Data-driven traffic engineering: understanding of traffic and applications based on three-phase traf

Page 1


https://ebookmass.com/product/data-driven-trafficengineering-understanding-of-traffic-and-applications-based-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Traffic and Highway Engineering 5th Edition

https://ebookmass.com/product/traffic-and-highway-engineering-5thedition/

ebookmass.com

Traffic and Highway Engineering, 5th Edition Garber Nicholas J.

https://ebookmass.com/product/traffic-and-highway-engineering-5thedition-garber-nicholas-j/

ebookmass.com

Traffic Congestion and Land Use Regulations: Theory and Policy Analysis Tatsuhito Kono

https://ebookmass.com/product/traffic-congestion-and-land-useregulations-theory-and-policy-analysis-tatsuhito-kono/

ebookmass.com

Wire Technology, Second Edition: Process Engineering and Metallurgy Roger N. Wright

https://ebookmass.com/product/wire-technology-second-edition-processengineering-and-metallurgy-roger-n-wright/

ebookmass.com

Lich's Love: A Dark Fantasy Romance Celeste King

https://ebookmass.com/product/lichs-love-a-dark-fantasy-romanceceleste-king/

ebookmass.com

Communicating Ethically: Character, Duties, Consequences, and Relationships 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/communicating-ethically-characterduties-consequences-and-relationships-2nd-edition-ebook-pdf/

ebookmass.com

General, Organic, and Biochemistry 11th Edition Katherine J. Denniston

https://ebookmass.com/product/general-organic-and-biochemistry-11thedition-katherine-j-denniston/

ebookmass.com

Problems and Solutions in Inorganic Chemistry for IIT JEE main and Advanced by V Joshi Cengage Part 1 upto Chapter 4 Qualitative Inorganic Analysis V Joshi Cengage

https://ebookmass.com/product/problems-and-solutions-in-inorganicchemistry-for-iit-jee-main-and-advanced-by-v-joshi-cengagepart-1-upto-chapter-4-qualitative-inorganic-analysis-v-joshi-cengage/

ebookmass.com

Heart on My Sleeve: Knit With Care Shannon Cook

https://ebookmass.com/product/heart-on-my-sleeve-knit-with-careshannon-cook/

ebookmass.com

https://ebookmass.com/product/data-science-ethics-concepts-techniquesand-cautionary-tales-david-martens/

ebookmass.com

DATA-DRIVEN TRAFFIC ENGINEERING

DATA-DRIVEN TRAFFIC ENGINEERING Understanding ofTrafficand Applicationsbased onThree-Phase

TrafficTheory

HUBERTREHBORN
MICHAKOLLER
STEFANKAUFMANN

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizations suchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatour website: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-819138-5

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

AcquisitionsEditor: BrianRomer

EditorialProjectManager: LeticiaM.Lima

ProductionProjectManager: OmerMukthar

CoverDesigner: MatthewLimbert

TypesetbySPiGlobal,India

Aimofthebook

Preciselymeasuredtrafficdatafromallroadshaverecentlybecomeubiquitousintransportationandtrafficsciences.Therefore,theempiricalandcomprehensivebasisfortheanalysisandunderstandingofallfeaturesoftrafficis availablenowadays.Wetrytoexplainthelargevarietyandcomplexityof measuredtrafficdataandthosefeaturesonfreewaysaswellasinurbanareas. Manytrafficapplicationswillbesupportedbasedontheavailabledata.

Almost20yearsaftertheinventionofthethree-phasetraffictheoryby BorisKerner,itistimetohaveacloselookatitsconsequencesfortransportationengineeringaswellasitspracticalapplications.Thisbookwillhelp transportationengineersandtechnicianstounderstandboththeapplications andapplicabilityofKerner’sthree-phasetraffictheoryinavarietyofscenarios.Itstartswithmeasurementsoftrafficphenomena,bothwithstationary loopdetectorsandwithconnectedvehicledata.Then,atheoreticalaswellas historicalexplanationofthethree-phasetraffictheoryfollows.Basedonthis theoreticalfundament,anumberofthetheories’conclusionsofferideasfor newapproachesintrafficcontrolaswellasnewvehicularapplicationssuch asdriverinformationanddriverassistance.Moderntrafficengineering methodsarecloselyrelatedtoinformationtechnologyandcomputerscience.Therefore,algorithmsandmethodswillbedescribedwiththeirapplicabilityassoftwareinbothcollectivetrafficmanagementandindividual vehicles.

Today,moreandmorepeoplehaveabandonedprintedmapsinvehicles forrouteguidance.Instead,electronicnavigationhasbecomestateoftheart inallvehicles.Congestedtrafficinfluencesthosenavigationsystemsand theirrelateddynamicroutechoices.BasedonKerner’sthree-phasetraffic theory,weareabletodefinetherequirementsandtestingmethodsfor high-qualitytrafficmessagesusedinnavigationsystems.

Expectedreaders

Wehopeabroaderaudienceisinterestedinscientificexplanationsforthe emergence,propagation,anddissolutionoftrafficcongestion.Inaddition, theaspectsoftrafficphase-dependentfuelconsumption,theinfluenceof weatherontraffic,andaspectsofautomateddrivinginrealtrafficshould attractreaderswhenthesetopicsarediscussedtechnicallyinthescopeof thethree-phasetraffictheory.

