Deep learning for medical image analysis 1st edition s. kevin zhou - Own the complete ebook with all

Page 1


Feminist

Global Health Security Clare Wenham

https://ebookmass.com/product/feminist-global-health-security-clarewenham/

ebookmass.com

(eBook PDF) Managerial Economics in a Global Economy 9th Edition

https://ebookmass.com/product/ebook-pdf-managerial-economics-in-aglobal-economy-9th-edition/

ebookmass.com

Medjugorje and the supernatural : science, mysticism, and extraordinary religious experience Klimek

https://ebookmass.com/product/medjugorje-and-the-supernatural-sciencemysticism-and-extraordinary-religious-experience-klimek/

ebookmass.com

Wiley Abridged Print Companion for Engineering Mechanics: Statics | 9th Edition J.L. Meriam

https://ebookmass.com/product/wiley-abridged-print-companion-forengineering-mechanics-statics-9th-edition-j-l-meriam/

ebookmass.com

The Witch's Betrayal: a Fated Mates Shifter Romance (The Raven Chronicles Book 3) Missy De Graff

https://ebookmass.com/product/the-witchs-betrayal-a-fated-matesshifter-romance-the-raven-chronicles-book-3-missy-de-graff/

ebookmass.com

DeepLearningfor MedicalImage Analysis

TheElsevierandMICCAISociety BookSeries

Advisoryboard

StephenAylward (Kitware,UnitedStates)

DavidHawkes (UniversityCollegeLondon,UnitedKingdom)

KensakuMori (UniversityofNagoya,Japan)

AlisonNoble (UniversityofOxford,UnitedKingdom)

SoniaPujol (HarvardUniversity,UnitedStates)

DanielRueckert (ImperialCollege,UnitedKingdom)

XavierPennec (INRIASophia-Antipolis,France)

PierreJannin (UniversityofRennes,France)

Alsoavailable:

Balocco,ComputingandVisualizationforIntravascularImagingand ComputerAssistedStenting,9780128110188

Wu,MachineLearningandMedicalImaging,9780128040768

Zhou,MedicalImageRecognition,SegmentationandParsing, 9780128025819

PART1INTRODUCTION

CHAPTER1AnIntroductiontoNeuralNetworksandDeep Learning .......................................... 3

Heung-IlSuk

1.1 Introduction.........................................3

1.2 Feed-ForwardNeuralNetworks........................4

1.2.1Perceptron....................................4

1.2.2Multi-LayerNeuralNetwork.....................5

1.2.3LearninginFeed-ForwardNeuralNetworks........6

1.3 ConvolutionalNeuralNetworks........................8

1.3.1ConvolutionandPoolingLayer...................8

1.3.2ComputingGradients...........................9

1.4 DeepModels........................................11

1.4.1VanishingGradientProblem.....................11

1.4.2DeepNeuralNetworks..........................12

1.4.3DeepGenerativeModels........................14

1.5 TricksforBetterLearning.............................20

1.5.1RectifiedLinearUnit(ReLU)....................20

1.5.2Dropout......................................20

1.5.3BatchNormalization............................21

1.6 Open-SourceToolsforDeepLearning...................22 References..........................................22 Notes..............................................24

CHAPTER2AnIntroductiontoDeepConvolutionalNeural NetsforComputerVision ......................... 25 SurajSrinivas,RaviK.Sarvadevabhatla, KondaR.Mopuri,NikitaPrabhu, SrinivasS.S.KruthiventiandR.VenkateshBabu

2.1 Introduction.........................................26

2.2 ConvolutionalNeuralNetworks........................27

2.2.1BuildingBlocksofCNNs.......................27 2.2.2Depth........................................29

2.2.3LearningAlgorithm............................30 v

3.4.1AnatomyDetectionandSegmentationin3D........71

3.4.2LandmarkDetectionin2Dand3D................74

4.3.3LearningStageII:CNNBoosting.................90

4.3.4Run-TimeClassification.........................92

4.4 Results.............................................93

4.4.1ImageClassificationonSyntheticData............93

4.4.2Body-PartRecognitiononCTSlices..............95

4.5 DiscussionandFutureWork...........................99 References..........................................100

CHAPTER5AutomaticInterpretationofCarotidIntima–Media ThicknessVideosUsingConvolutionalNeural Networks .......................................... 105 NimaTajbakhsh,JaeY.Shin,R.ToddHurst, ChristopherB.KendallandJianmingLiang

