng

TheChineseUniversityofHongKong,HongKong,China

JoachimHornegger

Friedrich-AlexanderUniversityErlangen–Nürnberg,Erlangen,Germany

R.ToddHurst

MayoClinic,Scottsdale,AZ,UnitedStates

ChristianIgel

UniversityofCopenhagen,Copenhagen,Denmark

VamsiK.Ithapu

UniversityofWisconsin–Madison,Madison,WI,UnitedStates

AndrewJanowczyk

CaseWesternReserveUniversity,Cleveland,OH,UnitedStates

SterlingC.Johnson

WilliamS.MiddletonMemorialHospital,Madison,WI,UnitedStates; UniversityofWisconsin–Madison,Madison,WI,UnitedStates

MichielKallenberg

BiomediqA/S,Copenhagen,Denmark

ChristopherB.Kendall

MayoClinic,Scottsdale,AZ,UnitedStates

MinjeongKim

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

EliKonen

ShebaMedicalCenter,Tel-Hashomer,Israel

SrinivasS.S.Kruthiventi

IndianInstituteofScience,Bangalore,India

JianmingLiang

ArizonaStateUniversity,Scottsdale,AZ,UnitedStates

RuiLiao

SiemensMedicalSolutionsUSA,Inc.,Princeton,NJ,UnitedStates

SivanLieberman

ShebaMedicalCenter,Tel-Hashomer,Israel

LeLu

NationalInstitutesofHealthClinicalCenter,Bethesda,MD,UnitedStates

AnantMadabhushi

CaseWesternReserveUniversity,Cleveland,OH,UnitedStates

KennethB.Margulies

UniversityofPennsylvania,Philadelphia,PA,UnitedStates

DimitrisMetaxas

RutgersUniversity,Piscataway,NJ,UnitedStates

ShunMiao

SiemensMedicalSolutionsUSA,Inc.,Princeton,NJ,UnitedStates

VincentC.T.Mok

TheChineseUniversityofHongKong,HongKong,China

KondaR.Mopuri

IndianInstituteofScience,Bangalore,India

JacintoNascimento

InstitutoSuperiorTécnico,Lisbon,Portugal

HienVanNguyen

UberAdvancedTechnologyCenter,Pittsburgh,PA,UnitedStates

MadsNielsen

BiomediqA/S,Copenhagen,Denmark; UniversityofCopenhagen,Copenhagen,Denmark

JeffreyJ.Nirschl

UniversityofPennsylvania,Philadelphia,PA,UnitedStates

AkshayPai

BiomediqA/S,Copenhagen,Denmark; UniversityofCopenhagen,Copenhagen,Denmark

EliotG.Peyster

UniversityofPennsylvania,Philadelphia,PA,UnitedStates

NikitaPrabhu

IndianInstituteofScience,Bangalore,India

JingQin

TheHongKongPolytechnicUniversity,HongKong,China

RaviK.Sarvadevabhatla

IndianInstituteofScience,Bangalore,India

DinggangShen

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

LinShi

TheChineseUniversityofHongKong,HongKong,China

Hoo-ChangShin

NationalInstitutesofHealthClinicalCenter,Bethesda,MD,UnitedStates

JaeY.Shin

ArizonaStateUniversity,Scottsdale,AZ,UnitedStates

VikasSingh

UniversityofWisconsin–Madison,Madison,WI,UnitedStates

StefanSommer

UniversityofCopenhagen,Copenhagen,Denmark

SurajSrinivas

IndianInstituteofScience,Bangalore,India

Heung-IlSuk

KoreaUniversity,Seoul,RepublicofKorea

RonaldM.Summers

NationalInstitutesofHealthClinicalCenter,Bethesda,MD,UnitedStates

NimaTajbakhsh

ArizonaStateUniversity,Scottsdale,AZ,UnitedStates

Yuan-ChingTeng

UniversityofCopenhagen,Copenhagen,Denmark

RavitejaVemulapalli

UniversityofMaryland,CollegePark,MD,UnitedStates

DefengWang

TheChineseUniversityofHongKong,HongKong,China

JaneZ.Wang

UniversityofBritishColumbia,Vancouver,BC,Canada

ShaoyuWang

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates; DonghuaUniversity,Shanghai,China