Scopeandoutlineofthebook

Empiricalmeasurementsindifferentcountriesandofdifferentkindsillustratethevarietyofcongestedphenomenaintraffic.AhistoryofKerner’s three-phasetraffictheorywillexplainsomehistoricstepsfromthefoundationsofthistraffictheoryanditsconsequencesuntiltoday.Startingfrom trafficmodelingintheearly1990,theintensiveworkwithempiricalmeasuredtrafficdataleadstoadeepunderstandingofthecomplexdynamicprocessesonfreeways.Additionalconsequencesofthethree-phasetraffic theory’sstatementshavebeenboththeproposalofpracticalapplications andtheinventionofimprovedtrafficmodels.

Thisbookwilloutlinethedevelopmentofthethree-phasetraffictheory aswellasexplaintherelevantmilestonesandsteps.Itstartswithahistorical viewontrafficmodelinginthree-phasetraffictheoryandproceedswith thefundamentsofthetheory.ThehistoryofthemodelsASDA/FOTO andsomeotherapplicationsaresummarizedfurtheron.Jamtailwarnings andonboardtrafficstatedetectionmethodsdescribeanapproachthat includesmoreprecisetrafficinformationinvehiclesystems.Thevehicles’ navigationsystemshavetointegratetrafficmessagesinaproperway,and thequalityofthosecongestionmessageshavetobeevaluatedinthescope ofKerner’stheory.

CHAPTER1 Introduction

Everymorning,thecommutersinmanyurbanareasoftheworldsufferfrom timedelayscausedbytrafficcongestion.Thecongestionisregular,recurring,andpermanentatcertainlocationsoftheroadnetwork.Therefore, beginningfromabetterunderstandingoftheunderlyingphysicalprocesses intraffic,thewishforpreciseandreliabletrafficanalysisarisesformultiple trafficmanagementpurposes,bothcollective(e.g.,trafficcontrol)orindividual(e.g.,dynamicrouteguidanceinnavigationsystems).Toreachthese goals,empiricalcongestionpatternsmustfirstbeanalyzedandunderstood correctly.Thiscanbedoneonlyifsufficientmeasuredtrafficdataareavailable.Today,connectedvehiclessendingtheirpositiondata(i.e.,probevehicledata)areonekeyelementofcollectingtrafficdataoneachroadsegment throughoutthewholeroadnetwork.

Ourbookintroducesmanydifferentcongestedtrafficsituationsmeasuredwithconnectedvehiclefleetsanddiscussesseveralaspectsofpossible trafficapplications.Theinvestigatedvehiclefleetcontainsmorethanone millionvehiclesthathavegiventheirpositiondatatoimprovethequality ofthetrafficservice.Aswewillshowinthebook,about2%ofthetotalflow rateonaroadsectiongivesenoughinformationtoreconstructtherelated trafficsituationwithhigh-enoughquality:onathree-lanefreewaywith about6000vehiclesperhour,about120connectedvehiclesand/ordevices sendingtheirpositiondatatoacentralserverallowatrafficservicewith about500–1000mgranularityofthepositionsofanytrafficcongestion. Thecomplexityofthedifferentcongestedtrafficpatternsatdifferentbottlenecksisillustratedforseveralroadsectionsinseveralcountries.Themeasuredtrafficdatashowthevarietyinmanyheterogeneoussituationsthat emergeduetoourdrivingbehavior:theindividualbreakingandaccelerationleadtocollectiveeffectsthatcanpropagateseveralkilometersupstream. Inaddition,weinvestigateandanalyzemicroscopictrafficwiththehighest possibledetail:droneobservationsallowmeasuringthedrivingofeachindividualvehicleovertime(i.e.,inatimeintervalofabout20min)andspace (i.e.,about400mwithonecamera)simultaneously. Fig.1 illustratessucha dronemeasurementonafreewaysegment,observingallvehiclesbyacameraanddetectingallobjectsonthefreeway.

2 Data-driventrafficengineering

ThetheoreticalfoundationofthisworkisgivenbyBorisKerner’sthreephasetraffictheory(seeWikipedia [1] andthebooks [2–4]).Trafficcanbe distinguishedintothreedistinctphases:(i)freeflow,(ii)synchronizedflow, and(iii)widemovingjam.Infree-flowingtraffic,eachdrivercanchoosehis individualspeedandcanovertakeonpurpose;insynchronizedflow,there arealmostnopossibilitiestoovertakeandthespeedhasatendencytobe synchronizedamongthedifferentlanesofthesamedrivingdirection;and inthewidemovingjamphase,thevehicleshavecometoanearstandstill andthetrafficflowisinterrupted.Thetrafficbreakdownisassociatedwith aphasetransitionfromfreetosynchronizedflow.Insidethesynchronized flowregion,duetodriverbehaviorwidemovingjamscanprobablyemerge thatthenpropagatefurtherupstreamwithavelocityof 15km/hon average.

