Contemporary chemical approaches for green and sustainable drugs 1st edition török m. (ed.) - Quickl

Page 1


ChemicalApproachesforGreenand SustainableDrugs1stEditionTörökM.(Ed.)

https://ebookmass.com/product/contemporary-chemicalapproaches-for-green-and-sustainable-drugs-1st-editiontorok-m-ed/

Green Approaches for Chemical Analysis Emanuela Gionfriddo

https://ebookmass.com/product/green-approaches-for-chemical-analysisemanuela-gionfriddo/

ebookmass.com

Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Solvents for Biocatalysis 1st Edition Inamuddin (Editor)

https://ebookmass.com/product/green-sustainable-process-for-chemicaland-environmental-engineering-and-science-green-solvents-forbiocatalysis-1st-edition-inamuddin-editor/

ebookmass.com

Green Approaches in Medicinal Chemistry for Sustainable Drug Design 1st Edition Bimal K. Banik (Editor)

https://ebookmass.com/product/green-approaches-in-medicinal-chemistryfor-sustainable-drug-design-1st-edition-bimal-k-banik-editor/

ebookmass.com

Chronic Renal Disease 2nd Edition Edition Paul Kimmel

https://ebookmass.com/product/chronic-renal-disease-2nd-editionedition-paul-kimmel/

ebookmass.com

https://ebookmass.com/product/deadly-passion-holly-bloom/

ebookmass.com

5 Steps to a 5: AP Calculus AB 2023 (5 Steps to a 5)

https://ebookmass.com/product/5-steps-to-a-5-ap-calculusab-2023-5-steps-to-a-5-william-ma/

ebookmass.com

Economics for Sustainable Prosperity 1st ed. Edition

https://ebookmass.com/product/economics-for-sustainableprosperity-1st-ed-edition-steven-hail/

ebookmass.com

Entrepreneurship: The Art, Science, and Process for Success 4th Edition Charles Bamford

https://ebookmass.com/product/entrepreneurship-the-art-science-andprocess-for-success-4th-edition-charles-bamford/

ebookmass.com

Discovering John: Essays by John Ashton 1st Edition

https://ebookmass.com/product/discovering-john-essays-by-johnashton-1st-edition-john-ashton/

ebookmass.com

https://ebookmass.com/product/twisted-emotions-the-camorra-chroniclesbook-2-cora-reilly/

ebookmass.com

ContemporaryChemicalApproaches forGreenandSustainableDrugs

AdvancesinGreenand SustainableChemistry Contemporary ChemicalApproaches forGreenand SustainableDrugs

SeriesEditor

Be´laTo¨ro¨k

TimothyDransfield

Editedby

MariannaTo¨ro¨k

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright 2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions .

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein.

ISBN:978-0-12-822248-5

ForinformationonallElsevierpublicationsvisitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

AcquisitionsEditor: GabrielaCapille

EditorialProjectManager: ClarkEspinosa

ProductionProjectManager: SujathaThirugnanaSambandam

CoverDesigner: MarkRogers

TypesetbyTNQTechnologies

Listofcontributors xiii

1.Usingthezebrafishmodelsystemtoidentifythe healtheffectsofpharmaceuticalpollutants

ChristinaKaucic,AnushaLakshmiDharmavathi andJenniferL.Freeman

1.Introduction 1

2.Thezebrafishmodelsystem 2

3.Useofthezebrafishmodelsystemindrugdiscovery 3

4.Significanceofpharmaceuticalpollution 6

5.Useofthezebrafishmodelsystemtoassesspharmaceutical pollutanttoxicity 7

6.Methodsandapproachestoassesspharmaceuticalpollutant toxicityusingthezebrafishmodelsystem 13

6.1Acutedevelopmentaltoxicityassessmentswiththe developingzebrafish13

6.2High-throughputscreenings(HTS)fordevelopmentaltoxicity assessments14

6.3Zebrafishdevelopmentalandadultbehavioralassaystoassess pharmaceuticalpollutanttoxicity16

6.4Cellularandmolecularassaystoidentifymechanismsof pharmaceuticalpollutanttoxicity18

7.Futuredirectionsfortheuseofzebrafishindefining pharmaceuticalpollutanttoxicity 20

8.Conclusions 21 AcknowledgmentsandFundingsources 21 References 21

2.Analysisofpharmaceuticalsintheenvironment

AdityaKulkarniandScottE.Miller

1.Introduction 27

2.Sourcesofpharmaceuticalpollutants 28

2.1Effectsoftracelevelpharmaceuticalpollutantson humans29

2.2Effectsoftracelevelpharmaceuticalpollutantson aquaticenvironments30

3.Analyticalmethodsfortracelevelanalysisofwatersamples

3.Leakingofantibioticsintheaquaticenvironment

Indu,ManishaSharmaandKashyapKumarDubey

4.Advancesindrugdevelopmentwiththe applicationofartificialintelligence

ManuelaSouzaLeite,AndersonAllesdeJesus, PauloJardelLeiteAraujoandBrunnoFerreiradosSantos

1.Machinelearningandartificialintelligenceinthe

4.Supportvectormachines(SVM)indrugdiscoveryand

5.Virtualscreeningtechniquesinpharmaceutical research

JustineC.Williams,StanleyOpare,SenthilKumarSugadoss, AravindhanGanesanandSubhaKalyaanamoorthy

1.Introduction 89

2.Structure-baseddrugdesign(SBDD) 91 2.1Proteinstructureprediction92

3.Moleculardocking 96

3.1Searchalgorithms96

3.2Scoringfunctions97

3.3Targetflexibility101

3.4Denovodrugdesign101

3.5Bindingenergyestimation103

3.6Machine/deeplearningmethodsinSBVS104

4.Ligand-baseddrugdiscovery(LBDD) 107

4.1Similaritysearching108

4.2Ligand-basedpharmacophoremapping113

4.3Quantitativestructure-activityrelationship(QSAR) modeling115

5.Summaryandperspectives

6.Insilicomodelingofenvironmentaltoxicity ofdrugs

KabiruddinKhanandKunalRoy

1.Introduction 129

2.Pharmaceuticalecotoxicityanalysis:generalconsiderations 129 2.1Overviewofconcerns130

3.Releaseofpharmaceuticalstotheenvironment 131

3.1Thesourcesofpharmaceuticalspollutiontoenvironment131

4.AssessmentofecotoxicityofAPIs,limitations,andsolutions: adatascientist’sperspective 131

