Continuous functions, volume 2 jacques simon - Download the ebook now and read anytime, anywhere

Page 1


https://ebookmass.com/product/continuous-functions-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Distributions, Volume 3 1st Edition Jacques Simon

https://ebookmass.com/product/distributions-volume-3-1st-editionjacques-simon/ ebookmass.com

The New Academic 2. Edition Simon Clews

https://ebookmass.com/product/the-new-academic-2-edition-simon-clews/ ebookmass.com

Oceans: Evolving Concepts Guy Jacques

https://ebookmass.com/product/oceans-evolving-concepts-guy-jacques/ ebookmass.com

The Ethics of Animal Shelters Valéry Giroux (Editor)

https://ebookmass.com/product/the-ethics-of-animal-shelters-valerygiroux-editor/

ebookmass.com

Women in the History of Linguistics Wendy Ayres-Bennett (Editor)

https://ebookmass.com/product/women-in-the-history-of-linguisticswendy-ayres-bennett-editor/

ebookmass.com

Writing for Publication in Nursing and Healthcare: Getting it Right, 2nd Edition Karen Holland

https://ebookmass.com/product/writing-for-publication-in-nursing-andhealthcare-getting-it-right-2nd-edition-karen-holland/

ebookmass.com

Contemporary Container Security 1st ed. Edition Girish Gujar

https://ebookmass.com/product/contemporary-container-security-1st-ededition-girish-gujar/

ebookmass.com

Advances in Synthesis Gas: Methods, Technologies and Applications, Volume 4: Syngas Process Modelling and Apparatus Simulation Mohammad Reza Rahimpour

https://ebookmass.com/product/advances-in-synthesis-gas-methodstechnologies-and-applications-volume-4-syngas-process-modelling-andapparatus-simulation-mohammad-reza-rahimpour/

ebookmass.com

Strategic

Management 5th Edition Frank T. Rothaermel

https://ebookmass.com/product/strategic-management-5th-edition-frankt-rothaermel/

ebookmass.com

International

https://ebookmass.com/product/international-economics-18th-editionthomas-pugel/

ebookmass.com

Continuous Functions

To Claire and Patricia, By your gaiety, “joie de vivre”, and femininity, you have embellished my life, and you have allowed me to conserve the tenacity needed for this endeavor

Analysis for PDEs Set coordinated by Jacques Blum

Volume 2

Continuous Functions

Jacques Simon

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

John Wiley & Sons, Inc.

27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA

www.iste.co.uk

www.wiley.com

© ISTE Ltd 2020

The rights of Jacques Simon to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020933955

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-010-2

FamiliarizationwithSemi-normedSpaces xiii

Notations .......................................xv

Chapter1.SpacesofContinuousFunctions ...............1

1.1.Notionsofcontinuity............................1

1.2.Spaces C (Ω; E ), Cb (Ω; E ), CK (Ω; E ), C(Ω; E ) and Cb (Ω; E ) ....3

1.3.Comparisonofspacesofcontinuousfunctions..............6

1.4.Sequentialcompletenessofspacesofcontinuousfunctions.......10

1.5.Metrizabilityofspacesofcontinuousfunctions.............11

1.6.Thespace K (Ω; E ) .............................14

1.7.Continuousmappings............................20

1.8.Continuousextensionandrestriction...................22

1.9.Separationandpermutationofvariables..................23

1.10.Sequentialcompactnessin Cb (Ω; E ) ..................28

Chapter2.DifferentiableFunctions .....................31

2.1.Differentiability...............................31

2.2.Finiteincrementtheorem..........................34

2.3.Partialderivatives..............................37

2.4.Higherorderpartialderivatives.......................40

2.5.Spaces C m (Ω; E ), C m b (Ω; E ), C m K (Ω; E ), Cm b (Ω; E ) and K m (Ω; E ) .42