Thebookwillfollowtheprincipleofdiscussingalldata-drivenfactsand featuresbasedonmeasuredtrafficdataonly.Manyvarioustrafficcongestions onfreewaysandinurbanareasarepresentedin Chapter2:time-space diagramsofmeasuredfleetdatafromconnectedvehiclesillustratethecomplexityoftrafficcongestion. Chapters3 (dedicatedtothehistoryofthe three-phasetraffictheoryandcongestedtrafficpatternsonfreeways)and 4 (discussingcongestioninurbanareaswithsignalizedintersections)try togiveacomprehensiveoverviewofallkeyelementsofthethree-phase traffictheoryastheyarerelevantforunderstandingallempiricalexamples.

Snapshotofcameraobservationandobjectdetectionprovidedbyadrone measurementofafreewaysegment.

Fig.1

Thisbackgroundgivesthefoundationofthedifferentapplicationsintransportation;withoutthisbackgroundwecannotdistinguishbetweenpossible andimpossibleapplicationsandwhysomeapplicationsarepossiblewhile othersfailcompletely.

Chapter5 withapplicationsintransportationbeginswithareviewofthe ASDA/FOTOmodelsdevelopedbasedonthethree-phasetraffictheory andimplementedinsoftwaremodules.Wewillshowinadditionthedependencyofthetrafficparametersontheweatherconditions.

Whatthenfollowsisageneralstatisticalanalysisofthedatafromalarge fleetofconnectedvehicles:whatarethemobilityparameterssuchasaverage triptimes,speeds,etc.,andtherefore,howdopeopleusevehiclesinsome differentcountries?Inaddition,whatistheroutechoicebehavioriftraffic informationisusedinnavigationsystems?Dopeoplefollowadvice?Also,in whichtrafficsituationscanatimedelaybesavedwithalternativeroutesin theoccurrenceoftrafficcongestiononthemainroad?Andhowmuchtime canbesaved?

Ifenoughandprecisevehicledataareavailableonaroad,anactivejam tailwarningwillbecomefeasible.Thisannouncessuchaneventinadvance toeachdriver:thepositionovertimeof,forexample,awidemovingjam withasuddenbreakdownfromfreeflowtoacompletestandstillcanbe reconstructedwithin500–1000maccuracy.

Furthermore,detailedmeasurementsinvehiclesallowdiscussingtraffic phasedependentfuelconsumption:duetodecelerationandaccelerationin congestedtraffic,thefuel/energyconsumptionincreases.Wecanrevealfactorsofincreasedaverageconsumptionindependencyoftherelated trafficphase.

Automateddrivingisoneoftherelevantresearchtopicsoftheautomotiveindustryanditcomeswithhighexpectationsforourmobility.Wewill concentratethetechnicaldiscussionofonespecificdifficultexampleforan automatedvehicle:whatarethetimegapsinrealtrafficandhowcansuchan automatedvehiclemergeontoahighwaythroughanon-ramp?

Forvehiclemanufacturerswithembeddednavigationsystemscompetingwithmobiledevicesregardingapplicationsandfeatures,oneremaining possiblefieldofvehicularapplicationisthevehicleitself.Themanufacturer canusethedynamicinformationofthetrafficserviceinthevehicleby,for example,usingupcomingcongestionaheadtotriggerthebehaviorofacontrolunit(e.g.,withabreakingassistsystem)inacertainway.Asanother example,anupcomingjamfrontcanbeusedtoactivelyreducethevehicle speedadvisedtothedriver.

Finally, Chapter5 willdiscusssomeexamplesandaspectsoftrafficservicesfornavigationsystemsandillustratesomeexamplesofcomplextraffic situations.

Allthetheoreticalworkandthetrafficdataanalysisworkhavebeensupportedbyseveralcolleagueswhomwewanttothank:BorisKernerandSergeyKlenovfortheirsupportonalltheoreticalandapplicationquestions; JochenPalmerforhisalgorithmicworkonASDA/FOTOwithprobevehicledata;PeterHemmerleforhisworkwithurbantrafficdataanddrone experiments;MarkusAuerforhisanalysisofthemobilitydataofthevehicle fleet;Sven-EricMolzahnforhisinvestigationofjamtailwarningapplications;andYildirimD € ulgarforhisanalysisoftimegapsofvehiclesandthe preparationofdiagramsforfleetdata.Thisbookwouldnotbepossible withoutsomefundedpublicresearchprojectsoverseveralyears(e.g., “MECView—ObjectdetectionforautonomousdrivingbasedonMobile EdgeComputing”and“LUKAS—Localmodelforcooperativeandautonomousdrivingincomplextrafficsituations”fundedbytheGermanFederal MinistryofEconomicAffairsandEnergy)aswellasthesupportofthe Mercedes-Benzresearchanddevelopmentfacilities.

References

[1]Anon, https://en.wikipedia.org/wiki/Three-phase_traffic_theory

[2] KernerBS.Thephysicsoftraffic.Berlin,NewYork:Springer;2004.

[3] KernerBS.Introductiontomoderntrafficflowtheoryandcontrol.Berlin,NewYork: Springer;2009.

[4] KernerBS.Breakdownintrafficnetworks:fundamentalsoftransportationscience.Berlin:Springer;2017.

