Current trends and future developments on (bio-) membranes: recent advances on membrane reactors ang

Page 1


https://ebookmass.com/product/current-trends-and-futuredevelopments-on-bio-membranes-recent-advances-on-membrane-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Current Trends and Future Developments on (Bio-) Membranes Angelo Basile

https://ebookmass.com/product/current-trends-and-future-developmentson-bio-membranes-angelo-basile/

ebookmass.com

Current Trends and Future Developments on (Bio-)

Membranes: Reverse and Forward Osmosis Principles, Applications, Advances Angelo Basile

https://ebookmass.com/product/current-trends-and-future-developmentson-bio-membranes-reverse-and-forward-osmosis-principles-applicationsadvances-angelo-basile/

ebookmass.com

Current Trends and Future Developments on (Bio-) Membranes: Silica Membranes: Preparation, Modelling, Application, and Commercialization Angelo Basile (Editor)

https://ebookmass.com/product/current-trends-and-future-developmentson-bio-membranes-silica-membranes-preparation-modelling-applicationand-commercialization-angelo-basile-editor/

ebookmass.com

Handbook On Biological Warfare Preparedness S.J.S Flora

https://ebookmass.com/product/handbook-on-biological-warfarepreparedness-s-j-s-flora/

ebookmass.com

Lunchtime Chronicles: Dirty Mojito Amaya Black & Lunchtime Chronicle

https://ebookmass.com/product/lunchtime-chronicles-dirty-mojito-amayablack-lunchtime-chronicle/

ebookmass.com

Numbers and Narratives in Bangladesh's Economic Development 1st Edition Rashed A. M. Titumir

https://ebookmass.com/product/numbers-and-narratives-in-bangladeshseconomic-development-1st-edition-rashed-a-m-titumir/

ebookmass.com

How to Market the Arts: A Practical Approach for the 21st Century Anthony S. Rhine

https://ebookmass.com/product/how-to-market-the-arts-a-practicalapproach-for-the-21st-century-anthony-s-rhine/

ebookmass.com

This is Not a Leadership Book: 20 Rules for Success Emmanuel Gobillot

https://ebookmass.com/product/this-is-not-a-leadership-book-20-rulesfor-success-emmanuel-gobillot/

ebookmass.com

Drugs, Society, and Human Behavior 17th Edition, (Ebook PDF)

https://ebookmass.com/product/drugs-society-and-human-behavior-17thedition-ebook-pdf/

ebookmass.com

Holocaust Memory and National Museums in Britain

https://ebookmass.com/product/holocaust-memory-and-national-museumsin-britain/

ebookmass.com

CurrentTrendsandFuture Developmentson (Bio)Membranes

CurrentTrendsandFuture Developmentson (Bio)Membranes

RecentAdvancesonMembrane Reactors

AngeloBasile

Hydrogenia,Genova,Italy

UnitofChemical-PhysicsFundamentalsinChemicalEngineering, DepartmentofEngineering,UniversityCampusBio-MedicalofRome, Rome,Italy

SustainableProcessEngineering,DepartmentofChemicalEngineeringand Chemistry,EindhovenUniversityofTechnology,TheNetherlands

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2023ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfrom thepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbe foundatourwebsite: www.elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshould bemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-823659-8

ForInformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: AnitaKoch

EditorialProjectManager: MoisesCarloP.Catain

ProductionProjectManager: SelvarajRaviraj

CoverDesigner: MarkRogers

TypesetbyMPSLimited,Chennai,India

Listofcontributors

LucaAnsaloni SINTEFIndustry,Oslo,Norway

PietroArgurio DepartmentofEnvironmentalEngineering,Universityof Calabria,Rende,Cosenza,Italy

AngeloBasile Hydrogenia,Genova,Italy;UnitofChemical-Physics FundamentalsinChemicalEngineering,DepartmentofEngineering,University CampusBio-MedicalofRome,Rome,Italy

SlametBudijanto DepartmentofFoodScienceandTechnology, IPBUniversity,KampusIPBDarmaga,Bogor,Indonesia

LoredanaDeBartolo CNR-ITM,NationalResearch CouncilofItaly,Institute onMembraneTechnology,Rende,Cosenza,Italy

KiwintaDiaussie DepartmentofFoodScienceandTechnology, IPBUniversity,KampusIPBDarmaga,Bogor,Indonesia

AlbertoFigoli InstituteonMembraneTechnology(CNR-ITM),Rende, Cosenza,Italy

FrancescoGaliano InstituteonMembraneTechnology(CNR-ITM),Rende, Cosenza,Italy

FaustoGallucci SustainableProcessEngineering,ChemicalEngineeringand Chemistry,EindhovenUniversityofTechnology,Eindhoven, TheNetherlands

EllenGapp InstituteforMicroProcessEngineering(IMVT)atKarlsruhe InstituteofTechnology(KIT),Eggenstein-Leopoldshafen,Germany

HuaHuang DepartmentofMaterialsScienceandEngineering,Clemson University,Clemson,SC,UnitedStates

CristinaLavorato DepartmentofEnvironmental Engineering,Universityof Calabria,Rende,Cosenza,Italy

MarcoMartino DepartmentofIndustrialEngineering,UniversityofSalerno, Fisciano,Italy

EugenioMeloni DepartmentofIndustrialEngineering,UniversityofSalerno, Fisciano,Italy

PierreMillet Paris-SaclayUniversity,ICMMO(UMR8182),Orsay,France

RaffaeleMolinari DepartmentofEnvironmentalEngineering,Universityof Calabria,Rende,Cosenza,Italy

SabrinaMorelli CNR-ITM,NationalResearchCouncilofItaly,Instituteon MembraneTechnology,Rende,Cosenza,Italy

VincenzoPalma DepartmentofIndustrialEngineering,UniversityofSalerno, Fisciano,Italy

