Data, statistics, and useful numbers for environmental sustainability: bringing the numbers to life

Page 1


https://ebookmass.com/product/data-statistics-and-usefulnumbers-for-environmental-sustainability-bringing-thenumbers-to-life-1st-edition-benoit-cushman-roisin/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

(eBook PDF) Statistics for Political Analysis: Understanding the Numbers Revised Edition

https://ebookmass.com/product/ebook-pdf-statistics-for-politicalanalysis-understanding-the-numbers-revised-edition/

ebookmass.com

Business Statistics: Communicating with Numbers, 4e 4th Edition Sanjiv Jaggia

https://ebookmass.com/product/business-statistics-communicating-withnumbers-4e-4th-edition-sanjiv-jaggia/

ebookmass.com

Victorians and Numbers: Statistics and Society in Nineteenth Century Britain Lawrence Goldman

https://ebookmass.com/product/victorians-and-numbers-statistics-andsociety-in-nineteenth-century-britain-lawrence-goldman/

ebookmass.com

Demonic Bodies and the Dark Ecologies of Early Christian Culture

https://ebookmass.com/product/demonic-bodies-and-the-dark-ecologiesof-early-christian-culture-travis-w-proctor-2/

ebookmass.com

Gandhi and the Psychology of Nonviolence, Volume 1:

Scientific Roots and Development 1st ed. Edition V. K. Kool

https://ebookmass.com/product/gandhi-and-the-psychology-ofnonviolence-volume-1-scientific-roots-and-development-1st-ed-editionv-k-kool/

ebookmass.com

ACCA Applied Skills Performance Management (PM) Exam Kit

Acca Kaplan Publishing

https://ebookmass.com/product/acca-applied-skills-performancemanagement-pm-exam-kit-acca-kaplan-publishing/

ebookmass.com

Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications

Amorim Fraga

https://ebookmass.com/product/sustainable-material-solutions-forsolar-energy-technologies-processing-techniques-and-applicationsmariana-amorim-fraga/ ebookmass.com

Plant Bioactives as Natural Panacea against Age-Induced Diseases: Nutraceuticals and Functional Lead Compounds for Drug Development

https://ebookmass.com/product/plant-bioactives-as-natural-panaceaagainst-age-induced-diseases-nutraceuticals-and-functional-leadcompounds-for-drug-development-kanti-bhooshan-pandey/ ebookmass.com

Electrical Wiring Residential 19th Edition Ray C. Mullin

https://ebookmass.com/product/electrical-wiring-residential-19thedition-ray-c-mullin/ ebookmass.com

https://ebookmass.com/product/ise-ebook-online-access-for-law-andethics-for-the-health-professions-judson/

ebookmass.com

Data,Statistics,and UsefulNumbersfor Environmental Sustainability BringingtheNumberstoLife

ThayerSchoolofEngineering, DartmouthCollege, Hanover,NH,USA

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright 2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-822958-3

ForinformationonallElsevierpublicationsvisitourwebsite at https://www.elsevier.com/books-and-journals

Publisher: CandiceJanco

AcquisitionsEditor: MarisaLaFleur

EditorialProjectManager: AleksandraPackowska

ProductionProjectManager: PaulPrasadChandramohan

CoverDesigner: ChristianJ.Bilbow

TypesetbyTNQTechnologies

Preface

Inthecontextofenvironmentalstudiesandsustainability,wefrequentlyhearand readstatementslikethese:“Byinstallinglow-flowshowerheads,myschoolwill save1,250gallonsofwatereachyear,”or“thiscleansourceofelectricitywill power275,000homes,”or“ittakes75,000treestoprintaSundayEditionofthe Big-CityTimes.”Don’tyousometimeswishthatyou,too,couldrunthenumbers andmakesimilarstatementsaboutyourenvironmentalaspirationsandaccomplishmentsorabouttheimpactsofothers?Allittakesareafewnumbersthat permittotranslatepaperusageintotreescut,electricalconsumptionintohomes, recyclingintoenergy,andenergysavingsintoanumberofmilesnotdriven. Butwherearethosenumbers?