CHAPTER2

Howtrafficdataaremeasured

Westructurethedescriptionofthemostcommontechnologiesformeasuringtrafficdataonroadsintothreeseparatesections: Section2.1 describesthe historicallyandcurrentlystillwidelyusedmeasurementswithfixedinstalled sensorsintheroadnetwork.Trafficdatafrommovingobjectsintrafficflow, called“probevehicledata,”areincreasingnowadayswithconnectedvehiclesandothermobiledevices;thisisexplainedin Section2.2.Dueto recentlyavailabledronetechnologiesandobjectreconstruction,theaerial observationoftrafficflowisanewlyreinventedandinterestingapproach togetcomprehensivespatial-temporaltrafficdatasets(Section2.3).

2.1Loopdetectordata

Empiricaltrafficmeasurementsaretodaystillverycommonlyperformed withfixedinductiveloopdetectorsinstalledonlanes,bothonfreeways andinurbannetworks.Typically,theyhavefixedmeasurementintervals of1minandaggregatetwotrafficflowvariables:(i)theaveragespeedof allpassingvehiclesinkilometresperhour,and(ii)thetrafficflowrate countedinvehiclesperhour.Infreeflowconditions,typicalflowrates ononefreewaylanegoupto2500vehiclesperhourandtheaveragespeed isapproximately100km/hormore.Fortrafficcontrolpurposes,thespeed andflowratebreakdownofthemeasuredvariablesisusedtoidentifycongestion.Inaddition,doubleloopsensorscandistinguishamongdifferent vehicletypessuchaslongvehicles,passengercars,andtrailers.

Anexamplefortypicalempiricalmeasurementswithalocalloopdetectorisillustratedin Fig.1.Onfreewaysegmentswithvariablemessagesigns (VMS),thecontrolofthespeedsshowntodriversisderivedfromdatameasuredbytheloopdetectorscoveringeachlane(oneofthemmeasuresbelow eachVMS). Fig.1Apresentstheschemeofthefreewayandthepositionsof loopdetectors.Incolour,twodifferentkindsofverycommonbreakdowns aremarked:(i)inaspeedandflowdiagram,thered(darkgreyinprintversion)markedtimeintervalischaracterizedbyasuddendropinbothspeed andflowmeasurements,and(ii)in Fig.1B–C,theyellow(lightgreyinprint

Data-DrivenTrafficEngineering

2021ElsevierInc. https://doi.org/10.1016/B978-0-12-819138-5.00003-2

6:43am 8:43am 10:43am 6:43am 8:43am 10:43am

: Breakdown of speed and flow rate

: Breakdown of speed only

Fig.1 (A)schemeofafreewaywithloopdetectors,(B)averagedvehiclespeedatthe leftlaneofdetectorD1,(C)flowrateattheleftlaneofdetectorD1. (AdaptedfromKerner BS,RehbornH.Experimentalpropertiesofphasetransitionsintrafficflow.PhysRevLett, 1997;79:4030.)

version)markedtimeintervalshowsadropinthevehiclespeedwhilethe flowrateremainsabove1200vehiclesperhour(fordetailsee[12]).

Adetailedpictureofloopdetectormeasurementsshowingeachindividuallaneisillustratedin Fig.2:themeasurementsforeachlaneofthefreeway indicatethehigherspeedontheleftlaneandthelowestspeedontheright lane(inGermanyduetotherightdrivinglawafterovertakingandlong vehiclesontherightlanes).Anuparrowshowsthetimemomentwhen attheloopdetector,thespeeddecreasesandbecomessimilarinalllanes (atdetectorsD1toD4). Fig.2Ashowsaclearsynchronizationofthevehicle speedsonthethreelanesafter7:16a.m.Incontrasttofreeflow,overtakingis thennolongerpossibleatthereducedspeedofabout60km/h.Froma driver’sperspective,thismightbecalledslowand/orqueuingtraffic.The correspondingflowrateatdetectorsD3andD4(Fig.2E)showshighvalues ofabout2400vehiclesperhour.Inaddition,theinvestigationoftheD2 on-rampmeasurementsrevealsabreakdownintheaveragespeedsonthe rampbetween7:12a.m.and9:12a.m.(Fig.2G)whileafterashort

D

A (A)(B)(C)

(km/h)

(D)

(G)(H) (E)(F)

Fig.2 (A)–(D)Vehiclespeedsatloopdetectorsfromafreewaysegmentshownin Fig.1Aforeachlane;(E,F)correspondingflowratesatD3,D4,andD2on-ramps;(G, H)D2on-rampmeasurementsforalargertimeinterval. (AdaptedfromKernerBS, RehbornH.Experimentalpropertiesofphasetransitionsintrafficflow.PhysRevLett, 1997;79:4030.)

breakdownintheflowrateatapprox.7:40a.m.(Fig.2F),theflowrateatthis on-rampremainsonahighlevelatabout500vehiclesperhourmerging ontothefreeway.

