Cybersecurity in intelligent networking systems 1st edition shengjie xu - Read the ebook online or d

Page 1


https://ebookmass.com/product/cybersecurity-in-intelligentnetworking-systems-1st-edition-shengjie-xu/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

The AI Revolution in Networking, Cybersecurity, and Emerging Technologies Omar Santos

https://ebookmass.com/product/the-ai-revolution-in-networkingcybersecurity-and-emerging-technologies-omar-santos/

ebookmass.com

Demystifying Intelligent Multimode Security Systems: An Edge-to-Cloud Cybersecurity Solutions Guide Jody Booth

https://ebookmass.com/product/demystifying-intelligent-multimodesecurity-systems-an-edge-to-cloud-cybersecurity-solutions-guide-jodybooth/

ebookmass.com

Intelligent Systems and Learning Data Analytics in Online Education: A volume in Intelligent Data-Centric Systems Santi Caballé

https://ebookmass.com/product/intelligent-systems-and-learning-dataanalytics-in-online-education-a-volume-in-intelligent-data-centricsystems-santi-caballe/ ebookmass.com

Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide – Ebook PDF Version

https://ebookmass.com/product/designing-control-loops-for-linear-andswitching-power-supplies-a-tutorial-guide-ebook-pdf-version/

ebookmass.com

Wide Bandgap Semiconductor Power Devices_ Materials, Physics, Design, and Applications B. Jayant Baliga

https://ebookmass.com/product/wide-bandgap-semiconductor-powerdevices_-materials-physics-design-and-applications-b-jayant-baliga/

ebookmass.com

CybersecurityinIntelligentNetworking Systems

ShengjieXu SanDiegoStateUniversity,USA

YiQian UniversityofNebraska-Lincoln,USA

RoseQingyangHu UtahStateUniversity,USA

Thiseditionfirstpublished2023 ©2023JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthis titleisavailableathttp://www.wiley.com/go/permissions.

TherightofShengjieXu,YiQian,andRoseQingyangHutobeidentifiedastheauthorsofthiswork hasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons, Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwritten permission.Allothertrademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc. isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis workandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceof furtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservices theorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwith aspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthe publishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,including butnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Xu,Shengjie(Professor),author.|Qian,Yi,1962-author.|Hu, RoseQingyang,author.

Title:Cybersecurityinintelligentnetworkingsystems/ShengjieXu,Yi Qian,RoseQingyangHu.

Description:Chichester,WestSussex,UK:Wiley,[2023]|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2022033498(print)|LCCN2022033499(ebook)|ISBN 9781119783916(hardback)|ISBN9781119784104(adobepdf)|ISBN 9781119784128(epub)

Subjects:LCSH:Computernetworks–Securitymeasures.

Classification:LCCTK5105.59.X872023(print)|LCCTK5105.59(ebook)| DDC005.8–dc23/eng/20220826

LCrecordavailableathttps://lccn.loc.gov/2022033498

LCebookrecordavailableathttps://lccn.loc.gov/2022033499

CoverDesign:Wiley

CoverImage:©jijomathaidesigners/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