Manyofthesenumbersexistbutarescatteredacrossscientificpublications andInternetpostings,somemorereliablethanothers.Ittakestimetofindthe numbers,goodnumbers.AtDartmouth,thefirstauthornotedthathisstudents spentafairamountoftimelookingforthesenumbersinthepursuitoftheir assignmentsandprojects,onlytorediscoverprettymuchthesamenumberscourse aftercourse.So,tosavetimetohisstudents,hebegantocompilealistofnumbers, whichheplainlytitled“UsefulNumbers”andposteditononeofhiscourse websites.Thislistkeptgrowingasyearspassed,andsoonitgrewtosuchasizethat visitorstothewebsitestartedaskingquestions:Wheredidyoufindthisnumber?

Doyouhavenumbersaboutthat?Anditdawnedonhimthattherewasa definiteneedintheenvironmentalcommunityforanaccessibleandorganized compilationof“usefulnumbers.”Theideaofgatheringandorganizingarelatively comprehensivesetofnumbersintoasmallhandbookbecameanaturaloutgrowth.

Andso,bypopulardemand,hereisthehandbookthatyoumayhavebeen lookingfor.Itwaspreparedwithdiligence,fromvettedinformationburiedin refereedscientificpublicationsaswellasreliablewebsites.Efforthasalsobeen madetoorganizethedisparateandoftendisconnectedtopicsintosomelogical order.Thereisnorightorganizationforthistypeofmaterial,ofcourse,and someoneelsewouldcertainlyhaveorganizedthetopicsdifferently.Wethe authorsonlyhopethatmostuserswillfindthepresentorganizationsufficiently practical.

This,obviously,isnotabookthatwilleverbereadfromcovertocover, unlessonewishestouseitforsleeptherapy.Itisahandbookwheretheuser beginswiththeindexpagesintheback.Sourcesarecitedandgatheredattheend ofeachchapter,tokeepthemclosetothenumbersthattheyprovided.

Preface

Thislittlehandbookshouldserveasahandyreferenceforresearchers, teachers,andstudentstofindquicklythenumbertheyseekinthepreparationof theirarticle,lecture,orassignment.Accessorily,itmayalsobeusefulfor journalistsandotherswhoreachthebroaderpublic.Perhapsitcanbecomethe littlebookonthecornerofyourdeskthat,atthereachofthearm,putsmeaning inyournumber.

Chapter1

Materials

Materialsextractionintheworldin2013wasestimatedat84.4billion(109) metrictons(45.8%industrialandconstructionmaterials,26.8%biomass, 17.2%fossilfuels,and10.2%metals,excludingunusedportion),or11.8 metrictonspercapitaperyear[1].

IntheUnitedStatesduring2013,materialsconsumptionincludingfuels wasestimatedat6.5billion(109)metrictonsperyear,correspondingto23.6 metrictonspercapitaperyear,51%higherthaninEurope[2].

1.1Metals

1.1.1Aluminum

Aluminumproductionfrombauxiteviaaluminaisoneofthemostenergyintensiveprocessesintheindustry.AccordingtoaUnitedNationsreport basedon1979data,theenergyprofileofaluminumisastabulatedbelow.

Source: [3]Table7page76.

Technologieshaveevolved([4]page125)towardgreaterenergyefficiency. Compilationofmultipledatasetsforprimaryproduction(excludingthe fabricationstage)yieldsanembodiedenergyinaluminumof210 10MJ/kg ([4]page471).

Thecarbonfootprintforprimaryproductionis12kgofCO2eq/kgwhereas thewaterusagevariesfrom495to1,490L/kg([4]page471).

Data,Statistics,andUsefulNumbersforEnvironmentalSustainability. https://doi.org/10.1016/B978-0-12-822958-3.00012-1 Copyright © 2021ElsevierInc.Allrightsreserved. 1

2 Data,Statistics,andUsefulNumbersforEnvironmentalSustainability

Recyclingaluminumdemandsmuchlessenergy,only26MJ/kgforcast aluminumand26.7MJ/kgforwroughtaluminum[5].Itscarbonfootprintis 2.1kgCO2/kg(inaverage).

