Cryogenic valves for liquefied natural gas plants karan sotoodeh - The special ebook edition is avai

Page 1


https://ebookmass.com/product/cryogenic-valves-for-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Subsea Valves and Actuators for the Oil and Gas Industry Karan Sotoodeh

https://ebookmass.com/product/subsea-valves-and-actuators-for-the-oiland-gas-industry-karan-sotoodeh/

ebookmass.com

Case Studies of Material Corrosion Prevention for Oil and Gas Valves Karan Sotoodeh

https://ebookmass.com/product/case-studies-of-material-corrosionprevention-for-oil-and-gas-valves-karan-sotoodeh/

ebookmass.com

Case Studies of Material Corrosion Prevention for Oil and Gas Valves 1st Edition Karan Sotoodeh

https://ebookmass.com/product/case-studies-of-material-corrosionprevention-for-oil-and-gas-valves-1st-edition-karan-sotoodeh/ ebookmass.com

Essentials for Nursing Practice Patricia A. Potter Rn Msn Phd Faan & Anne Griffin Perry Rn Msn Edd Faan & Patricia A. Stockert Rn Bsn Ms Phd & Amy M. Hall Rn Bsn Ms Phd Cne

https://ebookmass.com/product/essentials-for-nursing-practicepatricia-a-potter-rn-msn-phd-faan-anne-griffin-perry-rn-msn-edd-faanpatricia-a-stockert-rn-bsn-ms-phd-amy-m-hall-rn-bsn-ms-phd-cne/ ebookmass.com

The Libri Feudorum (the ‘Books of Fiefs’). An Annotated English Translation of the Vulgata recension with Latin Text Attilio Stella

https://ebookmass.com/product/the-libri-feudorum-the-books-of-fiefsan-annotated-english-translation-of-the-vulgata-recension-with-latintext-attilio-stella/ ebookmass.com

Crucial Conversations: Tools for Talking When Stakes are High, 3rd Edition Joseph Grenny & Kerry Patterson & Ron

Mcmillan & Al Switzler & Emily Gregory

https://ebookmass.com/product/crucial-conversations-tools-for-talkingwhen-stakes-are-high-3rd-edition-joseph-grenny-kerry-patterson-ronmcmillan-al-switzler-emily-gregory/ ebookmass.com

Calling on Quinn Blue Saffire

https://ebookmass.com/product/calling-on-quinn-blue-saffire-5/ ebookmass.com

The Intentional Relationship Occupational Therapy and Use of Self: Occupational Therapy and the Use of Self 1st Edition, (Ebook PDF)

https://ebookmass.com/product/the-intentional-relationshipoccupational-therapy-and-use-of-self-occupational-therapy-and-the-useof-self-1st-edition-ebook-pdf/ ebookmass.com

The Politics of Social Cohesion: Immigration, Community, and Justice Nils Holtug

https://ebookmass.com/product/the-politics-of-social-cohesionimmigration-community-and-justice-nils-holtug/ ebookmass.com

The Art of the Storyboard John Hart

https://ebookmass.com/product/the-art-of-the-storyboard-john-hart/

ebookmass.com

CRYOGENICVALVES FORLIQUEFIEDNATURAL GASPLANTS

KARANSOTOODEH

SeniorLeadEngineer,ValvesandActuators,ValveEngineeringGroup, ManifoldDepartment,BakerHughes,Oslo,Norway

GulfProfessionalPublishingisanimprintofElsevier

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UnitedKingdom

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwriting fromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissions policiesandourarrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanas maybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodsthey shouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessional responsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliability foranyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfrom anyuseoroperationofanymethods,products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-99584-9

ForinformationonallGulfProfessionalpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: CharlotteCockle

SeniorAcquisitionsEditor: KatieHammon

EditorialProjectManager: ZsereenaRoseMampusti

ProductionProjectManager: PrasannaKalyanaraman

CoverDesigner: MilesHitchen

TypesetbySTRAIVE,India

5.3 MSSSP134

5.4 ISO28921–

Naturalgastechnology

1.1Chemicalcomposition

Naturalgas,alsocalled“fossilgas”orjust“gas”forshort,isanon-renewablesource ofenergy.Naturalgasisthecombinationofhydrocarbonandnon-hydrocarbongasses foundintheporousformationcalledthereservoirundertheearth’ssurfacewithoil,and theprincipalcompoundofnaturalgasismethane.Methaneisacolorlessandodorlessgas withthechemicalformulaofCH4 (onecarbonatomandfourhydrogenatoms,asillustratedin Fig.1.1).Itisveryflammable,burnsrapidlyintheair,andformsmainlycarbon dioxideandwatervaporduringcombustion.Althoughmethaneisastablegas,amixture ofasmallpercentageofmethane,between5%and14%,andairisextremelyexplosive. Methanecanbereleasedfromthecoalincoalminesandcauseanexplosionasaresultof mixturewiththeair.Ahydrocarbonisanorganicmoleculecompoundthatismadeof carbonandhydrogen.Hydrocarbonsaredividedintothreemaincategories:alkane, alkene,andalkyne.Alkanehassinglebondsinitsatomicstructure.Alkenehasdouble bondsinitsatomicstructure,andalkynehastriplebonds.Thetenmainhydrocarbons aremethane(CH4),ethane(C2H6),propane(C3H8),butane(C4H10),pentane (C5H12),hexane(C6H14),heptane(C7H16),octane(C8H18),nonane(C9H20),anddecane(C10H22).Allofthesehydrocarbonsarealkane,withasinglebondbetweencarbon andhydrogenatoms,andthegeneralformulaofalkanecompoundsisCnH2n+2.