2.6.Comparisonandmetrizabilityofspacesofdifferentiablefunctions..45

2.7.Filteringpropertiesofspacesofdifferentiablefunctions........47

2.8.Sequentialcompletenessofspacesofdifferentiablefunctions.....49

2.9.Thespace C m (Ω; E ) andtheset C m (Ω; U ) ................52

viContinuousFunctions

Chapter3.DifferentiatingCompositeFunctionsandOthers .....55

3.1.Imageunderalinearmapping.......................55

3.2.Imageunderamultilinearmapping:Leibnizrule............59

3.3.DualformulaoftheLeibnizrule......................63

3.4.Continuityoftheimageunderamultilinearmapping..........65

3.5.Changeofvariablesinaderivative.....................69

3.6.Differentiationwithrespecttoaseparatedvariable...........72

3.7.Imageunderadifferentiablemapping...................73

3.8.Differentiationandtranslation.......................77

3.9.Localizingfunctions.............................79

Chapter4.IntegratingUniformlyContinuousFunctions ........83

4.1.Measureofanopensubsetof Rd ......................83

4.2.Integralofauniformlycontinuousfunction................87

4.3.Casewhere E isnotaNeumannspace...................92

4.4.Propertiesoftheintegral..........................93

4.5.Dependenceoftheintegralonthedomainofintegration........96

4.6.Additivitywithrespecttothedomainofintegration...........99

4.7.Continuityoftheintegral..........................101

4.8.Differentiatingundertheintegralsign...................103

Chapter5.PropertiesoftheMeasureofanOpenSet .........105

5.1.Additivityofthemeasure..........................105

5.2.Negligiblesets................................107

5.3.Determinantof d vectors..........................112

5.4.Measureofaparallelepiped........................115

Chapter6.AdditionalPropertiesoftheIntegral .............119

6.1.Contributionofanegligiblesettotheintegral..............119

6.2.Integrationanddifferentiationinonedimension.............120

6.3.Integrationofafunctionoffunctions...................123

6.4.Integratingafunctionofmultiplevariables................125

6.5.Integrationbetweengraphs.........................130

6.6.Integrationbypartsandweakvanishingconditionforafunction....133

6.7.Changeofvariablesinanintegral.....................135

6.8.Someparticularchangesofvariablesinanintegral...........142

Chapter7.WeightingandRegularizationofFunctions ........147

7.1.Weighting...................................147

7.2.Propertiesofweighting...........................150

7.3.Weightingofdifferentiablefunctions...................153

7.4.Localregularization.............................157

7.5.Globalregularization............................162

7.6.Partitionofunity...............................166

7.7.Separabilityof K ∞ (Ω) ...........................170

Chapter8.LineIntegralofaVectorFieldAlongaPath ........173

8.1.Paths.....................................173

8.2.Lineintegralofafieldalongapath....................176

8.3.Lineintegralalongaconcatenationofpaths...............181

8.4.Tubularflowandtheconcentrationtheorem...............183

8.5.Invarianceunderhomotopyofthelineintegralofalocalgradient...186

Chapter9.PrimitivesofContinuousFunctions .............191

9.1.Explicitprimitiveofafieldwithlineintegralzero............191

9.2.Primitiveofafieldorthogonaltothedivergence-freetestfields....194

9.3.Gluingoflocalprimitivesonasimplyconnectedopenset.......195 9.4.Explicitprimitiveonastar-shapedset:Poincaré’stheorem.......197 9.5.ExplicitprimitiveundertheweakPoincarécondition..........199 9.6.Primitivesonasimplyconnectedopenset................203 9.7.Comparisonoftheexistenceconditionsforaprimitive.........205 9.8.Fieldswithlocalprimitivesbutnoglobalprimitive...........208 9.9.Uniquenessofprimitives..........................210 9.10.Continuousprimitivemapping......................211

Chapter10.AdditionalResults:IntegrationonaSphere .......213

10.1.Surfaceintegrationonasphere......................213

10.2.Propertiesoftheintegralonasphere...................215 10.3.Radialcalculationofintegrals.......................218

10.4.Surfaceintegralasanintegralofdimension d 1 ...........220 10.5.AStokesformula..............................224

Appendix .......................................227

Introduction

Objective. Thisbookisthesecondofsixvolumesinaseriesdedicatedtothe mathematicaltoolsforsolvingpartialdifferentialequationsderivedfromphysics:

Volume1: Banach,Fréchet,HilbertandNeumannSpaces;

Volume2: ContinuousFunctions;

Volume3: Distributions;

Volume4: LebesgueandSobolevSpaces;

Volume5: Traces;

Volume6: PartialDifferentialEquations.

Thissecondvolumeisdevotedtothepartialdifferentiationoffunctionsandthe constructionofprimitives,whichisitsinversemapping,andtotheirproperties,which willbeusefulforconstructingdistributionsandstudyingpartialdifferentialequations later.

Targetaudience. Weintendedtofindsimplemethodsthatrequireaminimallevel ofknowledgetomakethesetoolsaccessibletothelargestaudiencepossible–PhD candidates,advancedstudents1 andengineers–withoutlosinggeneralityandeven generalizingsomestandardresults,whichmaybeofinteresttosomeresearchers.

1 Students? WhatmightIhaveansweredifoneofmyMASstudentsin1988hadaskedformoredetails aboutthe deRhamdualitytheorem thatIusedtoobtainthepressureintheNavier–Stokesequations? PerhapsIcouldsaythat“Jacques-LouisL IONS ,mysupervisor,wrotethatitfollowsfromthedeRham cohomologytheorem,ofwhichIunderstandneitherthestatement,northeproof,norwhyitimpliesthe resultthatweareusing.”Whatadespicablyunscientificappealtoauthority! Thisquestionwasthestartingpointofthiswork:writingproofsthatIcanexplaintomystudentsfor everyresultthatIuse.Ittookme5yearstofindthe“elementary”proofofthe orthogonalitytheorem

xContinuousFunctions

Originality. Theconstructionofprimitives,theCauchyintegralandtheweighting withwhichtheyareobtainedareperformedforafunctiontakingvaluesina Neumann space,thatis,aspaceinwhicheveryCauchysequenceconverges.

Neumannspaces. Thesequentialcompletenesscharacterizingthesespacesisthe mostgeneralpropertyof E thatguaranteesthattheintegralofacontinuousfunction takingvaluesin E willbelongtoit,see Casewhere E isnotaNeumannspace (§4.3, p.92).Thispropertyismoregeneralthanthemorecommonlyconsideredproperty ofcompleteness,thatistheconvergenceofallCauchyfilters;forexample,if E is aninfinite-dimensionalHilbertspace,then E -weak isaNeumannspacebutisnot complete[Vol.1,Property(4.11),p.82].

Moreover,sequentialcompletenessismorestraightforwardthancompleteness. Semi-norms. Weusefamiliesofsemi-norms,insteadoftheequivalentnotionof locallyconvextopologies,tobeabletodefinedifferentiability(p.73)bycomparing thesemi-normsofavariationofthevariabletothesemi-normsofthevariationofthe value.Asectionon FamiliarizationwithSemi-normedSpaces canbefoundonp.xiii. Semi-normscanbemanipulatedinasimilarfashiontonormedspaces,exceptthatwe areworkingwithseveralsemi-normsinsteadofasinglenorm.

Primitives. Weshowthatanycontinuousfield q =(q1 ,...,qd ) onanopenset Ω of Rd hasaprimitive f ,namelythat ∇f = q ,ifandonlyifitisorthogonaltothe divergence-freetestfields,thatis,if Ω q . ψ =0E forevery ψ =(ψ1 ,...,ψd ) such that ∇ . ψ =0.Thisisthe orthogonalitytheorem (Theorem9.2).

When Ω issimplyconnected,foraprimitive f toexist,itisnecessaryandsufficient for q tohavelocalprimitives.Thisisthe localprimitivegluingtheorem (Theorem9.4). Onanysuchopenset,itisalsonecessaryandsufficientthatitverifiesPoincaré’s condition ∂i qj = ∂j qi forevery i and j tobesatisfiedifthefieldis C 1 (Theorem9.10), oraweakversionofthiscondition, Ω qj ∂i ϕ = Ω qi ∂j ϕ foreverytestfunction ϕ,if thefieldiscontinuous(Theorem9.11).

Weexplicitlydetermineallprimitives(Theorem9.17)andconstructonethat dependscontinuouslyon q (Theorem9.18).

Integration. WeextendtheCauchyintegraltouniformlycontinuousfunctionstaking valuesinaNeumannspace,becausethiswillbeanessentialtoolforconstructing primitives.

(Theorem9.2,p.194)ontheexistenceoftheprimitivesofafield q .Ineededawaytoobtain Γ q . d =0 foreveryclosedpath Γ fromthecondition Ω q . ψ =0 foreverydivergence-free ψ .Itgavemethegreatest mathematicalsatisfactionIhaveeverexperiencedtoexplicitlyconstructanincompressibletubularflow(see p.184).Twenty-fiveyearslater,Iamfinallyreadytoansweranyotherquestionsfrommy(verypersistent) students.