5.1 Introduction.........................................106

5.2 RelatedWork........................................107

5.3 CIMTProtocol......................................109

5.4 Method.............................................109

5.4.1ConvolutionalNeuralNetworks(CNNs)...........109

5.4.2FrameSelection................................110

5.4.3ROILocalization...............................112

5.4.4Intima–MediaThicknessMeasurement............115

5.5 Experiments.........................................117

5.5.1Pre-andPost-ProcessingforFrameSelection.......118

5.5.2ConstrainedROILocalization....................118

5.5.3Intima–MediaThicknessMeasurement............121

5.5.4End-to-EndCIMTMeasurement..................123

5.6 Discussion..........................................124

5.7 Conclusion..........................................128 Acknowledgement...................................128 References..........................................128 Notes..............................................131

CHAPTER6DeepCascadedNetworksforSparselyDistributed ObjectDetectionfromMedicalImages ........... 133 HaoChen,QiDou,LequanYu,JingQin,LeiZhao, VincentC.T.Mok,DefengWang,LinShiand Pheng-AnnHeng

6.1 Introduction.........................................134

6.2 Method.............................................136

6.2.1CoarseRetrievalModel.........................136

6.2.2FineDiscriminationModel......................139

6.3 MitosisDetectionfromHistologyImages................139

6.3.1Background...................................139

6.3.2TransferLearningfromCross-Domain.............140

PART4MEDICALIMAGEREGISTRATION

CHAPTER11ScalableHighPerformanceImageRegistration FrameworkbyUnsupervisedDeepFeature RepresentationsLearning 245 ShaoyuWang,MinjeongKim,GuorongWuand DinggangShen

11.1

11.2.2LearnIntrinsicFeatureRepresentationsby UnsupervisedDeepLearning.....................250

11.2.3RegistrationUsingLearnedFeatureRepresentations.255 11.3 Experiments.........................................258

11.3.1ExperimentalResultonADNIDataset.............259

11.3.2ExperimentalResultonLONIDataset.............260

11.3.3ExperimentalResulton7.0-TMRImageDataset....263 11.4 Conclusion..........................................265

12.4 RegressionStrategy..................................276

12.4.1ParameterSpacePartitioning.....................276

12.4.2MarginalSpaceRegression......................277

12.5 FeatureExtraction....................................277

12.5.1LocalImageResidual...........................277

12.5.23-DPointsofInterest...........................279

12.6 ConvolutionalNeuralNetwork.........................280

12.6.1NetworkStructure..............................280

12.6.2TrainingData..................................281

12.6.3Solver........................................282

12.7 ExperimentsandResults..............................283

12.7.1ExperimentSetup..............................283

12.7.2Hardware&Software...........................285

12.7.3PerformanceAnalysis...........................286

12.7.4ComparisonwithState-of-the-ArtMethods.........288

12.8 Discussion..........................................292 Disclaimer..........................................294 References..........................................294

PART5COMPUTER-AIDEDDIAGNOSISANDDISEASE QUANTIFICATION

CHAPTER13ChestRadiographPathologyCategorizationvia

TransferLearning ................................. 299

IditDiamant,YanivBar,OferGeva,LiorWolf, GaliZimmerman,SivanLieberman,EliKonenand HayitGreenspan

13.1 Introduction.........................................300

13.2 ImageRepresentationSchemeswithClassical(Non-Deep) Features............................................303

13.2.1ClassicalFiltering..............................304

13.2.2Bag-of-Visual-WordsModel.....................305

13.3 ExtractingDeepFeaturesfromaPre-TrainedCNNModel..306

13.4 ExtendingtheRepresentationUsingFeatureFusionand Selection...........................................309

13.5 ExperimentsandResults..............................309

13.5.1Data.........................................309

13.5.2ExperimentalSetup.............................310

13.5.3ExperimentalResults...........................310

13.6 Conclusion..........................................315 Acknowledgements..................................317 References..........................................318

CHAPTER14DeepLearningModelsforClassifying

GustavoCarneiro,JacintoNascimentoand AndrewP.Bradley

15.5.1ParticipantDataandPreprocessing................360

PART6OTHERS

CHAPTER16DeepNetworksandMutualInformation MaximizationforCross-ModalMedicalImage Synthesis 381

RavitejaVemulapalli,HienVanNguyenand S.KevinZhou

16.1 Introduction.........................................382

16.2 SupervisedSynthesisUsingLocation-SensitiveDeep Network............................................384

16.2.1Backpropagation...............................386

16.2.2NetworkSimplification.........................387

16.2.3Experiments...................................388

16.3 UnsupervisedSynthesisUsingMutualInformation Maximization.......................................390

16.3.1GeneratingMultipleTargetModalityCandidates....392

16.3.2FullImageSynthesisUsingBestCandidates........393

16.3.3RefinementUsingCoupledSparseRepresentation...396

16.3.4ExtensiontoSupervisedSetting..................396

16.3.5Experiments...................................397

16.4 ConclusionsandFutureWork..........................401 Acknowledgements..................................401 References..........................................401 Note...............................................403

