Current developments in biotechnology and bioengineering. production, isolation and purification of

Page 1


CurrentDevelopmentsinBiotechnologyand Bioengineering.Production,Isolationand PurificationofIndustrialProducts1stEdition

https://ebookmass.com/product/current-developments-inbiotechnology-and-bioengineering-production-isolation-andpurification-of-industrial-products-1st-edition-ashokpandey/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Current Developments in Biotechnology and Bioengineering. Food and Beverages Industry 1st Edition Ashok Pandey

https://ebookmass.com/product/current-developments-in-biotechnologyand-bioengineering-food-and-beverages-industry-1st-edition-ashokpandey/ ebookmass.com

Current Developments in Biotechnology and Bioengineering: Advances in Composting and Vermicomposting Technology Ashok Pandey

https://ebookmass.com/product/current-developments-in-biotechnologyand-bioengineering-advances-in-composting-and-vermicompostingtechnology-ashok-pandey/ ebookmass.com

Current Developments in Biotechnology and Bioengineering. Biological Treatment of Industrial Effluents 1st Edition Duu-Jong Lee

https://ebookmass.com/product/current-developments-in-biotechnologyand-bioengineering-biological-treatment-of-industrial-effluents-1stedition-duu-jong-lee/ ebookmass.com

Cyber

Persistence

Theory: Redefining National Security in Cyberspace Michael P. Fischerkeller

https://ebookmass.com/product/cyber-persistence-theory-redefiningnational-security-in-cyberspace-michael-p-fischerkeller/ ebookmass.com

https://ebookmass.com/product/etextbook-978-0134083308-fundamentalsof-investing-pearson-series-in-finance/

ebookmass.com

International Economics: Theory and Policy 12th Edition

https://ebookmass.com/product/international-economics-theory-andpolicy-12th-edition-paul-krugman/

ebookmass.com

CNOR Exam Practice Questions: CNOR Practice Tests & Review for the CNOR Exam (Ebook PDF)

https://ebookmass.com/product/cnor-exam-practice-questions-cnorpractice-tests-review-for-the-cnor-exam-ebook-pdf/

ebookmass.com

Social and Behavioral Foundations of Public Health 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/social-and-behavioral-foundations-ofpublic-health-2nd-edition-ebook-pdf/

ebookmass.com

Eternally Mated (The Arcana Pack Chronicles Book 13)

https://ebookmass.com/product/eternally-mated-the-arcana-packchronicles-book-13-emilia-hartley/

ebookmass.com

So Wrong, It's Wright: a billionaire romance collection

https://ebookmass.com/product/so-wrong-its-wright-a-billionaireromance-collection-megan-wade/

ebookmass.com

CurrentDevelopments inBiotechnologyand Bioengineering

Production,IsolationandPurification ofIndustrialProducts

AshokPandey,SangeetaNegi, CarlosRicardoSoccol

AMSTERDAM

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright © 2017ElsevierB.V.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribedherein. Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyandthesafety ofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-444-63662-1

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/

Publisher: JohnFedor

AcquisitionEditor: KostasMarinakis

EditorialProjectManager: AnnekaHess

ProductionProjectManager: VijayarajPurushothaman

Designer: GregHarris

TypesetbyTNQBooksandJournals

ListofContributors

M.Adsul DBT-IOCCentreforAdvancedBioenergyResearch,IndianOilCorporation Limited

CristóbalN.Aguilar FoodResearchDepartment,SchoolofChemistry, AutonomousUniversityofCoahuila,Saltillo,Coahuila,México

A.Angel-Cuapio UniversidadAutónomaMetropolitana-Iztapalapa,MexicoCity, DF,Mexico

G.S.Anisha GovernmentCollegeforWomen,Trivandrum,Kerala,India

P.Binod CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology(NIIST), Trivandrum,India

J.Buenrostro-Figueroa DepartmentofBiotechnology,DivisionofHealthand BiologicalSciences,MetropolitanAutonomousUniversity,Iztapalapa,México

S.Chakraborty IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

M.L.ChávezGonzález FoodResearchDepartment,SchoolofChemistry, AutonomousUniversityofCoahuila,Saltillo,Coahuila,México

G.-Q.Chen TsinghuaUniversity,Beijing,China

S.Chen HubeiUniversity,Wuhan,PRChina

JuanC.Contreras-Esquivel FoodResearchDepartment,SchoolofChemistry, AutonomousUniversityofCoahuila,Saltillo,Coahuila,México

J.D.Coral BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

J.C.deCarvalho BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

J.deOliveira BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

A.Dhillon IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

M.J.Fernandes BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

R.Gaur IndianOilCorporationLimited,R&DCentre,Faridabad,India

A.Goyal IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

L.R.C.Guimarães BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

M.Haridas KannurUniversity,Kannur,India

R.Hemamalini IndianInstituteofTechnologyDelhi,NewDelhi,India

AyerimHernandez-Almanza FoodResearchDepartment,SchoolofChemistry, AutonomousUniversityofCoahuila,Saltillo,Coahuila,México

A.Illanes PontificiaUniversidadCatólicadeValparaíso,Valparaíso,Chile

J.Isar UniversityofDelhiSouthCampus,NewDelhi,India

A.Joseph KannurUniversity,Kannur,India

S.G.Karp BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

N.Karthik CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology (NIIST),Trivandrum,India

R.Kaushik UniversityofDelhiSouthCampus,NewDelhi,India

S.K.Khare IndianInstituteofTechnologyDelhi,NewDelhi,India

P.C.S.Kirnev BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

D.Kothari IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

C.Larroche BlaisePascalUniversity,AubièreCedex,France

L.A.J.Letti BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

O.Loera-Corral UniversidadAutónomaMetropolitana-Iztapalapa,MexicoCity,DF, Mexico

A.I.Magalhães,Jr. BioprocessEngineeringandBiotechnologyDepartment, FederalUniversityofParaná(UFPR),Curitiba,PR,Brazil

A.B.P.Medeiros BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

J.D.C.Medina BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

F.Miranda-Hernández UniversidadAutónomaMetropolitana-Iztapalapa,Mexico City,DF,Mexico

N.R.Nair CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology (NIIST),Trivandrum,India

S.Nair DowChemicalsGmBH,Dubai,UAE

K.M.Nampoothiri CSIR-NationalInstituteforInterdisciplinaryScienceand Technology(NIIST),Trivandrum,India

A.Nandan CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology (NIIST),Trivandrum,India

S.Negi MotilalNehruNationalInstituteofTechnology,Allahabad,India

M.G.B.Pagnoncelli BioprocessEngineeringandBiotechnologyDepartment, FederalUniversityofParaná(UFPR),Curitiba,PR,Brazil;FederalTechnological UniversityofParana,DoisVizinhos,Brazil

A.Pandey CenterofInnovativeandAppliedBioprocessing,(anationalinstitute underDeptofBiotechnology,MinistryofS&T,GovtofIndia),Mohali,Punjab,India

A.K.Patel DBT-IOCCentreforAdvancedBioenergyResearch,IndianOilCorporation Limited

V.Rajulapati IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

S.Ramachandran InsightProfessionalInstitute,Dubai,UAE

A.Rani IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

C.Rodrigues BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

RosaM.Rodríguez-Jasso FoodResearchDepartment,SchoolofChemistry, AutonomousUniversityofCoahuila,Saltillo,Coahuila,México

R.Rodríguez FoodResearchDepartment,SchoolofChemistry,Autonomous UniversityofCoahuila,Saltillo,Coahuila,México

L.V.RodríguezDurán DepartmentofBiotechnology,DivisionofHealthand BiologicalSciences,MetropolitanAutonomousUniversity,Iztapalapa,México

HéctorA.Ruiz FoodResearchDepartment,SchoolofChemistry,Autonomous UniversityofCoahuila,Saltillo,Coahuila,México

A.Sabu KannurUniversity,Kannur,India

R.Saini DBT-IOCCentreforAdvancedBioenergyResearch,IndianOilCorporation Limited

S.Sajitha CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology (NIIST),Trivandrum,India

S.Saran UniversityofDelhiSouthCampus,NewDelhi,India

R.K.Saxena UniversityofDelhiSouthCampus,NewDelhi,India

V.C.Sekhar CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology (NIIST),Trivandrum,India

