Concepts and experimental protocols of modelling and informatics in drug design om silakari - Downlo

Page 1


ConceptsandExperimentalProtocolsofModelling andInformaticsinDrugDesignOmSilakari

https://ebookmass.com/product/concepts-and-experimentalprotocols-of-modelling-and-informatics-in-drug-design-om-

silakari/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Key Heterocycle Cores for Designing Multitargeting Molecules Om Silakari

https://ebookmass.com/product/key-heterocycle-cores-for-designingmultitargeting-molecules-om-silakari/ ebookmass.com

The Organic Chemistry of Drug Design and Drug Action 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/the-organic-chemistry-of-drug-designand-drug-action-3rd-edition-ebook-pdf/

ebookmass.com

Behaviour of Al6061-T6 alloy at different temperatures and strain-rates_ Experimental characterization and material modelling M. Scapin & A. Manes

https://ebookmass.com/product/behaviour-of-al6061-t6-alloy-atdifferent-temperatures-and-strain-rates_-experimentalcharacterization-and-material-modelling-m-scapin-a-manes/ ebookmass.com

Equity

and Full Participation for Individuals with

Severe

Disabilities: A Vision for the Future – Ebook PDF Version

https://ebookmass.com/product/equity-and-full-participation-forindividuals-with-severe-disabilities-a-vision-for-the-future-ebookpdf-version/ ebookmass.com

Relentless: Bad Reputation #2 1st Edition Katie Golding

https://ebookmass.com/product/relentless-bad-reputation-2-1st-editionkatie-golding/

ebookmass.com

Auditing & Assurance Services, 8th Edition Timothy Louwers

https://ebookmass.com/product/auditing-assurance-services-8th-editiontimothy-louwers/

ebookmass.com

Between a Rogue and the Deep Blue Sea (Seaside Society of Spinsters Book 2) Tabetha Waite

https://ebookmass.com/product/between-a-rogue-and-the-deep-blue-seaseaside-society-of-spinsters-book-2-tabetha-waite/

ebookmass.com

Transforming the Curriculum Through the Arts 2nd Edition Robyn Gibson

https://ebookmass.com/product/transforming-the-curriculum-through-thearts-2nd-edition-robyn-gibson/

ebookmass.com

Regenerating Regional Culture: A Study of the International Book Town Movement 1st Edition Jane Frank (Auth.)

https://ebookmass.com/product/regenerating-regional-culture-a-studyof-the-international-book-town-movement-1st-edition-jane-frank-auth/

ebookmass.com

Red Children in White America Ann Hill Beuf

https://ebookmass.com/product/red-children-in-white-america-ann-hillbeuf/

ebookmass.com

ConceptsandExperimental ProtocolsofModellingand InformaticsinDrugDesign

DepartmentofPharmaceuticalSciencesandDrugResearch, PunjabiUniversity,Patiala,India

PankajKumarSingh

DepartmentofChemistryandPharmacy,UniversityofSassari, Sassari,Italy

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2021ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical, includingphotocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthe publisher.Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefound atourwebsite: www.elsevier.com/permissions.

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroadenour understanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

ISBN:978-0-12-820546-4

ForInformationonallAcademicPresspublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: StacyMasucci

SeniorAcquisitionsEditor: RafaelE.Teixeira

EditorialProjectManager: SamW.Young

ProductionProjectManager: NiranjanBhaskaran

SeniorCoverDesigner: MarkRogers

TypesetbyMPSLimited,Chennai,India

1.2.1Cartesiancoordinate

1.2.2Polarcoordinate

1.5.1VanderWaalssurface(VWS)

1.5.2Solventaccessiblesurface

1.5.3Solventexcludedsurface

1.5.4Chargedpartialsurfacearea(CPSA)

2.2FundamentalprincipleofQSAR.....................................................................31

2.3.1Datapreparation

2.4.1TypesofQSARdescriptors

2.5.1GeneralguidelinesforderivationofHanschQSARmodel

2.8.1Comparativemolecularfieldanalysis(CoMFA)

2.8.2Comparativemolecularsimilarityindicesanalysis,(CoMSIA)

Chapter4:Databaseexploration:Selectionandanalysisof targetproteinstructures .....................................................................89

4.1Introduction........................................................................................................89

4.2Proteindatabases................................................................................................89

4.2.1UniProt:theUniversalProteinknowledgebase .........................................89

4.2.2ResearchCollaboratoryforStructuralBioinformatics ProteinDataBank(RCSBPDB) ..............................................................95