5.Currentadvancementinecotoxicitymodelingof pharmaceuticals 132

5.1Insilicotoolsreportedindifferentresearcharticles133

6.Onlineexpertsystemsforecotoxicityprediction 141 7.Conclusion

7.Sustainableseparationsinpharmaceutical manufacturing

GergoIgnacz,RobertOrkenyi,ArpadKonczolandGyorgySzekely

1.Introduction 155

1.1Separationconceptsinthepharmaceuticalindustry156

1.2Continuousandautomatedseparationprocesses158

2.Chromatography-basedseparations 159

2.1Sustainableaspectsofchromatography159

2.2Towardgreenchromatographictechniques159

2.3Strategiestowardgreenliquidchromatography162

2.4Relevantindustrialapplications:casestudies166

2.5Conclusions167

3.Membranebasedseparations 167

3.1Membraneseparationinthepharmaceuticalindustry: aliquiddominantsector167

3.2Organicsolventnanofiltration(OSN)168

4.Continuouspurificationprocesses 174

4.1Classificationofthecontinuousflowpurification processes174

4.2Continuouscrystallization(CC)175

4.3Centrifugalpartitionchromatography177

4.4Simulatedmovingbedchromatography179

4.5Comparisonofthepreviouslydiscussedcontinuous purificationmethods180

5.ForecastingthefutureofAPIseparations 183 Listofabbreviations 184 References 185

8.Greensyntheticmethodsindrugdiscoveryand development

GuoshuXie,RitaBernadettVlocsko ´ andBe ´ laTo ¨ ro ¨ k

1.Introduction 201

2.Catalysis 203

2.1Homogeneouscatalysis204

2.2Heterogeneouscatalysis217

3.Nontraditionalactivationmethodsandenergyefficiencyof chemicalprocesses 238

3.1Microwave-assistedorganicsynthesis238

3.2Ultrasonicactivation242

3.3Photochemicalactivation248

3.4Electrochemicalactivation256

4.Conclusions 260 References 261

9.Characterizingtheenvironmentallybenignnatureof chemicalprocesses:greenchemistrymetrics

DavidDaggett,YizhouShiandBe ´ laTo ¨ ro ¨ k

3.Sustainableproductionofpharmaceuticalsandtheirbuilding blocks:quantitativegreenmetricstoevaluatechemical processes

3.1Mass-relatedmetrics283

3.2Energy-relatedmetrics294

10.Greenchemistryapproachestodrugsthattreat epidemicandpandemicdiseases BerkeleyW.Cue 1.Introduction

3.Drugstotreatmalaria

5.AntiviralstotreatCOVID-19

11.Dynamiceffectsoforganicmoleculesfordrug deliveryinmicelles

DebanjanaGhosh,RiaRamoutarandShainazLandge

3.Moleculardrugdeliverybyorganizedself-assemblies 337

3.1Smallmolecule-surfactantbaseddrugdelivery337

3.2Liposomalsystemasdrugdeliveryvehicle347

3.3Reversemicellesnanocarriersfordrugdelivery360 4.Conclusion

12.Antibody-drugconjugatesfortargeteddelivery

GarimaPandey,SunilK.TripathiandVivekBulbule

1.Introduction 377

1.1Whatisanantibody-drugconjugate?377 1.2ImportanceofADCsintargeteddrugdelivery379 1.3CurrentADCsapprovedorinclinicaltrials380

2.Composition 385 2.1Targetandantibody385 2.2Linkers386 2.3Payloads395

3.Antibody-drugconjugation 396

3.1Throughsidechainlysineresidue397

3.2Throughsidechaincysteineresidue398

3.3Drugantibodyratio(DAR)400

3.4Site-specificconjugation400

4.Physicalstabilityofantibody-drugconjugates 403

5.Chemicalstabilityofantibody-drugconjugate

6.Formulationdevelopmentofantibody-drugconjugate

7.FutureaspectsofADCs

13.Towardthegreensynthesisofpeptidesand peptidicdrugs

Do ´ raBogda´n,LeventeKa ´ rpa´tiandIstva´nM.Ma´ndity

1.Peptidesandpeptidesynthesis:theformationofpeptide bond 421 1.1Historicalperspectiveofsolutionphasepeptidesynthesis421 1.2Solid-phasepeptidesynthesis(SPPS)422 1.3Solid-phasefragment/segmentcondensationinthe1980s424 1.4AutomatizationoftheSPPS424

2.Improvementsinthesolid-phasemethod 426 2.1Optimizationofthelinkersandpolymericsupportsin SPPS426

2.2DevelopmentoftheN-terminalaminoprotecting groups427

2.3Onresinmonitoringofthecouplingefficiency428

2.4Developmentofcouplingagentsandcoupling methodologies428

3.NovelmethodsfordissolvinglimitationsofSPPS 430

3.1Nativechemicalligation(NCL)430

3.2Continuous-flowsolid-phasepeptidesynthesis(CF-SPPS)431

3.3Solution-phasecontinuous-flowpeptidesynthesis435

3.4Microwave-assistedpeptidesynthesis436

4.Large-scalepeptidesynthesismethods 439

4.1Continuous-flowlargescalepeptidesynthesis439

4.2Solution-phaselarge-scalepeptidesynthesis440

4.3Solid-phaselarge-scalepeptidesynthesis440

4.4Hybridlarge-scalepeptidesynthesis441

5.Greenchemistryaspectsofpeptidesynthesis 441

6.Summary 445

14.Themultitargetapproachasagreentoolin medicinalchemistry

´ ,SinemApaydın,Be ´ laTorok andMariannaTorok

1.Introduction 457

2.Thegreenimpactofmultitargetdrugdiscovery 460

2.1Greensynthesesinmultitargetdrugdevelopment(MTDD)462

2.2Combininginsilicoandexperimentalmethods: inherentlygreenimprovementtodesignand testingefficiency464