ThijsA.Peters SINTEFIndustry,Oslo,Norway

PeterPfeifer InstituteforMicroProcessEngineering(IMVT)atKarlsruhe InstituteofTechnology(KIT),Egge nstein-Leopoldshafen,Germany

AntonellaPiscioneri CNR-ITM,NationalResearch CouncilofItaly,Institute onMembraneTechnology,Rende,Cosenza,Italy

CarmellaRosabel DepartmentofFoodScienceandTechnology, IPBUniversity,KampusIPBDarmaga,Bogor,Indonesia

SimonaSalerno CNR-ITM,NationalResearchCouncilofItaly,Instituteon MembraneTechnology,Rende,Cosenza,Italy

SergioSantoro DepartmentofEnvironmental Engineering,Universityof Calabria,Rende,Cosenza,Italy

AzisBoingSitanggang DepartmentofFoodScienceandTechnology, IPBUniversity,KampusIPBDarmaga,Bogor,Indonesia

JianhuaTong DepartmentofMaterialsScienceandEngineering,Clemson University,Clemson,SC,UnitedStates

HildeJ.Venvik DepartmentofChemicalEngineering,NorwegianUniversity ofScienceandTechnology(N TNU),Trondheim,Norway

J.Vital DepartmentofChemistry,NOVASc hoolofScienceandTechnology, LAQV-Requimte,UniversidadeNo vadeLisboa,Caparica,Portugal

ZeyuZhao DepartmentofMaterialsScienceandEngineering,Clemson University,Clemson,SC,UnitedStates

MindaZou DepartmentofMaterialsScienceandEngineering,Clemson University,Clemson,SC,UnitedStates

Listofcontributorsxiii

Prefacexvii

1.Introductiontomembraneandmembranereactors1

VINCENZOPALMA,MARCOMARTINO,EUGENIOMELONIANDANGELOBASILE

1.1Introductionandprinciples1

1.2Membranes6

1.3Membranebioreactors8

1.4Combinationofmembranesandcatalyticreactions10

1.4.1Interfacialcontactormode15

1.4.2Flow-throughcontactormode15

1.5Conclusionsandfuturetrends15

Nomenclature16

Acronyms16

Symbols16 References17

2.Protonicelectrocatalyticmembranereactors21

ZEYUZHAO,MINDAZOU,HUAHUANGANDJIANHUATONG

2.1Introduction21

2.2Ammoniasynthesis22

2.2.1Thecommondesignofprotonicelectrocatalytic membranereactorsfortheammoniasynthesis23

2.2.2Electrocatalyticnitrogenreductionreactionmechanism24

2.2.3Electrolytematerials26

2.2.4Cathodematerials27

2.2.5Anodehydrogenfeedstocks28

2.3CO2 reduction30

2.3.1ThecommondesignofProtonicelectrocatalytic membranereactorsfortheCO2 reduction31

2.3.2MechanismsoftheCO2 electrocatalyticreduction31

2.3.3Electrolytematerials32

2.3.4Cathodicmaterialsandcatalysts34

2.3.5Anodicmaterials35

2.4Hydrocarbondehydrogenation36

2.4.1Methaneupgrading36

2.4.2Conversionofalkanestoalkenes42

2.5Otherreactions44

2.6Conclusionandfuturetrends45

Nomenclature46

Acronyms46 References47

3.Packedbedmembranereactors59 FAUSTOGALLUCCI

3.1Introduction59

3.2Latestdevelopmentsinpackedbedmembranereactors62

3.3Conclusionsandfuturetrends73

Nomenclature73

Acronyms73 References74

4.Fluidizedbedmembranereactors77

FAUSTOGALLUCCI

4.1Introduction77

4.2Latestdevelopmentsinfluidizedbedmembranereactors79

4.3Conclusionsandfuturetrends90 Nomenclature91 Acronyms91 References91

5.Microstructuredmembranereactorsfor processintensification95

ELLENGAPP,LUCAANSALONI,HILDEJ.VENVIK, THIJSA.PETERSANDPETERPFEIFER

5.1Introduction95

5.2Designandfabrication96

5.3Examplesofmicrostructuredmembranereactors105

5.3.1Polymeric105

5.3.2Metallicmembranes110

5.3.3Zeolitemembranes113

5.3.4Ceramicoxygenandprotonconductingmembranes115

5.4Conclusionandfuturetrends117 Nomenclature118 Acronyms118 Symbols118 References118