Naturalgasisacolorless,highlyflammablemixtureofgases.Itisatypeofpetroleum andhydrocarbonthatisproducedasabyproductofoilindeepundergroundreservoirs.

Fig.1.2 illustratestwooilwells,oneinthelandandtheotherinthesea,thataredrilled intoreservoirswheregasistrappedabovetheoilandwater.Thetypicalcompositionof naturalgasincludesbothhydrocarbonandnon-hydrocarboncompounds.Themain hydrocarbongasinnaturalgasismethane,whichcancomprise70–90%ofthenatural gas’svolume.Thenon-hydrocarbongasesinnaturalgasarenitrogen,hydrogen,oxygen, carbondioxide,andhydrogensulfide,whichareminorinpercentageofvolumeand inorganic.Theinorganiccompoundsinnaturalgasarenotdesirablesincetheyare notcombustibleandcausecorrosionandothertypesofproblemsintheproduction andprocessingofnaturalgas.Naturalgasisusedforthegenerationofelectricity,heating, cooking,andasafuelforcertainvehicles. Table1.1 displaysthechemicalcompositionof naturalgas.Itisimportanttoknowthatmethane,ethane,propane,andbutaneexistas

Fig.1.1 Methaneatomstructure. (Courtesy:Shutterstock.)

Fig.1.2 Drillingaland-basedwellandasubseawellintoreservoirswherenaturalgasistrappedabove oilandwater. (Courtesy:Shutterstock.)

Fig.1.3 Thedifferentatomicarrangementsofn-butaneandisobutane.

Table1.1 Chemicalcompositionofrawnaturalgasbeforeprocessing.

Element/compound

Carbondioxide(CO2)andhydrogensulfide(H2S)0.7 0.1–1%

Oxygen 0.02 0.01–0.1%

Hydrogen TraceamountTraceto0.02%

Noblegasessuchasargon(Ar),helium(He), Neon(Ne),andXenon(Xe)

TraceamountTraceamount

Note1:n-butaneisthesameasbutane,whichisanalkanewithaformulaof(C4H10).Isobutaneisanisomerofbutane. Isomersinchemistryrefertomoleculeswithidenticalformulas,meaningthatisomershavethesamenumberofatomsbut indifferentarrangements. Fig.1.3 illustratesthedifferentatomicarrangementsofn-butaneandisobutane.

Note2:n-pentaneandISOpentanearealsoisomers.

gasesatnormaltemperaturesandpressures,whileotherhydrocarboncompoundsare liquidatnormaltemperaturesandpressures.

1.2Gasdefinitions

Itisimportanttoknowthatrawnaturalgasproducedfromawellmustbeprocessed tobeamarketableproduct.Inshort,processinganaturalgasinvolvestheremovalof watervapor,toxicandcorrosivecompoundssuchashydrogensulfide(H2S),andcarbon dioxide(CO2),aswellastheseparationofthecondensablehydrocarboncompounds. Naturalgascanbeclassifiedintoseveralbroadcategories,whichareexplainedbelow: Wetgas:Wetgascontainsheavy,condensablehydrocarbonssuchaspropane,butane, andpentane.Moreprecisely,ifmorethan5%ofagasiscomposedoftheabovementionedheavyhydrocarbonmoleculesandlessthan95%ismethane,itisclassified asawetgas.Wetgasshouldnotbeconfusedwithsaturatedgas,whichisexplainedin thenextparagraph.

Saturatedgas:Saturatedgasreferstogasbeforethedehydrationprocessinwhichthe gasissaturatedwithwater.Gasdehydrationistheprocessofextractingthemoisture andwaterfromthenaturalgasandgassesmixture.

Leangas:Ingeneral,leangasrepresentsakindofnaturalgaswiththeabsenceofcondensablehydrocarbons.Moreprecisely,leangasistheoppositeofwetgas,containing morethan95%methaneandlessthan5%condensableorheavyhydrocarbon molecules.

Drygas:Watermoistureexistsineverytypeofgas,butthequantityofitvaries.Dry gasisatypeofgaswithnegligiblewatercontent,lessthan7poundsper1million cubicfeetofgas.OnemillioncubicfeetofgasisabbreviatedasMMCF,where thetwoM’smean“onethousandthousand”oronemillion.Arelatedtermis absolutelydrynaturalgas,whichisdefinedasnaturalgaswithzerowatervapor.

Sourgas: Oneoftheundesirablebyproductsofoilandgasishydrogensulfide(H2S). elementalsulfurisanotherundesirablecompoundthatcanmakethegassour.Hydrogensulfideiscolorless,flammable,toxic,andcorrosive.Therefore,hydrogensulfide shouldberemovedfromhydrocarbon.Naturalgasisconsideredsouriftheamountof hydrogensulfideismorethan5.7mg/m3 ofnaturalgas,whichisequivalentto approximately4ppmbyvolumeunderstandardtemperatureandpressure.