Introductionxi

Thepropertiesestablishedhereforcontinuousfunctionswillalsobeusedto extendthemtointegrabledistributionsinVolume4,bycontinuityortransposition. Indeed,oneoftheobjectivesofthe AnalysisforPDEs seriesistoextendintegration andSobolevspacestotakevaluesinNeumannspaces.However,itseemedmore straightforwardtofirstconstructdistributions(inVolume3)usingjustcontinuous functionsbeforeintroducingintegrabledistributions(inVolume4),whichplaythe roleusuallyfulfilledby classesofalmosteverywhereequalintegrablefunctions

Weighting. Theweightedfunction f μ ofafunction f definedonanopenset Ω bytheweight μ,arealfunctionwithcompactsupport D ,isafunctiondefinedonthe openset ΩD = {x ∈ Rd : x + D ⊂ Ω} by (f μ)(x)= ˚ D f (x + y ) μ(y )dy .This conceptwillberepeatedlyuseful.Itplaysananalogousroletoconvolution,whichis equivalenttoituptoasymmetryof μ when Ω= Rd .

Novelties. Manyresultsarenaturalextensionsofpreviousresults,butthefollowing seemedmostnoteworthy:

—Theconstructionofthetopologyofthespace K (Ω; E ) ofcontinuousfunctions withcompactsupportusingthesemi-norms f K(Ω;E );q =supx∈Ω q (x) f (x) E ;ν indexedby q ∈C + (Ω) and ν ∈NE (Definition1.17).Thisisequivalenttoandmuch simplerthantheinductivelimittopologyofthe CK (Ω; E )

—Thefactthatifafunction f ∈C (Ω) satisfies supx∈Ω q (x)|f (x)| < ∞ forevery q ∈C + (Ω),thenitssupportiscompact(Theorem1.22).Thisisthebasisfordefining thesemi-normsof D (Ω) inVolume3.

—The concentrationtheorem fortheintegralandtheconstructionofan incompressible tubularflow (Theorems8.18and8.17),whicharekeystepsinour constructionoftheprimitivesofafieldtakingvaluesinaNeumannspace,asitis explainedinthecomment Utilityoftheconcentrationtheorem,p.186.

Prerequisites. Theproofsinthemainbodyofthetextonlyusedefinitionsandresults establishedinVolume1,whosestatementsarerecalledeitherinthetextorinthe Appendix.Detailedproofsaregiven,includingargumentsthatmayseemtrivialto experiencedreaders,andthetheoremnumbersaresystematicallyreferenced.

Comments. Commentswithasmallerfontsizethanthemainbodyofthetextappealtoexternalresultsor resultsthathavenotyetbeenestablished.TheAppendixon Reminders isalsowrittenwithasmallerfont size,sinceitscontentsareassumedtobefamiliar.

Historicalnotes. Whereverpossible,theoriginoftheconceptsandresultsisgiven asafootnote2.

2 Appealtothereader. ManyimportantresultslackhistoricalnotesbecauseIamnotfamiliarwiththeir origins.Ihopethatmyreaderswillforgivemefortheseomissionsandanyinjusticestheymaydiscover. AndIencouragethescholarsamongyoutonotifymeofanyimprovementsforfutureeditions!

xiiContinuousFunctions

Navigationthroughthebook:

—The TableofContents atthestartofthebookliststhetopicsdiscussed.

—The TableofNotations,p.xv,specifiesthemeaningofthenotationincasethere isanydoubt.

—The Index,p.243,providesanalternativeaccesstospecifictopics.

—Allhypothesesarestateddirectlywithinthetheoremsthemselves.

—Thenumberingschemeissharedacrosseverytypeofstatementtomakeresults easiertofindbynumber(forinstance,Theorem2.9isfoundbetweenthestatements 2.8and2.10,whichareadefinitionandatheorem,respectively).

Acknowledgments. EnriqueF ERNÁNDEZ -C ARA suggestedtomealargenumberof improvementstovariousversionsofthiswork.JérômeL EMOINE waskindenough toproofreadthecountlessversionsofthebookandcorrectjustasmanymistakesand oversights.

OlivierB ESSON ,FulbertM IGNOT ,NicolasD EPAUW ,andDidierB RESCH also providedmanyimprovements,informandinsubstance.

PierreD REYFUSS gavemeinsightintothenecessityofsimplyconnecteddomains fortheexistenceofprimitiveswithPoincaré’scondition,asexplainedonp.209inthe comment Issimpleconnectednessnecessaryforgluingtogetherlocalprimitives?

JoshuaP EPPER spentmuchtimediscussingaboutthebestwaytoadaptthiswork inEnglish.

Thankyou,myfriends.

JacquesS IMON Chapdes-Beaufort April2020

FamiliarizationwithSemi-normedSpaces

A semi-normedspace E isavectorspaceendowedwithafamily { E ;ν : ν ∈NE } ofsemi-norms.

—Theset NE indexingthesemi-normsis, apriori,arbitrary.

—A normed spaceisthespecialcasewherethisfamilysimplyconsistsofasinglenorm.

—Everylocallyconvextopologicalvectorspacecanbeendowedwithafamilyofsemi-normsthat generatesitstopology(Neumann’stheorem).

—Weonlyconsider separated spaces,namelyinwhich u E ;ν =0 forevery ν ∈NE ,then u =0E

Workingwithsemi-normedspaces:

un → u in E meansthat un u E ;ν → 0 forevery ν ∈NE

U is bounded in E meansthat supu∈U u E ;ν < ∞ forevery ν ∈NE

T is continuous from F into E atthepoint u meansthat,forevery ν ∈NE and > 0,thereexistsa finiteset M of NF and η> 0 suchthat supμ∈M v u F ;μ ≤ η implies T (v ) T (u) E ;ν ≤

Examples—real-valuedfunctionspaces:

—Thespace Cb (Ω) ofcontinuousandboundedfunctionsisendowedwiththenorm f Cb (Ω) =supx∈Ω |f (x)|

C (Ω) isendowedwiththesemi-norms f C (Ω);K =supx∈K |f (x)| indexedbythecompactsets K ⊂ Ω

Lp (Ω) isendowedwiththenorm f Lp (Ω) =( Ω |f |p )1/p

Lp loc (Ω) isendowedwiththesemi-norms f Lp loc (Ω);ω =( ω |f |p )1/p indexedbythebounded opensets ω suchthat ω ⊂ Ω

Examples—abstract-valuedfunctionspaces:

Cb (Ω; E ) isendowedwiththesemi-norms f Cb (Ω;E );ν =supx∈Ω f (x) E ;ν indexedby ν ∈NE

C (Ω; E ) isendowedwiththesemi-norms f C (Ω;E );K,ν =supx∈K f (x) E ;ν indexedbythe compactsets K ⊂ Ω and ν ∈NE

Lp (Ω; E ) isendowedwiththesemi-norms f Lp (Ω;E );ν =( Ω f p E ;ν )1/p indexedby ν ∈NE

Examples—weakspace,dualspace:

E -weak isendowedwiththesemi-norms e E -weak;e = | e ,e | indexedby e ∈ E

E isendowedwiththesemi-norms e E ;B =supe∈B | e ,e | indexedbytheboundedsets B of E

E -weak isendowedwiththesemi-norms e E -weak;e = | e ,e | indexedby e ∈ E

E -∗weak isendowedwiththesemi-norms e E -∗weak;e = | e ,e | indexedby e ∈ E

xivContinuousFunctions

Neumannspacesandothers:

—A sequentiallycomplete spaceisaspaceinwhicheveryCauchysequenceconverges.