K.Sharma IndianInstituteofTechnologyGuwahati,Guwahati,Assam,India

R.Sindhu CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology (NIIST),Trivandrum,India

R.P.Singh PunjabiUniversity,Patiala,Punjab,India

R.S.Singh PunjabiUniversity,Patiala,Punjab,India

ReetaR.Singhania DBT-IOCCentreforAdvancedBioenergyResearch,IndianOil CorporationLimited

C.R.Soccol BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

T.S.Swapna GovernmentVictoriaCollege,Palakkad,India

D.Tan XíanJiaotongUniversity,Xían,China

L.Thomas CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology (NIIST),Trivandrum,India

M.V.Ushasree CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology (NIIST),Trivandrum,India

P.Valencia UniversidadTécnicaFedericoSantaMaría,Valparaíso,Chile

L.P.S.Vandenberghe BioprocessEngineeringandBiotechnologyDepartment, FederalUniversityofParaná(UFPR),Curitiba,PR,Brazil

K.Vibha MotilalNehruNationalInstituteofTechnology,Allahabad,India

J.Vidya CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology(NIIST), Trivandrum,India

N.Vijayan KannurUniversity,Kannur,India

N.Vivek CSIR-NationalInstituteforInterdisciplinaryScienceandTechnology(NIIST), Trivandrum,India

Q.Wang HubeiUniversity,Wuhan,PRChina

X.Wei HubeiUniversity,Wuhan,PRChina

A.L.Woiciechowski BioprocessEngineeringandBiotechnologyDepartment, FederalUniversityofParaná(UFPR),Curitiba,PR,Brazil

J.Yin TsinghuaUniversity,Beijing,China

A.ZandonáFilho BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

P.A.Zárate FoodResearchDepartment,SchoolofChemistry,Autonomous UniversityofCoahuila,Saltillo,Coahuila,México

S.F.Zawadzki BioprocessEngineeringandBiotechnologyDepartment,Federal UniversityofParaná(UFPR),Curitiba,PR,Brazil

AbouttheEditors

AshokPandey

ProfessorAshokPandeyisEminentScientistattheCenterof InnovativeandAppliedBioprocessing,Mohali(anational instituteundertheDepartmentofBiotechnology,Ministry ofScienceandTechnology,GovernmentofIndia),and formerchiefscientistandheadoftheBiotechnology DivisionattheCSIR’sNationalInstituteforInterdisciplinary ScienceandTechnologyatTrivandrum.Heisanadjunct professoratMarAthanasiosCollegeforAdvancedStudies Thiruvalla,Kerala,andatKalasalingamUniversity,Krishnan Koil,TamilNadu.Hismajorresearchinterestsareinthe areasofmicrobial,enzyme,andbioprocesstechnology, whichspanvariousprograms,includingbiomasstofuels andchemicals,probioticsandnutraceuticals,industrial enzymes,solid-statefermentation,etc.Hehasmorethan 1100publicationsandcommunications,whichinclude16 patents,50+books,125bookchapters,and425originalandreviewpapers,withanhindex of75andmorethan23,500citations(GoogleScholar).Hehastransferredseveraltechnologiestoindustriesandhasbeenanindustrialconsultantforaboutadozenprojectsfor Indianandinternationalindustries.

ProfessorPandeyistherecipientofmanynationalandinternationalawards andfellowships,whichincludeElectedMemberoftheEuropeanAcademyofSciences andArts,Germany;FellowoftheInternationalSocietyforEnergy,Environmentand Sustainability;FellowoftheNationalAcademyofScience(India);FellowoftheBiotech ResearchSociety,India;FellowoftheInternationalOrganizationofBiotechnologyand Bioengineering;FellowoftheAssociationofMicrobiologistsofIndia;honorarydoctorate degreefromtheUniversite ´ BlaisePascal,France;ThomsonScientificIndiaCitation LaureateAward,UnitedStates;LupinVisitingFellowship;VisitingProfessoratthe Universite ´ BlaisePascal,France,theFederalUniversityofParana,Brazil,andtheE ´ cole PolytechniqueFe ´ de ´ raledeLausanne,Switzerland;BestScientificWorkAchievement Award,GovernmentofCuba;UNESCOProfessor;RamanResearchFellowshipAward, CSIR;GBF,Germany,andCNRS,Francefellowships;YoungScientistAward;andothers. HewaschairmanoftheInternationalSocietyofFood,AgricultureandEnvironment, Finland(Food&Health)during2003 04.HeistheFounderPresidentoftheBiotech

ResearchSociety,India(www.brsi.in);InternationalCoordinatoroftheInternational ForumonIndustrialBioprocesses,France(www.ifibiop.org);chairmanofthe InternationalSocietyforEnergy,Environment&Sustainability(www.isees.org);andvice presidentoftheAllIndiaBiotechAssociation(www.aibaonline.com).ProfessorPandey iseditor-in-chiefof BioresourceTechnology, HonoraryExecutiveAdvisorofthe Journalof WaterSustainability and JournalofEnergyandEnvironmentalSustainability, subject editorofthe ProceedingsoftheNationalAcademyofSciences(India), andeditorialboard memberofseveralinternationalandIndianjournals,andalsoamemberofseveral nationalandinternationalcommittees.

SangeetaNegi

Dr.SangeetaNegiisanassistantprofessorintheDepartment ofBiotechnologyattheMotilalNehruNationalInstituteof Technology,India.ShehasaFirstClassMaster’sdegreein biochemistryandaPhDinbiotechnologyfromtheIndian InstituteofTechnology,Kharagpur.Shehasalsoworkedas anacademicguestattheBiologicalEngineeringDepartment, PolytechClermont-Ferrand;theUniversite ´ BlaisePascal, France;andtheBioenergyandEnergyPlanningResearch Group,SwissFederalInstituteofTechnology,Lausanne, Switzerland.Dr.Negi’scurrentresearchinterestsareinthe areasofbiofuels,industrialenzymes,andbioremediation.Sheisaneditorialboard memberofthe JournalofWasteConversion,BioproductsandBiotechnology andthe Journal ofEnvironmentalScienceandSustainability. ShehasbeenawardedasOutstanding ReviewerbyElsevierandhaswontheYoungScientistAwardbyDSTattheNational SeminaronBiologicalandAlternativeEnergiesPresentandFuture,organizedbyAndhra University,Visakhapatnam,in2009.ShehasalsowontheBestPosterAwardatthe InternationalCongressonBioprocessesinFoodIndustries(2008)atHyderabad.Dr.Negi hascontributedtonearly70publications,includingreviewarticles,originalpapers,and conferencecommunications.

CarlosRicardoSoccol

ProfessorCarlosRicardoSoccolistheresearchgroupleader oftheDepartmentofBioprocessesEngineeringand BiotechnologyattheFederalUniversityofParana ´ (UFPR), Brazil,with20yearsofexperienceinbiotechnological researchanddevelopmentofbioprocesseswithindustrial application.HegraduatedwithaBScinchemicalengineering(UFPR,1979),Master’sinfoodtechnology(UFPR, 1986),andPhDinGe ´ nieEnzymatique,Microbiologieet Bioconversion(Universite ´ deTechnologiedeCompie ` gne, France,1992).HedidhispostdoctoralworkattheInstitut ORSTOM/IRD(Montpellier,1994and1997)andatthe Universite ´ deProvenceetdelaMe ´ diterrane ´ e(Marseille, 2000).HeisanHDRProfessorattheE ´ coled’Inge ´ nieursSupe ´ riureofLuminy, Marseille France.Hehasexperienceintheareasofscienceandfoodtechnology,with emphasisonagro-industrialandagro-alimentarybiotechnology,actinginthefollowing areas:bioprocessengineeringandsolid-statefermentation,submergedfermentation, bioseparations,industrialbioprocesses,enzymetechnology,tissueculture,bioindustrialprojects,andbio-production.HeiscurrentlytheCoordinatorofMaster BIODEV-UNESCO,associateeditoroffiveinternationaljournals,andeditor-in-chiefof thejournal BrazilianArchivesofBiologyandTechnology.ProfessorSoccolhasreceived severalnationalandinternationalawards,whichincludetheScienceandTechnology AwardoftheGovernmentofParana ´ (1996);Scopus/ElsevierAward(2009);Dr.Honoris Causa,Universite ´ BlaisePascal,France(2010);OutstandingScientistatthe5th InternationalConferenceonIndustrialBioprocesses,Taipei,Taiwan(2012);andElected TitularMemberoftheBrazilianAcademyofSciences(2014).Heisatechnicalandscientificconsultantforseveralcompanies,agencies,andscientificjournalsinBraziland abroad.Hehassupervisedandmentored96MasterofSciencestudents,48PhDstudents,and14postdoctoralstudents.Hehas995publicationsandcommunications, whichinclude17books,107bookchapters,270originalresearchpapers,and557 researchcommunicationsininternationalandnationalconferencesandhasregistered 44patents.Hisresearcharticlesasofthiswritinghavebeencited(Scopusdatabase)5600 timeswithanhindexof36.