6.Pervaporationmembranereactor127

SERGIOSANTORO,ALBERTOFIGOLIANDFRANCESCOGALIANO

6.1Introduction127

6.2Pervaporationmembranereactors130

6.3Fieldsofapplication134

6.3.1Esterificationreactions135

6.3.2Etherificationreactions139

6.3.3Acetalizationreactions140

6.3.4Condensationreactions141

6.3.5Bio-alcoholproduction(pervaporationbioreactors)141

6.4Conclusionsandfuturetrends142 Nomenclature144

Acronyms144 References145

7.Polymericmembranereactors151

J.VITAL

7.1Introduction151

7.2Polymericmembranes152

7.2.1Structureofpolymericmembranes152

7.3Classificationofmembranereactors167

7.3.1Extractor-typemembranereactors168

7.3.2Contactor-typemembranereactors171

7.3.3Distributor-typemembranereactors176

7.4Polymericmembranemicroreactors177

7.5Conclusionsandfuturetrends179

7.6Acronyms179 References181

8.Currenttrendsinenzymaticmembranereactor195

AZISBOINGSITANGGANG,KIWINTADIAUSSIE, CARMELLAROSABELANDSLAMETBUDIJANTO

8.1Introduction195

8.2Designsofenzymaticmembranereactor196

8.3Membranecharacteristics197

8.4Enzymeimmobilizationinenzymaticmembranereactor203

8.5Enzymaticmembranereactorversusotherreactor configurations209

8.6Applicationsofenzymaticmembranereactor210

8.7Conclusionandoutlook217

Nomenclature217 Acronyms217 References218

9.Membranereactorsinbioartificialorgans227

SABRINAMORELLI,SIMONASALERNO, ANTONELLAPISCIONERIANDLOREDANADEBARTOLO

9.1Introduction227

9.2Bioartificialorgans designissues228

9.3Transportphenomena229

9.4Membranebioreactorasbioartificialliver231

9.4.1Membranebioartificialliversinflatconfiguration232

9.4.2Membranebioartificialliversinhollowfiber configuration233

9.5Membranebioreactorsforbioartificialkidney236

9.5.1MembranesforBAK236

9.5.2BAKdevicesinanimalstudiesandclinicaltrials237

9.6Membranebioreactorasabiomimeticmodelfor nervoustissueanalogue239

9.7Conclusionsandfutureperspectives243 Nomenclature243 References244

10.Photocatalyticmembranereactors251 RAFFAELEMOLINARI,CRISTINALAVORATOANDPIETROARGURIO

10.1Introduction251

10.2Basicprinciplesofphotocatalysis253

10.3Basicofphotocatalyticmembranereactors257

10.3.1Typesofphotocatalysts257

10.3.2Typesofmembranes260

10.3.3Membranemodulesandsystemconfigurations263

10.4Applicationsofphotocatalyticmembranereactors268

10.4.1Photocatalyticmembranereactorsin photodegradationofpharmaceuticalsinwater268

10.4.2Photocatalyticmembranereactorsinthe conversionofCO2 insolarfuels273

10.5Advantagesandlimitationsofphotocatalyticmembrane reactors274

10.6Conclusionandfuturetrends275

Listofsymbols277

Listofacronyms277

Acknowledgments278 References278

11.Electrochemicalmembranereactors285

PIERREMILLET

11.1Introduction285

11.2Electrochemicalreactors286

11.2.1Generalprinciples286

11.2.2Endergonictransformers289

11.2.3Exergonictransformers290

11.2.4Cellseparators290

11.3Diaphragmsforliquidelectrolytes292

11.3.1Asbestos293

11.3.2Thermoplasticdiaphragms293

11.4Polymermembranematerials295

11.4.1Protonconductingionomers295

11.4.2Hydroxyl-ionconductingionomers298

11.5Ceramicmembranematerials300

11.5.1Nonorganicprotonconductors300

11.5.2Oxide-ionconductors302

11.6Selectedendergonicapplications304

11.6.1Waterelectrolysis304

11.6.2Mainwaterelectrolysistechnologies305

11.6.3Brineelectrolysis305

11.7Conclusionsandfuturetrends310 Nomenclature310 References311 Furtherreading313

12.Modelingofmembranereactors315

FAUSTOGALLUCCI

12.1Introduction315

12.2Packedbedmembranereactors316

12.2.11Dpseudo-homogeneousmodel316

12.2.22Dpseudo-homogeneousmodel322

12.2.3Modelingoffluidizedbedmembranereactors325

12.3Conclusionsandfuturetrends331 Nomenclature332 References334

13.Techno-economicanalysisofmembranereactors337 FAUSTOGALLUCCI

13.1Introduction337

13.2Latestdevelopmentsintechno-economicanalysisfor membranereactors340

13.3Conclusionsandfuturetrends351 Nomenclature353 References353 Index355

Preface

Membranereactors(MRs)aremultiphase,multifunctionalsystemsinwhichreactionsand separation(throughamembrane)areintegratedwithinasinglevessel.

Membranescanbeusedtoeitherextractoneormorecomponentsfromthereactionsystemortofeedareactantintothereactionsystem.Inanycase,theintegrationofmembrane separationandreactionisusedtoenhancetheperformanceofthereactorintermsofconversion,selectivities,and/orenergyefficiency.

MRsareespeciallyinterestingforreactionsystemsthatarelimitedbythermodynamic equilibriumorwherethereactionsystemisacombinationofreactionsinseriesinwhichthe productcanbefurtherconvertedtoby-products.Inbothcases,byaddingamembrane,the systemcanenhancetheyieldoftheproducts.

MostoftheMRsintheliteratureareusedforequilibrium-limitedreactions.Shortly,ifat leastoneoftheproductsorthereactionisremovedfromthereactionsystem,theequilibriumisshiftedtowardtheproducts,thushigherconversionscanbeachievedunderthe sameoperatingconditions,orsimilarconversionsareachievedundermilderconditions. OtherMRsareusedtofeedareactantinthesystem,suchasinpartialoxidationreactionsor inbioreactorswhereairisfedthroughporousmembranes.

Inthisbook,atfirstdifferenttypesofMRsareshown.Indeed,dependingonthecatalyst system,therearepackedbedMRs(PBMRs),fluidizedbedMRs(FBMRs),microstructured MRs,orcatalyticMRs.

DifferenttypesofmembranesarealsousedinMRs:frommetallictoceramic,topolymericones.Forexample,mostbioreactorsusepolymeric(hollowfibers)orceramicmembranes.Inthesecases,someMRsusealsoparticlestoremoveordecreasethefoulingofthe membranes(tobeunderlinedthatthisisverydifficulttocompletelypreventinmembrane bioreactors).Forgas-phasereactionsinMRs,generallymetallicorceramicmembranereactorsareused,asthesereactionsoccurathightoveryhightemperatures.