—A Neumann spaceisasequentiallycompleteseparatedsemi-normedspace.

—A Fréchet spaceisasequentiallycompletemetrizablesemi-normedspace.

—A Banach spaceisasequentiallycompletenormedspace.

Advantagesofusingsemi-normsratherthantopology:

—Semi-normsallowthedefinitionof Lp (Ω; E ) (byraisingthesemi-normsof E tothepower p).

—Theyallowthedefinitionofthedifferentiabilityofamappingfromasemi-normedspaceintoanother (bycomparingthesemi-normsofanincreaseinthevariabletothesemi-normsoftheincreaseinthevalue).

—Theyareeasytomanipulate:workingwiththemisjustlikeworkingwithnormedspaces,themain differencebeingthatthereareseveralsemi-normsornormsinsteadofasinglenorm.

—Somedefinitionsaresimpler,forexamplethatofaboundedset U :“supv ∈U v E ;ν < ∞ forany semi-norm E ;ν of E ”wouldbeexpressed,intermsoftopology,inthemoreabstractform“forany openset V containing 0E ,thereis t> 0 suchthat tU ⊂ V ”.

Notations

S PACESOFFUNCTIONS

B (Ω; E ) spaceofuniformlycontinuousfunctionswithboundedsupport ......87

C (Ω; E ) spaceofcontinuousfunctions ...............3

Cb (Ω; E ) spaceofboundedcontinuousfunctions ............3

CK (Ω; E ) spaceofcontinuousfunctionswithsupportincludedinthecompactset K ⊂ Ω .6

C∇ (Ω; E d ) spaceofgradientsofcontinuousfunctions ...........205

C + (Ω) setofpositivecontinuousrealfunctions ............14

C m (Ω; E ) spaceof m timescontinuouslydifferentiablefunctions,andthecase m = ∞ 43,44

C m b (Ω; E ) id. withboundedderivatives,andthecase m = ∞ ........43,44

C m K (Ω; E ) id. withsupportincludedinthecompactset K ⊂ Ω,andthecase m = ∞ .43,44

C m (Ω; E ) space C m definedontheclosureofaboundedopenset ........52

C m (Ω; U ) setoffunctionsin C m takingvaluesintheset U ..........54

C(Ω; E ) spaceofuniformlycontinuousfunctions ............4

Cb (Ω; E ) spaceofboundeduniformlycontinuousfunctions .........4

CD (Ω; E ) id. withsupportincludedinthecompactsubset D of Rd .......6

Cm b (Ω; E ) space C m withuniformlycontinuousboundedderivatives,andthecase m = ∞ 43,44

K(Ω; E ) spaceofcontinuousfunctionswithcompactsupport .........14

Km (Ω; E ) id. m timescontinuouslydifferentiable,andthecase m = ∞ .....43,44

O PERATIONSONAFUNCTION f f extensionby 0E ...................47

f imageunderpermutationofvariables .............27

f imageunderthesymmetry x →−x ofthevariable .........151

f imageunderseparationofvariables .............23

τx f translationby x ∈ Rd .................77

Rn f globalregularization ..................163

f μ functionweightedby μ .................148

f ρn localregularization ..................157

f μ convolutionwith μ ..................149

f ⊗ g tensorproductwith g .................129

f ◦ T compositionwith T ..................69

xviContinuousFunctions

supp f support .....................4 Lf or L ◦ f compositionwiththelinearmapping L

D ERIVATIVESOFAFUNCTION f

f or df/dx derivativeofafunctionofasinglerealvariable ..........32 ∂i f partialderivative:

derivativeoforder

positivemulti-integer:

differentiabilityorder:

derivativeoforder

gradient:

primitivethatdependscontinuouslyon

explicitprimitive:

I NTEGRALSANDPATHS

ω f Cauchyintegral

Sn ω f approximateintegral

Sr f ds surfaceintegraloverasphere

Γ q . d lineintegralofavectorfieldalongapath

Γ path

[Γ] imageofapath: [Γ]= {Γ(t): ti ≤ t

reversepath ....................174 Γ{a} pathconsistingofasinglepoint

rectilinearpath

pathconcatenation

tubearoundapath: T =[Γ]+ B

homotopy .....................186 [H ] imageofahomotopy .................186

S EPARATEDSEMI - NORMEDSPACES

E separatedsemi-normedspace

;ν semi-normof E ofindex ν

setindexingthesemi-normsof E

equalityoffamiliesofsemi-norms

topologicalequality

≈ ↔ topologicalequalityuptoanisomorphism

topologicalinclusion .................7

E -weak space E endowedwithpointwiseconvergencein E .........236

E dualof E .....................236

E d Euclideanproduct E × × E ..............31

E1 ×···× E productofspaces ...................59

E sequentialcompletionof E ................93

U interioroftheset U

U closureof U

∂U boundaryof U ...................229

[u,v ] closedsegment: [u,v ]= {tu +(1 t)v :0 ≤ t ≤ 1} .......34

L(E ; F ) spaceofcontinuouslinearmappings .............56

L (E1 × × E ; F ) spaceofcontinuousmultilinearmappings .........59

P OINTSANDSETSIN Rd

Rd Euclideanspace: Rd = {x =(x1 ,...,xd ):