Preface

Thisbookisapartofthecomprehensiveseries CurrentDevelopmentsinBiotechnologyand Bioengineering,comprisingninevolumes(Editor-in-chief:AshokPandey),anddealswiththe production,isolation,andpurificationofindustrialproductsproducedbybiotechnological processes.Thisbookcoversrecenttechnologicaladvancesofagreatnumberofbiotechnologicalproductsandisdividedintofourdifferentparts:ProductionofIndustrialand TherapeuticEnzymes,OrganicAcids,BiopolymersandOtherProducts,andProducts IsolationandPurification.

Part1isdevotedtotheproductionofindustrialandtherapeuticenzymes.Thefirst chapterdescribesthecurrentandfuturetrendsofproduction,application,andstrain improvementof a-amylases,oneofthemostimportantenzymesusedinindustry. a-Amylasesfindapplicationinseveralindustrialprocesses,suchasstarchliquefaction, desizingoftextiles,detergents,baking,bioethanolproduction,etc.Glucoamylaseisanother enzymeextensivelyusedinthefoodandfermentationindustries,mainlyforthesaccharificationofstarch,brewing,andproductionofhigh-fructosesyrup,whicharediscussedin Chapter2.Cellulases, b-glucosidases,andxylanasesarethesecondmostusedenzymesin industrybysalesvolume,withanincreasingdemandsince1995inseveralindustrialapplications,comprisingdetergentsandtextiles,animalfeed,food,paper,andbiofuels.These enzymesarediscussedinChapters4,5,and6ofthisbook.Chapter7discussesproteolytic enzymes,alsoknownas“proteases,”whichareusedtocleavethepeptidebondsconnecting twoaminoacids.Theyareproducedmainlybymicroorganismsandhavegreatcommercial value,beingusedinfood,dairy,detergents,andleatherprocessing.Lipolyticenzymesare hydrolasescomprising15familiesoflipases,asshowninChapter8ofthisbookthrougha studyoftheindustrialapplicationsandotherimportantaspectsoftheseenzymes.The purposeofChapters9and10istopresentanoverviewoflaccasesandperoxidases,covering theirproductionanduseinthepretreatmentoflignocellulosicbiomassandbiopulping,and alsoprojectingnewperspectivesonimprovingsuchprocessesandproductsusingthese enzymes.Sourcesofproduction,strategies,characteristics,applications,andindustrial importanceoftherapeuticenzymes,suchas L-glutaminase, L-asparaginase,andpenicillin acylase,arepresentedanddiscussedinChapters11,12,and13.Otherenzymes,suchas phytases,chitinases,keratinases,tannases,aminopeptidases,nattokinases,andpolysaccharidelyases,arereviewedinChapters14to23,coveringrecentadvances,production methods,potentialapplications,andtheglobalmarket.

Thesecondpartofthebookisdedicatedtoorganicacids.InChapters24and25,lactic acidandcitricacidproduction,synthesis(coveringfactorsthataffectbiochemicalpathways), andrecoveryareaddressed.Chapter26reviewsthemicrobialproductionofgluconicacid, propertiesofglucoseoxidase,production,recovery,andapplications.Succinicacidisan importantplatformmolecule,usedasanintermediateintheproductionofnumerous everydayproducts,amongwhicharepharmaceuticalsandadhesives,representingatotal immediateaddressablemarketofmorethan$7.2billion.Chapter27presentsananalysisof thecurrentmarket,biological-basedproductionprocesses,enzymaticregulation,and recoverysystemsofsuccinicacid.

Part3discussespolymerproductionandotherproducts.Polylactide(PLA),derived fromlacticacid,abiodegradablepolyester,hasapplicationsinpackaging,textiles,andthe biomedicalandpharmaceuticalindustries.Chapter28reviewsthepropertiesandapplicationsofPLA,focusingonrecenttechnologiesandimprovementofproductiontechniques. Polyhydroxyalkanoates(PHAs),afamilyofenvironmentallyfriendlypolyestersthatcanbe synthesizedbyawiderangeofmicroorganismsascarbonandenergyreserves,havebeen consideredanalternativetopetroleum-basedchemicals.Thecompositionandstructural diversityofPHAshaveledtovariouspropertiesandendlessapplicationstoformaPHAvalue chain.Chapter29brieflyintroducestheirproductionandapplication,highlightingthelaboratoryproductionbythemicrobialstrainsdevelopedusinggeneticand/ormetabolicengineeringorsyntheticbiologytechniques.Industrialproduction,recenttechnologies,and improvementofPHAproductionarealsodiscussed.Poly-g-glutamicacid(g-PGA)isanatural polymer,synthesizedbyvariousstrainsof Bacillus spp.,thatisusedinfood,cosmetics, agriculture,andthewastewaterindustry.Chapter30providesupdatedinformationonthe biosynthesis,fermentation,purification,andapplicationof g-PGA.InChapter31,recent developmentsinthebiologicalproductionof1,3-propanediolbyvariousnaturaland geneticallyengineeredmicroorganisms,nonnative1,3-propanediolproducers,aswellas mixedcultures,arediscussed.Importantaspectsofdownstreamprocessingandvarious methodsandstepsinvolvedintheextractionandpurificationof1,3-propanediolfromthe fermentationbrotharealsocoveredinthischapter.Theproductionofpetroleum-based plasticsisachallengingenvironmentalproblem,causingtheproductionandconsumption ofbiodegradableplasticstoreceiveconsiderableattentionnowadays.Chapter32providesan overviewofthedegradationmechanismsofbiodegradablepolymers,withparticular emphasisonthemainparametersaffectingthedegradationofthesepolymericbiomaterials. InChapter33thepotentialofbiologicalcontrolispresentedanddiscussedasapromising alternativetochemicalpesticides.Thefinaltwochaptersofthisbook,Chapters34and35, presentthemostrelevantdownstreamprocessestoextract,isolate,purify,andrefine fermentationproducts.

Weareconfidentthatthisbookwillbeprofitabletostudents,professors,researchers, andprofessionalsinterestedinstudyingbiotechnologyandbioengineering.Wethank Dr.KostasMarinakis,BookAcquisitionEditor;Ms.AnnekaHess;andentireproductionteam atElsevierfortheirhelpandsupportinbringingoutthisvolume.

a-Amylases

R.Sindhu1, *,P.Binod1,A.Pandey2

1 CSIR-NATIONALINSTITUTEFORINTERDISCI PLINARYSCIENCEANDTECHNOLOGY(NIIST), TRIVANDRUM,INDIA; 2 CENTEROFINNOVATIVEANDAPPLIEDBIOPROCESSING, (ANATIONALINSTITUTEUNDERDEPTOFBI OTECHNOLOGY,MINISTRYOFS&T,GOVTOF INDIA),MOHALI,PUNJAB,INDIA

1.1Introduction

1.1.1Starch

Starchisthemajorpolysaccharidefoodreserveinnatureaftercellulose.Itservesasan importantsourceofnutritionforotherlivingorganisms [1].Itissynthesizedinthe plastidspresentinleavesandaccumulatesasinsolublegranulesinhigherandlower plants.Starchiscomposedofalargenumberofglucoseunitsjoinedbyglycosidicbonds. Itconsistsoftwotypesofmolecules:amyloseandamylopectin.Amyloseisalinear, water-insolublepolymerofglucosejoinedby a-1,4bonds,whereasamylopectinisa branched,water-solublepolysaccharidewithshort a-1,4-linkedlinearchainsof10 60 glucoseunitsand a-1,6-linkedsidechainswith15 45glucoseunits.Thelevelsof amylaseandamylopectinvaryamongdifferentstarches.Generally,starchiscomposed ofamyloseandamylopectinintherange25 28%and72 75%,respectively.