1.1.2Copperanditsalloys

AccordingtoaUnitedNationsreportusing1975data,theenergyprofileof copperisastabulatedbelow.Althoughthesenumbersaredated,thebreakdownisillustrative.

Source: [3]Table6page75.

Technologieshaveevolved,leadingothersourcestoprovidelowernumbers.

Source: [4]:page477andaccompanyingCESEduPacksoftware.

1.1.3IronandSteel

Theamountofenergyconsumedinsteelproductionvarieswidelybasedonthe processusedandonthefractionofscrapmetalwithironoreinthefeed material.TheBasicOxygenFurnaceconsumes23.2MJ/kgwhiletheElectric ArcFurnaceconsumes9.3MJ/kg[6].Thetheoreticalthermodynamiclimitis 7.6MJ/kg([3]page76).

IntheUnitedStates,theenergyconsumedfortheproductionofsteelis about19MJ/kgfromironore[3]and10MJ/kgfromscrapmetal([3]page76).

Almost40%oftheworld’ssteelproductionismadefromscrap[7]. Recycling1kgofsteelsaves1.1kgofironore,0.63kgofcoal,0.055kgof limestone,0.642kWhofelectricity,0.287Lofoil,10.9thousandBTUs (¼11.5MJ)ofenergy,and0.0023m3 oflandfill[7].

Productionimpactsofironandsteel

Sources: [4]pages463,465,467,and469.

1.1.4Lead

Productionof1kgoflead(Pb)fromore(galena,PbS)requires27MJ, 175 525Lofwaterandgenerates2.0kgofCO2eq,whileproductionoflead fromrecycledsources(mostlydiscardedautomobilebatteries)consumes 7.5MJ/kgandgenerates0.45kgCO2eq/kg.Thesinglelargestuseoflead(70% oftotalproduction)isaselectrodesinlead-acidbatteries([4]page479).

1.1.5Magnesium

Productionofmagnesiumcausesthefollowingenvironmentalimpacts.

4 Data,Statistics,andUsefulNumbersforEnvironmentalSustainability

Productionimpactsofmagnesium

Source: [4]:page473andaccompanyingCESEduPacksoftware.

1.1.6Nickel

Productionofnickelcausesthefollowingenvironmentalimpacts.

Productionimpactsofnickel

Source: [4]:pages483and485.

Togetherwithchromiumandotherelements,nickelisacomponentof stainlesssteel.Forexample,18/8stainlesssteelcontains18%chromiumand 8%nickelwhile18/10is18%chromiumand10%nickel.

1.1.7Specialtyandpreciousmetals

Productionimpactsofspecialtyandpreciousmetals

Continued

Source: [4]:pages127,474,487,488andaccompanyingCESEduPacksoftware.

1.1.8Zinc

Productionofzinccausesthefollowingenvironmentalimpacts.

Productionimpactsofzinc

Source: [4]:page481.

1.2Plasticsandrubber

Exceptforbiodegradableplastics,conventionalplasticsaremadefromsocalledfeedstockderivedfromcrudeoilrefiningandnaturalgasprocessing. Theruleofthumb(bornebythenumbersbelow)isthathalfthefossilfuel goesintotheplasticitselfwhiletheremaininghalfiscombustedtoprovidethe energyduringmanufacture.Thus,ittakesabout2kgoffossilfueltoproduce 1kgofplastics.Sincepetroleumholdsinaverage43MJ/kg,ittakes approximately86MJtoproduce1kgofplastics,and,withabout3hydrogen

6 Data,Statistics,andUsefulNumbersforEnvironmentalSustainability

atomsforeverycarbonatominthefuelconsumedinproduction(molarmass of15gpermole),theCO2 emission(withamolarmassof44gpermole)is 44/15 ¼ 2.9kgofCO2 foreverykgofplasticsproduced1.Actualamountsvary withthetypeofplastics,asthetablebelowindicates.