|x| Euclideannorm: |x| =(x2 1 + + x2 d )1/2 ...........232

x . y Euclideanscalarproduct: x . y = x1 y1 + + xd yd ........232

ei ithbasisvectorof Rd .................32

Ω domainonwhichafunction f isdefined ............3

ΩD domainof f μ: ΩD = {x : x + D ⊂ Ω},anditsfigure

Ω1/n Ω withaneighborhoodoftheboundaryofsize 1/n removed .....13,158

Ωn 1/n Ω1/n truncatedby |x| <n : Ωn 1/n = {x : |x| <n,B (x, 1/n) ⊂ Ω} ...13

Ω∗a 1/n partof Ω1/n whichisstar-shapedwithrespectto a,anditsfigure...197,200

Ωn r potato-shapedset: Ωn r = {x : |x| <n,B (x,r ) ⊂ Ω} ........13

κn crown-shapedset: κn =Ωn+2 1/(n+2) \ Ωn 1/n 166,167

ω subsetof Rd ....................3

|

ω | Lebesguemeasureoftheopenset ω .............84

σ negligiblesubsetof Rd .................107

B (x,r ) closedball B (x,r )= {y ∈ Rd : |y x|≤ r } ..........13

˚ B (x,r ) openball ˚ B (x,r )= {y ∈ Rd : |y x| <r } ..........13

υd measureoftheunitball: υd = | ˚ B (0, 1)| ............107

C (x,ρ,r ) opencrown C (x,ρ,r )= {y ∈ Rd : ρ< |y x| <r } .......107

S (x,r ) sphere: S (x,r )= {y ∈ Rd : |y x| = r } ...........109 Δs,n closedcubeofedgelength 2 n centeredat 2 ns .........84

P (v 1 ,...,v d ) openparallelepipedwithedges v 1 ,..., v d ...........115

OTHERSETS

N∗ setofnaturalnumbers: N∗ = {0, 1, 2,...} ...........227

N setofnon-zeronaturalnumbers: N = {1, 2,...} .........227

Z setofintegers: Z = {..., 2, 1, 0, 1, 2,...} ..........227

Q setofrationalnumbers .................227 R spaceofrealnumbers .................228

m,n integerinterval: m,n = {i ∈ N∗ : m ≤ i ≤ n} .........227 m, ∞ extendedintegerinterval: m, ∞ = {i ∈ N∗ : i ≥ m}∪{∞} .....227 (a,b) openinterval: (a,b)= {x ∈ R : a<x<b} ..........228 [a,b] closedinterval: [a,b]= {x ∈ R : a ≤ x ≤ b} ..........228 compactinclusionin Rd ................80

⊂ algebraicinclusion

\ setdifference: U \ V = {u ∈ U : u/ ∈ V }

× product: U × V = {(u,v ): u ∈ U,v ∈ V }

∅ emptyset

S PECIALFUNCTIONS

det determinant ....................112

e exponentialnumber ..................238

xviiiContinuousFunctions

log logarithm .....................238

δΓ concentratedflow ..................184

α localizingfunction,partitionofunity ..........80, 163,167

ρn regularizingfunction ..................157

ψ divergence-freetestfield ................194

Ψ tubularflow ....................183

Υ functionwhosegraphdefinesasurface ............130

T YPOGRAPHY

endofstatement endofprooforremark

SpacesofContinuousFunctions

Thischapterisdedicatedtothepropertiesofspacesofcontinuousfunctionstakingvaluesinaseminormedspace E thatwewillneedlater.Definitionsofthespace C (Ω; E ) ofcontinuousfunctions,the space C(Ω; E ) ofuniformlycontinuousfunctionsandvariantsofthesespacesaregivenin§1.2.We thencomparethesespaces(§1.3)andstudytheircompletions(§1.4)andmetrizabilityproperties(§1.5). Thespace K(Ω; E ) offunctionswithcompactsupportisinvestigatedin§1.6.Wealsostudycontinuous extensions(§1.8),separationofvariables(§1.9)andsequentialcompactness(§1.10)inthesespaces.

Thesetopicsaremorenecessarythanoriginal,withtheexceptionofourconstructionofthetopology of K(Ω; E ) usingthesemi-norms f K(Ω;E );q =supx∈Ω q (x) f (x) E ;ν indexedby q ∈C + (Ω) and ν ∈NE .Thesesemi-normsyieldpropertiesthatareusuallyobtainedusingthe inductivelimittopology ofthe CK (Ω; E ).Ausefultoolforthis,whichisalsonew,isTheorem1.23:ifafamily F offunctionsin C (Ω) satisfies supf ∈F supx∈Ω q (x)|f (x)| < ∞ forevery q ∈C + (Ω),theirsupportsareallincludedin thesamecompactset.

1.1.Notionsofcontinuity

Wereservetheterm function formappingsdefinedonasubsetof Rd ,whichis writtenas Ω ingeneral.

Letusbeginbydefiningseparatedsemi-normedspaces1 (thedefinitionsofvector spacesandsemi-normsarerecalledintheAppendix,§A.2).Wewillthenconsider functionstakingvaluesinthesespaces.

D EFINITION 1.1. – A semi-normedspace isavectorspace E endowedwithafamily ofsemi-norms { E ;ν : ν ∈NE }

1 Historyofthenotionofsemi-normedspace. John VON N EUMANN introducedsemi-normedspaces in1935[59](withasuperfluouscountabilitycondition).Healsoshowed[59,Theorem26,p.19]that theycoincidewiththelocallyconvextopologicalvectorspacesthatAndreyK OLMOGOROV hadpreviously introducedin1934[49,p.29].

2ContinuousFunctions

Anysuchspaceissaidtobe separated if u =0E istheonlyelementsuchthat u E ;ν =0 forevery ν ∈NE

A normedspace isavectorspace E endowedwithanorm E

Caution. Definition1.1isgeneralbutnotuniversal.ForLaurentS CHWARTZ [67,p.240],asemi-normed spaceisaspaceendowedwitha filtering familyofsemi-norms(Definition2.21).Thisdefinitionis equivalent,sinceeveryfamilyisequivalenttoafilteringfamily[Vol.1,Theorem3.15].ForNicolas B OURBAKI [12,editionspublishedafter1981,ChapterIII,p.III.1]andRobertE DWARDS [32,p.80],a semi-normedspaceisaspaceendowedwith asingle semi-norm,whichdrasticallychangesthe meaning.

Letusdefinevariousnotionsrelatingtothecontinuity2 ofafunctiontakingvalues inasemi-normedspace.ThesearespecialcasesofDefinition1.24ofacontinuous mappingfromasemi-normedspaceintoanother.

D EFINITION 1.2. – Let f beafunctionfromasubset Ω of Rd intoaseparatedseminormedspace E withafamilyofsemi-norms { E ;ν : ν ∈NE }

(a) Wesaythat f is continuousatthepoint x of Ω if,forevery ν ∈NE and > 0, thereexists η> 0 suchthat,if y ∈ Ω and |y x|≤ η ,then

f (y ) f (x) E ;ν ≤ .