1.1.2Amylases

Amylasesaretheenzymesthatbreakdownstarch,orglycogen.Theseenzymesare producedbyavarietyoflivingorganisms,rangingfrombacteriatoplantstohumans. Thoughamylasesareproducedbyseveralmicroorganisms,thoseproducedbyfungiand bacteriahavedominatedapplicationsintheindustrialsector [2].Bacteriaandfungi secreteamylasestotheoutsideoftheircellstocarryoutextracellulardigestion,which breaksdowntheinsolublestarch,andthenthesolubleendproducts(suchasglucoseor maltose)areabsorbedintothecells.

Amylasesconstituteaclassofindustrialenzymesoccupyingabout25%oftheenzyme market.Becauseoftheincreasingdemandfortheseenzymesinvariousindustries,there isenormousinterestindevelopingthemwithbetterproperties,suchasrawstarchdegradingamylasessuitableforindustrialapplications,andcost-effectiveproduction

*CorrespondingAuthor. CurrentDevelopmentsinBiotechnologyandBioengineering:Production,IsolationandPurificationofIndustrialProducts http://dx.doi.org/10.1016/B978-0-444-63662-1.00001-4 3 Copyright © 2017ElsevierB.V.Allrightsreserved.

techniques.Althoughamylasescanbederivedfromseveralsources,includingplants, animals,andmicroorganisms,microbialenzymesgenerallymeetindustrialdemands. Alargenumberofmicrobialamylasesareavailablecommerciallyandtheyhavealmost completelyreplacedthechemicalhydrolysisofstarchinthestarchprocessingindustry [3].Oneofthemostimportantadvantagesofusingmicrobesfortheproductionof amylasesisthebulkproductioncapacityandthefactthatmicrobescanbegenetically modifiedtoproduceenzymeswithdesiredcharacteristics [4].Theseenzymesareofgreat significanceinbiotechnology,withvariousapplicationsrangingfromfood,fermentation, andtextilestothepaperindustry.Eachapplicationof a-amylaserequiresunique propertieswithrespecttospecificity,stability,andtemperatureandpHdependence.

Moderntechnologiessuchascomputationalpackagesandonlineserversarethe currenttoolsusedinproteinsequenceanalysisandcharacterization.Thephysicochemicalandstructuralpropertiesoftheseproteinsarewellunderstoodwiththeuseof computationaltools.Theproteinsequenceprofile,suchasnumberofaminoacidsand sequencelength,andthephysicochemicalpropertiesoftheprotein,suchasmolecular weight,atomiccomposition,extinctioncoefficient,aliphaticindex,instabilityindex,etc., canbecomputedbyProtParam,andthesecondarystructureprediction,sequence similarity,evolutionaryrelationships,and3-Dstructureofvariousproteinscanbe computedusingtheESyPred3Dserver [5].

1.1.3Classi ficationofAmylases

Basedonthemechanismofbreakdownofstarch,themoleculesareclassifiedintothree types: a-amylase, b-amylase,andamyloglucosidase. a-Amylasereducestheviscosityof starchbybreakingdownthebondsatrandom,therebyproducingvariablysizedchains ofglucose. b-Amylaseenzymebreakstheglucose glucosebondsbyremovingtwo glucoseunitsatatime,therebyproducingmaltose.Amyloglucosidaseistheenzymethat breakssuccessivebondsfromthenonreducingendofthestraightchain,producing glucose.Manymicrobialamylasesusuallycontainamixtureoftheseamylases.This chapterfocusesonlyon a-amylases.

a-Amylases(EC3.2.1.1)arestarch-degradingenzymesthatcatalyzethehydrolysisof internal a-1,4-O-glycosidicbondsinthepolysaccharideswiththeretentionofthe a-anomericconfigurationintheproducts.Mostofthe a-amylasesaremetalloenzymes, whichrequirecalciumions(Ca2þ)fortheiractivity,structuralintegrity,andstability. Theybelongtofamily13(GH-13)oftheglycosidehydrolasegroupofenzymes [6,7]. Basedontheend-productformation a-amylasesareclassifiedassaccharifyingand liquefyingamylases.Thesaccharifying a-amylasesarefurtherclassifiedasmaltose forming,maltotetraoseforming,maltopentaoseformingandmaltohexaoseforming basedontheendproductsformed [1].

The a -amylasefamilyisthelargestfamilyofgly cosidehydrolases,transferases,and isomerases,comprising30differentenzyme specificities.Theseenzymesareclassified intofourgroups:endoamylases,exoamylases,debranchingenzymes,andtransferases. Endoamylasesareenzymesthatcleaveinternal a-1,4bondsresultingin a-anomeric

Chapter1 a-Amylases5

products.Exoamylasesareenzymesthatcleave a-1,4,or a-1,6bondsoftheexternal glucoseresiduesresultingin a-or b -anomericproducts.Debranchingenzymesare enzymesthathydrolyze a -1,6bondsleavinglinearpolysaccharides.Transferasesare enzymesthatcleave a-1,4glycosidicbondsofthedonor moleculeandtransferpartof thedonormoleculetoaglycosidicacc eptor,forminganewglycosidicbond [7].

1.2Sourcesof a-Amylase

a-Amylasesareuniversallydistributedthroughouttheplant,animal,andmicrobial kingdoms.Theenzymesfrommicrobialsourceshavedominatedapplicationsinindustrialprocesses [2].Though a-amylaseshavebeenderivedfromseveralmicrobial sources,includingbacteria,fungi,yeast,andactinomycetes,theenzymesproducedfrom bacterialandfungalsourceshavedominatedapplicationsinindustrialsectors.Because oftheirshortgrowthperiod,theirbiochemicaldiversity,andtheeasewithwhich enzymeconcentrationsmightbeincreasedbyenvironmentalandgeneticmanipulation, theenzymesfrommicrobialsourcesgenerallymeetindustrialdemands.

1.2.1Plant

a-Amylases

Plantsstorecarbonpredominantlyasstarchandthemetabolismofstarchisessentialto alllife.Family1 a-amylasesarecharacterizedbyhavingasecretarysignalpeptide. Thisplaysanimportantroleinthedegradationofextracellularstarchincerealgrain endosperms.Family2 a-amylasesarecharacterizedbyhavingnopredictedtargeted peptideandarelocalizedinthecytoplasm.Theseamylaseshavebeenidentifiedfrom monocotyledons,dicotyledons,andgymnosperms.Theybecomemostactivewhenthe plastidialstarchreservesofleavesaremoredepleted.Theyareinvolvedingeneralstress responses.Family3 a-amylasesarecharacterizedbyhavingalargeN-terminaldomain, whichcontainsalargepredictedchloroplasttransitpeptide.Theseenzymesare responsiblefordegradingplastid-boundstarchinstoragetissuesandleaves [8].

1.2.2Bacterial a-Amylases

a-Amylasesareproducedfromvariousbacterialsources,including Bacillus, Brevibacterium, Clostridium, Halomonas, Naxibacter, Nesterenkonia, Paenibacillus, Pseudomonas, Streptomyces sp.,etc.Amongthebacterialsources, Bacillus sp.iswidely used,especiallyfortheproductionofthermostable a-amylases. Bacillussubtilis, Bacillus stearothermophilus,Bacillusamyloliquefaciens,Bacilluslicheniformis,Bacillusacidocaldarius,Bifidobacteriumbifidum,and Bifidobacteriumacerans areimportantsources usedfor a-amylaseproduction [9].Alkalineandthermotolerantamylaseshavebeen reportedfrom Bacillus sp., B licheniformis,and Bacillushalodurans [10].Otherbacteria producing a-amylaseinclude Anoxybacillusbeppuensis [11], Bacilluslaterosporus [12], Bacillusacidicola [13], Chryseobacteriumtaeanense [14], Clostridium sp. [15], Microbacteriumfoliorum [16], Nesterenkonia sp. [17], Thermococcus sp. [18], Anoxybacillus flavithermus [19] etc.

1.2.3Fungal a-Amylases

Severalfungalspeciesalsoproduce a-amylases,including Acremonium, Aspergillus, Penicillium , Mucor, Neurospora,and Thermomyces sp.Amongthefungalsources,the genus Aspergillus hasbeenwidelyusedfortheproductionof a-amylases. Aspergillus niger, Aspergillusflavus,and Aspergillusoryzae areimportantsourcesusedamongthe fungalsources [20,21].Otherfungalstrainsproducing a-amylaseinclude Thermomyces lanuginosus [22].