Goingabitintodetails,thebookstartswithageneralintroductiontobothmembranes andinorganicMRs,giveninChapter1(Palma,Martino,Meloni,andBasile).Inthiswork, hydrogenisconsideredthemostpromisingenergycarrierforsustainableenergysystemsof thefuture.Thisisbecausetheproductionofhighpurityhydrogenisessentialforseveral applications,includingfeedingofprotonexchangemembranefuelcellstacks,whichisthe mostpromisingalternativetotheinternalcombustionenginesforseveraltransportation applications.However,theauthorsalsostressthathigh-gradehydrogenisdifficulttostore andtransportsuggestingthattheseissuesmaybesolvedthroughthegenerationofhydrogen utilizingMRssystems,whichhavegainedgreateffortsfromthescientificcommunity.Infact, inrecentyears,aconsistentstreamofstudiesaddressedinvestigatingthecombinationof hydrogenproductionandseparation.Tosummarize,inthischapter,briefdescriptionsof

boththegeneralprinciplesofmembraneseparationprocessesandthepossiblewaystocoupleacatalystandamembraneincatalyticMRsareprovided.Moreover,abriefoverviewof membranebioreactorsisalsogiven.Finally,futuretrendsandcurrentchallengesaboutMRs arediscussed.

Thenextchapter,Chapter2(Zhao,Zou,Huang,andTong),concentratesonaparticular typeofMRcalledprotonicelectrocatalyticmembranereactors(PEMFCs).Followingthe authors,theincreasingenergyandpowergenerationdemandmainlydependsontheconsumptionoffossilfuels,whichcontributestoclimatechange.Inthiscontext,PECMRsoffer promisingpotentialsforsustainableenergyconversionandstoragewithlowenergyconsumptionandlowemissionduetotheirhighprocessandenergyefficiencies.Manypractical applicationshavebeendemonstratedbasedonPECMRs,suchasammoniasynthesis,the reductionofCO2,thedehydrogenationofhydrocarbons,andotherenvironmentalapplications.Inthisinterestingscenario,thechaptersummarizesthemostrecentdevelopmentof PECMRsbysortingapplicationtypes,includingtheintroductionoftheoreticalprinciples,the progressofthematerialdevelopment,andpresentingchallengesandperspectives.

InChapter3(Gallucci),aparticularkindofMR,namedPBMR,isconsideredtheeasiest configurationstudiedinlaboratorysettingsfortheproof-of-conceptofMRs.Theauthor reportsafewexamplesofthesesystemsasappearinginthespecializedliteratureinthelast 5years(2018 22).Thechapteralsoillustratedafewofthelatestexamplesofthiskindof reactor.

ThesameauthorcontinuesthediscussioninthenextChapter4(Gallucci),withthe FBMRs,consideredanextensionoranimprovementofPBMRs.Infact,thefluidizedbed configurationallowsmoreuniformtemperatureduetothemovementofparticlesevenfor veryexothermicreactionsanddecreasedconcentrationpolarization.Also,inthiscase,variousexamplesofMRsappearinginliteratureinthelast5years(2018 22)arepresented.

Duringthelasttwodecades,anewkindofduringthelasttwodecadeshasattractedwide interestandundergonerapiddevelopment.Forthisreason,Chapter5(Gapp,Ansaloni, Venvik,Peters,andPfeifer)illustratestheimportanceofmicrostructuredMRsforprocess intensification.TheauthorsfocusonmicrostructuredMRsforprocessintensification employingmembraneswithacombinedgas-selectiveand/orcatalysisfunction.Firstly,the designandfabricationstrategiesofsuchdevicesareintroduced,thenfollowedbyvarious examplesofmicrostructuredMRsemployingpolymeric,andceramic.Andaswellmetallic membranesarealsogivenbyintroducingpossibleapplicationsofmicrostructuredMRs whichinvolvegas liquidandgas gasreactions.Thechapterendsbydiscussingthepotentialoutlookforthetechnology.

AnotherkindofMR,theso-calledpervaporationMRs(theacronymisPVMRs),isdiscussedindetailinChapter6(Santoro,Figoli,andGaliano).Shortly,alsoPVMRsrepresent anintegratedseparationsystemwhereachemical(orbiochemical)reactioniscoupledwith amembrane-basedseparationin,inthiscase,apervaporationunit.Thishybridprocess offersaseriesofadvantagesintermsofbothinvestmentcostsreductionandhigheroperationalperformance.TobeaddedthatPVMRsaretodayconsideredaconsolidatedtechnologyinesterificationreactions,butencompassalsocondensationreactions,acetylation

reactions,etherificationreactions,andbiochemicalreactions,whereaseriesofproductsare generatedfromamicrobialconversion.

Chapter7(Vital)introducesanddeeplyillustratesthepolymericMRs.Polymericmembranes,applicablein-lowtemperatureprocesses(below150 C),duetotheirhighversatility andvarietyintypesandproperties,areverysuitableandadvantageousforapplicationsin thefinechemistryfield,whencomparedwiththeirinorganiccounterparts.Inthischapter, anoverviewofpolymericMRsispresented,andmembranestructures,suchasdense, porous,symmetric,asymmetric,integral,composite,andmixedmatrices,untilthemembraneroleinthereactorisgiven.Techniquesformembranepreparation,suchasphase inversionorthemethodsusedtopreparemetalnanoparticlesloadedmixedmatrices,are reviewedindetail.MRs’ classificationaccordingtothemembranematerial'snature,therole ofthemembraneinthecatalyticprocess,thetransportfunctionofthemembrane,orthe reactorconfigurationiswidelyrevisited.Moreover,recentprogressonnewmembranetypes orMRs,suchasionicliquidmembranes,polymericmicroporousmembranes,orpolymeric membranemicroreactorsisreferredto.

Thecurrenttrendsinenzymaticmembranereactor(EMR)aredeeplydiscussedin Chapter8(Sitanggang,Diaussie,Rosabel,andBudijanto).Followingtheauthors,theterm EMR,usedforbothsingleormonophasicreactorsandmultiphasicreactors,isgenerally acceptedforanybiochemicalreactioncatalyzedbyacertainenzyme(s)orenzymeproducingcellsandcoupledwithmembraneseparation.EMRhasshowntheabilityto improvetheefficiencyofenzyme-catalyzedbioconversion,increaseproductyield,andiseasilyscaledupforindustrialpurposescomparedtoconventionalreactors.Especiallyinfood andpharmaceuticalapplications,EMRisusedmostlyfortheenzyme-catalyzedhydrolytic reactionstoimprovetheproduct’snutritionalandfunctionalproperties,thusincreasingtheir economicvalues.Inparticular,thischapterfocusesonthedesigns,membranecharacteristics,andapplicationsofEMRinassortedfieldstoproduceaproductinsingleandmultiphasesystems.