Productionimpactsofplastics

Polymersand elastomersAcronym

Continued

1. Note:Theamountof6kgofCO2 emittedperkgofplasticmentionedbyTimeforChange[8]is inaccurate.

Chapter|1 7

Source: [4]:Chapter15andaccompanyingCESEduPacksoftware.

Recycling1kgofplasticssaves5.774kWhofelectricity,2.604Lofoil,98 thousandBTUs(=103MJ)ofenergy,and0.022m3 oflandfill[7].

1.3Paperandcardboard

Ingeneral,therecangrow16 20maturetreeson1acre(40 59treesper hectare)[9],butthesignificantlysmaller,softwoodtreesneededforthepaper (so-calledpulpwood)canbegrown12feetapartfromoneanother,fora densityof303treesperacre(747treesperhectare).Timefromplantingto harvestrangesfrom7to10years[10].Inregionswheretreesaregrownfor papermaking,thewaterneededfortreegrowthcomesfromnaturalprecipitation,thuscausingnoenvironmentalimpact.

Acordofwoodis8ft 4ft 4ft ¼ 128ft3 andifair-driedandconsisting ofhardwoodsweighsabout2shorttons(1,800kg),about15 20%ofwhichis stillwater.Onecordofwoodmakes1,000 2,000lbsofpaper,dependingon theprocess[11].

Theproductionof1metrictonofpaperrequires17trees,inaverage,with thefollowingspread:24treesfor1tonofuncoatedvirgin(nonrecycled) printingandofficepaperbutonly12treesfor1tonof100%virgin(nonrecycled)newsprint,15.36treesfor1tonofhigher-endmagazinepaper(for glossymagazines),and7.68treesfor1tonoflower-endmagazinepaper(most catalogs)[12].

8 Data,Statistics,andUsefulNumbersforEnvironmentalSustainability

Theproductionof1metrictonofpaperconsumes51,500MJofenergy, 25m3 ofwater,680gallons(¼2.57m3)ofoilandgenerates1,150kgofCO2eq [4,12,13].

A“pallet”ofcopierpaper2 (20-lb.sheetweight)contains40cartonsand weighs1metricton.Itcontains440reamswitheachreamofpapercontaining 500sheetsandweighing5lbs(¼2.27kg).Therefore,theenergy,water,and carbonfootprintsofasinglepageofpaperare234kJ,0.11Lwater,and5.23g CO2.Italsofollowsthat[12],

l 1carton(10reams)of100%virgincopierpaperuses0.6trees;

l 1treemakes16.67reamsofcopypaperor8,333sheets;

l 1ream(500sheets)uses6%ofatree;

l 1tonofcoated,higher-endvirginmagazinepaper(usedforhigh-end magazines)uses15.36trees;

l 1tonofcoated,lower-endvirginmagazinepaper(usedfornewsmagazines andmostcatalogs)uses7.68trees.

IntheUnitedStates,paperandcardboardrecoveryreached66.8%in2015. Ofthis,33.4%wenttoproducecorrugatedcardboard,11.8%noncorrugated cardboard(boxboard),8.6%tissue,and0.8%newsprint.Netexports accountedfor39.8%.Also,36%ofthefibersusedtomakenewpapercome fromrecycledsources[14].

1.4Chemicals

IntheUnitedStates,thechemicalindustryconsumesanaverageof6,935 BTUsperlbofproduct[15].Thisenergyintensity,however,dependswidely onthenatureofthechemical,asillustratedinthetableonthefollowingpages. Becausedifferentproductionpathsconsumedifferentamountsofenergy, theenergyusedintheproductionofachemicaldependsonitsfeedstock. Chemicalsobtainedfromthecrackinganddistillationofpetroleumorinorganicsourcesarecalledrawmaterials.Thus,thetotalenergyconsumedinthe productionofachemicalisthesumoftheenergyinputsforitsproductionand thatofallitspredecessors(eachwithcorrespondingmassratiodeducedfrom thestoichiometricratio),startingfromtherawmaterial. Example:Theenergy consumedinproducing1lbofethyleneglycolfromethyleneoxide(withmass ratio0.710:1)fromethyleneasrawmaterial(withmassratio0.637:1)is:

E ¼ 2,045 þ 0.710 (1,711 þ 0.637 8,107) ¼ 6,923BTU/lb.