4.2.3Bindingdatabase ....................................................................................100

4.2.4Therapeutictargetdatabase ....................................................................101

Chapter5:Homologymodeling:Developing3Dstructuresoftarget proteinsmissingindatabases

5.1Introduction......................................................................................................107

5.2Methodologyofhomologymodeling..............................................................110

5.2.1Templaterecognitionandinitialalignment

5.2.2Alignmentcorrection ..............................................................................113

5.2.3Step3:Backbonebuilding .....................................................................113

5.2.4Loopmodeling

5.2.5Side-chainmodeling

5.2.6Ligandmodeling

5.2.7Modeloptimization

5.2.8Modelvalidation ....................................................................................117

5.3Softwareforhomologymodeling....................................................................118

5.3.1Robetta

5.3.2Modeller

5.3.33D-JURY

5.3.4Swiss-model

5.4Conclusion........................................................................................................121

Chapter6:Moleculardockinganalysis:Basictechniquetopredict

6.1Introduction:whatismoleculardocking?.......................................................131

6.2Theoryofdocking............................................................................................132

6.2.1Samplingalgorithms

6.2.2Scoringfunctions

6.3Typesofmoleculardocking............................................................................137

6.3.1Rigiddocking:rigidligandandrigidreceptordocking

6.3.2Constraineddocking:flexibleligandandrigidreceptor

6.3.3Flexibledocking:flexibleligandandflexiblereceptordocking

6.4Standardmethodologyformoleculardocking................................................139

6.5Softwaresavailableformoleculardocking.....................................................143

6.6Conclusion........................................................................................................145

Chapter7:Moleculardynamicsimulations:Techniquetoanalyzereal-time interactionsofdrug-receptorcomplexes

7.1Introduction......................................................................................................157

7.2PrinciplesofMDsimulations..........................................................................158

7.2.1Definitions

7.2.2CalculatingaveragesfromaMDsimulation

7.2.3Classicalmechanics

7.2.4Algorithms

7.3StepsofMDsimulations..................................................................................165

7.3.1Initialization

7.3.2Energyminimization

7.3.3Heatingthesimulationsystem

7.3.4Equilibrationataconstanttemperature

7.3.5ProductionstageofMDtrajectory(NVEensemble)

7.4ApplicationsofMDsimulationsindrugdiscovery........................................168

7.4.1Identifyingcrypticandallostericbindingsites

7.4.2Improvingthecomputationalidentificationof small-moleculebinders ...........................................................................169

7.4.3Advancedfree-energycalculationsusingMDsimulations

8.1Introduction......................................................................................................179

8.3Predictinglocationandnatureofwatermolecule:Tobeor

8.4Strategiestoidentifycavity“waters”..............................................................187

8.4.1Moleculardocking..................................................................................187

8.4.2Moleculardynamics ...............................................................................189

8.4.3Freeenergycalculations .........................................................................190

8.5Loopholesandlimitations................................................................................192

Chapter9:Ligand-basedpharmacophoremodeling:Atechniqueutilizedfor virtualscreeningofcommercialdatabases

9.2Methodologyofpharmacophoremodelingormapping..................................205

9.2.1Input:Datasetpreparationandconformationalsearch

9.2.2Conformationalsearch

9.2.3Featureextraction

9.2.4Patternidentification

9.2.5Scoringofthemodel

9.2.6Validationofpharmacophore

9.2.7Applicationsofpharmacophoremodeling

9.3Inprocessdeterminantsforqualitypharmacophoremodeling.......................213

9.3.1Molecularalignments

9.3.2Handlingflexibility

9.3.3Alignmentalgorithms

9.3.4Keyaspectsofscoringandoptimization

9.4.1Geometry-andfeature-basedmethods ....................................................216

9.4.2Field-basedmethods ...............................................................................225

9.4.3Pharmacophorefingerprints ....................................................................226

9.4.4ChemX/ChemDiverse,PharmPrint,OSPPREYS, 3Dkeys,Tuplets ....................................................................................226

9.4.5Othermethods ........................................................................................227

Chapter10:Fragmentbaseddrugdesign:Connectingsmallsubstructures forabioactivelead

10.3.1Fragment-basedmolecularevolutionaryapproach ..............................242

10.3.2Constructionanddeconstructionapproach

10.3.3Computationalfunctionalgroupmapping

Chapter11:Scaffoldhopping:Anapproachtoimprovetheexisting pharmacologicalprofileofNCEs