Contents

AbouttheAuthors xi

Preface xii

Acknowledgments xiv Acronyms xv

1CybersecurityintheEraofArtificialIntelligence 1

1.1ArtificialIntelligenceforCybersecurity 2

1.1.1ArtificialIntelligence 2

1.1.2MachineLearning 3

1.1.2.1SupervisedLearning 3

1.1.2.2UnsupervisedLearning 3

1.1.2.3Semi-supervisedLearning 4

1.1.2.4ReinforcementLearning 4

1.1.3Data-DrivenWorkflowforCybersecurity 4

1.2KeyAreasandChallenges 5

1.2.1AnomalyDetection 5

1.2.2TrustworthyArtificialIntelligence 6

1.2.3PrivacyPreservation 7

1.3ToolboxtoBuildSecureandIntelligentSystems 8

1.3.1MachineLearningandDeepLearning 8

1.3.1.1NumPy 8

1.3.1.2SciPy 8

1.3.1.3Scikit-learn 8

1.3.1.4PyTorch 8

1.3.1.5TensorFlow 9

1.3.2Privacy-PreservingMachineLearning 9

1.3.2.1Syft 9

1.3.2.2TensorFlowFederated 9

1.3.2.3TensorFlowPrivacy 9

3.2.2Reliability 35

3.2.3Survivability 36

3.3SecureEdgeIntelligence 36

3.3.1BackgroundandMotivation 37

3.3.2DesignofDetectionModule 38

3.3.2.1DataPre-processing 38

3.3.2.2ModelLearning 38

3.3.2.3ModelUpdating 39

3.3.3ChallengesAgainstPoisoningAttacks 40

3.4Summary 40 References 40

4EdgeIntelligenceforIntrusionDetection 45

4.1EdgeCyberinfrastructure 45

4.2EdgeAIEngine 46

4.2.1FeatureEngineering 47

4.2.2ModelLearning 48

4.2.3ModelUpdate 48

4.2.4PredictiveAnalytics 49

4.3ThreatIntelligence 49

4.4PreliminaryStudy 49

4.4.1Dataset 49

4.4.2EnvironmentalSetup 50

4.4.3PerformanceEvaluation 51

4.4.3.1ComputationalEfficiency 51

4.4.3.2PredictionAccuracy 52

4.5Summary 53 References 53

5RobustIntrusionDetection 55

5.1Preliminaries 55

5.1.1MedianAbsoluteDeviation 55

5.1.2MahalanobisDistance 55

5.2RobustIntrusionDetection 56

5.2.1ProblemFormulation 56

5.2.2Step1:RobustDataPre-processing 57

5.2.3Step2:BaggingforLabeledAnomalies 58

5.2.4Step3:One-classSVMforUnlabeledSamples 58

5.2.4.1One-classClassification 59

5.2.4.2AlgorithmofOptimalSamplingRatioSection 60

5.2.5Step4:TheFinalClassifier 61

5.3ExperimentalandEvaluation 63

5.3.1ExperimentSetup 63

5.3.1.1Datasets 63

5.3.1.2EnvironmentalSetup 64

5.3.1.3EvaluationMetrics 64

5.3.2PerformanceEvaluation 64

5.3.2.1Step1 64

5.3.2.2Step2 65

5.3.2.3Step3 65

5.3.2.4Step4 71

5.4Summary 72 References 72

6EfficientPre-processingSchemeforAnomaly Detection 75

6.1EfficientAnomalyDetection 75

6.1.1RelatedWork 76

6.1.2PrincipalComponentAnalysis 77

6.2ProposedPre-processingSchemeforAnomalyDetection 78

6.2.1RobustPre-processingScheme 79

6.2.2Real-TimeProcessing 80

6.2.3Discussion 82

6.3CaseStudy 83

6.3.1DescriptionoftheRawData 83

6.3.1.1Dimension 83

6.3.1.2Predictors 83

6.3.1.3ResponseVariables 84

6.3.2Experiment 84

6.3.3Results 86

6.4Summary 87 References 87

7PrivacyPreservationintheEraofBigData 91

7.1PrivacyPreservationApproaches 91

7.1.1Anonymization 91

7.1.2DifferentialPrivacy 92

7.1.3FederatedLearning 93

7.1.4HomomorphicEncryption 94

7.1.5SecureMulti-partyComputation 95

7.1.6Discussion 96

x Contents

8.4.2ResearchIdea 120

8.5CaseStudy:ProtectingSmartSpeakersfromAdversarialVoice Commands 122

8.5.1Background 122

8.5.2Challenges 122

8.5.3DirectionsandTasks 123

8.6Summary 124 References 124

Index 127

AbouttheAuthors

ShengjieXu,PhD,isanassistantprofessorintheManagementInformationSystemsDepartmentatSanDiegoStateUniversity,USA.HeisarecipientoftheIETJournalsPremiumAwardforBestPaperin2020,theMiltonE. MohrGraduateFellowshipAwardfromtheUniversityofNebraska–Lincoln in2017,andtheBestPosterAwardfromtheInternationalConferenceon DesignofReliableCommunicationNetworksin2015.HeservesasaTechnicalEditorfor IEEEWirelessCommunications Magazine.Heholdsmultiple professionalcertificationsincybersecurityandcomputernetworking.