Wesaythat f is continuous ifitiscontinuousateverypointof Ω

(b) Wesaythat f is uniformlycontinuous if,forevery ν ∈NE and > 0,there exists η> 0 suchthat,if x and y belongto Ω and |y x|≤ η ,then

f (y ) f (x) E ;ν ≤ .

(c) Wesaythat f is sequentiallycontinuousatthepoint x of Ω if,foreverysequence (xn )n∈N in Ω suchthat xn → x in Rd ,wehave f (xn ) → f (x) in E .

Wesaythat f is sequentiallycontinuous ifitissequentiallycontinuousatevery pointof Ω

2 Historyofthenotionofcontinuousmapping. AugustinC AUCHY definedsequentialcontinuityfora realfunctiononanintervalin1821in[20].BernardPlacidusJohannNepomukB OLZANO alsocontributed totheemergenceofthisnotion.

Historyofthenotionofuniformlycontinuousfunction. EduardH EINE definedthenotionofuniform continuityoffunctionson(asubsetof) Rd in1870in[46].Thisnotionhadpreviouslybeenimplicitlyused byAugustinC AUCHY in1823todefinetheintegralofarealfunction[21,pp.122–126]andwaslater explicitlyusedbyPeterD IRICHLET

SpacesofContinuousFunctions3

(d) Wesaythat f is bounded ifitsimage f (Ω)= {f (x): x ∈ Ω} isaboundedset (of E ),orinotherwords,if,forevery ν ∈NE , sup x∈Ω f (x) E ;ν < ∞

Wesaythatasequence (un )n∈N inaseparatedsemi-normedspace E converges toalimit u ∈ E ,andwedenote un → u as n →∞,if,foreverysemi-norm E ;ν of E , un u E ;ν → 0 as n →∞.

Recallthatafunctioniscontinuousifandonlyifitissequentiallycontinuous (TheoremA.293,since Rd isanormedspace).

1.2.Spaces C (Ω; E ), Cb (Ω; E ), CK (Ω; E ), C(Ω; E ) and Cb (Ω; E )

Additionoffunctionstakingvaluesinavectorspaceandmultiplicationbyascalar t ∈ R aredefinedby (f + g )(x) def = f (x)+ g (x), (tf )(x) def = tf (x) (1 1)

Letusfirstdefinespacesofcontinuousfunctions4

D EFINITION 1.3. – Let Ω ⊂ Rd and E beaseparatedsemi-normedspacewitha familyofsemi-norms { E ;ν : ν ∈NE }

(a) Wedenoteby C (Ω; E ) thevectorspaceofcontinuousfunctionsfrom Ω into E endowedwiththesemi-normsandindexedbythecompactsets K ⊂ Ω and ν ∈NE , f C (Ω;E );K,ν def =sup x∈K f (x) E ;ν .

(b) Wedenoteby Cb (Ω; E ) thevectorspaceofcontinuousandboundedfunctions from Ω into E endowedwiththesemi-normsandindexedby ν ∈NE , f Cb (Ω;E );ν def =sup x∈Ω f (x) E ;ν .

3 TheoremA.29. TheoremswithnumbersintheformA.n canbefoundintheAppendix.

4 Historyofthenotionoffunctionspace. BernhardR IEMANN introducedtheconceptof(infinitedimensional)functionspacein1892inhisinaugurallecture OntheHypothesesWhichLieattheBases ofGeometry [64,p.276](seetheextractcitedin[14,p.176]).

4ContinuousFunctions

Justification. Additionandscalarmultiplicationoffunctionsmake C (Ω; E ) and Cb (Ω; E ) vectorspaces.

In(a),themapping f → supx∈K f (x) E ;ν isasemi-normon C (Ω; E ),sincethe upperenvelopeofafamilyofsemi-normsisasemi-normwheneveritiseverywhere finite(TheoremA.6).Thisisindeedthecasehere,since,forevery x,themapping f → f (x) E ;ν isasemi-normon C (Ω; E ) and,foreach f , supx∈K f (x) E ;ν < ∞ becausecontinuousfunctionsareboundedoncompactsets(TheoremA.34).

In(b), supx∈Ω f (x) E ;ν similarlydefinesasemi-normon Cb (Ω; E )

Thesespacesarewrittenas C (Ω) and Cb (Ω),respectively,inthecasewhere

E = R.

Thetopologywithwhichwehaveendowed C (Ω; E ) issaidtobethe topologyof uniformconvergenceoncompactsets,andthetopologyof Cb (Ω; E ) issaidtobe the topologyofuniformconvergence

Letusnowdefinespacesofuniformlycontinuousfunctions.

D EFINITION 1.4. – Let Ω ⊂ Rd and E beaseparatedsemi-normedspace.

(a) Wedenoteby C(Ω; E ) thevectorspaceofuniformlycontinuousfunctionsfrom Ω into E .

(b) Wedenoteby Cb (Ω; E ) thevectorspaceofuniformlycontinuousandbounded functionsfrom Ω into E endowedwiththesemi-normsof Cb (Ω; E )

Wedenotethesespacesby C(Ω) and Cb (Ω),respectively,inthecasewhere E = R.

Absenceofatopologyon C(Ω; E ). Weshallnotendow C(Ω; E ) withsemi-norms,sincewedonot requirethem.

Next,letusdefinethesupportofafunction(recallthat denotestheclosure).

D EFINITION 1.5. – The support ofafunction f fromasubset Ω of Rd intoa separatedsemi-normedspace E istheset supp f def = {x ∈ Ω: f (x) =0E }∩ Ω

SpacesofContinuousFunctions5

Letusstatesomepropertiesofthesupportofafunctiondefinedonanopenset5

T HEOREM 1.6. – Let f beafunctionfromasubset Ω of Rd intoaseparatedseminormedspace E .If Ω isanopenset:

(a) Then supp f =Ω \O ,where O isthelargestopensubsetof Rd onwhich f =0E ; inotherwords, O istheinteriorof {x ∈ Ω: f (x)=0E }

(b) If f isalsocontinuous,then {x ∈ Ω: f (x) =0E } isopenandincludedinthe interior ˚ supp f ofthesupportof f ,and f =0E on Ω \ ˚ supp f

ProofofTheorem1.6. (a)Let

O =Ω \ supp f =Ω ∩ (Rd \ {x ∈ Ω: f (x) =0E })

Thisisanopenset,asafiniteintersectionofopensets(TheoremA.10),and f iszero onit.

If U isanotheropensetincludedin Ω onwhich f iszero,thentheset {x ∈ Ω: f (x) =0E } isincludedin Rd \ U .Sincethelatterisclosed, supp f ⊂ {x ∈ Ω: f (x) =0E }⊂ Rd \ U.