Sweetgas:Sweetgasreferstoatypeofnaturalgaswithlessthan4ppmofhydrogen sulfide.However,sweetgascancontaincarbondioxide,whichcreatesasweetand uniformcorrosiontype.

1.3Physicalproperties

Itisessentialforengineerstounderstandthesegaspropertiesinordertobeableto designandanalyzegasproductionandprocessingsystemsandplants.Thephysicalpropertiesofgasarelargelydependentonthechemicalcompositionofthegas.Theproperties ofnaturalgasmaybedeterminedeitherdirectlyfromlaboratorytestsorthroughcalculationsbasedontheknownchemicalcompositionofthegas.Theprocessofcalculating thephysicalpropertiesofnaturalgasbasedonthephysicalpropertiesandcompositionof theindividualcomponentsissometimescalled mixingrules.Thissectionprovidessome informationaboutthepropertiesofnaturalgas.

Thepropertiesofnaturalgasincludethespecificgravity,viscosity,density,compressibilityofthe Z-factor,pseudocriticalpressure,andtemperature;theymustbeknownin ordertodesignandanalyzenaturalgasproductionandprocessingsystems.Asexplained before,naturalgasisacombinationoflighthydrocarbonswithasmallnumberofinorganicelementsorcompounds,suchasnitrogen,carbondioxide,etc.Itisalwaysidealand importanttodeterminethechemicalcompositionofnaturalgasthroughmeasurement. Gascomposition,aswillbeshownindifferentexamplesinthischapter,istypically reportedasthemolefractionsofthedifferentcomponents.Ifthegascompositionis known,itisusuallypossibletocalculatethegaspropertiesthroughcertainrules,formulas, andcorrelations.Thenextsectionfocusesonthecalculationandestimationofthe differentnaturalgaspropertiesmentionedabove.

1.3.1Specificgravityofgas

Specificgravityofgas:Thespecificgravityofagas,parameterSG,isadimensionlessunit thatisdefinedastheratioofthemolecularweightofthenaturalgastothemolecular weightofair.Specificgravityisalsocalled relativedensity.Eq. (1.1) isusedtocalculate thespecificgravityofnaturalgasbasedontheabove-mentioneddefinition.

Equation1.1:Specificgravitycalculation

Where:

γ ¼ SGg ¼ Specificgravityofthegas(dimensionless).

Mg ¼ Molarmassofgas gr mol

Ma ¼ Molarmassofair,whichisequalto28.97 gr mol.

Themoleistheunitofmeasurementfortheamountofasubstanceintheinternational systemofunits.Amoleisusedasaunitinparticlecounting.Amolecontainsapproximately6 1023 particles,whichcanbeatoms,molecules,ions,orelectrons.Themolar massofasubstancereferstothemassorweightof1molofthatsubstance.Themolecular weightofairgiventhattheairisdryandcontainsapproximately79%nitrogenand21% oxygenisequalto28.97 gr mol (molarmass).Butthequestionishowisthemolarmassofair calculated?Oxygen’smolarmassisapproximately15.9994 gr mol,andnitrogenhasamolar massof14.0067 gr mol.Butitisimportanttoknowthatbothnitrogenandoxygenare diatomic,meaningtheycontaintwoatoms,likeO2 andN2.Therefore,themassmolar ofoxygengasinairisapproximately32 gr mol,andthemolarmassofnitrogengasinairis approximately28 gr mol.Themixtureoraverageofmolarmassisthesumofthemole fractionsofeachgasmultipliedbyitsfractionaccordingtoEq. (1.2).

Equation1.2:Averagemolarmasscalculationofgasmixturessuchasair

Where:

Mmg ¼ Molarmassofthemixtureofgassessuchasair gr mol;

Xi ¼ Molefractionorpercentageofeachgasinthemixtureorair(dimensionless);

Mi ¼ Themolarmassofeachgas gr mol;

UsingtheEq. (1.2),itispossibletocalculatethemolarmassoftheairasfollows:

Thespecificgravityofairisapproximatelyequaltoone.Ifthespecificgravityofagasis morethanthatofair,whichisapproximatelyone,thenthatgasisheavierthanair.Onthe

otherhand,ifthespecificgravityofagasislessthanone,thenthatgasislighterthanair. Naturalgasislighterthanair,anditsspecificgravityvalueisusuallyintherangeof0.55to 0.87.Anaturalgasincludingrichgasesorahigherwetgascontentandcondensatestypicallyhashigherspecificgravitycomparedtoleangaswithasmallernumberofcondensatesandhigherratesofmethane.Carbondioxide(CO2)whichcausessweetand uniformcorrosioninnon-corrosionresistantalloys(CRAs)suchascarbonsteel,hasa specificgravityof1.5189.Thismeansthatcarbondioxideisheavierthanairandthe presenceofcarbondioxidecanincreasethespecificgravityofnaturalgas.

Example1.1

Gascompositions,molarfractions,andmolarmassesareprovidedin Table1.2.Calculate therelativedensityorspecificgravityofeachgas.