Tosuchnumbermaybeaddedtheenergynecessaryfortheintermediate productionoftherequiredhydrogenandchlorine.

2.Alsocalledwhiteofficepaperorprintingandwritingpaper.

Chemical

Energyconsumptionintheproductionofvariouschemicals

Energyconsumption BTUs/lbunless otherwisenotedMadefrom Mass ratio

Aceticacid(vinegar)2,552[16]

Acetone7,850

Acrylonitrile956Propylene0.793:1

Ammonia12,150

Ammonium323Ammonia0.944:1

Ammoniumnitrate341Nitricacid0.787:1

Ammoniumphosphate323

Ammoniumsulfate4,000Ammonia0.258:1

Benzene1,255Petroleum BisphenolA(BPA)6MJ/kg[17]

1,3-Butadiene95by-productofethylene Carbonblack3,703MJ/ton[18]

Chlorine4,800Sodiumchloride1.648:1

Cumene (Isopropylbenzene) 696Benzene0.650:1

Cyclohexane1,743Benzene0.928:1

Ethylbenzene1,404Benzene0.736:1

Ethylene8,107Petroleum

Ethylenedichloride3,410Ethylene0.283:1

Ethyleneglycol2,045Ethyleneoxide0.710:1

Ethyleneoxide1,711Ethylene0.637:1

Formaldehyde150kWh/ton[18]

Hydrochloricacid1.2MJ/kg[18]

Hydrogen1.8GJ/ton

Isopropylalcohol4,693Propylene0.700:1

Methanol38.4GJ/ton

Methyltert-butylether (MTBE) 1,871[19]

10 Data,Statistics,andUsefulNumbersforEnvironmentalSustainability

Nitricacid267Ammonia0.270:1

Oxygen1.8GJ/ton[19]

Phenolandacetone together 7,850Cumene0.790:1

Phosphoricacid4,300Sulfuricacid1.001:1

Polyethylene(PE)1,178Ethylene1.000:1

Polypropylene514Propylene1:000:1

Polystyrene2,264Styrene1.000:1

Polyvinylchloride (PVC) 1,246Ethylene dichloride

Propylene1,351Petroleum

Propyleneglycol2,045Propyleneoxide0.763:1

Propyleneoxide2,557Propylene0.725:1

Sodiumcarbonate3,393

SodiumchlorideNegligibleSeasalt

Sodiumhydroxide3,765Sodiumchloride1.461:1

Sodiumsilicate5,344MJ/ton[20]

Sulfuricacid1,047

Styrene16,891EthylBenzene1.019:1 Styrenebutadiene (syntheticrubber)

Terephthalicacid1,779Xylene

Titaniumdioxide24.8GJ/ton[20]

Toluene1,025Petroleum Urea843Ammonia0.567:1

Xylene1,025

Source: [15]basedon1997data,unlessotherwisenoted.

1.5Shapingofmaterials

Energyisnotonlyspentinproducingmaterialsbutalsoinshapingtheminto theirultimateusefulshapes.Thetablebelowliststhemostcommonprocesses.

Environmentalimpactsofshapingmaterials

1Forvariationsacrossmetals,seeRef.[4].

Source: [4]page133.

1.5.1Primaryshapingprocesses

12 Data,Statistics,andUsefulNumbersforEnvironmentalSustainability

Welding(permwelded)

Fasteners(perfastener)

Adhesives(perm2)

Painting(perm2)

Plating(perm2)Electroplating80

Source: [4]page135.

1.5.2Polymershaping

Source: [4]pages492 525.

1.6Miscellaneousmaterials

Energyandcarbonfootprintsofmiscellaneousmaterials

14 Data,Statistics,andUsefulNumbersforEnvironmentalSustainability

1Including10%ofcementintheconcretemix. 2Bambooflooringhasanegativecarbonfootprintbecauseoftheemissionsduringitsproduction amounttolessthantheamountsequesteredbytheplant[21].