TheaspectsofMRsinbioartificialorgansaredeeplydiscussedinChapter9(Morelli, Salerno,Piscioneri,andDeBartolo),whereanoverviewoftheapplicationofmembranebioreactortechnologytoengineerbioartificialorgansthatcanbeusedasextracorporealdevices providingtemporarysupportforpatientswithorganfailurewaitingfortransplantationoras implantablesystemsisprovided.Thesedevicescanalsoofferaninvitroplatformfordrug toxicitytestingandstudies.Indetail,afterabriefintroductiononthecriticalissuesinthe designofamembranebioreactortobeusedasabioartificialorgan,asummaryofthetransportphenomenawithinthebioreactorbyusingcomputationalmodelingisreported,since theyhavetobeanalyzedtooptimizetheoveralloperationalconditions.Then,specialattentionisgiventothemembranebioreactordevicesusedasbioartificialliver,bioartificialpancreas,andbiomimeticmodelofthenervoussystem.Thecurrentstatusoftheirdevelopment ininvitroandinvivostudies,aswellasinclinicaltrialsperformedwithinthelastdecadesis alsodiscussed.

Chapter10(Molinari,Lavorato,andArgurio)regardsthephotocatalyticMRs. Heterogeneousphotocatalysisislargelystudiedinthefieldofenvironmentrecoverybythe

totaldegradationoforganicandinorganicpollutantsandforthesynthesisofchemicals.In thiscontext,thechapterdiscussesthebasicprinciplesofphotocatalysistogetherwithboth theadvantagesanddisadvantagesrelatedtoitscouplingwithamembraneseparationin photocatalyticMRs.Thetypesofmembranesusedandtheircriteriaofselectionarebriefly examined.Onthebaseoftheirconfigurationandmembraneoperation,photocatalyticMRs areusedinreactionsofphotodegradationofpollutantsandreactionsofsynthesis,evidencingastheappropriatechoiceoftheconfigurationisakeystepgivenlargescaleimplementation.Somecasestudiesinwatertreatment(i.e.pharmaceuticalsremoval)andthereaction ofsynthesis(CO2 reduction)arediscussed,evidencingpotentialities,drawbacks,andfuture trends.

InChapter11(Millet),anoverviewofsomeelectrochemicalMRsofgreatpracticalinterestforthechemicalindustryandtheenergytransitionisprovided.First,thedifferenttypes ofelectrochemicalreactorsarecategorizedfromgeneralthermochemicalconsiderations.In detail:thegeneralfeaturesofelectrochemicalmembranereactorsaresummarized,followed bythediaphragmsusedwithliquidelectrolytesandthenanion-conductingpolymerelectrolyteusedeitherdirectlyorsoakedinelectrolytesisdescribed.Moreover,solidoxidesare usedaselectrolytesandcellseparators;andafewselectedendergonicelectrochemicalprocessesofindustrialinterest(waterelectrolysis,brineelectrolysis,andelectrodialysis)are described.Variousprocessesaredescribedtoo,includinglimitationsofcurrentmaterials togetherwithsomeprospectiveissues.

AveryimportantaspectofMRsistheirmodeling,whichisdiscussedinChapter12 (Gallucci),whereafewgeneralmodelsthatcanbeusedformembranereactorsarereported andvariousexamplesofmodelresultsfromtheliteraturearealsogiven.Althoughthelistof modelsisnotexhaustive,mostoftheMRsreportedinthisbookcanbemodeledwithoneof themodelsproposedinthischapter.Ofcourse,closureequationsforkineticsandmembranefluxarepresentedfortheexamplesreportedinthischapterandshouldbechanged andverifiedbytheusersfortheirspecificproblems.

ThebooksendwithChapter13(Gallucci)withatechno-economicanalysisofMRs.As said,MRsareoftenusedastheadvancementofexistingtechnologiesbecause,byintegrating reactionandseparationinasinglevessel,theefficiencyofthesystems/processesincreases. However,therealindicatorthatshowsiftheMRisoutperformingaconventionalsystemis thefinalcostoftheproduct,whichcanbecalculatedbyusingatechno-economicanalysis. Inthischapter,afewexamplesoftechno-economicstudiesofmembranereactorsappearing inliteratureinthelast5yearsareshown.

Theeditorswouldliketotakethisopportunitytoexpresstheirsinceregratitudetoallthe contributorstothisbook,whoseexcellentsupportresultedinitssuccessfulcompletion.We aregratefultothemforthecommitmentandsinceritytheyhaveshowntowardstheircontributions.Withouttheirenthusiasmandsupport,thecompilationofthisbookwouldnothave beenpossible.Lastbutnotleast,wewouldalsoliketothankthepublisher,inparticularspecialthankstotheresponsibleatElsevier,IvyDawnC.Torre,SantosVeronica,AnitaKoch, NarmathaMohan,andKostasMarinakis,fortheirgreathelp.