CHAPTER17NaturalLanguageProcessingforLarge-Scale MedicalImageAnalysisUsingDeepLearning .... 405 Hoo-ChangShin,LeLuandRonaldM.Summers

17.1 Introduction.........................................406

17.2 FundamentalsofNaturalLanguageProcessing ............407

17.2.1PatternMatching...............................407

17.2.2TopicModeling................................410

17.3 NeuralLanguageModels..............................411

17.3.1WordEmbeddings..............................411

17.3.2RecurrentLanguageModel......................412

17.4 MedicalLexicons....................................414

17.4.1UMLSMetathesaurus...........................414 17.4.2RadLex.......................................414

17.5 PredictingPresenceorAbsenceofFrequentDiseaseTypes.414 17.5.1MiningPresence/AbsenceofFrequentDiseaseTerms414 17.5.2PredictionResultandDiscussion.................415

17.6 Conclusion..........................................419

YanrongGuo

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

Pheng-AnnHeng

TheChineseUniversityofHongKong,HongKong,China

JoachimHornegger

Friedrich-AlexanderUniversityErlangen–Nürnberg,Erlangen,Germany

R.ToddHurst

MayoClinic,Scottsdale,AZ,UnitedStates

ChristianIgel

UniversityofCopenhagen,Copenhagen,Denmark

VamsiK.Ithapu

UniversityofWisconsin–Madison,Madison,WI,UnitedStates

AndrewJanowczyk

CaseWesternReserveUniversity,Cleveland,OH,UnitedStates

SterlingC.Johnson

WilliamS.MiddletonMemorialHospital,Madison,WI,UnitedStates; UniversityofWisconsin–Madison,Madison,WI,UnitedStates