Answer

Thefirststepistocalculatethemolarweightofthenaturalgas(Mg)usingthedataprovidedinthetableandusingEq. (1.2) asfollows:

Themolarweightoftheairisequalto28.97 gr mol ,soitisnowpossibletocalculatethe specificgravityusingEq. (1.1) asfollows:

Alightgascontainsmainlymethaneandsomeethane.Thespecificgravityofpuremethaneasthelightestgasis0.55.Arichorheavygashasaspecificgravityofapproximately 0.75andinsomecasesmorethan0.9.Basedonthegiveninformation,itcanbeconcluded thatthegivengasinthisexampleislighttomediumweight.

Table1.2 Gaschemicalcomposition.

Therearetwoimportantlawsthatshouldbediscussedhereregardingthepressure, volumeandmolefractionofidealgases:thefirstis Dalton’slaw ,andthesecondis Amagat’slaw .Dalton’slawstatesthatthepartialpressureofagasinamixtureof gasesisdefinedasthepressurethatthegaswouldexertifitalonewerepresentat thesametemperatureandvolumeasthemixture.Dalton’slawstatesthatthesum ofthepartialpressuresofthegasesinamixtureisequaltothetotalpressureof themixture.Thesecondlawisonlytrueforidealgases.Definitionsofidealandreal gasesareprovidedlaterinthischapter.Eq. (1.3) indicatestherelationshipbetween thepartialpressureofagasmixtureandthetotalpressureforidealgasesaccordingto Dalton’slaw.Eq. (1.4) providesacalculationofthepartialpressureofeachgasina mixture.

Equation1.3:Relationshipbetweenthepartialpressureofagasmixture andthetotalpressureforidealgasesaccordingtoDalton

Where:

PTotal:Totalpressureofthegasmixture

PGas1:PartialpressureofGas#1inthegasmixture

PGas2:PartialpressureofGas#2inthegasmixture

PGas3:PartialpressureofGas#3inthegasmixture

PGasn:PartialpressureofGas#ninthegasmixture

X1:molefractionofGas#1

X2:molefractionofGas#2

X3:molefractionofGas#3

Xn:molefractionofGas#n

Equation1.4:Partialpressureofgascalculation

Where:

PGas:Partialpressureofthegas

XGas:Molefractionofthegas

PTotal:Totalpressureofthegas

Example1.2

Aircontains20.95%oxygen,78.08%nitrogen,and0.97%argon.Thepressureofairis equalto14.7psi.Calculatethepartialpressureoftheothergasesinsidetheair.

Answer

Thepercentageofeachelementinairisequaltothemolefraction.Thus,themolefractionsofoxygen,nitrogen,andargonare20.95%,78.08%,and0.97%respectively.The partialpressureofeachgasintheair(amixtureofgases)isobtainedbymultiplyingthe totalpressure,whichisequalto14.7psi,bythemolefractionofeachgas.Thus,thepartial pressuresofeachofthesethreeelementsarecalculatedasfollows:

AccordingtoDalton’slaw,thesumofthepartialpressurevaluesforall3gasescalculated aboveisequaltothepressureofair,meaningthat:

Amagat’slawstatesthatthevolumeofagasinamixtureofgasesisdefinedasthevolume thatthegaswouldoccupyifitalonewerepresentatthesamepressureandtemperatureas themixtureofgases.Foridealgases,thesumofthepartialvolumeofthegasesthatmake upagasisequaltothetotalvolumeofthemaingas.Thisrulecanbestatedinanother way:underthesameconditionsoftemperatureandpressure,equalvolumesofidealgases havethesamenumberofmolecules.Infact,one-poundmoleofanidealgascontains 2.7333 1026 molecules,occupies378.6ft3 at60 °F,andhasapressureequalto14.73psi.

1.3.2Gasviscosity

Gasviscosity (parameter μ)isdefinedasameasurementofagas’sresistancetoflow.“Viscosity”isderivedfromtheLatinword“viscum”meaning“anythingsticky.”Afluidwith lowviscosityiscalled“thin,”whileafluidwithhighviscosityiscalled“thick.”Viscosity describestheinternalfrictionofmovingfluid,andafluidwithahigheramountofviscosityresistsmotionbecausethemoleculesofahighviscosityfluidcreatealotofinternal friction.Lowviscosityfluids,ontheotherhand,flowbetter. Fig.1.4 comparestheviscosityofwaterandhoneywithregardtotheirgravitationalflowrates.Thinkaboutfluid flow,specificallythelayersofmovingmolecules.Theselayersofmoleculesarerubbing againsteachother,andgreaterfrictionmeansslowermovementandhigherviscosity. Honeyismoreviscousthanwater,soitresistsmoreagainstthegravitationalforces andflowsharderandmoreslowlythanwater.Therearetwotypesofviscositiesexplained inthissection: dynamicviscosity and kineticviscosity.