Introductiontomembraneand membranereactors

VincenzoPalma1,MarcoMartino1,EugenioMeloni1,AngeloBasile2,3

1 DEPARTMENTOFINDUSTRIALENGINEERING, UNIVERSITYOFSALERNO,FISCIANO,ITALY

2 HYDROGENIA,GENOVA,ITALY 3 UNITOFCHEMICAL-PHYSICSFUNDAMENTALSINCHEMICAL ENGINEERING,DEPARTMENTOFENGINEERING,UNIVERSITYCAMPUSBIO-MEDICALOF ROME,ROME,ITALY

1.1Introductionandprinciples

AccordingtotheInternationalUnionofPureandAppliedChemistryrecommendations,a membraneisa “structure,havinglateraldimensionsmuchgreaterthanitsthickness, throughwhichmasstransfermayoccurunderavarietyofdrivingforces” [1].Amembrane allowscontrollingthemasstransferbetweentwoadjacentfluidphasesbyactingasasieveto separatedifferentspeciesandcontrollingtherelativeratesoftransportacrossthemembrane [2].Throughthemembrane(Fig.1 1),afluidstream(retentatestream),isdepletedofsome ofitsoriginalcomponents,toformanotherfluidstream(permeatestream),whichisconcentratedinthesecomponents.Thedrivingforcethatregulatesthetransportprocessacrossthe membranetypicallydependsonagradientofconcentration,pressure,temperature,electric potential,etc. [3].

Themembranecanbeusedtocontinuouslyremovetheproductsandincreasetheconversion,thusovercomingtheequilibriumlimitations(LeChatelierprinciple),ortoincrease theselectivitybydistributivefeedingareactant [5].

Themembranescanbeclassifiedaccordingtotheir nature(biologicalorsynthetic),geometry, andseparationregime,aswellasorganic,inorganic,ororganic/inorganichybrids [5].

Biologicalmembranescanbeeasilyfabricated;however,theyhavemanylimitations, includinglowtemperaturesofuse,tolerancetoalimitedpHrange,andsusceptibilityto microbialattack [5].Syntheticmembranescanbeorganicorinorganicinnature;theorganic membranesarepolymericmaterials [6],suchaspolyamideorpolystyreneandinsomecases canbeusedupto300 C,whiletheinorganicmembranescanbeceramic,suchaszeolitesor oxides,ormetallic,suchaspalladiumormetalalloys,andshowhighstabilityinawiderange oftemperatures(upto1000 C,insomecases)andtolerancetoabroadpHrange [7]. Inorganicmembranescanalsobeclassifiedbasedonporediameter(dp)sizes,microporous (dp , 2nm),mesoporous(2nm , dp . 50nm),andmacroporous(dp . 50nm),and

currentmembraneprocessesincludemicrofiltration,ultrafiltration,nanofiltration,gasand vaporseparation,andpervaporation(Fig.1 2).

Thelattermentionedprocessinthelasttwodecadesisfindinganincreasingapplication inliquidhydrocarbonsseparations(petrochemicalapplication,alcohol/etherseparations), removalofvolatileorganiccompoundsfromwater,removalofwaterfromglycerin,and dehydrationtointensifyesterificationreaction [8].Moreover,themetallicmembranescanbe classifiedassupportedandunsupported [5].Thesupporteddensemembranes [9],obtained bydepositionofmetalliclayersonaporoussupport,suchasalumina,silica,carbon,orzeolite,areparticularlyinterestinginthefieldofhydrogenproduction.

Themechanismsthatregulatethemasstransportthroughporousanddensemembranes areverydifferent;inporousmembranes,themechanismdependsontheporosity,whilein densemetallicmembranesasolution-diffusionmechanismiseffective [5].

Thegastransportmechanismsthroughaporousmembraneincludemolecularsieving, Knudsendiffusion,capillarycondensation,andlaminarflow(e.g.,Poiseuilleflow),dependingonthemembraneporesizeanddiameterofgasmolecules [10].Differentmechanismsof gastransportthroughmembranesareshownschematicallyin Fig.1 3.

FIGURE1–2 Thechoiceofmembranewithrespecttothesizeofparticles [8].
FIGURE1–1 Conceptualschemeofamembranereactorsystem [4]

–3 Diffusionmechanisms:(A)bulkflowthroughpores;(B)Knudsendiffusionthroughpores;(C)molecular sieving;(D)solutiondiffusionthroughdensemembranes [10]

Thepermeability(P)isacharacteristicpropertyofthemembrane,andinthecaseofdense membranes,itisproportionaltosolubility(S)anddiffusivity(D),accordingtothe Eq.(1.1)[11].

Thesolubilityisrelatedtotheaffinitybetweenthegasmoleculesandthemembranes materials,thediffusivitytothefreevolume,andthesizeofgases.Theperm-selectivity(α) dependsontheoperativeconditions,includingtemperatureandpressure,andhasbeen definedastheratiobetweenthepermeabilityoftwogases [12],accordingtothe Eq.(1.2)

Inthecaseofdensepolymermembranes,theperm-selectivitycanbealsoinfluencedbythe plasticizationphenomenon [13],duetothephysicaldissolutionofthepenetrantgasinthepolymermatrix,whichinducesanincreaseinthesegmentalmobilityofthepolymerchains [14].

Thegaspermeance(Pe)dependsonthegaspermeabilityandthemembranethickness (δ)accordingtothe Eq.(1.3)[11].

Theefficiencyoftheseparationprocessisdefinedastheseparationfactor(SF),whichis relatedtothemolarfractionsofthecomponentsinthepermeate(Xi,p, Xj,p)andfeedstream (Xi,f, Xj,f),accordingtothe Eq.(1.4)[11]

Asmentionedaboveinthecaseofporousmembranes,themechanismsdependonthe sizeofthepores.Whenthemeanporediameterislargerthanthemeanfreepathofthefluid

FIGURE1

molecules(macroporousmaterials)thePoiseuilleflow(viscousflow)isoperating(Fig.1 4), thecollisionbetweenthemoleculesismoreprobablethanthecollisionbetweenthemoleculesandtheporewalls [15].

Inthecaseofmesoporousmaterials,themoleculestendtocollidemorewiththepore wallsthanamongthemselves [16] (Fig.1 4).Whenthemeanporediameterandthemean freepathofthefluidmoleculesaresimilar,theKnudsenmechanismoccurs,andtheflow throughthemembraneiscalculatedaccordingto Eq.(1.5)[17],where G isthegeometrical factorrelatedtothemembraneporosityandporetortuosity.