3.Multitargetleadgeneration screening-versus knowledge-basedapproaches 465

3.1Knowledge-basedrationaldesign466

3.2Screening-basedmultitargetleadgeneration468

3.3Naturalproduct-inspiredscaffoldsfordesigningMTDs472

4.Selectedcasestudieswithmultitargetfocus 476

4.1Neurodegenerativediseases Alzheimer’sdisease476

4.2Infectiousdiseases477

4.3Cancer478

4.4Epigeneticpolypharmacology479

5.Challengesandlimitationsinmultitargetdrugdesignand development 480

6.Conclusions 481 Listofabbreviations 482

15.Directedevolution:anewpowerfultoolindrug development

1.Introduction 493

2.Methodsindirectedevolution 494

2.1Methodsforgenemanipulation495

2.2Methodsforscreeningandselectionofenzymelibraries501

3.Applicationofdirectedevolutionindrugdevelopment 502

3.1SimvastatinsynthaseLovD502

3.2TransaminaseATA-17inthesynthesisofsitagliptin504

3.3 Candidaantarctica lipaseA(CALA)inthesynthesisof ibuprofen505 4.Perspectives

16.Conventionalandadvancedtreatmentmethods fortheremovalofpharmaceuticalsandrelated compoundsinwastewater

1.Introduction 511

2.Overviewofconventionalwastewatertreatment 513

3.Effectivenessofconventionalwastewatertreatmentin removingpharmaceuticals 514

4.Advancedtreatmentprocessesfortheremovalof pharmaceuticalsfrommunicipalwastewater 516

4.1Overview516

4.2Ozonation516

4.3Activatedcarbonmethods517

4.4Membrane-basedtechnologies518

4.5Newermethods:advancedoxidativeprocesses521

5.CaseStudy#1:SanBernardinomunicipalwater department 524

5.1Rapidinfiltrationandextraction(RIX)facility524

6.CaseStudy#2:theOrangeCountySanitationDistrict, FountainValley,CA 529

6.1Groundwaterreplenishmentsystem(GWRS)529

7.Conclusion 529

Listofcontributors

AndersonAllesdeJesus,CoordinationoftheInterdisciplinaryBachelorofScience andTechnology,UniversidadeFederaldoMaranha ˜ o,Balsas-MA,Brazil

SinemApaydın,DepartmentofChemistry,UniversityofMassachusettsBoston, Boston,MA,UnitedStates

PauloJardelLeiteAraujo,ICONEducacional,Aracaju-SE,Brazil

AndreaBaier,TheJohnPaulIICatholicUniversityofLublin,Lublin,Poland

Do ´ raBogda ´ n,DepartmentofOrganicChemistry,FacultyofPharmacy,Semmelweis University,Budapest,Hungary;TTKLendu ¨ letArtificialTransportersResearch Group,InstituteofMaterialsandEnvironmentalChemistry,ResearchCentrefor NaturalSciences,Budapest,Hungary

VivekBulbule,AdesisInc.,NewCastle,DE,UnitedStates

BerkeleyW.Cue,BWCPharmaConsulting,LLC,Nottingham,NH,UnitedStates; DepartmentofChemistry,UniversityofMassachusettsBoston,Boston,MA, UnitedStates

DavidDaggett,DepartmentofChemistry,UniversityofMassachusettsBoston,Boston, MA,UnitedStates

BrunnoFerreiradosSantos,DepartmentofChemicalandMaterialsEngineering (DEQM),PontificalCatholicUniversityofRiodeJaneiro(PUC-Rio),Riode Janeiro,Brazil

JenniferL.Freeman,SchoolofHealthSciences,PurdueUniversity,WestLafayette, IN,UnitedStates

AravindhanGanesan,ArGan’sLab,SchoolofPharmacy,UniversityofWaterloo, Waterloo,ON,Canada

DebanjanaGhosh,DepartmentofChemistryandBiochemistry,GeorgiaSouthern University,Statesboro,GA,UnitedStates

GergoIgnacz,AdvancedMembranesandPorousMaterialsCenter,PhysicalScience andEngineeringDivision(PSE),KingAbdullahUniversityofScienceand Technology(KAUST),Thuwal,SaudiArabia

Indu,BioprocessEngineeringLaboratory,CentralUniversityofHaryana, Mahendergarh,Haryana,India

SubhaKalyaanamoorthy,DepartmentofChemistry,UniversityofWaterloo, Waterloo,ON,Canada

Listofcontributors

LeventeKa ´ rpa ´ ti,DepartmentofOrganicChemistry,FacultyofPharmacy,SemmelweisUniversity,Budapest,Hungary

ChristinaKaucic,SchoolofHealthSciences,PurdueUniversity,WestLafayette,IN, UnitedStates

KabiruddinKhan,DepartmentofPharmaceuticalTechnology,JadavpurUniversity, Kolkata,WestBengal,India

ArpadKonczol,RotaChromTechnologiesLLC,Kecskemet,Hungary

AdityaKulkarni,908Devices,Boston,MA,UnitedStates

KashyapKumarDubey,BioprocessEngineeringLaboratorySchoolofBiotechnology,JawaharlalNehruUniversity,NewDelhi,India

AnushaLakshmiDharmavathi,SchoolofHealthSciences,PurdueUniversity,West Lafayette,IN,UnitedStates

ShainazLandge,DepartmentofChemistryandBiochemistry,GeorgiaSouthern University,Statesboro,GA,UnitedStates

Istva ´ nM.Ma ´ ndity,DepartmentofOrganicChemistry,FacultyofPharmacy,SemmelweisUniversity,Budapest,Hungary;TTKLenduletArtificialTransporters ResearchGroup,InstituteofMaterialsandEnvironmentalChemistry,Research CentreforNaturalSciences,Budapest,Hungary

ScottE.Miller,908Devices,Boston,MA,UnitedStates

JamesA.Noblet,DepartmentofChemistryandBiochemistry,CaliforniaState UniversitySanBernardino,SanBernardino,CA,UnitedStates

StanleyOpare,DepartmentofChemistry,UniversityofWaterloo,Waterloo,ON, Canada

RobertOrkenyi,RotaChromTechnologiesLLC,Kecskemet,Hungary;EvonetixLtd, Cambridge,UnitedKingdom

GarimaPandey,OrganixInc.,Woburn,MA,UnitedStates

RiaRamoutar,DepartmentofChemistryandBiochemistry,GeorgiaSouthern University,Statesboro,GA,UnitedStates

KunalRoy,DepartmentofPharmaceuticalTechnology,JadavpurUniversity,Kolkata, WestBengal,India

ManishaSharma,BioprocessEngineeringLaboratory,CentralUniversityofHaryana, Mahendergarh,Haryana,India

YizhouShi,DepartmentofChemistry,UniversityofMassachusettsBoston,Boston, MA,UnitedStates