Inadditiontofreeways,loopdetectorsareusedinurbanareastomeasure vehiclespeedsandflowrates.AnexampleforanurbanroadinD € usseldorf, Germany,isgivenin Fig.3:630maheadofthetrafficsignal“TS,”thefixed detector“D”measuresaggregatedtrafficvariables.Similartothetimeintervalsmarkedin Fig.1B–C,thedropinvehiclespeedandflowratecanbe observedattheurbandetectoraswell(fordetailsee[11]).Between 7:45a.m.and9:15a.m.onApril10,2013(andfrom8:00a.m.to9:15a.m. onFeb.5,2013),thereisasignificantspeeddropwithalmostnodropin Time Time 7:16am 7:22am 7:12am 7:20am 7:28am 7:12am 7:20am 7:28am 7:38am 7:28am 7:34am 7:40am 7:17am 7:16am 7:16am 7:12am 7:20am 7:28am 7:12am 7:20am 7:28am 7:12am 7:20am 7:28am 7:12am 8:32am 9:52am 8:32am 9:52am 7:12am

9:00am 11:00am 7:00am 9:00am 11:00am 7:00am 9:00am 1 7:00am 9:00am 11:00am

: Breakdown of speed and flow rate

: Breakdown of speed only

Fig.3 (A)SchemeoftheurbanstreetVolklingerinD € usseldorf,Germany,withtraffic signal “TS” anddetector “D” atthebeginningofthesection;(B)twodayswith measurementsat “D” withvehiclespeedandflowrate. (AdaptedfromKernerBS, HemmerleP,KollerM,HermannsG,KlenovSL,RehbornH,etal.Empiricalsynchronized flowinoversaturatedcitytraffic.PhysRevE2014;90(3):032810.)

theflowratediagram.Onthecontrary,thespeeddropfrom9:50a.m.to 10:05a.m.onApril10,2013,isaccompaniedbyadropintheflowratevalues. Thetwotypesofbreakdownsarerelatedtotrafficcongestion.Independentoftheremainingflowrate,weasindividualdriverswoulddefinetraffic congestionasastateontheroadwherethefreeflowspeedcannotbe achievedanymoreandovertakingisalmostimpossible.OntypicalGerman freewaysegments,therewillbecongestedtrafficifthespeeddecreasesbelow about80km/h(if120km/hormoreisallowed)andontypicalGerman urbanstreetsifthespeeddecreasesbelowabout30km/h(if50km/his allowed).

2.2Probevehicledata

Since2000,theGlobalPositioningSystem(GPS)hasallowedthelocalizationofportabledeviceswithanaccuracyofabout5–7m(e.g., [1]).Before thattime,duetoanartificialGaussiansignalcalledselectiveavailability,an accuracyofonlyabout100mforsatellitepositioningforcommercialuses waspossible.Sincethen,manydeviceshavebecomeequippedwithGPS sensorsandallowpermanentlocalizationwhiledrivingontheroads(socalled“matching”ofrawGPSpositiondatatoapositiononaspecificroad inadigitalmap).Overtime,moreandmoredevicesandvehicleshave becomeconnectedviaanIPconnectiontocentralservers.Withallthese ingredients—especiallytheuseofmobilesmartphonedevices—wecan measuretrafficcongestioneverywhereandatanytime.Theprobedata coverthewholeroadnetworkatanytime.

Basically,onevehicledrivesonaroad,hastoslowdowntoastandstill, anddrivessometimesbelowthefreeflowspeed.Peoplemightcallthis “stationarytraffic”or“slowtraffic”asbothreducedvelocitiesarecalled “congestion”(Fig.4).Ifonevehiclesenditspositiondataas“probes”to thetrafficcenter,itisimpossibletodetectthe(congested)trafficsituation. Butitisveryclearthatwithanincreasingamountofvehicles,thistraffic reconstructionbecomesbetterandbetter.

Inthefollowing,wewillshowmeasuredprobedatafromalargevehicle fleetdrivingondifferentroadsindifferentcountries.Aftersuccessfully

matchingtheGPSprobedataofthevehicles,wecanshowtime-spacediagrams,asin Fig.4 (bottom),fordifferentroadstretchesandtherelatedmeasuredGPSdataforeachtrafficsituation.Inthenextexamples,wesimply colourtheGPSdataaccordingtothefollowinglegend:(i)red(darkgrey inprintversion):0–25km/h,(ii)yellow(lightgreyinprintversion): 25–60km/h,and(iii)green(greyinprintversion): >60km/h.Thespeed valuesarecalculatedbasedonthepositiondatain5–10sintervals.Thegiven colourschemeisappropriateforfreeways.Forotherroadclassessuchas urbanroads,thevalueshavetobeadaptedtotheusualdrivenvelocities. WeshowexamplesfromfreewaysegmentsinGermanyandtheUnited Kingdom.Inallcasesbasedonthecolouring,theregionsoftrafficcongestioncanbequalitativelyidentified.Theanonymizeddataareobtainedfrom connectedvehiclesofalargefleetfromreal-worldcustomersdrivingonthe publicroadnetwork.ThesevehiclessendtheGPSlocationalongwitha timestampandsessionidentifiertoasecureback-endserver.ThedatacomprisetherawGPSlocationthat,aftermapmatching,representsatrajectory onthegivenroadsection.Dependingonthevehiclemodelandvariantcoding,thedatahasatypicalsamplingrateofeither5or10s.