11.2.1Pharmacophoresearching

Chapter12:Hotspotandbindingsiteprediction:Strategytotarget

12.6.1Hot-spotpredictionbasedonthesequence

12.6.2Hot-spotpredictionbasedonthestructure

13.4.1SIFT

13.4.5PhD-SNP

13.4.6SNPs&GO

13.5.1PolyPhen

13.5.2SNPs3D

13.5.7SAPRED

13.5.8MutPred

14.2.1Solubilityandsolubilization

14.2.2Permeabilityandactivetransporters

14.3.1Absorption

14.3.3Blood

14.3.4Transporters

14.3.5Dermalandocularpenetration

15.1Introduction....................................................................................................321

15.2Strategiesforcomputerassistedpredictionofsyntheticschemes................322

15.2.1Templatelibrary-based

15.2.2Template-free

15.2.3Focusedtemplateapplication

15.3Approachestovalidateselectedsyntheticroute...........................................324

15.3.1Classifyingreactionfeasibility

15.3.2Predictingmechanisticsteps

15.3.3Rankingtemplates

15.3.4Rankingproducts

15.3.5Generatingproducts

16.3.4Principalcomponentsregression(PCR)

16.3.5Partialleastsquareregressionanalysis

16.3.6Geneticfunctionapproximation(GFA)

16.3.7Geneticpartialleastsquares(G/PLS)

Preface

ThemainreasonforproposinganewbookinthefieldofCADDisincreasingfocusof educationalinstitutiontowardsmolecularmodelingasakeyandrationalapproachfordrug discovery.Researchscholars,undergradstudentsandsometimeseventeachersofdrug designandmedicinalchemistrydonotreadilyfindbookstoguidetheirresearchideasand CADD-basedexperiments.Studentsaswellasteachersusuallygaintheoreticalknowledge viavariousbooksavailableinthemarketbuttheylackproperexperimentalapplicationof thesetools.Mostofthebooksavailableinlibrariesfocusonthetheoreticalconceptsof computer-aideddrugdesignanduseofmolecularmodelingingeneral.Thorough examinationofsuchbooksdisappointscholarsandteachersastheydonotprovideany insightintotheactualapplicationofthesetheoreticalconceptsintosolvingresearch problems.Eventhebooksprovidingdiscussionaboutdifferentsoftwaresutilizedin in-silico analysisfailinprovidingtheclearguidelinestoa“lay-man”,toutilizethem.Therefore,we wantedtowriteabookthatreflectsontheissuesfacedbyresearchersinthepractical applicationofconceptsofCADD,ratherthanatheorybookondefinitionsandexplanations ofCADD.Thisbookwillbeahandbookforpracticalapplicationsofdifferentin-silico toolsavailabletodayalongwithvariousinformationabouthardwareaswellaslistof softwarescommonlyemployedinCAMM.

Ofallthecurrenttrendsinmedicinalchemistry,CADDbasedstudiesaremostcommon andrationaleapproach.Moreimportantlythecorrectutilizationofsuchtoolsisimportant toobtainreliableresultsandthereforetheuser,whichcouldbeanyonefromanundergrad studenttoadoctoralfellow,shouldbewell-versedabouttheapplicationofsuchtoolsand techniques.Additionally,experienceinsolvingtheproblemarisingduringperformingan analysisisnecessary.Weweregreatlyintriguedbythevastapplicationofferedbythisfield andbelievethatresearcherswouldbenefitmorefromabookthatprovidesampleexercises ineachchaptertoguideanenduserinpractisingaCAMMexerciseonanyandevery softwarepackage/onlineservers.Userscanre-performthegivenexerciseswhichwillhelp theminunderstandingthecorrectinterpretationincontextoftheirstudy.

SuchabookcanfacilitatetheactualapplicationofmultipleCAMMbasedapproaches employedintheprocessofdrugdesigning.EachuserwhoutilizeaCAMMbasedtoolsdo notactuallyhavesetstandardtocomparehis/herobtainedresults.Thisbookwillprovide userswithastandardprotocolandresultswhichcanbeutilizedtovalidatetheirownresults andwillaidinbuildingconfidenceovertheobtainedresults.