–4 Masstransportmechanisminsideporousmaterialsandtheirperm-selectivity [4]

FIGURE1

InthecaseofKnudsendiffusion,unlikethePoiseuilleflow,theflowdoesnotdependon absolutepressure.Inthiscase,thehighestseparationfactorobtainableforabinarymixture, whenthevacuumisimposedonthepermeateside,isequaltothesquarerootoftheratio betweenthemolecularweightsofthetwodifferentmolecules,thusthesmallermolecules aretransferredmoreintensivelyacrossthemembrane [15].Whenthemoleculesarephysisorbedorchemisorbontheporewalls,surfacediffusionoccurs [17],andselectivetransport takesplace,however,theadsorbedmoleculesreducetheporesize,hinderingthefurther transferring [15].Capillarycondensationtakesplacewhenoneofthecomponentscondenses withinthepores,asaresultofcapillaryforces,thecondensatefillstheporesandthenevaporatesatthepermeatesidewherelowpressureiskept [15].Multi-layerdiffusionisconsidered anintermediateflowregimebetweensurfacediffusionandcapillarycondensation [5,18].In thecaseofmicroporousmaterials,themechanismiscomparabletoamolecularsieve,only smallmoleculescanpermeate,makingitpossibletoachieveveryhighselectivity [4].Ithas beendemonstratedthatthepermeatingflowthroughthemicroporousmaterialsincreases withthetemperature [19],accordingto Eq.(1.6).

where Eact istheapparentactivationenergy,rangingfrom2to40kJ/mol,dependingon microporesizeandgasmoleculesize.Moreover,DeLangeetal. [20] describedthegastransportandseparationinmicroporousmembranematerials,thustheactivatedtransportmay beexpressedaccordingtothe Eq.(1.7)

where Do (m2/s)isthemeanintrinsicdiffusioncoefficientformicroporediffusion,and ko is theintrinsicHenryconstant,themembraneporosity, l themembranethickness, ρ thebulk density, qst theisostericheatadsorption, Ei theactivationenergyforgasspecies, R theuniversalgasconstant,and T thetemperature [4].

Pervaporationisacombinationofpermeationandevaporation,whichconsistoftheseparationofliquidmixtures(feedstream)bypartialvaporizationthroughadensemembrane, thereforeitisbasedonaliquid-vaporphasechange [16],andthepermeatestreamisrecoveredasvapor.Theprocessconsistsofseveralphases,theliquidfeedisheateduptothe operatingtemperature,thensenttotheactivesideofthemembrane,wheretheseparation occurs,andfinally,thepermeatevaporiscontinuouslyremovedfromtheothersideofthe membrane.Thecontinuousremovalofthepermeatevaporgeneratesaconcentrationgradientacrossthemembranewhichactsasthedrivingforceoftheprocess [21].Themasstransferofaspecieacrossthemembranecanbeexplainedthroughasolution-desorptionmodel [16],whichconsistsofthreemainsteps:sorptionofthepermeatingspeciesatthefeedside, transportacrossthemembraneaccordingtotheFick’slaw,anddesorptionatthepermeate sideundervacuum [21] orasweepgas [16] (Fig.1 5A).

FIGURE1–5 Schematicrepresentationofpervaporationorvaporpermeationprocess:(A)byvacuum;(B)bya carriergas. Forpervaporation,thefeedisliquid;forvaporpermeation,thefeedisvapor [16]

Inadditiontomasstransfer,thechangeinthephysicalstateofthepermeatecomponent impliesalsoheattransfer;thedecreasingofthetemperaturebringstothedecreaseofthe partialpressureandconsequentlytothedrivingforceofthemasstransfer,sothatsometimes,atindustrialscale,upstreamheatexchangeisusedtocompensate [16].

Unlikegases,theadsorptionfromtheliquidfeedisalmostindependentofthepressure, thusthedrivingforcefortheadsorptiondependsonthefugacityofthespecies(Eq.1.8) [22].

where xi isthefeedmolefraction, ɣi istheactivitycoefficientand pi isthesaturatedvapor pressure.Thefugacityincreaseswiththetemperature,moreover,inmixtures,theadsorption selectivityseemstoincreasewiththeincreaseofthefeedfugacityratio [22].

Contrarytopervaporation,invaporpermeationthefeedisamixtureofvaporandgases,thereforetherehappensnophasechangeandconsequently,anon-heatsupplyisnecessary.Inthis case,thedrivingforceisthechemicalpotentialgradientduetothedifferenceinthepartialpressure throughthemembranes,thustheseparationisregulatedbyasolution diffusionmechanism [16].

Polymericandzeolitemembranesareusedinpervaporationandvaporpermeationprocesses;whilethemostcommonapplicationsarewaterremovalfromorganicsandviceversa,separationoforganicmixtures,andconcentrationofaqueoussolutions.Themain advantageoftheseprocessesresidesinthepossibilitytoeasilyseparateazeotropicmixtures ormixturesforwhichahighnumberoftheoreticalstagesisrequired [21].

1.2Membranes

Aspreviouslymentioned,membranescanbeclassifiedaccordingtothematerials,andthe choiceofthetypeofmembranedependsonthetypeofprocessinwhichtheyaretobeused.