ManuelaSouzaLeite,GraduatePrograminProcessEngineering,Tiradentes University,Aracaju-SE,Brazil;InstituteofTechnologyandResearch,Aracaju-SE, Brazil

SenthilKumarSugadoss,DepartmentofChemistry,UniversityofWaterloo,Waterloo,ON,Canada

Listofcontributors xv

GyorgySzekely,AdvancedMembranesandPorousMaterialsCenter,PhysicalScience andEngineeringDivision(PSE),KingAbdullahUniversityofScienceandTechnology(KAUST),Thuwal,SaudiArabia

RyszardSzyszka,TheJohnPaulIICatholicUniversityofLublin,Lublin,Poland

Be ´ laTo ¨ ro ¨ k,DepartmentofChemistry,UniversityofMassachusettsBoston,Boston, MA,UnitedStates

MariannaTo ¨ ro ¨ k,DepartmentofChemistry,UniversityofMassachusettsBoston, Boston,MA,UnitedStates

SunilK.Tripathi,UniversityofMichigan,AnnArbor,MI,UnitedStates

RitaBernadettVlocsko ´ ,DepartmentofChemistry,UniversityofMassachusetts Boston,Boston,MA,UnitedStates

JustineC.Williams,DepartmentofChemistry,UniversityofWaterloo,Waterloo,ON, Canada

GuoshuXie,DepartmentofChemistry,UniversityofMassachusettsBoston,Boston, MA,UnitedStates

Chapter1

Usingthezebrafishmodel systemtoidentifythehealth effectsofpharmaceutical pollutants

ChristinaKaucic,AnushaLakshmiDharmavathiandJenniferL.Freeman SchoolofHealthSciences,PurdueUniversity,WestLafayette,IN,UnitedStates

1.Introduction

Withalleyesshiftingtowardtheimpactsofglobalclimatechangeand pollutiononhumanandecologicalhealth,sustainabilityandenvironmental safetyareeminenttopicsthatneedtobeaddressed.Specifically,thereismuch focustowardhowpharmaceuticalwasteandbuildupintheenvironmentmay affectthegeneralhealthandwellnessofexposedorganisms.1 Pharmaceutical pollution,whichreferstothepresenceofsyntheticdrugsandtheirmetabolites intheenvironment,islargelyunregulatedandhasthepotentialtobedetrimentaltohumanandecologicalhealth.Inthepast,environmentaltoxicology studies,includingthoseassessingpharmaceuticalpollution,havereliedprimarilyonrodentorothermammalianmodelstoperformtoxicityassessments. Limitationsandhigheconomiccostsoflarge-scalemammalianmodelsfor assessingenvironmentaltoxicityhaveledtoanexpansionofothervertebrate modelsystemsbeingappliedinthisresearcharea.Asselectingtheoptimal animalmodelisvitaltounderstandingenvironmentaltoxicology,researchers haveenthusiasticallyturnedtothezebrafishmodeltostudytheeffectsof environmentalpollutantsincludingpharmaceuticalpollutionasananimal modelcomplementarytothetraditionalmammalianassays.Inthischapter,we discusstheadvantages,strengths,andlimitationsforutilizingthezebrafish modelsystemintoxicologicalstudiesandinparticular,thosestudiesassessing theadverseeffectsofpharmaceuticalpollution.Inaddition,wedetailcommon zebrafishassaysemployedtoassessdevelopmentaltoxicity,morphology, behavior,andmolecularperturbationsinducedbypharmaceuticalpollution exposure.

2.Thezebrafishmodelsystem

Zebrafish(Daniorerio)areanotableandpopularvertebratemodelindevelopmentalandmolecularbiologyduetotheirsuitabilityforgenomicstudies andtransparentembryos,whichallowforeasydevelopmentalassessment.2 Basedonanumberofstrengths,theirvalueasacomplementarymodelsystem fortoxicitystudieshassteadilyincreasedoverthepast20yearsincluding thoseaddressingenvironmentalpollutionandtheiruseindrugdevelopment.3,4 Inadditiontobeingasmall,economicalmodelincomparisonwith mammaliancounterparts,thezebrafishhashighfecundity,easyhusbandry,is near-transparentduringtheearlystagesofdevelopment,and,perhapsmost importantly,hasahighdegreeofmolecularsyntenywithhumans.Infact,71% ofallhumanproteinsand82%ofdisease-causingproteinshaveanorthologin thezebrafish.5 Coupledtothewell-conservedphysiologywithhumans,the zebrafishisanidealmodelforhumandrugdiscoveryandtoxicological studies.

Afewofthemostsimplisticbenefitsofusingthezebrafishasatoxicologicalmodelaretheirsmallsizeandhusbandry.Unlikeothermodelspecies, adultzebrafisharefullygrownat1 1.5incheslong.Thisaloneallowsforan increasedsamplesizeinlaboratorieswithlimitedspaceforhousingand breeding.Thesmallsizeofthefishalsoallowsforsmallerquantitiesofdosing solutionsintoxicologicalstudieswhich,inturn,minimizeslaboratorycosts andchemicalwaste.Additionally,zebrafishmatingpairshaveahighfecundity andproducemanysmallembryosthatcanincreasesamplesizesandnumber ofreplicatesindose-responseassaysandhigh-throughputtoxicitytesting. Majorreasonsforthepopularityofthezebrafishmodelindevelopmental biologyarebasedontheirhighfecundityandembryosthathavetransparent chorions.Transparencyallowsfordevelopmentalstagingstudiesandidentificationofphenotypicabnormalitiesattheearliestdevelopmentalstages.The transparentchorionsofzebrafishembryosproveevenmorevaluablewhen usedwithinsituhybridizationandimmunohistochemistrytechniques.Insitu hybridizationandimmunohistochemistryaretypicallyusedindevelopmental biologytoinvestigategeneandproteinexpressioninembryonictissues;the clarityofthezebrafishembryoallowslabeledprobestobeeasilyidentified.In addition,developmentoftransgeniczebrafishmodelswithfluorescenttags (e.g.,greenfluorescentprotein,GFP)(Fig.1.1)alsopermitsassessmentof geneexpressionpatterns,tissue/organdevelopment,cellularlocalizationof proteins,andotherapplicationsattheearliestdevelopmentalstages.6,7 Theuse ofthesetechniqueshasspurredquestionsabouttherelevanceofgeneand proteinexpressionstudiesinthezebrafishandtherelationshiptothehuman genome.Understandingthissyntenicrelationshipbetweenthetwospecies allowsforhuman-diseasemodelstudiestotakeplaceusingthezebrafish.