Wealsokeptinmindthatinformationregardingthegeneralprinciplesassociatedwiththe basicconceptsofmolecularmodelingisalsoimperativeforthebooktobecomea significantpieceofliterature.Weaimedatanapproachthatwouldmakesenseandappeal totoday’sresearchscholars.Thusweincorporatedasubsectionineachchapterthat specificallyunderstatedtheupdateinthecurrentknowledgeineachtoolsandtechniqueof thisfield.Toavoidcomplexityindiscussions,wehaveprovidedgraphicalrepresentations ofgeneralprotocolfollowedineach in-silico techniquefordrugdesigning.Wehave deliberatelyomitteddetaileddiscussionofobscuretheoreticalprinciplesandhaveonly focussedonsimpleexplanationsandinformationonhowtoutilizecomputersandartificial intelligenceintheprocessofdrugdesign.Thisbookwillalsohelpthereadersin understandingtheutilityoffreelyavailablesoftwaretoolsforthepurposeofunderstanding thecomplexprocessofidentificationofasuitabledrugforapathologicalconditionand theirdevelopment.

Eachchapterwilldiscussthebasicprotocolsutilizedintheprocessofleadidentificationto optimizationandfinallypredictionofitsmechanismofaction.Thebookwillprovideaset exercisewhichcouldbeutilizedbytheresearchertooptimizeandvalidatethetool employedbyhim.AdditionallythisbookwillprovidegoodnumberofexercisestoUG students(B.Pharm,B.Tech(bioinformatics),BSc(bioinformatics),BSc(biotechnology), BSc(biochemistry))andPGstudents(M.Pharm(allstreams),MSc(bioinformatics)), valuabletotrainthemfortheirpracticalapplications.Thus,thisbookmayservewelltothe beginnersofmolecularmodeling.Itmaybefollowedbythegraduatestudenttogainbasic knowledgeaboutthetoolsandrouteexercisesofmolecularmodeling.

Acknowledgment

Authorswouldliketothank Dr.BhawnaVyas,ResearchAssociate,Departmentof Chemistry,PunjabiUniversity,Patiala, Ms.ShalkiChoudhary,SeniorResearchFellow, DPSDR,PunjabiUniversity,Patialaand Ms.HimanshuVerma,SeniorResearchFellow, DPSDR,PunjabiUniversity,Patiala,fortheirprovidingassistanceandsuggestionswhile compilingthisbook.Authorsarealsoindebtedtothesupportive,andatthesametime critical,facultymembersofthedepartmentofPharmaceuticalSciencesandDrugResearch.

Authorswouldalsoliketoacknowledgethesupportandguidancefrom SamuelYoung, EditorialProjectManager,Elsevierand RafaelTeixeira,AcquisitionsEditor,Cancer Research/Oncology,MedicalInformatics/Bioinformatics,SystemsBiologyandBiostatistics, Elsevier,alongwithothermembersoftheeditorialteamatElsevier.Finally,thetimespent onthepreparationofthisbookwasmadeavailableonlywiththeforbearanceofour families,friends,andresearchgroups,andwethankallofthemfortheirpatienceand understanding.

Aspecialmentionto Prof.MarioSechi,DepartmentofChemistryandPharmacy, UniversityofSassari,Sassari,Italy,forhisconstantguidance,supportandforprovidingan excellentenvironmentduringtheexecutionofthiswork.

Fundamentalsofmolecularmodeling

1.1Molecularmodeling

Molecularmodelingdescribesthegeneration,representationand/ormanipulationof3-D structureofchemicalandbiologicalmolecules,alongwithdeterminationofphysicochemical propertiesthatcanhelptointerpretstructuralactivityrelationship(SAR)ofthebiological molecules.Molecularmodelingprovidesscientistwithfivemajortypesofinformation.