Sources: [4]Chapters5,15 & 20,[21]forbamboo,Fig.2.

AsignificantfractionoftheCO2 emittedduringtheproductionofcement isreabsorbedintotheconcreteoverthecourseofitslifecycle,inaprocess calledcarbonation.Astudyestimatesthat33 57%oftheCO2 emittedduring cementproductionwillbeabsorbedthroughthecarbonationofconcretesurfacesovera100-yearlifespan[22].

Sources

[1]SustainableEuropeResearchinstitute(SERI)incooperationwithViennaUniversityof EconomicsandBusiness. www.materialflows.net/fileadmin/docs/materialflows.net/WU_ MFA_Technical_report_2015.1_final.pdf.SeealsoOrganizationforEconomicCooperation andDevelopment(OECD). www.oecd.org/greengrowth/MATERIAL%20RESOURCES,% 20PRODUCTIVITY%20AND%20THE%20ENVIRONMENT_key%20findings.pdf

[2]UniversityofMichigan CenterforSustainableSystems U.S,MaterialUseFactsheet,Pub. No.CSS05-18,2019.Forolderdata,seeU.S.GeologicalSurvey,FactSheet2009-3008, css. umich.edu/sites/default/files/US%20Material%20Use_CSS05-18_e2019.pdf, pubs.usgs.gov/ fs/2009/3008/

[3]UnitedNationsCenteronTransnationalCorporations ClimateChangeandTransnational Corporations AnalysisandTrends.U.N.CentreonTransnationalCorporations,Environ. Ser.2(1992).ST/CTC/112,ISBN92-1-104385-9,Chapter7“ProductionofEnergy IntensiveMetals”,110pages, ieer.org/wp/wp-content/uploads/1992/01/ClimateChangeTransnationalCorp_1992-FULL.pdf.

[4]M.F.Ashby,MaterialsandtheEnvironment Eco-InformedMaterialChoice,seconded., Butterworth-Heinemann,2013,616pages.

[5]M.Schubert,K.Saur,H.Florin,P.Eyerer,H.Beddies,LifeCycleAnalysis Gettingthe TotalPictureonVehicleEngineeringAlternatives,AutomotiveEngineering,March1996, pp.49 52.

[6]U.S.DepartmentofEnergy,EnergyInformationAdministration(eia) 2011:Steel IndustryAnalysisBrief EnergyConsumption. www.eia.doe.gov/emeu/mecs/iab98/steel/ intensity.html.

[7]BureauofInternationalRecycling,TheIndustry. www.bir.org/industry/.

[8]TimeforChange,Plasticbagsandplasticbottles CO2 emissionsduringtheirlifetime. timeforchange.org/plastic-bags-and-plastic-bottles-CO2-emissions.

[9]WoodM.,LetYourTreesGrowForProfit(undatedarticle). www.woodmagazine.com/ materials-guide/lumber/let-your-trees-grow-for-profit

[10]Howit’sMade,ForestforPaper(AboutSappiCompanyinSouthAfrica). howitsmade.co. za/growing-forests-for-paper-pulp/

[11]SierraClub,Howmuchpaperdoesonetreeproduce? www.sierraclub.org/sierra/2014-4july-august/green-life/how-much-paper-does-one-tree-produce

[12]Conservatree.org,TreesintoPaper HowMuchPaperCanBeMadefromaTree? conservatree.org/learn/EnviroIssues/TreeStats.shtml

[13]C.Thompson,RecycledPapers theEssentialGuide,MITPress,Cambridge,MA,1992, 200pages.Quotedby, conservatree.org/learn/EnviroIssues/TreeStats.shtml.

[14]PaperRecycles. paperrecycles.org/statistics/paper-paperboard-recovery and. paperrecycles. org/statistics/where-recovered-paper-goes.