Thezebrafishgenomeiscomplexwithahighdegreeofsimilaritytothe humangenome.8 Inastudyinvestigatingthedifferencesbetweenthehuman

FIGURE1.1 Zebrafishfli1[(Tg(fli1:eGFP)y1]transgeniclarva.Thistransgeniclineinvolvesa transgenicinsertionofenhancedgreenfluorescentprotein(eGFP)inthevasculatureundercontrol ofthefli1promoter.Thistransgeniclineisusedtoeasilyvisualizevasculardefectsinzebrafish followingchemicalexposures.

genomeandthezebrafishgenome,itwasdiscoveredthataround80%ofgenes andexpressedsequencetagsareconserved.9 Inalattermoreextensivestudy, resultsshowed82%ofhumandiseasegeneshaveatleastonezebrafish ortholog.5 Moreover,genemutationsinzebrafishhavebeenshowntoproduce lessembryoniclethalitythanthesamegenemutationsinmammalianmodels, largelyduetoagenomeduplicationevent.10 Assuch,researchersarebetter abletostudytheaffectedgenefunctionandtheassociatedsignalingpathways inpathogenesis.Intoxicologicalstudies,thisfactisvitalasweareableto studydevelopmentalchangesandthemolecularmechanismsofthexenobiotic exposures.

3.Useofthezebrafishmodelsystemindrugdiscovery

Thescientificdiscoveryofnewdrugsbeingmanufacturedfrompharmaceuticalcompanieshasdeclinedovertheyears,whiletheproductioncostshave steadilyincreased.Amajorcauseisthetedioustestingthatisneededinorder toputanewdrugonthemarket.Usually,numerousinvitrobiochemicaland cellassaysfollowedbyinvivotestingwithmammalianmodelsarerequired beforehumantrialscancommence.Thisprocessoftenleadstoonlyafew drugsonthemarket.Theseprospectivedrugscangetterminatedatanyphase ofdrugdevelopmentduetoadversehealthoutcomes,lackofefficacy,or excessivetoxicityproblems.Mostofthefailuresofdrugtoxicitycomeatthe levelofusinganimalmodels.Thecausesofdrugtoxicityobservedare organizedintomechanism-based(on-target),immunehypersensitivity,offtargettoxicity,andcovalentmodification.Therefore,drugdevelopmentisan importantprocessthatservesasanessentialwaytoevaluatethesafetyand toxicityofpotentialharmfuldrugsthatcanbefoundinourenvironment.

4 ContemporaryChemicalApproachesforGreenandSustainableDrugs

Althoughcurrentmethodsworkinpreventingthetoxiccompoundsfrom theclinicalsetting,therearestillfalsenegativesobservedduringpreclinical toxicity.Thisisseenbecausedrugsafetyisinitiallyevaluatedpreclinicallyin animalmodels.Thisincreaseinpreclinicaltoxicityaswellastheadverse eventsthatcomefromhumantoxicityaccountforone-thirdofthecasesof attritionforprospectivedrugs.Assuch,itisimportanttoidentifytoxic compoundsaccuratelytoreducepotentialtoxicityeffects.Stepsinthedrugdevelopmentparadigmsupportthatearlyinterventionwithremovingtoxic compoundscanhelpsaveresourcesandreducecosts(Fig.1.2).Additionally, intheearlyphaseofdrugdevelopmentbetween40%and80%ofthecompoundsarehaltedindevelopmentduetosafetyconcerns,4 supportingthe investigationofthistime-point.Ingeneral,theincidenceofadversedrugreactionsvarieswiththetypeofdruganddosage,supportingthatdrugtoxicity canbeamajorlimitingfactortotheefficacyofwidelyusedagents.

Drugtoxicityhasprovidedscientificandpracticalapplications,but threemajordiscrepanciesstillexistthatcanhelpreducethetoxiceffectsof thechemicalsthroughinvestigation.Thesethreemajorareasoffocusare findingusefulbiomarkersoftoxicity,establishingusefulinvitro/invivorelationships,andlinkinganimalmodelswithhumantoxicitymoreaccurately.11 Throughdrugdiscovery,wehavebeenabletofindmethodstoapproachthese threemainissuesinordertoassessdrugsafetyandtoxicity.Animportant invivorelationshipthatallowsustoimproveoveralltoxiceffectsindrug

FIGURE1.2 Thegeneralized drugdiscoveryanddevelopment pathwaybeforeanoveldrugpasses throughtheUSFoodandDrug Administration(FDA)approvalfor safetytesting.

developmentwasaccomplishedbyexpandingtheuseofanimalmodels beyondmammalsincludingutilizationofthezebrafishmodel.Thezebrafishis showinggreatpotentialtoeliminateunsafecompoundsduringtheearlystages ofdrugdevelopmentandevaluatethepreclinicaltoxicityofnewdrugsata loweroveralleconomiccost.4

Toxicityisamajorattritionindrugdevelopmentleadingtothewithdrawal ofcertaindrugs.Assuch,researchhasbeendonetoaccuratelyfindthepotentialadversehealthoutcomesthatmayoccur.Cardiotoxicityisoneofthe majorconcernsforpharmaceuticalcompaniesalongwithhepatic,oncological, andneurologicaldrugsduetotheirunfavorablecomplications.Cardiotoxicity hasindicateditsrelevanceparticularlyinchildrenandadolescentsastheyare generallymoresusceptibletotoxiceffects.Cardiotoxicityhasremainedan issueasunforeseenheartattacks,strokes,orarrhythmiasmayoccuraswas seenforRofecoxib,anantiarthriticdrug,andPropulsid,agastrointestinal prokineticagent.12 Inordertounderstandthistoxicity,thezebrafishmodel systemwasappliedasareliablecardiotoxicologicaltool.Despitesomeofthe physiologicaldifferencesbetweenthezebrafishandmammalianheart,useof zebrafishpresentsanoptimalassessmentoforgandevelopment.Theheartis thefirstorganthatdevelopsinzebrafishduringtheearlystagesofembryogenesissupportinghighconservationandexhibitingsimilarfunctionalcharacteristics,whichallowstomoreaccuratelylinkanimalmodelswithhuman toxicity.Thisiswhyzebrafishareparticularlysuitablefordetermining developmentaltoxicity,generaltoxicity,andtoperforminitialhigh-throughput drugscreeningsinordertoaccomplishandvalidatedrugdevelopmentstudies. Additionalpaststudieshaveevaluatedcardiotoxicityandcomparedthe zebrafishwithotherinvivoandinvitromodels.Thedatahaveconcluded supportforthezebrafishmodelsystemasanefficientwaytoevaluatedrug toxicityandgivecomprehensiveknowledgefornewgenerationsofdrugs.13