a.The3Dstructureofmolecules

b.Thechemicalandphysicalcharacteristicsofthemolecules

c.Comparisonofstructureofamoleculewithotherdifferentmolecules

d.Visualizationofcomplexesformedbetweendifferentmolecules/macromolecules

e.Predictionabouthownewrelatedmoleculesmightlook

Fortheanalysisofexponentiallyincreasingdataobtainedthroughtheintroductionofautomated wholegenomeandproteinsequencingtechniques,intheearly2000s,thefieldofbioinformatics emergedrapidly [1].Fromthepioneeringlaboriousmappingandcomparisonofproteinand genesequencesinmolecularbiology,viaanintensephase,whichtoalargeextentcanbe viewedas‘databasemining’andthedevelopmentofefficientcomputerbasedalgorithms,intoa scienceofitsown,whichtodayhasreachedahighlevelofmaturityandsophistication.Tools inbioinformaticsarenowadaysusedwithgreat successinstructuralbiology,computational chemistry,genetics,molecularbiology,pharmaceuticalindustry,pharmacologyandmore.In thischapter,abriefoutlineofthebasicsofmolecularmodelingisgiven,focusingonthe interfacesbetweenmedicinalchemistry,pharmacology,computationalchemistry,informatics, artificialintelligenceandmachinelearning.Thisincludesmolecularrepresentations,computer graphics,molecularsurfacesandtheirprinciplessuchasmolecularmechanics/quantum mechanics/moleculardynamics [2].Theaimistoprovideabriefintroductiontoavastand rapidlygrowingfield.Insubsequentchapters,morespecializeddrugdesigningtoolsand techniquesarepresented,thatbuilduponthefoundationsgivenherein.

1.2Molecularrepresentation

Oneofthemostbasicandusuallyignoredcomponentofmolecularmodelingstudyis representationofthemolecules.Sincethebeginningofthemolecularmodelingstudies

therehavebeenseveralrefinementinthemethodsutilizedtorepresentmoleculesin insilico studies.Torepresent3Dstructureofamoleculeandelectronicpropertiesassociated withit,certaincoordinatesystemsarerequired.Followingcoordinatesystemaregenerally usedformolecularrepresentation.

1.2.1Cartesiancoordinate

InCartesiancoordinatesystem,twoperpendicularlinesarechosenintheplaneandthe coordinatesofapointaretakentobeassignedasdistancestothelines(Fig.1.1A).

Similarlyfor3-Drepresentationofmolecules,threeperpendicularplanesarechosenand threecoordinatesofapointareassignedasdistancestoeachoftheplanes(Fig.1.1B). Dependingonthedirectionandorderofthecoordinateaxisthesystemmaybearighthand oralefthandsystem(Fig.1.1C) [3].Thiscoordinatesystemisimportanttounderstandthe orientationofthemoleculesinmolecularspaceoncomputerasin Fig.1.1B and 1.1C. orientationsofchairconformationsofcyclohexanearedifferentastheirCartesian coordinatearedifferent.

Figure1.1

Coordinatesystemforrepresentationofamolecule:Cartesian(A)2D,(B)&(C)3Dand(D) polarcoordinate.

1.2.2Polarcoordinate

Inthissystem,apointischosenasthepoleandarayfromthispointistakenas thepolaraxis.Foragivenangle θ,thereisasinglelinethroughthepolewhose anglewiththepolaraxisis θ.Thenthereisuniquepointonthislinewhosesigned distancefromtheoriginisrforgivennumberr.Foragivenpairofcoordinates (r, θ)thereisasinglepoint,butanypointisrepresentedbymanypairsof coordinates.Forexample,(r, θ),(r, θ 1 2 π)and(-r, θ 1 π)areallpolarcoordinates forthesamepoint( Fig.1.1D ) [1]

1.2.3Internalcoordinate

Amorechemicallyintuitivewayofwritingthecoordinatesistousetheinternal coordinatesofamolecule(i.e. bondlengths,bondanglesandtorsionangles).Internal coordinatesareusuallywrittenasaZ-matrix [1].HereisanexampleofaZ-matrix,for ethene(C2H4):

˚ )Bondangle( )Torsionangle( )

ThefirstlineoftheZ-matrixdefinesatomnumber1(carbon).Atom2isalsoa carbonatom,andisatadistanceof1.31A ˚ fromatom1(theapproximatelengthof acarbon-carbondoublebond).Thethirdcolumndefinestheatomtowhichthe distanceincolumn4refers,i.e.atom3(ahydrogen)is1.07A ˚ fromatom1(the lengthoftheC-Hbond).Similarlytheatomnumbersincolumns5and7define whichatomsareinvolvedinthebondangleandtorsionangle(valuesgivenin columns6and8respectively).So,forexample,atomnumber6isahydrogen.Itis 1.07A ˚ fromatom2,thebondangleinvolvesatoms6-2-1,andthetorsionangleis foratoms6-2-1 4.Allthetorsionanglesare180 ,showingthatthemoleculeis planar.Thissystemofcoordinateisrequiredtogenerateuniqueconformationofa molecularsystemo ncomputerscreen.