Polymericmembranesareparticularlyinterestingduetotheirlowcost,however,canbe usedonlyatlowtemperatures,upto150 C [6].Theseparationprocessdependsonseveral parameters;however,thecharacteristicsofthepolymerplayacrucialrole.Thepolymers usedasmembranescanberubberorglassy,theformerisusuallyhighpermeableforgases butlowselective,onthecontrary,thelatterisselectivebutlowerpermeable.Themainphysicochemicalfactorsinfluencingthegaspermeabilityandpermselectivityofthepolymeric membranesarethefreevolumeofthepolymer,thechainsmobility,andthesolubilityofthe gasinthepolymer [6].Thechainrigidityfavorsthepermselectivitybutisdisadvantageous forthepermeability,asinthecaseofglassypolymers,however,toimprovethepermeability anincreaseinthefreevolumecanbebeneficial.Ontheotherhand,thehighflexibilityof thepolymerchainintherubberypolymersallowsthehighpermeabilityandhighselectivity. Glassypolymermembranesprovidehighmechanicalresistanceandgoodreproducibility; however,theysufferfrompoortemperatureresistance,surfacecorrosion,andswellingeffect duetoplasticizationphenomena.Themostusedglassypolymersarepolysulfone,polyethersulfone,polyetherimide,andpolyimide [11].Rubberypolymersgenerallyshowahighaffinityfor CO2 gasmolecules;themostusedpolymersarepoly(ethyleneoxide)-basedpolymers,poly (amide-6-b-ethyleneoxide),poly(dimethylsiloxane),andpolyvinylamine [11].Reallyattractive arepolymersfromnaturalsources,theso-calledbio-polymers,whicharemostlysynthesizedby livingorganisms,andarebiodegradable,compostable,andenvironmentallysustainable [11]. Themostinterestingexamplesare:

• Celluloseacetate,aglassypolymercommercializedinthe1980s,isusedforCO2 separation.

• Thermoplasticstarch,obtainedfromplants,includingpotatoes,corn,etc.,isusedfor packagingapplications.

• Cross-linkedchitosan,obtainedbydeacetylationofchitin,isusedinwatertreatment processes.

• Polylacticacid,isusedinpackagingapplicationsandtissueengineering.

• Polyhydroxyalkanoates,obtainedbymicrobialfermentation,arecharacterizedby hydrophobicity,opticalpurity,andhighprocessability.

• Polyvinylalchol,ischaracterizedbyhighhydrophilicityandgoodbarrierproperties.

• Polyurethane,isobtainablefromplantoil,suchascastororsoybeanoil.PUspossess goodphysicalandtensilestrength,chemicalresistance,andmechanicalproperties.

Inorganicmembranesconsistofmetals,oxidescarbon,orelementarycarbon,theyare highlyselectiveandpermeableandcanoperateinsevereoperativeconditions [23]. Althoughmoreexpensive,inorganicmembranespresentseveraladvantagescomparedto polymericones:awell-definedstableporestructure,highmechanicalstability,andthermal andsolventresistance [5].Themaincategoriesofinorganicmembranesare:

• Metalmembranesarecategorizedasdenseorporous;mostarecharacterizedbya gradientcompositestructureofthemetal,metaloxide,ormetalalloy,themostused metalsarePd,Ag,theiralloys,andsteel.Theunsupportedmembranesaremadewith

puremetal,whilethesupportedmembranesaremadebycoatingwithametalormetal oxideontheprimarystructurewhichisaporousmetal [24].Metalmembranesareused forgasseparation,andfood,drug,andbeverageapplications.

• Ceramicmembranesarebasedonalumina,silica,ortitaniumoxide;theyareinertand stableathightemperaturesandpossesshighpermeabilityandmoderateselectivity.They areparticularlysuitableforfood,biotechnology,andpharmaceuticalapplications [5], silicaandsilica,andfunctionalizedceramicmembranesareusedforhydrogen productionandseparation [25].Amongthenegativeaspectsrelatedtotheiruse,thereare membranesealingproblemsinhigh-temperaturemodules,crackingproblemsrelatedto temperaturegradients,andlowchemicalstabilityofperovskite-typematerials [5].

• Zeolitemembranesarebasedonmicroporouscrystallinealuminasilicate,usually obtainedbydirectgrowthonaporousceramicormetalsupport.Thesynthesisisusually carriedoutbyhydrothermaltreatmentsinthepresenceofanorganicstructure-directing agent,whichallowsforcontrollingtheshapeandsizeofthepores [26].Themolecular sievingaction,thelargesurfacearea,andthecontrollableinteractionhost-sorbateare consideredthemainadvantagesofusingzeolitemembranes,moreover,thepossibilityto combinecatalyticactivityandseparationcapabilityisanattractivefeature.Zeolite membranesareusedascatalystsandsensorsfortheseparationofgasand/orliquids [27] Themaindrawbacksofusingzeolitemembranesarethelowgasfluxcomparedtothe otherinorganicmembranesandthelowthermalstabilityofthezeolitelayer,whichcan expandwiththetemperature [5].

• Carbonmembranesarecomposedofmicroporous,amorphoushigh-carbonmaterials, canbeproducedbythermaltreatmentofawidevarietyofpolymerprecursors,andcan besupported(flatortube)andunsupported(flat,capillary,orhollowfiber).Thehollow fiberpresentahighseparationperformance,highpackingdensity,andlowcost, however,thebrittlenessmakesitdifficulttohandle,sosupportedcarbonmembranesare preferable [28].Thesupportedmembranesarefabricatedbythecarbonizationofa polymericprecursorlayeronresistantsupport.Carbonmembranescanbeusedingas separationforCO2,N2,andH2 removal,however,theselectivitystronglydependsonthe precursorusedforthefabrication.Althoughtheuseofcarbonmembranesisvery promising,itstillappearstobeimmature;theproblemsoffragilityandtheoptimization ofpreparationmethodsconstitutealimittotheiruse.

1.3Membranebioreactors

Amembranebioreactor(MBR)canbedefinedasaspaceinwhichabiochemicaltransformationandamembraneseparationprocessoccur [29].InMBR,themembranecanbe usedfordifferentpurposes,suchasaddingareactantorforselectivelyremovingoneofthe reactionproducts [30].Moreover,membranescanbeutilizedtoretainthebiocatalystoract asthesupportforthebiocatalyst,ortheseparationofenzymesbysizeexclusion [31].MBR processesarecharacterizedbyseveraladvantages,includingsmallfootprint,lowersludge

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.