LiorWolf

Tel-AvivUniversity,Ramat-Aviv,Israel

GuorongWu

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

YuanpuXie

UniversityofFlorida,Gainesville,FL,UnitedStates

FuyongXing

UniversityofFlorida,Gainesville,FL,UnitedStates

ZhennanYan

RutgersUniversity,Piscataway,NJ,UnitedStates

LinYang

UniversityofFlorida,Gainesville,FL,UnitedStates

LequanYu

TheChineseUniversityofHongKong,HongKong,China

YiqiangZhan

SiemensHealthcare,Malvern,PA,UnitedStates

ShaotingZhang

UniversityofNorthCarolinaatCharlotte,Charlotte,NC,UnitedStates

LeiZhao

TheChineseUniversityofHongKong,HongKong,China

S.KevinZhou

SiemensHealthineersTechnologyCenter,Princeton,NJ,UnitedStates

XiangSeanZhou

SiemensHealthcare,Malvern,PA,UnitedStates

GaliZimmerman

Tel-AvivUniversity,Ramat-Aviv,Israel

AbouttheEditors

S.KevinZhou,PhD,iscurrentlyaPrincipalKeyExpertatSiemensHealthineers TechnologyCenter,leadingateamoffull-timeresearchscientistsandstudentsdedicatedtoresearchinganddevelopinginnovativesolutionsformedicalandindustrial imagingproducts.Hisresearchinterestslieincomputervisionandmachine/deep learningandtheirapplicationstomedicalimageanalysis,facerecognition,andmodeling,etc.Hehaspublishedover150bookchaptersandpeer-reviewedjournaland conferencepapers,registeredover250patentsandinventions,writtentworesearch monographs,andeditedthreebooks.Hehaswonmultipletechnology,patent,and productawards,includingtheR&D100AwardandSiemensInventoroftheYear.He isaneditorialboardmemberfortheMedicalImageAnalysisandIEEETransactions onMedicalImagingjournalsandafellowoftheAmericanInstituteofMedicaland BiologicalEngineering(AIMBE).

HayitGreenspan isaProfessorattheBiomedicalEngineeringDepartment,Faculty ofEngineering,TelAvivUniversity.ShewasavisitingProfessorattheRadiologyDepartmentofStanfordUniversity,andiscurrentlyaffiliatedwiththeInternationalComputerScienceInstitute(ICSI)atBerkeley.Dr.Greenspan’sresearch focusesonimagemodelingandanalysis,deeplearning,andcontent-basedimage retrieval.ResearchprojectsincludebrainMRIresearch(structuralandDTI),CT andX-rayimageanalysis–automateddetectiontosegmentationandcharacterization.Dr.Greenspanhasover150publicationsinleadinginternationaljournalsand conferenceproceedings.Shehasreceivedseveralawardsandisacoauthoronseveralpatents.Dr.Greenspanisamemberofseveraljournalandconferenceprogram committees,includingSPIEMedicalImaging,IEEE_ISBI,andMICCAI.Sheisan AssociateEditorfortheIEEETransactionsonMedicalImaging(TMI)journal.Recently,inMay2016,shewastheleadguesteditorforanIEEE-TMIspecialissueon “DeepLearninginMedicalImaging.”

DinggangShen isaProfessorofRadiologyattheBiomedicalResearchImaging Center(BRIC),andComputerScience,andBiomedicalEngineeringDepartmentsin theUniversityofNorthCarolinaatChapelHill(UNC-CH).Heiscurrentlydirecting theCenterforImageInformaticsandAnalysis,theImageDisplay,Enhancement,and Analysis(IDEA)LabintheDepartmentofRadiology,andalsothemedicalimage analysiscoreintheBRIC.Hewasatenure-trackassistantprofessorattheUniversityofPennsylvania(UPenn),andafacultymemberatJohnsHopkinsUniversity. Dr.Shen’sresearchinterestsincludemedicalimageanalysis,computervision,and patternrecognition.Hehaspublishedmorethan700papersininternationaljournals andconferenceproceedings.Heservesasaneditorialboardmemberforsixinternationaljournals.HehasservedontheBoardofDirectorsofTheMedicalImage ComputingandComputerAssistedIntervention(MICCAI)Societyin2012–2015.

Foreword

ComputationalMedicalImageAnalysishasbecomeaprominentfieldofresearch attheintersectionofInformatics,ComputationalSciences,andMedicine,supported byavibrantcommunityofresearchersworkinginacademics,industry,andclinical centers.

Duringthepastfewyears,MachineLearningmethodshavebroughtarevolution totheComputerVisioncommunity,introducingnovelefficientsolutionstomany imageanalysisproblemsthathadlongremainedunsolved.Forthisrevolutiontoenter thefieldofMedicalImageAnalysis,dedicatedmethodsmustbedesignedwhichtake intoaccountthespecificityofmedicalimages.

Indeed,medicalimagescapturetheanatomyandphysiologyofpatientsthrough themeasurementsofgeometrical,biophysical,andbiochemicalpropertiesoftheir livingtissues.Theseimagesareacquiredwithalgorithmsthatexploitcomplexmedicalimagingprocesseswhoseprinciplesmustbewellunderstoodaswellasthose governingthecomplexstructuresandfunctionsofthehumanbody.

Thebook DeepLearningforMedicalImageAnalysis editedbyS.KevinZhou, HayitGreenspan,andDinggangShen,top-notchresearchersfrombothacademiaand industryindesigningmachinelearningmethodsformedicalimageanalysis,coversstate-of-the-artreviewsofdeeplearningapproachesformedicalimageanalysis, includingmedicalimagedetection/recognition,medicalimagesegmentation,medicalimageregistration,computeraideddiagnosisanddiseasequantification,toname someofthemostimportantaddressedproblems.Thebook,whichstartswithanintroductiontoConvolutionalNeuralNetworksforComputerVisionpresentsasetof noveldeeplearningmethodsappliedtoavarietyofclinicalproblemsandimaging modalitiesoperatingatvariousscales,includingX-rayradiographies,MagneticResonanceImaging,ComputedTomography,microscopicimaging,ultrasoundimaging, etc.

Thisimpressivecollectionofexcellentcontributionswilldefinitelyserveand inspirealltheresearchersinterestedinthedevelopmentofnewmachinelearning methodsintherapidlyevolvingfieldofmedicalimageanalysis.

Inria,SophiaAntipolis,France September1,2016

Introduction

1 PART

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.