1.3Computergraphics

Computergraphicsdisplayareeithervectororraster.Rasterimages,alsoknownas bitmaps,arecomprisedofindividualpixelsofcolor.Eachcolorpixelcontributestothe

overallimage.Rasterimagesmightbecomparedtopointillistpaintings,whichare composedwithaseriesofindividually-coloreddotsofpaint.Eachpaintdotinapointillist paintingmightrepresentasinglepixelinarasterimage.Whenviewedasanindividualdot, it’sjustacolor;butwhenviewedasawhole,thecoloreddotsmakeupavividanddetailed painting.Thepixelsinarasterimageworkinthesamemanner,whichprovidesrichdetails andpixel-by-pixelediting.Unlikerastergraphics,whicharecomprisedofcoloredpixels arrangedtodisplayanimage,vectorgraphicsaremadeupofpaths,eachwitha mathematicalformula(vector)thattellsthepathhowitisshapedandwhatcoloritis borderedwithorfilledby.Sincemathematicalformulasdictatehowtheimageisrendered, vectorimagesretaintheirappearanceregardlessofsize.Theycanbescaledinfinitely. VectorimagescanbecreatedandeditedinprogramssuchasIllustrator,CorelDraw,and InkScape [4]

OnvectordisplaysthelinesmakinguptheimagearetracedonthefaceoftheCRT.The linesarecontinuousstrokesandappearverystraightandsmooth.Howeveronlylinesand dotscanbedrawnonvectorsystems.Filledareassuchasmolecularsurfaces,mustbe representedbymanycloselyspacedlinesordots,whichaddsgreatlytothecomplexityof theimage.Onrasterdisplays,theCRTisrepeatedlyhorizontallyscanned,asonatelevision screen.Theimageismadeupofdiscretepixels.Linescanappearjagged,dependingonthe resolutionoftheCRTbeingused.Becauseofthepixelsmethodusedinrastersystem,filled areasaremorereadilydrawnonthesesystemsthanonvectorsystems [5]

1.4Molecularmodels

ThesimplesttypesofmodelsareCPK,dreidingmodelsandcomputermodels,which provideabetterwaytorepresentmolecules.

1.4.1CPKmodels

CPKmodelsarephysicalmodelsinwhichacolorcodedmolecularmodelassemblykitis providedforrepresentingorganicmolecularstructures(Fig.1.2) [6].Thesemodelsconsist ofshapescomprisingtwobasicandcomplementaryconstructionunitscapableofbeing interlocked.Thebasicconstructionunitsarecolorcodedplastictubeswhichcanbecoupled tosecondbasicconstructionunits,representingthebondsbetweenadjacentatoms.The secondbasicconstructionunitsarecolorcodedcouplingspheres,accordingtothevalency oftheatomstobejoined,thecenterofsaidcouplingsphererepresentatomcenters.These couplingsphereshaveradialarmssubstantiallylocatedonthesurfaceofaspherewiththe centerofthecouplingunitbeingthecenterofthesphere.Theseunitsaremadeupof plasticandareoftwotypes,onetypeadaptedforplanar-trigonalcouplingofthreesaid tubesseparatedbyanglesofabout120 andtheothertypeadaptedfortetrahedralcoupling

CPKmodelrepresentationofquinazolinemolecule.

offoursaidtubesseparatedbyanglesofabout109 .Saidfirstandsecondconstruction unitsarecapableofbeingjoinedtogetherandheldimmobilebyfrictionbyhavingsaid radialarmsand/orthecavitiesofsaidtubestaperedsothatskeletalmodelsofcomplex organicmacromoleculesmaybeassembledsuchthatthedistancebetweenthecentersof twodirectlyconnectedcouplingmeansrepresentsthedistancebetweenjoinedatoms [7]. Thesemodelsgiveagoodrepresentationoftheshapeofamolecule.Theycanbe manipulatedtoproducevariousconformationsofthemolecule.Buttheycannotbeusedto presentelectronicpropertiesofmoleculesandtheycannotbesuperimposeduponone anothertocomparemolecularconformationandshape.Thebondlengthsandanglescannot beadjustedinthesemodels.

1.4.2Dreidingmodels

Dreidingmodelsarephysicalmodelsthatusethinmetalorplasticrodstorepresent bonds [8].Bondlengthsandanglesarefixed,althoughrotationsaroundbondscanbeeasily done.Onecanalsodemonstratethereadyconversionofoneboatformintoanotherand thenstophalfwaybetweenthetwoandpreservethetwistform.Selectionofappropriate ballsanduseofrubbertubingconnectorstoformdoublebondsandC3-C4cycloalkanes permitsconstructionofnumerousinterestingcisandtransolefins,opticallyactiveallenes, andsmallring-compounds,insomeofwhichopticalisomerismissuperimposedon geometricalisomerism.However,theygiveapoorrepresentationofmolecularvolumeand cannotbeusedtoshowelectronicproperties.Dependingonthecomplexityofthemodel, theycouldpossiblybesuperimposedupononeanotherforcomparisonofmolecular conformation(Fig.1.3).