Hence, U ⊂ Ω ∩ (Rd \ supp f )= O .Therefore, O isindeedthelargestsuchopenset U or,inotherwords,theinterior(DefinitionA.8)of {x ∈ Ω: f (x)=0E }. (b)If f (x) =0E ,thereexistsasemi-normonthespace E ofvaluesof f such that f (x) E ;ν = a> 0.If f iscontinuous,thereexists η> 0 suchthat y ∈ Ω and |y x|≤ η imply f (y ) f (x) E ;ν ≤ a/2,so f (y ) E ;ν ≥ a/2,andhence f (y ) =0E .Since Ω isopen,itcontainsaball B (x,η ).Thus,theball B (x,r ),where r =inf {η,η } isincludedintheset {x ∈ Ω: f (x) =0E },whichshowsthatthisset isindeedopen.

Theset {x ∈ Ω: f (x) =0E } isanopensetincludedinthesupportof f andso isincludedintheinterior ˚ supp f ofthesupport.Therefore, f =0E outsideofthis set.

Letusfinallydefinespacesofcontinuousfunctionswithsupportinanarbitrary compactset.Recallthat,in Rd ,acompactsetisaclosedandboundedsetbythe Borel–Lebesguetheorem[TheoremA.23(b)].

D EFINITION 1.7. – Let Ω ⊂ Rd and E beaseparatedsemi-normedspace.

5 Numberingofstatements. Thesamenumberingschemeisusedforallstatements–Definitions1.1–1.5, Theorem1.6,Definition1.7,etc.–,tomakeiteasiertofindagivenresultbynumber.Forexample,the readerwillstruggletofindTheorems1.1–1.5,becausethesenumberswereassignedtodefinitions.

6ContinuousFunctions

(a) Givenacompactsubset K of Rd includedin Ω,wedenote

CK (Ω; E ) def = {f ∈C (Ω; E ):supp f ⊂ K }, endowedwiththesemi-normsof Cb (Ω; E ).

(b) Givenacompactsubset D of Rd (notnecessarilyincludedin Ω),wedenote

CD (Ω; E ) def = {f ∈ C(Ω; E ):supp f ⊂ D }, endowedwiththesemi-normsof Cb (Ω; E ).

Justification. (a)Thevectorspace CK (Ω; E ) canbeendowedwiththesemi-normsof Cb (Ω; E ) becauseeveryfunction f inthisspaceisbounded,since f iszerooutside of K andboundedon K ,notingthatcontinuousfunctionsareboundedoncompact sets(TheoremA.34).

(b)Thevectorspace CD (Ω; E ) canbeendowedwiththesemi-normsof Cb (Ω; E ) becauseeveryfunction f inthisspaceisbounded,since f iszerooutsideof D andboundedon Ω ∩ D .Indeed,since D isprecompact(TheoremA.19(a)),the subset Ω ∩ D isalsoprecompact(TheoremA.20),andsoisitsimage f (Ω ∩ D ) (TheoremA.33),whichisthereforebounded(TheoremA.19(a)).

Wedenotethesespacesby CK (Ω) and CD (Ω),respectively,inthecasewhere E = R

Cautionaboutbehaviorattheboundary. When Ω isanopenset,functionsin CK (Ω; E ) mustbezero onsomeneighborhoodoftheboundary ∂ Ω,since K isincludedin Ω

Bycontrast,functionsin CD (Ω; E ) donotnecessarilyvanishonaneighborhoodof ∂ Ω (regardlessof whether Ω isopen,unlessitisthewholeof Rd )when D isnotincludedin Ω.Tohighlightthisdifference, wehavechosennotationthatdifferentiatesbetweenarbitrarycompactsets D andcompactsets K thatare includedin Ω

Utilityofthespaces CK (Ω; E ) and CD (Ω; E ). Thespace CK (Ω; E ),or,moreprecisely,its generalization C m K (Ω; E ),willbeusefulforourstudyofdistributionsinVolume3,sincethespace D (Ω) oftestfunctionsistheunionofthe C ∞ K (Ω)

Thespace CD (Ω; E ) willbeusefulforourstudyoftheCauchyintegralofcontinuousfunctions(for exampleinTheorem4.22),since B (Ω; E ) (Definition4.7)istheunionofthe CD (Ω; E )

1.3.Comparisonofspacesofcontinuousfunctions

Letusfirstdefinethetopologicalequalitiesandinclusionsofseparated semi-normedspaces.Wewillthendiscussinclusionsbetweenspacesofcontinuous functions.

SpacesofContinuousFunctions7

D EFINITION 1.8. – Let { 1;ν : ν ∈N1 } and { 2;μ : μ ∈N2 } betwofamilies ofsemi-normsonthesamevectorspace E .Wesaythatthefirstfamily dominates the secondif,forevery μ ∈N2 ,thereexistsafiniteset N1 in N1 and c1 ∈ R suchthat, forevery u ∈ E ,

Wesaythatthetwofamiliesare equivalent ifeachfamilydominatestheother.Wealso saythatthey generatethesametopology

Terminology. The topology of E isthesetofitsopensets.Wecansaythattwofamiliesofsemi-norms generatethesametopology insteadofsayingthatthey areequivalent becauseequivalenceoftwofamilies ofsemi-normsimpliesequalityoftheiropensets[Vol.1,Theorem3.4]andtheconversealsoholds[Vol.1, Theorem7.14(a)and8.2(a),with L = T = Identity].

D EFINITION 1.9. – Let E and F betwosemi-normedspaces.

(a) Wewrite E ≡ ↔ F if E = F andiftheiradditions,multiplicationsandfamiliesof semi-normscoincide,or,inotherwords,iftheyhavethesamevectorspacestructures andthesamesemi-norms.

(b) Wesaythat E is topologicallyequal to F ,written E = ↔ F ,if E = F ,their additionsandmultiplicationscoincide,andtheirfamiliesofsemi-normsare equivalent.

(c) Wesaythat E is topologicallyincluded in F ,written E ⊂ → F ,if E isavector subspaceof F andifthefamilyofsemi-normsof E dominatesthefamilyofrestrictions to E ofthesemi-normsof F .Inotherwords,if,forevery μ ∈NF ,thereexistsafinite set N in NE and c ∈ R suchthat,forevery u ∈ E , u F ;μ ≤ c sup ν ∈N u E ;ν .

(d) Wesaythat E isa topologicalsubspace of F ifitisa vectorsubspace of F ,i.e. avectorspaceundertheadditionandmultiplicationof E ,anditisendowedwiththe restrictionsofthesemi-normsof F ,or,moregenerally,withafamilyequivalenttothis familyofrestrictions.