YiQian,PhD,isaprofessorintheDepartmentofElectricalandComputer EngineeringattheUniversityofNebraska–Lincoln,USA.Heisarecipient oftheHenryY.KleinkaufFamilyDistinguishedNewFacultyTeaching Awardin2011,theHollingFamilyDistinguishedTeachingAwardin2012, theHollingFamilyDistinguishedTeaching/Advising/MentoringAward in2018,andtheHollingFamilyDistinguishedTeachingAwardforInnovativeUseofInstructionalTechnologyin2018,allfromtheUniversityof Nebraska–Lincoln,USA.

RoseQingyangHu,PhD,isaprofessorintheDepartmentofElectricaland ComputerEngineeringandAssociateDeanofResearchintheCollegeof EngineeringatUtahStateUniversity,USA.Sheisarecipientofoutstanding facultyresearcheroftheyearin2014and2016andoutstandinggraduate mentoroftheyearin2022,allfromUtahStateUniversity,USA.Sheisa FellowofIEEE,IEEEComSocDistinguishedLecturer2015–2018,IEEEVTS DistinguishedLecturer2020–2022.

Chapter2dealswithcyberthreatsanddefensemechanisms.Thechapter firstillustratesmultipleeffectivegatewaydefensemethodsagainstcyber threats.Itthenpresentsaresearchstudythatinnovatesreinforcement learningforpenetrationtest.

Chapter3dealswithedgecomputing.Edgecomputingispresentedto highlightitskeyadvancesanduniquecapabilitiesincommunicationnetworks.Thechapterthenillustratestheconceptofsecureedgeintelligence.

Chapter4dealswithedgeintelligenceforintrusiondetection.Thesystematicdesignofedgeintelligenceisfirstpresented.Threemainmodules inedgeintelligenceareillustrated.Thechapterthendemonstratesacase studyincludingexperimentandevaluation.

Chapter5dealswitharobustintrusiondetectionscheme.Thepreliminariesofrobuststatisticsarefirstintroduced.Thechapterthenpresentsthe detailsoftheproposedscheme.Anexperimentalstudyandevaluationare thendemonstrated.

Chapter6dealswithanefficientprocessingschemeforanomalydetection.Afewrelatedstudiesandbackgroundofprincipalcomponentanalysis arefirstintroduced.Itthenpresentstheproposedefficientpreprocessing schemeforanomalydetection,whoseobjectiveistoachievehighdetectionaccuracywhilelearningfromthepreprocesseddata.Thechapterthen demonstratesacasestudyincludingexperimentandevaluation.

Chapter7dealswithprivacypreservationintheeraofbigdata.Afew modernprivacy-preservingapproachesarefirstillustrated.Itthenpresents aproposedschemethatfocusesondetectinganomalousbehaviorsina privacy-preservingway.Thechapteroffersanexperimentalstudyand evaluation.

Chapter8dealswithadversarialexamplesandadversarialmachinelearning.Theconceptofadversarialexamplesanditschallengesarefirstintroduced.Threeresearchstudiesinadversarialexamplesarethenpresented frombothoffensiveanddefensiveperspectives.

Wehopethatourreaderswillenjoythisbook.

ShengjieXu,SanDiegoStateUniversity YiQian,UniversityofNebraska–Lincoln RoseQingyangHu,UtahStateUniversity

Acknowledgments

First,wewouldliketothankourfamiliesfortheirloveandsupport.

WewouldliketothankourcolleaguesandstudentsatDakotaState University,UniversityofNebraska-Lincoln,UtahStateUniversity,andSan DiegoStateUniversityfortheirsupportandenthusiasminthisbookproject andthistopic.

WeexpressourthankstothestaffatWileyfortheirsupport.Wewouldlike tothankSandraGrayson,JulietBooker,andBeckyCowanfortheirpatience inhandlingpublicationissues.

ThisbookprojectwaspartiallysupportedbytheU.S.NationalScience FoundationundergrantsCNS-1423348,CNS-1423408,EARS-1547312,and EARS-1547330.