Figure1.2

Dreidingmodelrepresentationofquinazolinemolecule.

Figure1.4

Computermodelrepresentationofligandproteincomplex.

1.4.3Computermodels

Computermodelscanbeusedtodrawavirtuallylimitlessvarietyofmolecular representationsfromstickfigurestomolecularsurfaces(Fig.1.4).Computergraphics modelscanalsoveryreadilybeusedtorepresentelectronicpropertiesofmolecules.These modelscanbeeasilysuperimposedandaccuratelyconstructedusinganybondlengths, anglesandtorsionangles.Elementsarecolorcodedandcaneasilyberecognizedonthe basisofcolorassignmenttothatparticularelement(Fig.1.5).

Figure1.3

Figure1.5

Filledcolorcodedcomputermodelrepresentationofligand.

Adisadvantageofcomputermodelsisthattheyarenotphysical,threedimensionalmodels. Thuscomputermolecularmodelingtoolsportrayimagesinawaythatseemsthree dimensional.Initiallythemodelsweredrawnoncathoderaytubes(CRTs)usingspecial purposecomputerhardware.InCRTstheimageswerelimitedtotwodimension.Thethird dimensionwasrealizedbyrapidlydisplayingslightlydifferenttwodimensionalimages.In thismethod,timewasusedasaparametertorepresentthirdCartesiandimension.This techniqueisreferredtoasreal-timegraphics.Anothertechniqueusedtogivegraphicsa threedimensionallookinvolveddrawing“infront”partsofimagemorebrightlythanparts whichare“inback”.MoreupdatedcomputergraphicsystemssuchasPS350andthesilicon graphicsIRISworkstationallowedtocombinethetechniquesofreal-timegraphics, stereographicsandintensitydepthcuingtoproducea3-Dimagewithmultiplecolors.

1.5Molecularsurfaces

Molecularsurfaceisafundamentalaspectofastructureasitisthroughthecomplementarity ofshapeandchemistryofthesurfacethatmoleculesinteractwitheachother.Themolecular surfaceisdefinedas‘thesurfaceincontactwithaprobespherewhilethesphererollsover thesurfaceofthemolecule.Morerecentlytheincreasingpowerofarastergraphicssystem allowsmorecompleximagestobeviewedinteractivelyandthishasledtothedevelopment ofmanytechniquesforrepresentingsolidmolecularsurfaces(Fig.1.6).

Inmodelingofamacromoleculesuchasprotein,DNA,RNAetc.andsmallmoleculeswith biologicalsignificance,eachconstituentatomisconsideredasasimplespherewithitsVan derWaalsradius.Thevisualizationorsimulationsoftheseoverlappingballscanbedone bysurfacemeshgenerationtechnique,wheretheshapequalityoftheseoverlappingballs hasastronginfluenceonsimulationaccuracy [9].Therearemainlythreetypeofmolecular

Representationofdifferentmolecularsurfaces.

surfacesthatplaysimportantroleindrugdesigningprocesssuchasvanderwaalssurface (VWS),solvent-accessiblesurface(SAS)andsolventexcludedsurface(SES).

1.5.1VanderWaalssurface(VWS)

VWSsimplyrefertotheunionofallpossibleoverlappingballs.Theinteractionsofthese surfacesareimportantinvariouschemicalandbiologicalprocessessuchasformationofa tertiarystructureofbiopolymer,electrontunnelinginproteincrystalsetc.Theprobablerole ofweakVWSinteractionsonreactiondynamicsisanissueofgreatconcern [10].Usually, forthemacromoleculessuchasproteinsandnucleicacid,VWSmaybeburiedwithinthe interiorofthemolecule.vanderwaalSurfaceboundmoleculesareheldtogetherbyweak attractiveforceslikedispersive,electrostatic,chargetransferandhydrogenbondinteraction betweenclosedshellatomsormolecules,andmoleculesboundtoeachotherbythesetype ofattractiveforcespossesslowdissociationenergies.Theunderstandingofbothreactive andnon-reactivedynamicsinVWScomplexesrequiresdetailedinformationonpotential energies [11].TheVWradiiofeachspherevariesslightlywithitscovalentbonding environmentandtheseradiiareneededfortheevaluationofproteinvolume,interior packingandalsothepackingattheprotein-waterinterface [12].