Asecondexampleoftheapplicationofthezebrafishmodelsystemin addressingconcernsduringdrugdevelopmentrevolvesarounddrug-induced liverinjury(DILI).Inclinicalmedicine,amajorchallengeoccursfromthe deliberateoverdoseofacetaminophen.Intermsofdrugdevelopment,DILI remainsaproblembecauseofsafetyconcerns.Theoverdosefromacetaminophenispredictablebecauseitisdose-dependent,whereasidiosyncratic livertoxicityoccursinthelaterphasesofdrugdevelopmentmakingithardto predictduringtheearlystagesofdevelopment.Thischallengewasaddressed byutilizingthezebrafishmodelsysteminhigh-throughputscreenings(HTS) toadvancethefurtherstudyofDILIandshowedmechanisticsimilarityfor DILIinhumans.14 Thesemethodscanbeusefultoidentifynewmediatorsfor predictinghumanDILIwithpotentialtherapeuticcompoundsandearly identificationofhepatotoxiccompoundstohelpreducecostsintheprocessof drugdevelopment.15,16

Inrecentyears,manydrugshavebeenwithdrawnfromthemarketdueto safetyconcernsandthecostsofnewdrugdevelopmenthaverisen.Theuseof

biomarkerscanaddressseveralmajorproblemsassociatedwithdrugdevelopment.Biomarkersenhancedeterminationofwhetherdrugcandidatesare promisingearlyindevelopmentaswellasreducethecostsofdrugdevelopment.Useofbiomarkerscanalsoidentifyapplicabledrugswithenhanced safetyandfindtreatmentsforthosepatientswhoneedthebestbalanceofrisk andbenefit.Moreover,translationalbiomarkersbetweenfishandmammalian modelscanbeestablishedtofurtherimprovetheaccuracyandourunderstandingofpreclinicaltoxicityduringdrugdevelopment.Asdonewiththe DILIstudies,biomarkersshowtobeausefultoolthatmayhavegreatvaluein drugdiscovery.14,16 Biomarkerscanprovideabridgebetweenfish,rodents, andhumans.Thus,itisimportanttoexpandupontheuseofbiomarkersinthe processofdrugdiscoverywhenworkingwithanimalmodels.Thisexpansion canhelpdetectfuturedrugtoxicityissuesinhumans,whichcanmakethe processmoreefficientandlowerthecoststowardamoresuccessfuloutcome inthefuture.Overall,theseapplicationssupporttheuseofthezebrafishin futurestudiesprogressingtowardpromisingdrugsduringtheearlydevelopmentalphaseofdrugdiscovery.Furthermore,thesestudiesprovideconfidence forapplicationofthezebrafishtoaddresstheenvironmentaltoxicityquestions surroundingpharmaceuticalpollution,providingaconnectionbetweenthe overalltoxicityofthesepharmaceuticalswhetherintheearlystagesofdrug discoveryoratthelatterstagesevaluatingthetoxicityofpharmaceutical pollution.

4.Significanceofpharmaceuticalpollution

Pharmaceuticalsareahugepartofmodernhealthcare.Infact,statistical analysisoftheglobalpharmaceuticalindustryshowsthat,in2017,the worldwidemarketwasworth$934.8billionUSDandwasprojectedtoreach $1170billionUSDby2021,17 butinfactwasgreaterthan$1250billionUSD by2019.17 Thereareafewreasonsforthissignificantgrowth.Firstand foremost,technologicaladvancementsinindustrializedcountrieshavemade drugdesignanddevelopmenteasierandmuchlesstime-consuming.Aging societiesandadvancesinresearchhavealsoledtoasignificantincreasein globalpharmaceuticalconsumption.Thismayseemencouragingtosomeasit isdifficulttopicturemodernmedicineandanyadvancementswithinmodern medicinewithouttheuseofpharmaceuticals.18 However,drugdesign, development,anddistributionarenotwithoutconsequences.Theoccurrence ofbothhumanandveterinarypharmaceuticalsintheenvironmenthasbeena concernsincetheearly1990s.Sincethen,amyriadofstudieshavedemonstratedthepotentialdangersthatthepresenceofpharmaceuticalsinthe environmentmayhaveonthehealthofwildlifeandhumans.19

Atthispoint,thereisnoquestionaboutthepresenceofpharmaceuticalsin theenvironment.Studieshavedemonstratedtheoccurrenceofsignificant concentrationsofmanypharmaceuticalsinsurfacewater,subsurfacewater,

groundwater,andwastewater.1,20 Itisknownthatmostoftenhumanpharmaceuticalsentertheenvironmentviaeffluentfromwastewatertreatment plants.Ina2007study,samplesofeffluentfromawastewatertreatmentplant inIndiawerecollected.21 DrugssuchasEnrofloxacin,Aspirin,Citalopram, andRanitidinewerejustafewexamplesofthosepresentinthesamples.Not onlywerethesepharmaceuticalspresent,buttheywerepresentin“thehighest levelsofpharmaceuticalsreportedinanyeffluent.”Concentrationsranged from90to31,000partsperbillion(ppb; mg/L).Anotherstudymonitored samplesofinfluentandeffluentcollectedfromwastewatertreatmentplantsin Greece.UsingLC-MSanalysis,researchersidentifiedFurosemide,thebetablockersAtenololandMetoprolol,analgesicsincludingparacetamol(acetaminophen)andNimesulide,salicylicacid,Trimethoprim,Ciprofloxacin, Diclofenac,andcaffeine.22 Otherstudiesofwastewatertreatmentplantsfrom aroundtheworldhaveidentifiedthepresenceofibuprofen,methylparaben, Naproxen,tetrahydrocannabinol(THC),Diazepam,tetracycline,erythromycin,andCefoxitintonameafew.23 Asthedrinkingwatersupplyformost communitiesisobtainedfromsurfacewaterorgroundwater,manyhave questionedwhatsubstancesarepresentintheirownwatersuppliesandwhat effectslowdoseexposureshaveonhealth.