Acronyms

ABEattributedbasedencryption

AEadversarialexamples

AESAdvancedEncryptionStandard

AIartificialintelligence

AMLadversarialmachinelearning

APIapplicationprogramminginterface

APTadvancedpersistentthreats

ASRautomaticspeechrecognition

CDNcontentdeliverynetwork

CPScyberphysicalsystem

CPUcentralprocessingunit

CSVcomma-separatedvalues

DBSCANdensity-basedspatialclusteringofapplicationswithnoise

DDOSdistributeddenialofservice

DLdeeplearning

DNNdeepneuralnetwork

DOSdenialofservice

DPdifferentialprivacy

FGSMfastgradientsignmethod

FLfederatedlearning

GANgenerativeadversarialnetworks

GDPRGeneralDataProtectionRegulation

GPUgraphicsprocessingunit

HEhomomorphicencryption

ICTinformationandcommunicationtechnology

IDSintrusiondetectionsystem

IOTInternetofThings

IPInternetProtocol

xvi Acronyms

IQRinterquartilerange

JSONJavaScriptobjectnotation

LANlocalareanetwork

LDAlineardiscriminantanalysis

MADmedianabsolutedeviation

MDMahalanobisdistance

MERmeanerrorrate

MLmachinelearning

NIDSnetworkintrusiondetectionsystem

NISTNationalInstituteofStandardsandTechnology

ODEordinarydifferentialequations

PCprincipalcomponent

PCAprincipalcomponentanalysis

PEportableexecutable

POMDPpartiallyobservableMarkovdecisionprocess

PVEproportionofvarianceexplained

QOEqualityofexperience

RAMrandomaccessmemory

SMPCsecuremulti-partycomputation

TAtrustedauthority

TCPtransmissioncontrolprotocol

TPUtensorprocessingunit

CybersecurityintheEraofArtificialIntelligence

Therapidandsuccessfuladvancesofartificialintelligence(AI)andmachine learning(ML)offersecurityresearchersandpractitionersnewapproaches andplatformstoexploreandinvestigatechallengingissuesemergingin manysafety-criticalsystems.ThoseAI/ML-enabledsolutionshaveboosted theefficiencyandeffectivenessofmultipleimportantsecurityapplications. Forexample,recentadvancesinAIandMLhavebeenwidelyappliedin intrusiondetectionsystem(IDS)(Xuetal.,2017,2019a,b,2020),malware detectionsystem(BradleyandXu,2021;Bradley,2022;AhmedandXu, 2022),andpenetrationtesting(Chaudharyetal.,2020).

However,theriseofAIandMLisoftenconsideredasa“double-edged sword.”WhileAIandMLcanbeadoptedtoidentifythreatsmoreaccurately andpreventcyberattacksmoreefficiently,cybersecurityprofessionalsmust respondtotheincreasinglysophisticatedmotivationsfromadversaries. Modernintelligentnetworkingsystemshavebeenmaliciouslymanipulated,evaded,andmisled,causingsignificantsecurityincidentsinfinancial systems,cyber-physicalsystems,andmanyothercriticaldomains.Threat actorsandadversarialattackershavebeenapplyingtechniquestocarryout adversarialattackstargetingvariousAI/ML-enablednetworkingsystems (BurrandXu,2021;Burr,2022).Forinstance,anadversarycaninject well-designedaudiosignalstoconfusethevoicerecognitionsystemsin smartspeakerstodeliverrandomnoises,orcompromisingtheself-driving vehiclesbycreatingvisualalterationsofthestopsign,leavingtheML modelerroneouslyidentifyastopsignasaspeedlimitsignwith 70 miles perhour(mph)(Yuanetal.,2019).Thoseadversarialattackscouldlead tounauthorizeddisclosureofsensitiveinformation,affectthesafetyand wellnessofusers,andthwartInternetfreedom.Therefore,cybersecurity professionalsmustevolverapidlyastechnologyadvancesandnewcyber threatsemerge.

CybersecurityinIntelligentNetworkingSystems,FirstEdition. ShengjieXu,YiQian,andRoseQingyangHu. ©2023JohnWiley&SonsLtd.Published2023byJohnWiley&SonsLtd.

Table1.1 Exampleofahousepricedataset. (x0 )(x1 )(x2 )(x3 ) … (y )

1.1.2MachineLearning

MLofferscomputerstolearnbyminingmassivedatasets.Here,fourbroad categoriesofMLaredescribed.Theyaresupervisedlearning,unsupervised learning,semi-supervisedlearning,andreinforcementlearning.