ViscosityissometimesdefinedusingIsaacNewton’sequationforfluids,ormoreprecisely,thesecondlawofmotion.Newton’ssecondlawofmotionstatesthatwhenaforce actsonanobject,itwillcausetheobjecttoaccelerate.Thereisarelationshipbetweenthe forcerequiredforaccelerationandthemassoftheobject,meaningthatagreaterforceis

Viscositycomparisonbetweenwaterandhoney. (Courtesy:Shutterstock.)

requiredtomoveandaccelerateamoremassiveobject.Newton’ssecondlawisformulatedbyEq. (1.5).Thegreatertheforcerequiredtomovethefluid,thehigherthe viscosity.

Equation1.5:Secondlawofnewtonformulation(Relationshipbetween theforceandmass)

Where:

F:Force(Newtonor kg m s2 )

m:Mass(Kilogramorkg)

a:Acceleration m s2 )

Acceleration(parameter a)isdefinedastherateofvelocitychangewithtime.Speeding upincreasestheacceleration,andslowingdownreducestheacceleration.Accelerationis calculatedaccordingtoEq. (1.6) asfollows:

Equation1.6:Accelerationcalculation

Where:

a:Acceleration m s2 )

Fig.1.4

V:Finalvelocity(m s )

Vo:Initialvelocity(m s )

t:Durationortime(s)

Velocity(parameter V)isaquantitythatmeasuresdisplacementorchangeinposition overachangeintimeoroveraspecificperiodoftime.Thisdefinitionisoneofthefundamentalconceptsofmechanics.Eq. (1.7) isusedtocalculatevelocitybasedontwoother importantparameters:distanceandtime.

Equation1.7:Velocitycalculation

Where:

V:Velocity(m s )

d:Distance(m)

t:time(s)

Thereisnocorrelationbetweenforceandviscositybasedontheequationsprovided above.Abetterapproachforthemathematicalformulationof dynamicviscosity isthe useofthetwoterms“ShearStress”and“Shearrate.”Dynamicviscosityisthetangentialforcerequiredtomoveonehorizontallayerorplaneofafluidrelativetoanother layer.Aswillbeexplainedlaterinthissection,dynamicviscosityiscalculatedasaratioof shearstresstoshearrate.Theothernamefordynamicviscosityis absoluteviscosity. Underlyingthetheoryoffluidmovementistheinternalfrictionbetweenmolecules. Shearstress isdefinedasaforce(parameter F)pushingonelayeroffluidflowacross anotherlayerwithinthecross-sectionareaofA.Shearstressisakindofforcethatcauses deformationofamaterialbyslippagealongtheplanesthatrunparalleltotheimposed stress(Fig.1.5).

Shearstressisshownwithparameter τ.ShearstressiscalculatedaccordingtoEq. (1.8), asfollows:

Equation1.8:Shearstresscalculation

Where:

τ:Shearstress( N m2 equaltopascal)or dyn cm2

F:Force(N)or(dyne)

A:Area(m2)or(cm2)

Fig.1.5 Viscosityofafluidwithdifferentlayersoffluidflow. (Courtesy:Shutterstock.)

Theshearratecanalsobedefinedastherateatwhichfluidlayersaremovingpasteach other.Theshearratedependsonbothgeometryandthespeedoftheflow.Theshearrate iscalculatedaccordingtoEq. (1.9),asfollows:

Equation1.9:Shearratecalculation

Where:

γ :Shearrate 1 s

Δ V:Differenceinvelocitybetweentwolayers m s or cm s

Δ h:Thedistancebetweentwofluidlayers(morcm)

Dynamicorabsoluteviscosityiscalculatedbydividingtheshearstressbytheshearrate, accordingtoEq. (1.10):

Equation1.10:Dynamicviscositycalculation

Where:

μ or ŋ:Dynamicviscosity( Ns m2 equaltoPascalsecond)or(dyns cm2 equaltopoise)

Thegivenunitsareinboththeinternationalsystem(SI)andcentimeter-gram-second system(CGS).CGSisavariantofthemetricsystemthatusescentimetersastheunit oflength,gramsastheunitofmass,andsecondsastheunitoftime.TheCGSsystem haslargelybeenreplacedbySI,whichisalsoknownasthemetricsystemorthe

MKSsystem.MKSisanabbreviationformeter,kilogram,second.Inmanyscientific fields,SIistheonlysystemused,buttherearestillsomefieldsinwhichtheCGSsystem isused.InordertoconvertCGSsystemunitstoMKS,theunitconversionfactorsare normallypowersof10,exceptfortheunitoftime,whichissecondsinbothsystems. Forexample,1mintheMKSsystemisequalto100cmintheCGSsystem.TheSIunit offorceisaNewton,whichisequivalentto kg m s2 .TheunitofforceintheCGSsystemisa dyne andisequivalentto g:cm s2 .ThemainquestionishowtoconvertNewtonstodynes.In fact,1Newtonisequalto105 dynes,whichiscalculatedasfollows:

Correspondingly,1dyneisequalto10 5 Newton.

Themostcommonunitofgasviscosityisa poise or centipoise,whichisnamedafter theFrenchphysician,JeanLouiseMariePoiseuille,wholivedfrom1799to1869.Apoise unitistypicallyexpressedusingtheCGSsystem.TheSIunitofviscosityisa Pascal second,abbreviatedas“Pa.s.”APascalisaunitusedtoquantifyinternalpressure,and 1Pascalisequalto(1newton m2 ).