5.Useofthezebrafishmodelsystemtoassess pharmaceuticalpollutanttoxicity

Aimingtoprovideanswerstotoxicityquestionsrelatedtopharmaceutical pollution,toxicologistshavefocusedresearchinthepastdecadeonstudying howbothterrestrialandaquaticorganismsareinfluencedbypharmaceutical pollution.Thisworkhasexpandedtoincludeanimalmodelsofhumanhealth includingrodentandzebrafishstudies.Asdiscussedabove,itisnow commonlyunderstoodandacceptedthatthezebrafishexhibitssimilarphysiologicalresponsestomammalsintoxicitytestingandthatzebrafisharebeing usedinthedrugdiscoverypipeline.Thus,itislogicaltoapplythezebrafishto definetheadversehumanhealtheffectsoflow-doseexposuretopharmaceuticalsandenvironmentalpollutantsduetothehighgenomeandphysiological functionconservation.2,3 Sincehumanandveterinarypharmaceuticalsare designedtoelicitspecificphysiologicalresponsesatlowdoses,thezebrafishis anidealmodelsystemforpharmaceuticalpollutionstudies.Whilethereisan abundanceofstudiesusingzebrafishtoaddressvariousaspectsofdrug toxicity,inthissectionwespecificallyfocusonexamplestudieswhere zebrafishwereusedtoaddressquestionssurroundingpharmaceuticalpollution demonstratingfeasibility(Table1.1).Thesestudieshaveincludedvarious experimentalendpointsinbothdevelopingandadultzebrafish,whichare furtherdetailedinthenextsectionscoveringmethodsandapproaches. Inmultiplestudies,Galusetal.24 26 investigatedorgan-specificand/or developmentaleffectsofexposuretopharmaceuticalandpersonalcare

TABLE1.1 Summaryofexamplestudiesdefiningpharmaceuticalpollutanttoxicityusingthezebrafishmodel.

PharmaceuticalsExposureparametersResultsImplicationsReferences

n Acetaminophen

n Carbamazepine

n Gemfibrozil

n Venlafaxine

n Acetaminophen

n Carbamazepine

n Gemfibrozil

n Venlafaxine

Adultzebrafish(6weeks duration)orembryos (1 72hpf)

0.5or10ppbsingle exposureofeach pharmaceutical

n adultfemaleoocyteatresiaandaltered ovarianhistologywithallcompounds

n alteredkidneytubulemorphologyinboth sexeswithallcompounds

n alteredliverhistologyinbothsexeswith exposuretoacetaminophenorGemfibrozil

n decreasedplasma11-ketotestosteronein bothsexeswithexposuretoCarbamazepine

n embryonicacetaminophenexposure increaseddevelopmentalabnormalities

n increasedmortalityinembryonicexposure withallcompoundsatlowconcentration (0.5ppb)

Lowconcentrationchronic exposuretopharmaceuticals resultsinnegativeimpactsto multipleorgansystems includingreproductive system,kidney,andliver, alongwithembryo mortality.

24

n Carbamazepine

n Gemfibrozil

Adultzebrafish(6weeks duration)orembryos(1 72hpf)

Mixtureoffour pharmaceuticalsat0.5or 10ppbor5%or25% dilutedwastewatereffluent

Adultzebrafish(6weeks duration)thencrossedto produceF1generation, whichwasrearedincontrol waterandthenassessedas adults 10ppbsingleexposureof eachpharmaceutical

n adultfemaleoocyteatresiaandaltered ovarianhistologyinallexposures

n alteredkidneytubulemorphologyinboth sexeswithallexposures

n developmentalabnormalitiesinhigh exposureconcentration

n increasedembryomortalityinhigh concentrationofmixture

n decreasedreproductiveoutputinadult offspringfromparentswithpharmaceutical treatment

n reciprocalcrossesindicatedmoreimpactsto maleswithdrug-specificeffectsonsperm morphology(Carbamazepine:longer midpieces;Gemfibrozil:shorterhead lengthsandmidpieces)

n noeffectsonorganpathologyofliver, kidney,orgonads

Environmentallyrelevant concentrationsofthese pharmaceuticalsinmixture resultsinmultipleorgan systemimpactsincluding ovaryinfemalesandkidney inbothsexes,alongwith mortalityinembryos.

Parentalchroniclow-dose pharmaceuticalexposure wassufficienttocause significantreproductive effectsinmaleoffspring.

25

26

n Carbamazepine

n Dilitiazem

n Fluoxetine

n Gemfibrozil

n Metformin

Developmentalexposure(6 144hpf)

Exposuresincludedsingle pharmaceuticalatsub-acute concentrations(0.001,0.01, 0.1,or1ppb)oramixtureof 5pharmaceuticals,along withnegative(embryo media),solvent(0.001% ethanol),andpositive(17bestradiol)controls

n nosignificanteffectsonmortality,hatching rate,ormorphology

n Carbamazepineresultedinasignificant increaseinallthreegenes(cyp19a2, er-a, and gnrh3),butonlyatconcentrations greaterthanthosefoundinthewater samples(>0.1ppb)

n DiltiazemandFluoxetineincreased expressionof cyp19a2 inalltreatment concentrations,while er-a and gnrh3 expressionalterationswereonlyathigher concentrations(>0.1ppb)

n Gemfibrozilonlyimpacted cyp19a2 expressionat0.01and1ppb

n Metformincausedsignificantexpression changesof cyp19a2 and gnrh3 at1ppb andgreaterandof er-a at10ppbandgreater

n mixturestudiesrepresentingdifferent locationsinLakeMichiganshoweda significantincreaseintheexpressionofall threegenesforfiveofthesevendifferent chemicalmixturestested

Singleandmixture treatmentsrepresenting pharmaceuticalpollution canusegeneexpression biomarkerstoprovide locationandmixturespecifictoxicityprofiling.

n Caffeine

n Ibuprofen

n Carbamazepine

n Tamoxifen Larvalexposurefor96h(72 168hpf)

Exposuresincludedsingle pharmaceuticals(Caffeine, ibuprofen,or Carbamazepineat0.05or

5 mM;Tamoxifenat0.003or

0.3 mM)oraloworhigh mixturetreatmentwith negative(embryomedia), solvent(0.001%ethanol), andpositive(17aethinylestradiolor phenanthrene)controls

n decreasedexpressionof cyp1a inallsingle pharmaceuticaltreatments,butincreased expressioninhighmixturetreatment

n expressionof vtg decreasedinTamoxifen treatments

n ERODactivitydecreasedinloweribuprofen treatmentandincreasedinthehighmixture treatment