1.1.2.1SupervisedLearning

MostoftheMLproblemsfallintosupervisedorunsupervised.Forinstance, thereisahousepricingdataset(Table1.1),inwhicheachrow(observation) representsahouseandeachcolumn(feature)representsanattribute(e.g. numberofbedrooms).Foreachobservation,anassociatedtargetvalueis shown.Here,theobjectiveistobuildamodelthatcapturestherelationshipbetweenthetargetvalue y (price)andtheattributes(x0 , … , x3 )sothat accuratepredictionsforfutureobservationscanbeachieved. Supervisedlearningaddressesthistypeofproblembytrainingthemodel withfeaturesandlabeleddata(y).Asupervisedlearningmodeltakesasetof knowninputdata(features)andknownoutputdata(response/target)and trainsamodeltomakereasonablepredictionsfortheresponsetonewdata. Regressionandclassificationarethemaincategoriesforsupervisedlearning problems.Inregressionproblems,therearemanyclassicalmodelsavailable fortraining,includinglinearregression,ordinalregression,andneuralnetworkregression.Inclassificationproblems,therearealsomanyclassical modelsavailablefortraining,includinglogisticregression,tree-basedmethods,supportvectormachine,randomforest,andboostingmethods.

1.1.2.2UnsupervisedLearning

Unsupervisedlearningtrainsthemodelwithunlabeleddata.Itsgoalis tounveilthepatternsinthedata.Unsupervisedlearningservesasagood

and

solutions

Model design and learning

Figure1.2 Data-drivenworkflowforcybersecurity.

thatnotonlysufficientdataarecollectedbutalsolabelinganddatasampling arecorrectandunbiased.Inthethirdstep,MLandotherstatisticalmodels aredesignedandtrained.Itisimportanttoassurethatthetrainedmodel canbegeneralizedwelltofuturedataandevenunseendata.Inthefourth step,performanceevaluationisconductedtoassessthequalityofthetrained model.Modelassessmentshouldbecarriedoutbyusingsuitablebaseline dataandappropriatemetrics.Inthefifthstep,modeldeploymentisperformed.Itiscrucialtonotethatthedeploymentshouldperformwelloutside ofalabenvironment,anditshouldalsoworkwellunderdifferentsettings invariousthreatmodels.Lastly,amatureandrobustsecuritysolutionfor learning-basedIDSisreleased.

1.2KeyAreasandChallenges

Theresearchcommunitieshavebeenactivelyexploringboththeoffense anddefensesidesofdata-drivencybersecurity.Asmoreachievementsare accomplished,severalresearchchallengesthatemergerapidlyarepending tobesolved.Here,threeaspectsaredescribed.Theyareanomalydetection, trustworthyAI,andprivacypreservation.

1.2.1AnomalyDetection

Inthecontextofcybersecurity,anomaliesrefertothoseabnormalbehaviorsthatharmtheinformationsystems.Todefendagainstthem,anomaly

1CybersecurityintheEraofArtificialIntelligence

detectionfocusesonidentifyinganomalousbehaviorsduringaperiodof operations.Thiscanbeextendedtoafewusecasesinsecurity,suchasintrusiondetection,malwaredetection,phishingdetection,spamdetection,and defenseagainstzero-dayattack.

Thegoalofintrusiondetectionistoexaminetrafficdataandclassifynormalactivitiesandattackbehaviors(Xuetal.,2019).Moretopicsaboutcyber intrusionsandintrusiondetectionwillbecoveredindetailinChapters2,4, 5,and6.

Malwarehasbeenneartheforefrontofmoderncybersecurityissues (AhmedandXu,2022).Thedetectionandpreventionofmalwarehas becomeamajorchallenge.Inmanycases,antivirustoolssuchasWindows DefenderutilizeMLtoscanfilesanddetectmaliciouspatterns.With therecenttrendofransomwarecasesaroundtheworld,ithasbecome moreimportantthanevertohaveeffectiveanti-malwaretokeepusers andorganizationssafe.Modernmalwarecantakemanyforms.Itcan beembeddedindocumentmacros,runasshellcode,andmuchmore. Malwareisalsoversatileinthetaskingsitcancomplete.Itcanimplanta command-and-controlserver(C2)beacon,installakeylogger,orransoma computerbyencryptingallofthefiles.Inadditiontocompletingmalicious tasks,malwarehasasecondaryobjectiveofavoidingdetectionbydisguising itselfasavalidprocessonacomputerandobfuscatethedetector.