[15]U.S.DepartmentofEnergy,OfficeofIndustrialTechnologies EnergyandEnvironmental ProfileoftheU.S.ChemicalIndustry,May2000. www1.eere.energy.gov/manufacturing/ resources/chemicals/pdfs/profile_full.pdf

[16]M.Neelis,E.Worrell,E.Masanet,EnergyEfficiencyImprovementandCostSaving OpportunitiesforthePetrochemicalIndustry,LawrenceBerkeleyNationalLaboratory,June 2008. www.energystar.gov/ia/business/industry/Petrochemical_Industry.pdf

[17]R.Agrawal,A.Suman,ProductionofBisphenolA,Dept.ChemicalEngineering,Jaypee UniversityofEngineeringandTechnology,Guna,India,2012. www.scribd.com/doc/ 94377374/Production-of-Bisphenol-A#scribd.

[18]H.-J.Althaus,R.Hischier,M.Osses,A.Primas,S.Hellweg,N.Jungbluth,M.Chudacoff, LifeCycleInventoriesofChemicals,SwissCenterforLifeCycleInventories,Zurich, EcoinventReportNo.8,2007.December2007,957pages, db.ecoinvent.org/reports/08_ Chemicals.pdf

[19]E.Worrell,D.Phylipsen,D.Einstein,N.Martin,EnergyUseandEnergyIntensityofthe U.S.ChemicalIndustry,UniversityofCaliforniaBerkeley,2000.LBNL-44314,April2000, 34pages, escholarship.org/content/qt2925w8g6/qt2925w8g6.pdf

[20]EuropeanCommission IntegratedPollutionPreventionandControl LargeVolume InorganicChemicals SolidsandOthersIndustry,August2007,711pages, eippcb.jrc.ec. europa.eu/sites/default/files/2019-11/lvic-s_bref_0907.pdf Materials Chapter|1 15

16 Data,Statistics,andUsefulNumbersforEnvironmentalSustainability

[21]L.Gu,Y.Zhou,T.Mei,G.Zhou,L.Xu,Carbonfootprintofbambooscrimberflooring implicationsforcarbonsequestrationofbambooforestsanditsproducts,Forests,MDPI10 (2019)51 64, doi.org/10.3390/f10010051.

[22]C.Pade,etal.,TheCO2 UptakeofconcreteinthePerspectiveofLifeCycleInventory. InternationalSymposiumonSustainabilityintheCementandConcreteIndustry,Lillehammer,Norway,September2007.Quotedonpage8of[20],2007.

Chapter2 Water

2.1Hydrologicalcycle

Everyyear,456 1012 m 3 ofwaterevaporatesfromtheocean,whichcorrespondsto theremovaloftheupper1.27mofwaterfromtheoceansurface,while62 1012 m 3 ofwaterisremovedfromlandareasbyacombinationofevaporationandtranspiration.Annualprecipitationis410 1012 m 3 overtheoceansand108 1012 m 3 overland,causinganettransferof46 1012 m 3 ofwaterfromtheoceansviathe atmosphereandreturnofthesameamountofwaterfromthelandtotheoceanby surfaceandsubsurfacerunoff([1]page355).

Thetotalamountofwateronearthisestimatedtobe1.386 109 km3,of whichonly2.5%(3.5 107 km3)isintheformoffreshwater.Theamountsin variousformsandtheirestimatedresidencetimesaretabulatedasfollows.

Distributionofwaterontheplanet

Oceans1,338,000,00096.5%3,200years Polaricecaps,glaciers, permanentsnow 24,064,0001.74%20 20,000 years Groundwater23,400,0001.69%100 10,000 years Groundiceandpermafrost300,0002.2 10 4

Sources: [1 3]. Data,Statistics,andUsefulNumbersforEnvironmentalSustainability. https://doi.org/10.1016/B978-0-12-822958-3.00009-1 Copyright © 2021ElsevierInc.Allrightsreserved. 17

2.2Energyforwater

Energyisrequiredforthedistributionofmunicipaldrinkingwater,specifically foritsextractioninnatureandconveyancetothetreatmentplant,thevarious treatmentprocesses,andthepumpingthroughtheoftencrustypipenetworkof themunicipality.