Noadditivetoxicitywas observed,butdifferences seeninbetweenthe individualandmixture treatmentssignifyingneedto includemixturetoxicity assessments. 28

TABLE1.1 Summaryofexamplestudiesdefiningpharmaceuticalpollutanttoxicityusingthezebrafishmodel. cont’d

PharmaceuticalsExposureparametersResultsImplicationsReferences

n Bezafibrate

n Caffeine

n Carbamazepine

n Clarithromycin

n Diclofenac

n Ibuprofen

n Sulfamethoxazole

n Triclosan

n paracetamol (acetaminophen)

n Ciprofloxacin

Embryonicexposure(2 50 hpf)

Singlepharmaceutical exposureat0.01,0.1,1,10, or100ppb

Low(1X),medium(10X),or high(100X)mixtureofall8 pharmaceuticals

Developmentalexposure (<3 96hpf)

Paracetamolat5,25,125, 625,or3125ppb

Ciprofloxacinat0.005, 0.013,0.031,0.078,0.195, or0.488ppb

Treatmentwaterrefreshedat 48hpf

n novisibleacutetoxicityforanysingleor mixturetreatments

n delayedhatchat72hpfforTriclosan(1ppb) andibuprofen(100ppb)

n decreasedswimmingspeedat100ppbof Triclosan,Clarithromycin,andthehigh mixturetreatmentat118hpf

n increasedswimmingspeedat100ppbof Carbamazepineat118hpf

n nondoseresponsemorphologicalalterations at48,72,and96hpfforparacetamol

n hyper-and/orhypoactivityobservedat144 hpfforparacetamolandCiprofloxacin dependentonphaseandconcentration

n paracetamolcausedincreaseinAChE,total GPx,andGSTactivity;alterationsinGSH metabolism;andincreasedlipid peroxidation

n CiprofloxacinresultedinincreasedAChE activityandadecreaseincatalaseactivity andlipidperoxidation

n increasedDNAmethylationfollowing paracetamolexposure

Delayedbehavioral alterationswereobserved forseveralpharmaceuticals andthehighmixture treatment. 29

Environmentallyrelevant concentrationsofthese pharmaceuticalsresultedin behavioralandbiomarker alterations,while morphologicalandDNA methylationchangeswere observedonlyfor paracetamol.

30

AChE:acetylcholinesterase; cyp1a:cytochromeP4501a; cyp19a2:cytochromeP45019a2; er-a:estrogenreceptor-alpha;EROD:ethoxyresorufin-O-deethylase; gnrh3: gonadotropinreleasinghormone;GPx:glutathioneperoxidase;GST:glutathionetransferase;hpf:hourspostfertilization;ppb:partsperbillion(mg/L); vtg:vitellogenin.

productsinsingularormixtureexposuresofacetaminophen,Carbamazepine, Gemfibrozil,orVenlafaxineinadultandembryoniczebrafishtomimic environmentallyrelevantconcentrations(Table1.1).First,singularexposures ofthefourpharmaceuticalswerecompletedinadultzebrafishandresultedin oocyteatresiaandalteredovarianhistologyinfemalesandalteredkidney histologyinbothsexes.24 LiverhistologywasalteredbyexposuretoacetaminophenorGemfibrozil,whileexposuretoCarbamazepinedecreased plasma11-ketotestosteroneinbothsexes.Noalterationswereobservedin developmentalabnormalitiesinoffspringfromparentalexposure,butembryonicexposuretoacetaminophencauseddevelopmentalabnormalitiesand increasedmortalitywasobservedforallfourpharmaceuticalsat0.5ppb.Ina secondstudybythesamegroup,25 amixtureofthefourpharmaceuticalsor dilutedeffluentfromwastewaterwherethesefourpharmaceuticalswerethe mostprevalentwasinvestigatedagaininzebrafishadultsandembryos (Table1.1).Exposuretothesesolutionsresultedinmanyofthesameperturbationsobservedbythesinglepharmaceuticalexposuresintheprevious study24 includingimpactstoovarianhistologyinfemalesandalteredkidney proximaltubulemorphologyinbothsexes.Directexposureinembryoscaused developmentalabnormalities,specificallyspinalmalformationsandpericardialedemawithincreasedembryomortalityinthehighestconcentrationofthe pharmaceuticalmixture.25 Furthermore,inathirdstudy,chronicparental exposuretoCarbamazepineorGemfibrozilat10ppbresultedinareductionin thenumberofclutchesinadultoffspring(F1)withadrug-specificeffecton spermmorphologyofadultmaleoffspring26 (Table1.1).Thisstudyshowed thataparentalexposurewassufficienttoresultinreproductiveeffectsintheir offspring.Anadditionalstudywiththesameexposureparameters(i.e., parentalexposurefor6weeksto10ppbCarbamazepineorGemfibrozil) furthersupportedthemultigenerationalfindingindicatingpaternalinfluence onsexualdifferentiationandmalereproductiveeffectsintheF1offspring.31 ThemalereproductiveeffectswerereportedtobelimitedtotheF1generation withnotransgenerationaleffectsobservedinsubsequentF2,F3,orF4generationswiththe10ppbGemfibrozilexposure(i.e.,6weeksintheF0generationonly).32

Developmentaltoxicityassessmentsincludingmorphometricsarebeing coupledtomolecularendpointstolinkgeneexpressionalterationsand phenotypicperturbations.Forexample,estrogen-relatedtranscriptanalysis wasappliedtoassessthedevelopmentaltoxicityoffivepharmaceuticals (Carbamazepine,Diltiazem,Fluoxetine,Gemfibrozil,andMetformin)reported tobethemostcommonandhighlyconcentratedinwatersamplescollected fromvariouslocationsinLakeMichigan.27,33 Assessmentswerecompleted forsingularpharmaceuticalexposuresandinmixtures.Nosignificantmortalityormorphologicalalterationswereobservedforanypharmaceuticalor pharmaceuticalmixtures,butsignificanttranscriptexpressionalterationsof estrogenreceptor-alpha(er-a),brainaromatase(cyp19a2),andgonadotropin Usingthezebrafishmodelsystemtoidentify Chapter|1 11

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.