1.3Productionof a-Amylase

1.3.1ProductionMethods

Tomeettheindustrialdemand,itisessentialtodevelopalow-costmediumforthe productionof a-amylase.Itcanbeproducedbysubmergedfermentation(SmF)and solid-statefermentation(SSF).Theproductionisaffectedbyavarietyofphysiological factors,whichincludepH,temperature,aeration,inoculumconcentration,inoculum age,compositionofthegrowthmedium,surfactants,carbonsource,nitrogensource, etc. [23].Interactionsoftheseparametershaveasignificantinfluenceontheproduction oftheenzyme.Generally,SmFiscarriedoutusingsyntheticmedia,incorporatingmediumconstituentssuchasnutrientbrothandsolublestarch,aswellasothercomponents,whichareveryexpensive.Replacementofsuchconstituentsbycheapercarbon andnitrogensourcesaswellasnutrientswouldbenefittheprocessincostreduction. Agriculturalby-productsofferpotentialbenefitsinthisregard [7]

SSFisdefinedastheprocessinwhichthegrowthofmicroorganismsiscarriedouton solidsubstrateswithnegligiblefreewater,orfree-flowingwater [24].SSFplaysan importantroleintheproductionofenzymes.Agro-industrialsubstratesareconsidered thebestsubstratesforSSFprocesses.Itisofspecialinterestinthoseprocessesinwhicha crudefermentedproductmaybeuseddirectlyasanenzymesource.Thecommon substratesusedforSSFprocessesarewheatbran,ricebran,cassavawaste,palmoil waste,bananawaste,teawaste,coconutoilcake,coirpith,corncobs,etc.InSSF,itis importanttoprovideoptimizedwatercontentandtocontrolthewateractivityofthe fermentingsubstrate.Attimes,SSFispreferredtoSmFbecauseofitssimpletechnique, lowcapitalinvestment,lowerlevelsofcataboliterepressionandend-productinhibition, lowwastewateroutput,betterproductrecovery,andhigh-qualityproduction [25]

Continuousandfed-batchstudiesaremoreeffectivefortheproductionof a-amylase. ThestudyconductedbyLeeandParulekar [26] revealedthatthe a-amylaseproduction by B.subtilis TN106wasenhancedwhenbatchcultivationwasextendedwithfed-batch cultivation,andtheenzymeactivitywas54%higherinatwo-stagefed-batchoperation comparedtoasingle-stagebatchculture.MishraandMaheswari [27] reported a-amylasefromathermophilicfungus, T.lanuginosus;theenzymewasadimericprotein withamolecularmassof42kDawithoptimumpHandtemperatureof5.6and65 C,

respectively.Theenzymeproducedhighlevelsofmaltosefrompotatostarch,suggesting itsusefulnessinthecommercialproductionofmaltoseandglucosesyrups.Thestudy conductedbyKrishnaandChandrasekharan [28] revealedthatbananapeelcouldbe utilizedasapotentialsubstratefor a-amylaseproductionby A.niger.SaxenaandSingh [29] screenedvariousagro-industrialresiduesforamylaseproductionfrom Bacillus sp. andfoundmustardoilcaketobethebestsubstrate.Thestrainproduced5400U/gof amylaseat1:3moisturecontent,20%inoculum,andanincubationperiodof72h.Yang andWang [30] reported a-amylaseproductionby Streptomycesrimosus TM55using sweetpotatoresidueandpeanutmealresidueasasubstrate.Thestrainproduced 1903Uof a-amylaseafter96hofincubation.

Ramachandranetal. [20] usedcoconutoilcake(COC),aby-productofoilextraction fromdriedcopra,asasubstratefortheproductionof a-amylasefromfungi.COCsupplementedwith0.5%starchand1%peptoneenhanced a-amylaseproductionby A.oryzae.COCservesasasourceofsolubleproteinsandlipidsthusprovidingessential nutrientsforthegrowthofandenzymesynthesisbytheorganism.Productionof a-amylaseby B.amyloliquefaciens underSSFusingcornglutenmeal(CGM)wasreportedbySabanetal. [31].Thestudyrevealedthat a-amylaseproductioninamedium withCGMwasfivetimeshigherthanthatinamediumcontainingstarchandother components.UtilizationofCGMasasubstratemakestheprocesseconomicallyviable becauseCGMisaby-productofstarch-basedindustries.

Productionandoptimizationof a-amylasefrom A oryzae CBS819usingaby-product ofwheatgrinding(gruel)asthesolecarbonsourcewasdonebyKammounetal. [32]. Variousprocessparametersaffectingtheproductionwereoptimizedbyadoptinga Box Behnkendesign,whichincreasedtheenzymeproductionfrom40.1to151.1U/mL. Murthyetal. [33] reportedcoffeeby-productsassuitablesubstratefortheproductionof a-amylaseunderSSF.Coffeewastewasconvertedintovalue-addedproductsby fermentationusing Neurosporacrassa CFR308.Theoptimumconditionsfor a-amylase productionweremoisturecontentof60%,pH4.5,incubationtemperatureof27 C, particlesizeof1mm,andincubationtimeof5days.Underoptimizedconditionsthe strainproduced7084U/gdsof a-amylase.

Syedetal. [34] reportedextracellularamylaseproductionby Streptomycesgulbargensis DAS131bySmF.Thehighestamylaseproductionwasobservedwhenthemedium wassupplementedwith1%starch.TheenzymewasthermotolerantandstableatpH9.0. Starchandpeptoneweregoodsourcesofcarbonandnitrogen.Sharmaand Satyanarayana [13] reportedenhancedproductionofacidichigh-maltose-formingand Ca2þ-independent a-amylaseby B. acidicola;amaximumenzymetiterof366IU/Lwas attainedafter36hoffermentationatpH4.5,33 C,with0.5vvmaeration.Theenzyme titerwas10,100IU/Linfed-batchfermentation.Oneofthemainadvantagesoffedbatchfermentationoverthebatchfermentationisthattheconcentrationoflimiting substrateismaintainedatlowlevels,thusavoidingtherepressingeffectofhighsubstrate concentrationandtherebyminimizingtheaccumulationofinhibitorymetabolites.

Ahighlythermostableandcalcium-independent a-amylasefrom A.beppuensis TSSC-1wasreportedbyKikaniandSingh [11].Thisorganismproducedamonomeric a-amylasewithoptimalpHandtemperatureof7.0and55 C,respectively.Thekey findingsofthisstudywerecost-effectivepurification,highthermostability,andbroad pHstability.TheenzymeexhibitedCa2þ independenceandresistancetochemical denaturation,whichcouldmakeitsuitableformanyindustrialapplications.Another agro-industrialresidue,datewaste,hasalsobeenusedasthesubstratefortheproductionof a-amylaseusingyeast, Candidaguilliermondii CGL-A10 [35].Maximum enzymeproductionwasattainedinSmF(2056 mmol/L/min).Rajagopalanetal. [15] usedsugarcanebagassehydrolyzatefortheproductionof a-amylaseproducedbya solventogenic Clostridium sp.BOH3.Thestrainusedstarchdirectlywithoutanypretreatmentandproducedextracellularamylase(7.15U/mgprotein)andbutanolalmost equivalentto90%oftheyieldequivalenttoglucose.Sugarcanebagassewasusedby RoohiandKuddus [16] toproduceacold-active a-amylasefrom M.foliorum GA2. Maximumenzymeproduction(6610U)wasobservedwhenfermentationwascarried outinamediumcontaining40%bagasse,0.0003Mlactose,atpH8.0,withincubation temperatureof20 Cfor5dayatstaticconditions.Thiswasthefirstreportoncoldactive a-amylaseproductionfrom M.foliorum GA2. Table1.1 showsvariousmicroorganismsusedfortheproductionof a-amylase.

1.3.2FactorsInfl

uencingtheProductionof a-Amylase

Productionof a-amylasebySSFandSmFisaffectedbyavarietyofphysicochemical factors [3].Theseincludemediacomposition,incubationtemperature,inoculumage, carbonsource,nitrogensource,pH,phosphateconcentration,aeration,andothers.