1Pascal ¼ 1newton m2 (1Newtonisequalto kg m s2 ),so1Pascalisequalto kg m∗s2 .Sincethe viscosityunitisaPascalsecond,theSIunitofviscosityis kg m∗s .

Kineticviscosity (parameter Vg)iscalculatedaccordingtoEq. (1.11) bydividingthe dynamicviscositybythedensityofthegas.Kineticviscosityisnottypicallycalculatedfor naturalgasessoitwillnotbediscussedfurther.

Fluidsaredividedintotwocategorieswithregardstoviscosity: Newtonian fluids,in whichshearstressislinearlyconnectedtoshearratesothattheviscosityofafluidhas aconstantvalue,and non-Newtonianfluids,forwhichviscosityissubjecttochange andisadynamicfunctionofcertainvariablessuchastimeandshearrate.Whenshaking anon-Newtonianfluid,theviscositycoulddecreaseorincreaseduringtheshakingprocess.ItiseasiertoworkwithandmodelNewtonianfluidsastheirbehaviorswithregard toviscosityaremorepredictable.Itisworthnotingthatbothairandwaterareconsidered Newtonianfluids.Examplesofnon-Newtonianfluidsareblood,paints,andsome polymers.Inaddition,mostgasesareconsideredNewtonianfluids.

Viscosityingasescomesfromgasmoleculestransferringmomentumbetweeneach other.Theviscosityofnaturalgasismuchlowerthanthatofoilandwater.Thislower

Equation1.11:Kineticviscositycalculation

viscositymeansthatthegasismoremobileandmovesfasterthanoilandwater.Thisis especiallytrueinpetroleumproduction,wherethreephasesofoil,water,andgasare producedfromreservoirs.Animportantpointaboutgasviscosityisthatitismostlyindependentfrompressure.Temperature,however,isthemostinfluentialparameterongas viscosity. Sutherland’slaw or formula isanexpressionofhowagas’sviscosityisdependentontemperature.ThislawwasdiscoveredbyWilliamSutherland,anAustralian physicist,in1893.Asarule,increasingthetemperatureofagasresultsinfastermovement ofthemoleculesandanincreaseintheviscosityofthegas.However,theeffectoftemperatureonaliquidistheopposite:theviscosityofaliquidisdecreasedbyincreasingthe temperature.Eq. (1.12),knownasSutherland’sformula,showshowviscositycanbe changedbymodifyingthetemperatureofagas:

Equation1.12:Effectofgastemperatureongasviscosity(Sutherland’s formula)

Where:

μ:Gasviscosityattemperature T usingtheKelvinscale

μ0:Gasviscosityincentipoiseatareferencetemperatureof T0 inKelvin(K)

T:TemperatureinKelvin(K)

T0:ReferencetemperatureinKelvin(K)

S:Sutherland’sconstanttemperature(equalto110.4K)

FortheconversionoftemperaturesinCelsius(°C)toKelvin(K),Eq. (1.13) shouldbe used:

Equation1.13:ConversionoftemperaturesfromCelsiustoKelvin

:15 (1.13)

Example1.3

Theviscosityofairatareferencetemperatureof0 ºCis1.716 10 5 kg m∗s .Giventhat Sutherland’sconstanttemperatureis110.4K,bywhatpercentagedoestheviscosityof airincreasewhenthetemperatureisincreasedto100 ºC.

Answer

Thereferencetemperatureis0 °C,whichisequalto273.15K.Theviscosityatatemperatureof100 °C,whichisequalto373.15K,canbecalculatedbyusingEq. (1.12) (Sutherland’sformula).

Thiscalculationshowsthattheviscosityofthegasisincreasedby0.454 * 10 5.Thus,the percentageincreaseintheviscosityofthegasiscalculatedasfollows: Gasviscosityincreasesbyincreasingthetemperatureto100

Naturalgasisamixtureofdifferentgaseswithvariousviscosities,molecularweights,and molefractions.Insomecases,naturalgasviscositycanbecalculatedusingtheviscosities, molefractions,andmolecularweightsofthegasesthatcomposeit,asinEq. (1.14):

Equation1.14:Gasviscositycalculationusingviscosities,molecular weights,andmolefractionsoftheconstituentgases

Where:

μg:Viscosityofthegasmixtureatthedesiredtemperatureandatmosphericpressure

yi:Molefractionofthe/thcomposition

μi:Viscosityofthe/thcomponentofthegasmixtureatthedesiredtemperatureandatmosphericpressure

Mgi:Molecularweightofthe/thcomponentofthegasmixture

N:Totalnumberofcomponentsofthegasmixture

ForEq. (1.14),itisimportanttoknowtheviscosityofeachgasinordertocalculatethe viscosityofthegasmixture.Butinsomecases,noinformationisavailableabouttheviscosityofthedifferentgasesinnaturalgas.Insuchcases,followingstepsshouldbe followedtocalculatetheviscosity.Thefirststepistocalculatetheviscosityofthegas atoneatmosphericpressure,representedby μga in Fig.1.6,usingthetemperatureof thegasaswellasthemolecularweightorgravityofthegas.Itisessentialthattheobtained viscosityofthenaturalgasatoneatmosphericpressurefromthechartbecorrectedfor certainnon-hydrocarbonelementsorcompoundsinthegas,suchasnitrogen(N2),carbondioxide(Co2),andhydrogensulfide(H2S).Itispossibletoobtaintheviscosityof nitrogen,carbondioxide,andhydrogensulfidefromthesmallchartsprovidedinthecornersof Fig.1.6.Thecorrectedviscositiesforeachofthesenon-hydrocarbonelementsor compoundscanbeestimatedusingthemolepercentageofnon-hydrocarbonelements andthespecificgravityofthenaturalgas.Themolepercentageiscalculatedbymultiplyingthemolefractionby100.Thevaluesoftheviscositiesofnitrogen,carbondioxide,