Phishingisatacticthatisusedbythreatactorstoachievetheirgoals,such asobtainingcredentialsofemployeesordeliveringmalware(Khonjietal., 2013).Withtheprevalenceofthesetypesofattacks,itisimportanttodetect andstoptheattacksatanypointintheirlifecycle.Beingabletodetectthat awebsiteislikelyaphishingsitecouldbeausefultoolinmitigatingthe successoftheattacks.

Inrecentyears,thepoisoningattackhasbecomeanewformofattack tocompromisenetworkingsystemsandthelearningmodelstheyintegrate. Datapoisoningattackistheintentionalactofpollutingdatathatthealgorithmsneedtotrain(Huangetal.,2021).Itcanimpactorganizationsaswell asindividualsinanegativemanner.Somereal-lifeexamplesofthistypeof attackincludeanattackerchangingwhatanemailspamfiltermightmark asspam.Thiswouldallowanattackertosendanykindofemailtheywant withoutbeingflagged.Similarly,therearefirewalltoolsthatuseMLtomonitornetworktrafficandlookformalwareenteringthenetwork.Anattacker coulduseasimilarmethodtoevadedetection.

1.2.2TrustworthyArtificialIntelligence

MostoftheAI/MLmodelsfacetheissueofbeingtrustworthybecause theyarevulnerabletovariouskindsofattacks(e.g.adversarialexamples)

(Lietal.,2021a,b).Thisisbecausetheyarenotyetexplainableowingtothe black-boxnatureofmanyAI/MLmodels,especiallyDLmodels(Zouetal., 2021),andtheiruncertaintyhasnotbeenquantified(Lietal.,2021c).This highlightstheimportanceofadditionalresearchactivitiesinthetrustworthinessofAI/MLmodels.Moreover,morestudiesareneededtosystematicallyunderstandthetrustworthinessofAI/MLmodels,aswellastoadvance thestate-of-the-arttrustworthiness,robustness,andinterpretability ofAI/ML.

Currently,researchchallengesoftrustworthyAIandadversarialML include,butnotlimitedto,thefollowingaspects:quantifyingtrustworthinessofAI/MLmethodsagainstsophisticatedattacks,suchasadversarial examples,poisoningattacks,orevasiveattacks;determiningtheconditions towhethertrustAI/MLmodelsornot;explainingandinterpretingrecommendationsmadebyAI/MLmodels;detectingandmitigatingadversarial examplesagainstAI/MLmodels;andenhancingtrustworthinessofAI/ML modelsbyincorporatingcountermeasures.TrustworthyAIandadversarial MLwillbecoveredindetailinChapter8.

1.2.3PrivacyPreservation

Theprotectionofsensitivedataiscritical.Inthefieldofhealthstudy,the dataprivacyproblemisgrowingbecauseofthechallengesindataprivacy regulations,privacyleakagebyattackers,andthepervasivedatamining operations.Inonestudy(Naetal.,2018),theauthorsdiscussedthatby utilizinglargenationalphysicalactivitydatasets,thechildrenandadults werereidentifiedbyMLwhen20minutedatawithseveralpiecesof demographicinformationwereused.Unfortunately,moreincidentsare reportedworldwideregardingprivacyleakage.Withtheenforcementof GeneralDataProtectionRegulation(GDPR)(VoigtandVondemBussche, 2017),companiesandorganizationswillneedtocomplywithspecificterms andconditionstoprotectthedataprivacyofEuropeanUnioncitizens.

Theincreasingattentiononsecurityandprivacyhasmotivatedthe rapiddesignandimplementationofmultipleprivacy-preservingmethods. Forinstance,federatedlearning(FL)wasdesignedtotrainMLmodels acrossmultipleendnodeswithoutsharingthelocaldatatoacentralized server.OnearticlesharedthatGooglehasimplementedamobileapplication thatoffersprivacy-preservingwordprediction-basedFL(Hardetal.,2018).

Thereareafewmodernapproachesforprivacypreservation,including anonymization,differentialprivacy(DP),homomorphicencryption(HE), andsecuremulti-partycomputation(SMPC).TheseapproacheswillbecoveredindetailinChapter7.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.