Table1.1 StrainsandStrategiesAdoptedfor a-AmylaseProduction

Microorganism Methodof ProductionSubstrateEnzymeYieldReferences

Bacillussubtilis TN106Fedbatch [26]

Streptomycesrimosus TM55SSFSweetpotatoresidue/ peanutresidue 2642.7U/gds [30]

Aspergillusoryzae SSFOilcake9196U/gds [20]

Aspergillusoryzae OBS819SmF151.1U/mL [32]

Neurosporacrassa CFR308SSFCoffeewaste7084U/gds [33]

Streptomycesgulbargensis DAS131SmFStarch [34]

Bacillusacidicola SmF366IU/L [13]

Anoxybacillusbeppuensis TSSC-1 [11]

Candidaguilliermondii CGL-A10SmF2056 mmol/L/min [35]

Clostridium sp.BOH3SmFSugarcanebagasse hydrolyzate 7.15U/mgprotein [15]

Microbacteriumfoliorum GA2SmFBagasse6610U/mL [16]

SmF,submergedfermentation; SSF,solid-statefermentation.

1.3.2.1IncubationTemperature

Theeffectoftemperatureon a-amylaseproductionisrelatedtothegrowthoftheorganism.Temperaturecontrolisveryimportantinfermentationprocessesbecause growthandproductionofenzymesaresensitivetotemperature.Hence,theoptimum temperaturevarieswiththeculture. a-Amylaseshavebeenproducedbyvariousmicrobesoverawiderangeoftemperature.ProductionsinSSFaswellasinSmFare usuallycarriedoutintherange25 37 C.However,psychrophilicandthermophilic temperatureshavealsobeenreportedfortheproduction.Forexample, a-amylase productionwasattainedat55 Cbythethermophilicfungi Thermomonosporafusca [36] and T.lanuginosus [27] andat80 Cbyahyperthermophilicbacterium, Thermococcus profundus [36].Apsychrophilicbacterium, Alteromonashaloplanktis,produced a-amylaseat4 C [37]

1.3.2.2pH

ThepHofthefermentationmediumplaysanimportantroleinenzymeproduction.It inducesmorphologicalchangesintheorganismsastheyaresensitivetotheconcentrationofhydrogenionspresentinthemedium.ApHchangeinthemediumaffectsthe growthaswellastheproductstability.UnlikeSmF,inwhichpHcontrolisalmost mandatoryfor a-amylaseproduction,inSSFprocesses,generallythereisnoneedtoset, orcontrol,thepH,asthesubstrates(agro-industrialresidues)mostlypossessexcellent bufferingcapacityandkeepthepHfavorableforthegrowthandactivityoftheculture. Mostofthe Bacillus strainsusedcommerciallyfortheproductionof a-amylaseshavean optimumpHof6.0or7.0.SomeofthemediumcomponentseliminatetheneedforpH control.Yabukietal. [38] reportedthat A.oryzae 557accumulated a-amylaseinthe myceliawhengrowninphosphate,orsulfate-deficient,mediumanditwasreleased whenthemyceliawereplacedinamediumwithpHabove7.2.BasedontheoptimalpH foractivity, a-amylasesareclassifiedasacidic,neutral,andalkaline [1].

1.3.2.3CarbonSources

a-Amylaseproductioncouldbeeitherconstitutiveorinducible.Galactose,inulin,and glycogenaresuitablesubstratesfor a-amylaseproductioninSmF.Supplementationwith lactose;ananalogofmaltose, a-methyl-D-glucoside;andyeastextractinducesthe production [7].Severalagro-residuessuchaswheatbran,ricebran,vegetablepeels,fruit peels,cassavabagasse,andvegetable-oil-extractedresiduesareusedassubstratesfor a-amylaseproductioninSSF.Moststudieson a-amylaseproductionby A. oryzae suggest thatthegeneralinducermoleculeismaltose.Erattetal. [39] observeda20-foldincrease inenzymeactivitywhenmaltoseandstarchwereusedasinducersin A.oryzae NRC 401013.Xyloseandfructosesupportgoodgrowth,buttheyarestronglyrepressive [40].

1.3.2.4NitrogenSources

Organicaswellinorganicnitrogensourcesareusedfortheproductionof a-amylases, althoughorganicsourceshavebeenpreferredoverinorganicnitrogensources.Commonly

usednitrogensourcesincludebactopeptone,ammoniumsulfate,ammoniumnitrate,Vogel salts,casein,meatextract,beefextract,yeastextract,cornsteepliquor,andsoybeanflour. Therearereportsontheuseofseveralothernitrogenoussourcesfor a-amylaseproduction. Forexample, L-asparaginewasreportedasthebetternitrogensourceforenzymeproductionby T.lanuginosus;caseinhydrolyzateandyeastextractimproved a-amylase productionseveralfoldandby110 156%,respectively,by A. oryzae [41].Complexnitrogen sourcesinthemediuminfluencetheproductionof a-amylases.Studiescarriedoutby Dettorietal. [42] revealedthatthesupplementationoftwoorganicnitrogensources enhancedamylaseproductionandthiswasbetterthanasingleorganicnitrogensource.

1.3.2.5MetalIons

Supplementationofmetalionsinthefermentationmediumpromotesmicrobialgrowth, whichinturnacceleratestheenzymeproduction.Most a-amylasesareknowntobe metaldependentfordivalentions,e.g.,Ca2þ,Mg2þ,Mn2þ,andZn2þ [2]. SupplementationwithCa2þ isgenerallyrequiredforanincreasedin a-amylaseproductionbyseveralbacteria.Ca2þ impartsthermostabilityoftheenzymeduetosalting outofhydrophobicresiduesbyCa2þ intheprotein.Theproductionwasreducedto50% whenMg2þ wasomittedfromthemedium;Naþ andMg2þ showedcoordinatedstimulationofenzymeproductionby Bacillus sp.CRPstrain [43].However,somemetalions couldhaveanegativeimpactonthemicrobesfor a-amylaseproduction,e.g.,Li2þ and Hg2þ havenegativeeffectson a-amylaseproduction.Mg2þ alsoplaysanimportantrole in a-amylaseproduction.

1.3.2.6Surfactants

Additionofsurfactantstothefermentationmediumisgenerallyknowntoincreasethe secretionofproteinsbyincreasingcellmembranepermeability.Thecommonlyused surfactantsareTween80,Tween40,TritonX-100,sodiumdodecylsulfate(SDS),polyethyleneglycol,andglycerol.Thesesurfactantsarereportedtoincreasecellpermeability,therebyenhancingenzymeyield.Arnesonetal. [44] reportedatwofoldincrease in a-amylaseproductionby T.lanuginosus.GoesandSheppard [45] reportedasignificantadvantageinusingthebio-surfactantsurfactintoenhancetheproductionof a-amylaseby B. subtilis inSSF.Inadditiontoincreasingtheenzymeactivity,surfactin offersotheradvantages,includingeco-friendliness,lesssensitivitytoextremesoftemperatureandpH,andbeingapotentialfungicide,therebyeliminatingcontaminationof theexposedsubstrate,comparedtosyntheticsurfactants.

1.3.2.7Agitation

Agitationinfluencesthemixingaswellastheoxygentransferrateinmostfermentations andthusinfluencescellmorphologyandproductformation [46,47].Itisgenerally believedthathigheragitationisdetrimentaltocellgrowth,whichinturncoulddecrease enzymeproduction.Agitationintensitiesupto300rpmarenormallyemployedforthe productionof a-amylaseinSmFfromvariousmicroorganisms.

Chapter1 a-Amylases11

1.4Assayof a-Amylases

Activityof a-amylasesisquantifiedbymeasuringeithertheendproducts,likeglucoseor maltose,ortheamountofsubstratethatremainsafterenzymatichydrolysis. a-Amylases areassayedusingsolublestarchormodifiedstarchasthesubstrate.Theycatalyzethe hydrolysisof a-1,4glycosidiclinkagesinstarchtoproduceglucose,dextrins,andlimit dextrins.Thereactionismonitoredbyanincreaseinthereducingsugarlevelsora decreaseintheiodinecolorofthetreatedsubstrate.Variousmethodsareavailableforthe determinationof a-amylaseactivity [48].Thesearebasedonadecreaseinstarch iodine colorintensity,increaseinreducingsugars,degradationofcolor-complexedsubstrate, anddecreaseinviscosityofthestarchsuspension [3].Thecommonmethodsemployed forthedeterminationof a-amylaseactivityaretheiodinemethod [49];dextrinizingactivity [50];Sandstedt,Kneen,andBlishmethod [51];dinitrosalicylicacidmethod [52]; anddegradationofcolor-complexedsubstrate [53,54].