MichielKallenberg

BiomediqA/S,Copenhagen,Denmark

ChristopherB.Kendall

MayoClinic,Scottsdale,AZ,UnitedStates

MinjeongKim

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

EliKonen

ShebaMedicalCenter,Tel-Hashomer,Israel

SrinivasS.S.Kruthiventi

IndianInstituteofScience,Bangalore,India

JianmingLiang

ArizonaStateUniversity,Scottsdale,AZ,UnitedStates

RuiLiao

SiemensMedicalSolutionsUSA,Inc.,Princeton,NJ,UnitedStates

SivanLieberman

ShebaMedicalCenter,Tel-Hashomer,Israel

LeLu

NationalInstitutesofHealthClinicalCenter,Bethesda,MD,UnitedStates

AnantMadabhushi

CaseWesternReserveUniversity,Cleveland,OH,UnitedStates

KennethB.Margulies

UniversityofPennsylvania,Philadelphia,PA,UnitedStates

DimitrisMetaxas

RutgersUniversity,Piscataway,NJ,UnitedStates

ShunMiao

SiemensMedicalSolutionsUSA,Inc.,Princeton,NJ,UnitedStates

VincentC.T.Mok

TheChineseUniversityofHongKong,HongKong,China

KondaR.Mopuri

IndianInstituteofScience,Bangalore,India

JacintoNascimento

InstitutoSuperiorTécnico,Lisbon,Portugal

HienVanNguyen

UberAdvancedTechnologyCenter,Pittsburgh,PA,UnitedStates

MadsNielsen

BiomediqA/S,Copenhagen,Denmark; UniversityofCopenhagen,Copenhagen,Denmark

JeffreyJ.Nirschl

UniversityofPennsylvania,Philadelphia,PA,UnitedStates

AkshayPai

BiomediqA/S,Copenhagen,Denmark; UniversityofCopenhagen,Copenhagen,Denmark

EliotG.Peyster

UniversityofPennsylvania,Philadelphia,PA,UnitedStates

NikitaPrabhu

IndianInstituteofScience,Bangalore,India

JingQin

TheHongKongPolytechnicUniversity,HongKong,China

RaviK.Sarvadevabhatla

IndianInstituteofScience,Bangalore,India

DinggangShen

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

LinShi

TheChineseUniversityofHongKong,HongKong,China

Hoo-ChangShin

NationalInstitutesofHealthClinicalCenter,Bethesda,MD,UnitedStates

JaeY.Shin

ArizonaStateUniversity,Scottsdale,AZ,UnitedStates

VikasSingh

UniversityofWisconsin–Madison,Madison,WI,UnitedStates

StefanSommer

UniversityofCopenhagen,Copenhagen,Denmark

SurajSrinivas

IndianInstituteofScience,Bangalore,India

Heung-IlSuk

KoreaUniversity,Seoul,RepublicofKorea

RonaldM.Summers

NationalInstitutesofHealthClinicalCenter,Bethesda,MD,UnitedStates

NimaTajbakhsh

ArizonaStateUniversity,Scottsdale,AZ,UnitedStates

Yuan-ChingTeng

UniversityofCopenhagen,Copenhagen,Denmark

RavitejaVemulapalli

UniversityofMaryland,CollegePark,MD,UnitedStates

DefengWang

TheChineseUniversityofHongKong,HongKong,China

JaneZ.Wang

UniversityofBritishColumbia,Vancouver,BC,Canada

ShaoyuWang

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates; DonghuaUniversity,Shanghai,China

LiorWolf

Tel-AvivUniversity,Ramat-Aviv,Israel

GuorongWu

UniversityofNorthCarolinaatChapelHill,ChapelHill,NC,UnitedStates

YuanpuXie

UniversityofFlorida,Gainesville,FL,UnitedStates

FuyongXing

UniversityofFlorida,Gainesville,FL,UnitedStates

ZhennanYan

RutgersUniversity,Piscataway,NJ,UnitedStates

LinYang

UniversityofFlorida,Gainesville,FL,UnitedStates

LequanYu

TheChineseUniversityofHongKong,HongKong,China

AbouttheEditors

S.KevinZhou,PhD,iscurrentlyaPrincipalKeyExpertatSiemensHealthineers TechnologyCenter,leadingateamoffull-timeresearchscientistsandstudentsdedicatedtoresearchinganddevelopinginnovativesolutionsformedicalandindustrial imagingproducts.Hisresearchinterestslieincomputervisionandmachine/deep learningandtheirapplicationstomedicalimageanalysis,facerecognition,andmodeling,etc.Hehaspublishedover150bookchaptersandpeer-reviewedjournaland conferencepapers,registeredover250patentsandinventions,writtentworesearch monographs,andeditedthreebooks.Hehaswonmultipletechnology,patent,and productawards,includingtheR&D100AwardandSiemensInventoroftheYear.He isaneditorialboardmemberfortheMedicalImageAnalysisandIEEETransactions onMedicalImagingjournalsandafellowoftheAmericanInstituteofMedicaland BiologicalEngineering(AIMBE).

HayitGreenspan isaProfessorattheBiomedicalEngineeringDepartment,Faculty ofEngineering,TelAvivUniversity.ShewasavisitingProfessorattheRadiologyDepartmentofStanfordUniversity,andiscurrentlyaffiliatedwiththeInternationalComputerScienceInstitute(ICSI)atBerkeley.Dr.Greenspan’sresearch focusesonimagemodelingandanalysis,deeplearning,andcontent-basedimage retrieval.ResearchprojectsincludebrainMRIresearch(structuralandDTI),CT andX-rayimageanalysis–automateddetectiontosegmentationandcharacterization.Dr.Greenspanhasover150publicationsinleadinginternationaljournalsand conferenceproceedings.Shehasreceivedseveralawardsandisacoauthoronseveralpatents.Dr.Greenspanisamemberofseveraljournalandconferenceprogram committees,includingSPIEMedicalImaging,IEEE_ISBI,andMICCAI.Sheisan AssociateEditorfortheIEEETransactionsonMedicalImaging(TMI)journal.Recently,inMay2016,shewastheleadguesteditorforanIEEE-TMIspecialissueon “DeepLearninginMedicalImaging.”

DinggangShen isaProfessorofRadiologyattheBiomedicalResearchImaging Center(BRIC),andComputerScience,andBiomedicalEngineeringDepartmentsin theUniversityofNorthCarolinaatChapelHill(UNC-CH).Heiscurrentlydirecting theCenterforImageInformaticsandAnalysis,theImageDisplay,Enhancement,and Analysis(IDEA)LabintheDepartmentofRadiology,andalsothemedicalimage analysiscoreintheBRIC.Hewasatenure-trackassistantprofessorattheUniversityofPennsylvania(UPenn),andafacultymemberatJohnsHopkinsUniversity. Dr.Shen’sresearchinterestsincludemedicalimageanalysis,computervision,and patternrecognition.Hehaspublishedmorethan700papersininternationaljournals andconferenceproceedings.Heservesasaneditorialboardmemberforsixinternationaljournals.HehasservedontheBoardofDirectorsofTheMedicalImage ComputingandComputerAssistedIntervention(MICCAI)Societyin2012–2015.

Introduction

1 PART

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.