Fig.1.6 Estimatedviscosityofnaturalgasat1atmosphericpressure,parameter μga. (Courtesy:Carr,N.L.,Kobayashi,R.,&Burrows,D.B.(1954). Viscosityofhydrocarbongasesunderpressure.JournalofPetroleumTechnology,6(10),47–55. https://doi.org/10.2118/297-G .)

andhydrogensulfideshouldbeaddedtotheestimatedviscosityofthenaturalgas.The presenceofeachofthenon-hydrocarbonsincreasestheviscosityofthehydrocarbon mixtureornaturalgas.

Example1.4

Table1.3 displaysthechemicalcompositionofnaturalgas,includingthemolarweight andmolefractionofeachcompoundorelement.Assumingthetemperatureofthegas tobe200 °F,whatwouldbetheviscosityofnaturalgasat1atmosphericpressure?

Answer

Thefirststepistocalculatethemolarweightofthegasbyusingthemolefractionsand molarweightofeachcomponentasfollows:

Itisnowpossibletoobtaintheviscosityofthenaturalgas,parameter μga,at1atmospheric pressurefrom Fig.1.6 byusingthemolecularweightofthegas,whichisequalto20.29, andthetemperature,whichisequalto200 °F.Theobtainedviscosity,parameter μga,is approximately0.012CP.Butacorrectionisneededbecausethenitrogencontentisequal toa15%molefraction.Inordertofindtheviscosityofnitrogenasperthesmallcharts providedin Fig.1.6,itisessentialtoknowthespecificgravityofthemaingas,whichis equalto0.7accordingtothefollowingcalculations:

Theestimatedviscosityofthenitrogenisapproximatelyequalto0.0012CP,givena15% molefractionandaspecificgravityofthemaingasof0.7.Theviscosityofthenitrogen shouldbeaddedtotheviscosityofthenaturalgas,whichis0.012CP.Thus,theviscosity ofthenaturalgas,parameter μga,afteraddingthenitrogencorrectionfactoris0.0132CP.

Table1.3 Chemicalcompositionofgas.

Themainquestionishowtoconverttheviscosityofthenaturalgasatthegiventemperatureandoneatmosphereofpressuretotheviscosityofthegasatotherpressure values. Fig.1.7 isusedtofindthevalueof μg μga fromthevaluesof pseudocriticalreduced

Fig.1.7 Viscosityratioestimationfrompseudocriticalreducedpressureandtemperature(Option1).

Viscosityratioestimationfrompseudocriticalreducedpressureandtemperature(Option2).

pressureandtemperature. Thereisanalternativechart, Fig.1.8,thatcanalsobeusedto obtainthevalueof μg μga fromthepseudocriticalreducedpressureandtemperature.

Pseudocriticalreducedpressureandtemperatureandhowtocalculatethemarefurtherexplainedinthischapter.Pseudocriticalreducedpressureiscalculatedbydividing thepressureofagasbythepseudocriticalpressure,asinEq. (1.35).Thepseudocritical pressureisequaltothesumofthepseudocriticalpressureofeachgascompound. Thepseudocriticalpressureofeachgascompoundiscalculatedbymultiplyingthe

Fig.1.8

criticalpressure ofeachgascompoundbyitsmolefractionasperEq. (1.31).The pseudocriticalreducedtemperatureiscalculatedbydividingthetemperatureofthe gasbythepseudocriticaltemperature,asinEq. (1.36).Thepseudocriticaltemperature isequaltothesumofthepseudocriticaltemperatureofeachgascompound.The pseudocriticaltemperatureofeachgascompoundiscalculatedbymultiplyingthe critical temperature ofeachgascompoundbyitsmolefractionasperEq. (1.33).Therearealternativewaystocalculatepseudocriticalpressureandtemperaturedirectlyfromthespecific gravity,asdemonstratedbyEqs. (1.32)and(1.34).

Example1.5

Consideringthenaturalgascompositiongiveninthepreviousexample,whatwouldbe theviscosityofthegasat200 °Fand2000psi?