Ifthewatersourceisfromanundergroundaquifer,thepumpingenergy requirementincreaseswithdepth:537kWhpermilliongallons(0.142kWh/ m3)fromadepthof120ft(36.6m),896kWhpermilliongallonsfromadepth of200ft(122m),whichcorrespondstoabout70%pumpingefficiency([4] page11).Theotherenergyrequirementsaretabulatedbelow,withthehigher numbersbeingtypicalforCaliforniawherewaterprocurementandtreatment aremorecomplicated.

Energyrequiredtohandlewater

Sources: [4]page32,[5]page2.

Energyisrequiredtoextractfreshwaterfromseawater.Foratypical salinityof3.45%saltandatatemperatureof25 C,theminimumenergy requiredis0.86kWhperm3 offreshwaterproduced[6].Inpractice,the amountofenergyrequiredfarexceedsthisminimumandvariesdependingon thedesalinationprocess.

Energyrequiredfordesalinationofwaterbyvariousprocesses

Water Chapter|2 19

Source: [6],creditingWangnickConsulting(2010).

2.3Waterconsumption

Whiletheamountsofwaterwithdrawalsforvariousactivitiesvarywiththe stateoftheeconomyandbecauseofgrowingpopulationandaffluence,the followingnumbersfortheUnitedStatesduring2005oughttoberepresentative,atleastasfarastheirproportionsareconcerned.

WatervolumeshandledintheUnitedStatesin2005

(106 L/day) (106 gal/ day)

Irrigation484,000128,00037%

Publicsupply167,10044,20012.7%

Industrialuses68,80018,2005.2%

Aquaculture33,2008,7802.5%

Mining15,2004,0201.2%

Livestock8,1002,1400.6%

Otherwithdrawals2,500660 <1%

Totals

Source: [7]page1.

ThefreshwaterfootprintperpersonintheUnitedStates(totalconsumption abovedividedbypopulationof295.5millionin2005)is1,200gallons/day (¼4,500L/day).

DomesticconsumptionofwaterintheUnitedStates,excludingoutdoor use(whichvariesgreatlywithlocationandresidencetype)isestimatedto breakdownastabulatedbelow.

BreakdownofdomesticwaterconsumptionintheUnitedStates

Source: [1]page365.

Forwaterusageintheprocessingofmaterials,thereaderisreferredtothe individualmaterialslistedin Chapter1. Humansalsoconsumewaterindirectly,someofwhichisthroughfood productionasthetablebelowindicates.

Waterconsumptionintheproductionofselectedfoods

Source: [8].

Inlargebuildingswherecoolingtowersareusedtoprovidecentralair conditioning,therateofwaterconsumptionis3gallonsofwaterperminute foreachtonofrefrigeration1 provided[9],whichamountsto0.015gallonsof waterperBTUofheatremoved.Inmetricunits,thisamountsto54Lofwater perMJofheatremoved.Fortheaveragecommercialbuildingrelyingon coolingtowerstoprovide500tonsofrefrigeration,thewaterconsumptionis 1,500gallonsofwaterperminutetotaling900,000gallonsfora10-hourday, whichisequivalentto13,000occupantseachconsuming69.3gallonsperday (tableabove).Putanotherway,therefrigerationoftheaveragecommercial buildingbymeansofcoolingtowersconsumesinasingle10-hourdayas muchwaterasonepersonconsumesin13,000days ¼ 36years.

Belowisthebreakdownofwaterusageinrestroomsoflargebuildings.Not surprisingly,mostofthewaterisusedtoflushtoilets.

Waterusageinrestrooms

Source: [10]Fig.4 3.

2.4Wastewater

IntheUnitedStates,domesticwastewatergenerationisabout120gallonsper personperday(¼450L/day),withaspreadof50 250gallonsperpersonper day([11]page314).

Typicalwastewaterflowratesfromvariouslocationsandactivitiesareas tabulatedbelow.

Waterconsumptioninvarioustypesoflocations

1.Atonofrefrigerationisaunitofpowerequalto12,000BTUs/hr ¼ 3,516W.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.