Forallfollowingprobedataexamples,wewillusethesameschemeof datarepresentationillustratedin Fig.5:eachprobevehicleisillustratedas oneline.Thefleetdataforoneroadsectionarecolouredsimilarly:(i)all vehicletrajectoriesshowingspeedsabove80km/harerepresentedingreen, (ii)vehiclesdrivingbetween30km/hand80km/hareinyellow,and

v > 80 km/h 30 km/h < v < 80 km/h v < 30 km/h Ramps at intersections

Fig.5 Schemeofprobedataillustrationsintime-spacediagrams.Blackrectangular objectsindicatepossibleregionsoflowervehiclespeeds.

(iii)vehiclesdrivingslowerthan30km/honafreewaysegmentareshownin red.Foreachprobedatadiagram,theroadinfrastructureisshowntothe rightofthediagramandindicatesthenumberoflanesandon-andoff-ramps aswellasintersections.Theblackboxesinthediagramof Fig.5 ontheleft sideindicatetheregionsofcongestion(withlowerspeeds),whichwillbe explainedlaterinmoredetail.

2.2.1Propagatingcongestion

Inthefollowing,wetakealookatdatameasuredonhighwayA81inGermanyfromHeilbronntoStuttgartonNov.13,2016(aSunday).In Fig.6, weconsiderthetrafficfrom10:00a.m.to10:00a.m.Mostofthetimethe vehiclesonthisstretchofroadaregoingfasterthan60km/h,whichis markedasgreenlinesin Fig.6.Onereasonforthisisthatthedataarefrom aSunday,whichismostlylesscongestedthanaworkingday.However,in thetimeintervalfrom5:00a.m.to7:00a.m.between20and30km,apatternwithslowlydrivingvehicleswasobserved;itisshownin Fig.7.At 30km,thereisanoff-rampfollowedbyanon-ramp.Atthevehicletrajectoriesplottedin Fig.7,onecanseethatthetrafficcongestiondispersesafter thelocationoftheoff-/on-rampat30km.Moreover,weseethatatraffic patterncausedbyvehiclesdrivingslowerthan25km/h,whichismarkedin red(tinywavylinesinprintversion)in Fig.7,ismovingbackwardinspace. Thewidthandgradientofthered(tinywavylinesinprintversion)pattern seemtobeconstantwhilemovingbackward.

Fig.6 GPSprobevehicledataforNov.13,2016forhighwayA81fromHeilbronnto Stuttgart(Germany).

“Mundelsheim” Junction “Ilsfeld”

Fig.7 GPSprobevehicledataforNov.13,2016forhighwayA81fromHeilbronnto Stuttgart(Germany).

InothercountriessuchastheUnitedKingdom,similartrafficpatterns canbediscovered(see Fig.8).Inthisexamplethered-markedarea(tiny wavylinesinprintversion)existsformorethan1handpropagatesmore than20kmbackward. Fig.9 showsthatmultiplesuchpropagatingareas canoccurwithinashorttime,forexample,fiveareasinlessthan1h.

2.2.2Localizedcongestion

In Fig.10,weconsiderdatameasuredonhighwayA4inParis(France)on Oct.10,2016,(Monday).Weseethatapartfromtheareabetween4kmand 7km,thevehiclesaregoingfastwithspeedsofatleast60km/h.Between

M4, 25th Oct, 2016

Ramps Junction “M25” 4:30pm 5:30pm 6:30pm 7:30pm 8:30pm

Fig.8 GPSprobevehicledataforOct.25,2016,forhighwayM4neartheintersection withM25inLondon,theUnitedKingdom.

UK M4, 15th Nov, 2016

Fig.9 GPSprobevehicledataforOct.25,2016,forhighwayM4intheUnitedKingdom.

France A4, 30th Oct, 2016

Fig.10 GPSprobevehicledataforOct.10,2016forhighwayA4inParis(France).

4kmand6.2km,mostofthevehiclesaregoingslowerthan60km/h.At 6.2km,thereseemstobeafixedspotafterwhichthevehiclesareaccelerating.Actually,thereisanoff-rampataround6.2km.However,inthementionedareathereareonlytinyred(tinywavylinesinprintversion)regions, whichmeansthatthevastmajorityofthevehiclesaregoingfasterthan 25km/h. Fig.11 illustratesacongestedpatternintheUKatfreewayM3, whichislocalizedatthejunctionwithfreewayM5.Alocalizedstructure isstableformorethan3h,withthereducedspeedsindicatedinyellow.

Fig.12 showsanothersimilartrafficpatternmeasuredonhighwayA5in Hessen(Germany)onOct.31,2016.

“A86”

UK M3, 27th Oct, 2016

Fig.11 GPSprobevehicledataforOct.27,2016forhighwayM3inLondon(United Kingdom). A5-North, 31st Oct, 2016

Junction “A66” 3:00pm 4:00pm 5:00pm 6:00pm 7:00pm Time

Fig.12 GPSprobevehicledataforOct.31,2016forhighwayA5inHessen(Germany).