Letusnowshowthatspacesofcontinuousfunctionsareseparatedandcompare them.

T HEOREM 1.10. – Let Ω ⊂ Rd , E beaseparatedsemi-normedspace, K acompact setincludedin Ω and D acompactsubsetof Rd .Then:

8ContinuousFunctions

(a) C (Ω; E ), Cb (Ω; E ), CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) areseparatedseminormedspaces.

(b) CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) areclosedandhencesequentiallyclosed topologicalsubspacesof Cb (Ω; E )

(c) CK (Ω; E ) ≡ ↔ CK (Ω; E ) ⊂ → Cb (Ω; E ) ⊂ → Cb (Ω; E ) ⊂ → C (Ω; E ).

(d) If Ω isbounded, Cb (Ω; E )= C(Ω; E )

(e) If Ω iscompact,

Proof. (a)Thesespacesaresemi-normedspaces(Definition1.1)byconstruction.

Thespace C (Ω; E ) isseparated(Definition1.1)because,ifeverysemi-normof oneofitselements f iszero,then(Definition1.3(a)),forevery x ∈ Ω and ν ∈NE , wehave f (x) E ;ν =0,so f (x)=0E because E isseparatedandtherefore f is zero.Thesameproofworksfor Cb (Ω; E ) (Definition1.3(b))andhenceforthespaces CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ),sincetheyareendowedwiththesemi-normsof Cb (Ω; E )

(b)Thevectorspaces CK (Ω; E ) and CD (Ω; E ) areincludedin Cb (Ω; E ),aswesaw earlierinthejustificationofDefinition1.7,andsois Cb (Ω; E ).Thesespacesare topologicalsubspaces(Definition1.9(d))of Cb (Ω; E ) becausetheyareendowedwith itssemi-norms.Letuscheckthattheyareclosed.

Closednessof CK (Ω; E ) in Cb (Ω; E ). Letusshowthatthecomplementisopen.Thus, let f ∈Cb (Ω; E ) \CK (Ω; E ).Thereexists x ∈ Ω \ K suchthat f (x) =0E andhence ν ∈NE suchthat f (x) E ;ν = a> 0.Therefore, g f Cb (Ω;E );ν ≤ a/2 implies g (x) > 0,andso g ∈Cb (Ω; E ) \CK (Ω; E ),showingthatthecomplementisopen.

Closednessof Cb (Ω; E ) in Cb (Ω; E ) Letusshowthatthecomplementisopen.Thus, let f ∈Cb (Ω; E ) \ Cb (Ω; E ).Thereexists ν ∈NE , a> 0 and,forall n ∈ N, xn and yn in Ω suchthat |xn yn |≤ 1/n and f (xn ) f (yn ) E ;ν ≥ a.Therefore, g f Cb (Ω;E );ν ≤ a/3 implies g (xn ) g (yn ) E ;ν ≥ a/3,andso g ∈Cb (Ω; E ) \ Cb (Ω; E ),showingthatthecomplementisopen.

Closednessof CD (Ω; E ) in Cb (Ω; E ) Theset CD (Ω; E ) istheintersectionof Cb (Ω; E ) and CD (Ω; E ),whichareclosed(forthelatter,considertheaboveproof with D insteadof K ),andsoitisitselfclosed(TheoremA.10).

SpacesofContinuousFunctions9

(c) Identity CK (Ω; E ) ≡ ↔ CK (Ω; E ) Algebraicequalityissatisfiedbecauseevery functionin CK (Ω; E ) isuniformlycontinuousonthecompactset K byHeine’s theorem(TheoremA.34)andthereforeonthewholeof Ω (sinceitvanisheson ∂K ). Topologicalidentityfollowsbecausethesetwospacesarebothendowedwiththe semi-normsof Cb (Ω; E ).

Inclusion CK (Ω; E ) ⊂ → Cb (Ω; E ) Algebraicinclusionfollowsfromthefactthatevery functionin CK (Ω; E ) isboundedonthecompactset K (Heine’stheoremagain)and isthereforeboundedonthewholeof Ω.Topologicalinclusionfollowsbecauseboth spacesareendowedwiththesemi-normsof Cb (Ω; E )

Inclusion Cb (Ω; E ) ⊂ → Cb (Ω; E ). Thistopologicalinclusionfollowsfromthefactthat everyuniformlycontinuousfunctioniscontinuous,notingthat Cb (Ω; E ) isendowed withthesemi-normsof Cb (Ω; E )

Inclusion Cb (Ω; E ) ⊂ → C (Ω; E ). Thistopologicalinclusionfollowsfromthefactthat, byDefinition1.3ofthesemi-normsof C (Ω; E ) and Cb (Ω; E ),forevery f ∈Cb (Ω; E ) and ν ∈NE andeverycompactset K ⊂ Ω, f C (Ω;E );K,ν =sup x∈K

(Ω;E );ν

(d) Casewhere Ω isbounded. Inthiscase, Cb (Ω; E )= C(Ω; E ) because,given that Ω isprecompact(TheoremA.23(b)),uniformlycontinuousfunctionson Ω are bounded.Indeed,theirimagesareprecompact(TheoremA.33)andhencebounded (TheoremA.19(a)).

(e) Casewhere Ω iscompact.Equality Cb (Ω; E )= Cb (Ω; E )= C (Ω; E ) This algebraicequalityfollowsfromthefactthateverycontinuousfunctiononacompact setisuniformlycontinuousandboundedonthisset(Heine’stheoremonceagain, TheoremA.34).

Identity Cb (Ω; E ) ≡ ↔ Cb (Ω; E ). Thisidentityfollowsfromthealgebraicequality becausebothspacesareendowedwiththesemi-normsof Cb (Ω; E )

Equality Cb (Ω; E ) = ↔ C (Ω; E ). Here,wecantake K =Ω inDefinition1.3(a),which gives f Cb (Ω;E );ν = f C (Ω;E );Ω,ν andhence C (Ω; E ) ⊂ → Cb (Ω; E ) (because Cb (Ω; E ) isendowedwiththesemi-normsof Cb (Ω; E )).Thetopologicalequality followsbecausetheinverseinclusionholdsby(c).

Non-closednessof C(Ω) in C (Ω). If Ω isanopenset(ormoregenerallyasetthatisnotcompact), C(Ω) isnot(sequentially)closedin C (Ω) (1 2)

Forexample,thefunctions fn definedon (0, 1) by fn (x)=inf {n, 1/x} areuniformlycontinuousand, as n →∞,theyconvergein C ((0, 1)) tothefunction f (x)=1/x,whichisnotuniformlycontinuous.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.