Thedinitrosalicylicacid(DNS)method [52] isamongthemostcommonlyused methodsforestimatingthereducingsugars.TheDNSreactswithreducingsugarunder boilingandturnstoredfromyellow.InthemethodofFuwaetal. [50],thestarchreacts withiodineandformsabluesolutionandtheintensityofthecolorisdirectlyproportionaltothestarchconcentration.Borondipyrromethene-labeledsubstratereleasesa fluorescentfragmentupondigestionwiththeenzymeandhasbeendevelopedfor determining a-amylaseactivityinfoods [55].

1.5 a-AmylaseInhibitors

Proteinaceous a-amylaseinhibitorshavebeenisolatedfromplantsandmicroorganisms [56].Theseinhibitorscontrolendogenous a-amylaseactivityorworkindefenseagainst pestsandpathogens;someinhibitorsareantinutritionalfactors. a-Amylaseinhibitors belongtosevendifferentproteinstructuralfamilies.Sixtypesarefromhigherplantsand oneisfrom Streptomyces sp.High-resolutionstructuresareavailablefortarget a-amylaseandthesestructuresindicatemajordiversityandsomesimilaritiesinthe structuralbasisof a-amylaseinhibition.Varioustypesofinhibitorsinclude Streptomyces inhibitors,knottins, g-thionins,CMproteins,andkunitz-type,thaumatin-like,and lectin-likeinhibitors.Some a-amylaseinhibitorshaveadverseeffectsonnutritiondueto theirinhibitionofdigestiveenzymesinhumansandanimals. a-Amylaseinhibitorsfind applicationinobesityanddiabetictherapy.

1.6StrainImprovement

Strainimprovementisusuallycarriedouttoincreaseproductionaswellastoimprove thepropertiesoftheenzyme.Thecatalyticpropertiesofenzymesaredeterminedby their3-Dstructure.Hence,enzymepropertiescanbealteredbysite-directedmutagenesis.Usingthismethod,thepropertiesofanenzymecanbeimproved,bymaking

Table1.2 SomeStrategiesAdoptedforStrainImprovement/Propertiesof a-Amylase

MicroorganismImprovedPropertyReferences

Bacillussubtilis BR151Thermostability [60]

Alternariatenuissima FCBP2522.39-foldincreasedproduction [62]

Thermobifidafusca NTU22Increasedproduction [63]

Bacillusamyloliquefaciens

Increasedproduction(1.4-fold) [71]

Anoxybacillus sp.HighstabilityinabsenceofCa2þ ionsat60 C andhighlevelsofmaltoseproduction [66]

Aspergillusoryzae IIB30Increasedproduction(2.1-fold) [70]

Paenibacillus sp.Highrateofmaltoseproduction [67]

Bacilluslicheniformis MSGSelf-inducible,cataboliterepressionfree,and glucose-activatedexpressionsystem [68]

B.subtilis ASO1aIncreasedproduction(7-fold)andhighstability inabsenceofCa2þ [69]

Thermotogamaritima Oxidativestability [72]

B.subtilis Improvedproteinstabilityandcatalyticefficiency [73]

Bacillus sp.AAH-31Increasedproduction [74]

itthermostable,reducingitsdependenceoncofactors,orincreasingitsactivityatlow temperature.Studiesonthecloningofthe a-amylasegenehavebeenextensivelycarried outforhyperproduction [7]. Table1.2 presentssomestrategiesthathavebeenadopted forstrainimprovementof a-amylase. a-Amylaseshavebeenengineeredforthe improvementofpropertiessuchaspH tolerance,thermotolerance,etc. [57 59].Barnettetal. [58] foundthattheintroduction ofdisulfidebondsintheenzymesandalterationofaminoacidspronetooxidationby anaminoacidresistanttooxidizingagentsimprovedthestabilityoftheenzyme. Suzukietal. [57] constructedhybridsofhomologousstrainsofthe B.licheniformis and B.amyloliquefaciens withimprovedthermostability.OzcanandOzcan [60] introduced thethermostableplasmidpC194Amy,ha rboringa5.2-kbDNAfragmentencodinga geneof B . stearothermophilus,into B . subtilis BR151byelectroporation.Therecombinantstrainsproducedmorethermostable a-amylasecomparedtothewild-type strain.Anewstrainof B.licheniformis CBBD302,carryingarecombinantplasmid, pHY-amyL,for B . licheniformis a-amylase(BLA)production,wasconstructedbyNiu etal. [61] .Thecombinationoftarget-directedscreeningandgeneticrecombinationled toanapproximately26-foldimprovementinBLAproductionandexportin B.licheniformis.Shafiqueetal. [62] reportedtheproductionofanextracellularamylase from Alternariatenuissima FCBP252inSSF.Chemicalmutagenesisusingethyl methanesulfonate(EMS)producedmutantswithahighlevelof a -amylaseactivity (2.39-fold)comparedtotheparentalstrain.Geneticcharacterizationofthemutants usingrandomamplifiedpolymorphicDNAPCRrevealedthattheexpressionpatterns ofthemutantswereisogenicvariantsoftheparentstrain.Yangetal. [63] expressed

an a-amylasegenefrom Thermobifidafusca NTU22in Pichiapastoris X33becauseof itspotentialapplicationasafoodsupplement.Recombinantexpressionresultedin higherlevelsofextracellularenzymeproduction(510U/L),indicatingconstitutive expressionandsecretionoftheprotein.T heamountofextracellularproteininthe cultureof P. pastoris transformantswaslessthanthatinthecell-freeextractof Escherichiacoli transformants,hencefacilitatingtheapplicationofcrudeamylasein industrywithoutpurification.

Thegeneencodingthe a-amylaseenzymein B . subtilis PY22wasamplifiedbyPCR, sequenced,andclonedinto P.pastoris KM71HstrainusingthevectorPpiczA,allowing methanol-inducedexpressionandsecretionoftheprotein [64].Recombinantexpressionresultedinhighlevelsofextracellularamylaseproduction(22mg/L).Thepresence ofCa2 þ ionsinthemediumresultedina41%increasein a-amylaseactivity.Expression in P.pastoris notonlyincreasedtheyieldofproductionbutalsopotentiallyhelped facilitatepurification.Genecloningandheterologousexpressionofthehigh-maltoseproducing a-amylaseof Rhizopusoryzae showedsuccessfulexpressionof R.oryzae a-amylasein P.pastoris atahighlevel(382mg/L) [65].Theenzymehadanextremely highaffinityformaltotrioseandnomaltotrioseremainedafterhydrolysis.Chaietal. [66] clonedtwogenesthatencoded a -amylasesfrom Anoxybacillus sp.andexpressed themin E.coli.Theenzymesproducedbytherecombinantstrainswerehighlystable evenintheabsenceofcalciumat60 Cfor48handtheyproducedhighlevelsof maltose.Proteinsequencingrevealedthattherecombinant a-amylasedifferedin17 aminoacidscomparedtotheamylaseproducedbythewild-typestrain.Agene encoding a-amylasefromthegenomicDNAof Paenibacillus sp.andtheheterologous expressionofrecombinantAmy1in E.coli BL21(DE3)facilitatedtherecoveryofthis proteininsolubleform.ThehighrateofmaltoseproductionduetotheactionofAmy1 couldbeexploitedfortheproductionofsimplesugarsasaby-productinfoodwaste processing [67] .