2.2.3Localizedandpropagatingcongestion:Ageneraltraffic pattern

Thedatashownin Fig.13 weremeasuredonhighwayA81fromHerrenbergtoB € oblingen/Sindelfingen(Germany)onOct.27,2016(Thursday). Weseeagainthatataround15.7km,thereisafixedspotafterwhichthe slowlydrivingvehiclesareaccelerating.Theinfrastructure-basedreasonis theG€auTunnelwithoutanyon-andoff-ramp,butwithaspeedlimit andatunnelentrance.Themaindifferencewith Fig.10 isthatin Fig.13,vehiclesaregoingveryslowlyatsomepartsthataremarkedin red(greywavylinesinprintversion).Thepatternsfollowingfromlowspeed areverysimilartothepatternfoundin Fig.7.Thesepatternsarealsomoving

A81, General Pattern, 27th Oct, 2016

Bottleneck “Gäu-Tunnel”

Fig.13 GPSprobevehicledataforOct.27,2016forhighwayA81fromHerrenbergto B € oblingen/Sindelfingen(Germany).

backwardinspace.In Fig.14,anothersimilartrafficpatternisshownthatis largerintimeandspace.ItwasmeasuredonhighwayA81fromHeilbronn toStuttgart(Germany)onNov.10,2016(Thursday).

2.2.4Localizedcongestion:Completefreewayblockage (“Megajam”)

In Fig.15,wetakealookatdatameasuredonhighwayA8fromKirchheim unterTecktoStuttgart(Germany)onOct.27,2016(aThursday).At around12.9km,weseeafixedspot,afterwhichtheslowlydrivingvehicles

A8, General Pattern, 10th Nov, 2016

Junction “Weinsberg” 6:00am 7:00am 8:00am 9:00am 10:00am

Fig.14 GPSprobevehicledataforNov.10,2016forhighwayA81fromHeilbronnto Stuttgart(Germany).

A8 Mega-Jam 27th, Oct, 2016

8:00pm9:00pm 10:00pm 11:00pm

Fig.15 GPSprobevehicledataforOct.27,2016forhighwayA8fromKirchheimunter TecktoStuttgart(Germany).

areacceleratingandtrafficcongestiondispersesrapidly.Furthermore,wesee thatthefirstvehiclesstartgoingslowerat7:45a.m.at12.9km.Thespeed slowsdownunder25km/h,whichisveryslowonahighway;thisismarked inred(wavylinesinprintversion)inthefigure.Itisalsoimportanttosee thattherearealmostnopartsofthevehicletrajectoriesinwhichthespeedis between25km/hand60km/h;thisismarkedinyellow(smallportion aroundwavylinesinprintversion)inthefigures.Itseemsthatsomething happenedat7:45a.m.atroadlocation12.9km,afterwhichallvehicles hadtoslowdownrapidlyorevenstop.Itcouldbeacaraccidentthatcaused thehugetrafficcongestionbetween7:45a.m.and11:15a.m.Anothersimilarpatternisshownin Fig.16 fordatameasuredonhighwayA81from Leonberg/StuttgarttoHeilbronn(Germany)onNov.6,2016(Sunday).

2.2.5Inducedcongestion:Propagatingstructures

Inalltheexamplesshownbefore,thetrafficbreakdownoccursatonelocation,andwecandefinethisasspontaneouscongestion(emergence).Inadditiontotheselocalizedphenomena,apropagatingcongestedstructurecan induceatrafficbreakdownatanupstreambottleneck,asweillustratein somefurtherexamples.Forthese,themeasuredspeedsofthevehiclesbelow 20km/harecolouredinredwhilethosebetween20and80km/harein yellowandthoseabove80km/hareingreen.

In Fig.17,apropagatingyellow(lightgreyregioninprintversion)structureemergesat7:55a.m.at4.5kmandpropagatesuntiltheon-rampat

A81 Mega-Jam, 6th Oct, 2016

4:30pm 5:30pm6:30pm 7:30pm Time

Junction “Pleidelsheim”

Fig.16 GPSprobevehicledataforOct.6,2016forhighwayA81fromLeonberg/ StuttgarttoHeilbronn(Germany).

A5-South 27th November, 2017

Intersection “Westkreuz Frankfurt”

Intersection “Nordwestkreuz Frankfurt” On-ramp On-ramp On-ramp 7:50am 8:00am 8:10am 8:20am 8:30am

Fig.17 GPSprobevehicledataforNov.27,2017forhighwayA5SouthnearFrankfurt (Germany).

3.5km.After8h,congestedtrafficwithreducedspeedsbetween20and 80km/hremainsstableformorethanthenext30min.

In Fig.18,twopropagatingstructuresinred(wavylinesinprintversion) arevisibleonall7kmoftheillustratedroadsection.Thesecondstructure inducesslowertrafficatthebottleneck,whichispotentiallytheendingofa roadgrade.Theslowtrafficremainsforalmostthenexthourlocalizedatthis kindofbottleneck.

ThethirdexampleofinducedcongestionisshownforInterstate90in Chicago:slow-movingtrafficpropagatesfrom22kmupstreamandinduces at19km(anintersectionofI-90)slow-movingcongestion.Thiscongestion

A5-North, 16th Nov, 2017

End of road grade of 3.9%

Begin of road grade of 3.9% Intersection “Friedberg” “Rastplatz Schäferborn”

Fig.18 GPSprobevehicledataforNov.16,2017forhighwayA5NorthnearFrankfurt (Germany).