Answer

Theviscosityofthegasatthatatmosphericpressure,parameter μga,wascalculatedtobe 0.0133CP.Thereisnoinformationavailableaboutthecriticalpressureandtemperature ofthegascompounds.Thus,itisnotpossibletocalculatethepseudocriticalreducedpressureandtemperaturefromthecriticalpressureandtemperatureofeachgascompound. Thegasmolecularweight,however,isequalto20.29 gr mol,andthespecificgravityofthe gascanbecalculatedasfollows:

Itisnowpossibletocalculatethepseudocriticalpressureandtemperaturefromgasspecific gravitybyapplyingEqs. (1.32)and(1.34) asfollows:

Usingthevaluespseudocriticalreducedpressureandtemperaturecalculatedaboveand Fig.1.7 providesaviscosityratioapproximatelyequalto1.4.Thus,theviscosityofthe gasatthegivenpressureandtemperaturearegivenasfollows:

1.3.3Gasdensity

Thedensityofagasisdefinedasthemassofthegasdividedbyitsvolume,asper Eq. (1.15).

Equation1.15:Basicgasdensitycalculation

Where:

ρg ¼ Densityofgas kg m3

mg ¼ Massofthegas(kg)

Vg ¼ Volumeofthegas(m3)

A1-poundmolegashasaweightof mg,whichisequaltothemolecularweightofthegas, Mg.Fora2-poundmolegas,thegasweight, mg,wouldbedoublethemolecularweight, Mg,ofthegas.Asageneralrule,thegasweightisequaltothenumberofmolesmultiplied bythemolecularweightofthegas,asperEq. (1.18).Thenextstepistoconvertthe volumeofthegastootherpropertieslikepressureandtemperatureaccordingto Eq. (1.25).Thus,itisnowpossibletoobtainanewcalculationforthegasdensityusing Eq. (1.16).

Equation1.16:Gasdensityalternativecalculation

Where:

R: Gasuniversalconstant,whichisequalto8.31

psift3

Rankine:mol:pound ; P:Gaspressure(Bar,Mpa,psi);

SGg:Gasspecificgravity(Dimensionless);

T:Gastemperature(°C, °F,K,Rankine).

Example1.6

Calculatethedensityofanaturalgaswithapressureof1525psiand75 °F.Themolecular weightofthegasis20.424 gram mole,andthegasisassumedtobeintheidealstate.Assumethat thegasisideal,andtheZfactorisequalto1.

1.4Naturalgaslawsandcalculations

1.4.1Idealgaslaws

Therearecertainimportantlawsthatapplyto idealgases.Thequestioniswhatisan idealgas?Toanswerthisquestion,itshouldbenotedthatgassesinvolvecomplicated compoundsandstructures.Theyaretypicallymadeofbillionsofenergeticgasmoleculesthatareininteractionwitheachother.Therefore,itisverycomplexanddifficulttomodelarealgas.Thus,theconceptofanidealgaswascreatedinorderto simplifythebehaviorofgases.Thetheoryofidealgaseshelpsscientistsandengineers tomodelandpredictthebehaviorofgases.However,thebehaviorofrealgasses matchesthatofidealgasesonlyinsomecases,suchaswhenthepressureisatmosphericandthetemperatureisintherangeofroomtemperature. Roomtemperature isatemperatureatwhichmostpeoplewou ldfeelcomfortableinanindoorsetting. Typically,roomtemperatureisintherangeof20 – 22 °C.Atlowerandhighertemperatures,thecharacteristicsofrealgasesdeviatesignificantlyfromidealgases.There aretwomainrulesassociatedwithidealgases:Thefirstruleisthatthemoleculesof idealgasesdonotattractorrepeleachother,buttheyareconstantlymoving.Infact, intermolecularforcesarenegligibleinidealgases.Theonlytypeofinteraction betweenthemoleculesinanidealgasmodelis elasticcollision ,whichreferstowhen moleculesstrikeagainsteachotherandki neticenergyisexchangedbetweenthem. However,thetotalmolecularkineticener gyinsidethegasisconstant,andthereis nochangeinkineticenergybeforeandafteracollision.Thesecondimportantruleis thatthemoleculesoccupynegligiblevolume.Heliumisknownasatypeofgasthat behavesinaverysimilarwaytoidealgases.

The idealgaslaw demonstratestherelationshipbetweenthepressure(P ),volume (V)andtemperature( T)ofanidealgas.Eq. (1.17) isanexpressionoftheideal gaslaw:

Equation1.17:Idealgaslaw

Where:

P:Pressureofthegas(poundpersquareinch(psi),atmosphere,Pascal)

V:Volumeofthegas(ft3,m3,liter)

n:Moles,orthenumberofmolecules

R: Gasuniversalconstant,whichisequalto8.31

psift3

Rankine mol pound

T:TemperatureofthegasinRankine(R)orKelvin(K)

Thepressure,temperature,andvolumeofgascanbeconvertedasfollows:

Eq. (1.18) isusedtocalculatethenumberofpound-molesinagas.Infact,thenumber ofpound-molesinagasisequaltothemassofthegasdividedbythemolecularweightof thegas.

Equation1.18:Calculationofnumberofmolesinagas

Where:

n:Numberofpound-moles

m:Massofthegas(poundsorgrams)

M:Molecularweightofthegas(poundmoleorgrammole)

Example1.7

Calculatethepressureof1moleofnaturalgasinidealconditionsat0 °Cassumingthatthe volumeofthegasis22.4L.

Answer

TheidealgaslawandEq. (1.17) canbeusedasfollows:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Cryogenic valves for liquefied natural gas plants karan sotoodeh - The special ebook edition is avai by Education Libraries - Issuu