Theuseofanexpressionsystemtoovercomecataboliterepressionopensupan avenueforexploitingcheapcarbonsourcesfortheproductionofrecombinantenzyme. NathanandNair [68] developedarepression-freecatabolite-enhancedexpressionsystemforathermophilic a-amylasefrom B.licheniformis MSG.Aself-inducible,catabolite repression-free,andglucose-activatedexpressionsystemwasdevelopedusingathermophilic a-amylaseasamodel.The a-amylasegenefrom B.licheniformis MSGwithout any50 cre operatorproducedunimpededglucose-enhancedexpressionwhenfusedto thephosphatestarvation-induciblestrong pst promoterwithoptimumtranslationsignalsinaprotease-deficient B.subtilis.Theyieldwas18.5-foldhigherthanthatofnative promoter.Royetal. [69] clonedandoverexpressedaraw-starch-digesting a-amylase gene(AmyBS-I)from B.subtilis strainASO1ain E.coli BL21.Thegenealsoincludedits signalpeptidesequencefortheefficientextracellularexpressionofrecombinant a-amylaseincorrectlyfoldedform.TheextracellularsecretionofAmyBS-Iwassevenfold higheranditdidnotrequireCa2þ ionsforits a-amylaseactivity/thermostability,which wasanaddedadvantageforitsuseinthestarchindustry.

Randommutagenesishasalsobeenusedforenhancedproductionof a-amylase.A strainof A. oryzae IIB30wassubjectedtophysical(usingUVlight)andchemical mutagenesis(usingnitrousacidandEMS).MutationusingEMS-20showeda2.1-fold increasedamylaseactivitycomparedtothewild-typestrain [70].Anidenticalobservationwasearlierreportedfora B. amyloliquefaciens straininwhichmutationusingEMS improvedenzymeactivityby1.4-foldhigherthanthatoftheparentalstrain [71].Ozturk etal. [72] reportedsite-directedmutagenesisofmethionineresiduesforimprovingthe oxidativestabilityof a-amylasefrom Thermotogamaritima.Theoxidativestabilityof a-amylase(AmyC)wasimprovedbymutatingthemethionineresiduesatpositions43 and44,and55and62,tooxidative-resistantalanineresidues.Themutantexhibited improvedoxidativeproperties.TheengineeredAmyCcouldbeapotentialcandidatefor industrialapplications,especiallyinthepresenceofoxidizingagents.Thisisthefirst proteinengineeringattemptforAmyCfrom T.maritima.Yangetal. [73] carriedout structuralengineeringofhistidineresiduesinthecatalyticdomainof a-amylasefrom B.subtilis forimprovedproteinstabilityandcatalyticefficiencyunderacidicconditions bysite-directedmutagenesis.ThefourhistidineresiduesHis222,His275,His293,and His310inthecatalyticdomainwereselectedasthemutationsitesandwerefurther replacedwithacidicasparticacid,respectivelyyieldingfourmutantsH222D,H275D, H293D,andH310D.Theacidicstabilityoftheenzymewassignificantlyenhancedafter mutation,and45 92%oftheinitialactivityofthemutantswasretainedafterincubation atpH4.5and25 Cfor24h,whereasthatforthewildtypewasonly39.5%.Asrevealedby thestructuremodelsofthewild-typeandmutantenzymes,thehydrogenbondsandsalt bridgeswereincreasedaftermutation,andanobviousshiftofthebasiclimbtoward aciditywasobservedforthemutants.Thesechangesaroundthecatalyticdomain contributedtothesignificantlyimprovedproteinstabilityandcatalyticefficiencyatlow pH.Thisworkprovidedaneffectivestrategytoimprovethecatalyticactivityandstability of a-amylaseunderacidicconditions,andtheresultsindicatedpotentialapplicationfor theimprovementofacidresistanceofotherenzymes.

Thehydrolyticactivityofthermophilic,alkalophilic a-amylasecouldalsobe enhancedthroughtheoptimizationofaminoacidresiduessurroundingthesubstrate bindingsite [74].Twenty-fourselectedaminoacidresidueswerereplacedwithAla,and Gly429andGly550werealteredtoLysandGlu,respectively,basedoncomparisonof AmyL’saminoacidsequencewithrelatedenzymes.Y426A,H431A,I509A,andK549A showedhigheractivitythanthewildtypeat162 254%ofwild-typeactivity.Tyr426, His431,andIle509werepredictedtobelocatednearsubsite 2,andLys549wasnear subsite þ2.Ser,Ala,Ala,andMetwerethebestaminoacidresiduesforthepositionsof Tyr426,His431,Ile509,andLys549,respectively.Combinationsoftheoptimizedsingle mutationsatdistantpositionswereeffectiveinenhancingcatalyticactivity.ThedoublemutantenzymesY426S/K549M,H431A/K549M,andI509A/K549M,combiningtwoof theselectedsinglemutations,showed340%,252%,and271%ofwild-typeactivity, respectively.Triple-andquadruple-mutantenzymesoftheselectedmutationsdidnot showhigheractivitythanthebestdoublemutant,Y426S/K549M.

1.7PurificationandCharacterizationof a-Amylases

a-Amylasesproducedbyfermentationarerelativelycrudepreparations.Mostofthe commercialuseof a-amylasedoesnotrequire100%purificationoftheenzyme.But, high-purityenzymesarerequiredwhentheyareusedinclinicalandpharmaceutical sectors.Thefirststepsinthepurificationinvolvetheisolationofcrudeenzymeafterthe fermentation.InSmF,thisisusuallydonebycentrifugingthefermentedmediumand takingthesupernatantasthesourceofcrudeenzyme;inthecaseofSSF,thefermented matterisusuallymixedwithwaterorbuffers,andaftersuitablemixingthecontentsare filtered,wherebythefiltratecontainsthecrudeenzyme.Then,theenzymeisconcentrated(inthesupernatant/filtrate),precipitated(usingsalts/solvents),andpurifiedusing variouschromatographictechniquessuchasion-exchangechromatography,gelfiltration,isoelectricfocusing,etc. Table1.3 presentsstrategiesadoptedforthepurificationof a-amylasefromvariousmicroorganisms.

Therearealargenumberofreportsonthepurificationandcharacterizationof a-amylasesproducedbybacterialorfungalsourcesinSmFandSSF [75 87].Anenzyme producedinSSFwaspartiallypurifiedbyammoniumsulfatefractionation.Theenzyme wasoptimallyactiveatpH5.0and50 Cwithamolecularmassof66kDa.Thepresenceof Mn2þ andFe2þ enhancedtheenzymeactivity,whereasinthepresenceofHg2þ andCu2þ theactivitywasreduced [76].Apartiallypurified a-amylasefrom Streptomyceserumpens MTCC7317showedamolecularmassof54,500Da [77]. a-Amylasefrom B.subtilis KIBGE-HASwaspurifiedbyultrafiltrationandammoniumsulfateprecipitationwith19.2foldpurificationandspecificactivityof4195U/mg.Theenzymewashighlystableinthe presenceofvarioussurfactantsanddetergents.MetalionssuchasMn2þ,Ca2þ,Mg2þ,Kþ , Co2þ,andFe3þ activatedtheenzyme,whereasBa2þ,Cu2þ,Naþ,andAl3þ strongly inhibitedtheactivity.Ahighlyefficientraw-starch-digesting a-amylasefrom B. licheniformis ATCC9945awaspurifiedbygel-filtrationchromatographywithasixfoldincrease inspecificactivityandrecoveryof38%withamolecularmassof31kDa [82].Thepurified enzymeshowedanoptimumpHandtemperatureof6.5and90 C,respectively.Co2þ , Ni2þ,andCa2þ slightlystimulated,whereasHg2þ completelyinhibited, a-amylaseactivity.An a-amylasefrom Brevibacteriumlinens DSM20158,purifiedbyion-exchange chromatographyonaDEAE Sephadexcolumn,showeda7.88-foldincreaseinpurity witha16.80%yield,anditappearedhomogeneousonSDS polyacrylamidegelelectrophoresiswithamolecularmassof58kDa.EDTAandHg2þ inhibitedtheenzyme activity,whereasMn2þ andCa2þ enhancedtheenzymeactivity [83].

AnovelSDS-andsurfactant-stable,raw-starch-digesting,andhalophilic a-amylase waspurifiedfrom Nesterenkonia sp. [17].Theextracellular a-amylasewaspurifiedto homogeneityby80%ethanolprecipitation,Q-Sepharoseanion-exchangechromatography,andSephacrylS-200gel-filtrationchromatography.Theoptimumtemperature andpHwere45.8 Cand7.5,respectively.Themolecularmasswasestimatedas100kDa. TheenzymewasinhibitedbyEDTA,butwasnotinhibitedbyphenylmethanesulfonyl fluorideand b-mercaptoethanol.Ca2þ stimulatedenzymeactivity,whereastheenzyme Chapter1 a-Amylases15

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.