Intersection between I-90 and “Harlem Ave” Intersection between I-90 and “N Cumberland Ave”

Intersection between I-90 and I-94

Fig.19 GPSprobevehicledataforApril8,2019,atInterstate90(West)inChicago(data providedbyHERE.Urbanfreewaywithmanyintersectionsandramps).

remainsformorethan2hatthebottlenecklocation.Theprobedateforthis examplehavebeenprovidedbyHEREfortheUSmarket(Fig.19).

2.2.6Similarandheterogeneouscongestedtrafficpatterns

Wewillnowtakeacloserlookatasequenceofdatameasuredonmotorway M11inLondon.ThedataweremeasuredfromOct.25,2016(aWednesday)toNov.16,2016(aWednesday)inthetimeintervalbetween6:00a.m. and12:00a.m.Weseethatthetrafficpatternsontheweekdaysaresimilarto eachother,whereasthetrafficpatternontheweekendsdiffersfromthe weekday.Onweekdays,theusualcongestedtrafficpatternsareobserved

atthepeakhoursinthetimeintervalof7:00a.m.to10:00a.m.frompeople goingtowork.Asexpected,ontheweekendsthetrafficislessandthereisno trafficcongestionobserved(Fig.20).

Additionally,congestedtrafficpatternsona33kmstretchoffreewayA5 illustrateboththevarietyandsimilarityofthepatterns.Onweekdays,the congestionstartsalmostsimultaneouslyatbottlenecksatthetwojunctions WalldorfandBruchsalatabout6:30a.m.,withthecongestionremaining untilapproximately9:00a.m.Onaglobalview,thewidthandduration

6:00am 9:00am 12:00pm

6:00am 9:00am 12:00pm

6:00am 9:00am 12:00pm

Monday, 31th Oct. Fri, 11th Nov Monday, 7th Nov.

6:00am 9:00am 12:00pm 6:00am 9:00am 12:00pm6:00am 9:00am 12:00pm 6:00am 9:00am 12:00pm 6:00am 9:00am 12:00pm 6:00am 9:00am 12:00pm 6:00am 9:00am 12:00pm

Junction “M25” Tuesday, 1st Nov. Tuesday, 8th Nov. Wed., 2nd Nov. Wed., 9th. Nov. Thu., 3rd. Nov.

10th Nov.

Junction “M25”

Junction “M25” Junction “M25” Junction “M25” Fri., 4th Nov.

Fig.20 TwoweeksofcongestedpatternsintheUKatfreewayM11;similarityon weekdayswithcongestionalwaysbeginningat7a.m.

areverysimilar,butlookingintothedetailssomedifferencesarevisible.As oneexample,onsomedaysthreepropagatingstructuresfromtheWalldorf junctionpropagateuntiltheBruchsaljunction(Nov.2and9,2016).Onone day,(Nov.8,2016),twostructurespropagateupstream,butonsomedays thereisonlyonepropagatingstructure(Nov.7,10,14,and16,2016).On someweekdays,nostructurepropagatesupstreamuptobottleneckB(Nov. 11and15,2016)(Fig.21).

2.2.7Complexempiricaltrafficpatterns

Incomplexroadnetworksonlongersections,alwaysatseveralbottlenecks, alargevarietyofcongestedpatternsexist,emerge,anddissolveinparallel. Thefollowingexamplesillustratethiscomplexityofcongestedtraffic patterns

Fig.22 showsthehighwaysectionA8comingfromKirchheim,passing thecityofStuttgartgoingtowardPforzheim.Markedonthesidearebottlenecksthatinfluencethetrafficheavily.Foronce,onecanseetheusual congestedtrafficpatternsatpeakhoursfrompeoplegoing(6:30a.m.until 10:00a.m.)toworkandleavingforhome(4:00p.m.until8:00p.m.)at KreuzStuttgart,whichisamajorintersectiononthishighway.AtthebottleneckEsslingen,twolargecongestionsevolvedafteranaccident.

In Fig.23,themap-matchedrawGPSdataareshownfortheM4going towardLondon’scitycenter.AswiththeA8sectioninGermany,themajor jamsarehappeningduringthepeakhourswherepeoplearegoingtoand leavingwork.Similartrafficpatternsareobserved.Itisclearthatwithmore data,theprecisenessofthetrafficreconstructionincreases.ThefiguressupportaqualitativejudgementthatwithapproximatelyoneGPSprobeper minute(i.e.,about60connectedvehiclesperhour,whichisabouta1%penetrationrateofthetotaltrafficflowforathree-lanefreewaywith6000vehicles/hinpeaktimes),onaveragethequalityissufficientforatrafficservice.

2.2.8Trafficpatternsinurbanareas

Inthefollowing,wewillconsideranurbanareawithaspeedlimitof50km/ h.ThedataweremeasuredonNov.9,2016,foranurbanroadsectionin Boblingen.Inurbanareas,wesimplycolourthevehicletrajectoriesaccordingtothefollowinglegend:(i)red:0–10km/h,(ii)yellow:10–35km/h, and(iii)green: >35km/h.Amaindifferenceoftheemergenceoftraffic congestionbetweenurbanareasandhighwaysisthatusuallytrafficsignals causetrafficcongestioninurbanareas,whereasonhighways,bottlenecks

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.