1.5.2Solventaccessiblesurface

Thesolventaccessiblesurfacecanberecognizedasthesurfacecreatedbythecenterofthe solventthatisregardedasarigidsphere,whenitrollsaroundthevanderWaalssurface.

Figure1.6

ThistermwasinitiallycoinedbyRichardandLee,whengoingthroughastudyon proteininteractions [13] .Theywereinterestedinanaly singtheinteractionofprotein withthesolventmoleculestodeterminethehydrophobicityandfoldingofproteins.In ordertoobtainmolecularsurfacethatasolventcouldaccess,aprobesphereismadeto rolloverthevanderWaalsurface,andthetracesofcenteroftheprobespherebest describetheSAS [14] .SAShasbecomeacommonthreadformostoftheresearchers especiallyinthecaseofthenon-polarmolecules,asthefreeenergyofaqueoussolvent isproportionaltoSAS,whichinturnproportionaltothenumberofsolventmolecules thatareincontacttothesolutemolecule.Thus,SASisacentralquantityinseveral solvationmodelsusedinmolecularmechanics(MM) [15] .Thissurfacecanbeusedto determinetheaminoacidenvironmentener gywhichdependsonanaccurateandrapid estimationofSAS.Itcanalsobeusedtocomp utepartitioncoefficient(logP),whichis animportantparameterextensi velyusedinstudyingthestructural-biologicalactivity. Further,inmolecularmodelingstudy,thei nteractionsofthecompoundwithnon-polar phasecanbedeterminedbyutilizingSASinformationboth invitro and invivo [16] . Theconstructivesolidoperationgeome tryoperationcanbeappliedforthe representationofSASandtheimplicitfunc tionsunderlyingthemolecularsurfacecan bedefinedthroughsomestepsasdisplayedin Fig.1.7 .Thefirststepissignchangeof thesefunctions,thenidentificationofato msanddefinitionoffunctionusedforthemap evaluationofmolecularsurfaceandeventuallytheclusteringofatoms.Function f SAS (.)canbecomputedbyaddingthecontributionofthoseatoms[(C i ,R i )] i εI ζ I thatbelong tothesphereofcenterxandradius2r,whichisaconstructivesolidgeometry operation [17] .

1.5.3Solventexcludedsurface

Solventexcludedsurface(SES)isoneofthemostpopularsurfacedefinitionsinthe fieldofbiophysicsandmolecularbiology.Itisdividedintotwopartsi.e.contact surfaceandthereentrantsurface.Thecontactsurface,asapartofthevanderWaals surfaceofeachatomisaccessibletoaprobesphereofagivenradius.Thereentrant surfaceisdescribedastheinward-facingpart oftheprobesphere,whileincontactwith morethanoneatom [13] .Later,Connollydevelopedthema thematicalrepresentationof theSESforarbitrarybiomoleculesintermsofconcavepatches,saddlepatches,and concexsphericalpatches [18] .Amongtheseregions,theconvexcontactsurface segmentofthevanderWaalssurfacepossessdirectcontacttothesolventsurrounding thesystem,andtheconcavere-entrantsurfacesegmentinwhichsolventspherehas contactwithtwoormoreatomsspheresofthestructure.CannollyrepresentationofSES isstandardtoolinmolecula rmodelingthatallowsquan titativeandqualitative comparisonofmolecules [14] .Theactualrepresentationofsolventexcludedsurfacesis displayedin Fig.1.8 .

Figure1.7

Stepsinvolveddefiningimplicitfunctionsunderlyingmolecularsurface.

1.5.4Chargedpartialsurfacearea(CPSA)

Thephysicalandchemicalpropertiesofchargedpartialsurfaces(CPSAs)playimportant roleinspecificityandselectiveinteractionsofligandwithprotein.CPSAsweredeveloped togettheinformationaboutthemolecularstructurethatinturnhelpindeterminingthe intermolecularinteractionsforQSAR.Practically,itisusefultoascertainthetoxicityand givedescriptionoflocalandglobalelectrophilicityinnon-covalentinteractions.CPSA descriptorshavebeenusedindistinguishingtheantagonistandagonistthatbindtoestrogen receptors.Thesedescriptorsalsohaveutilityindeterminingpartialchargeand conformationalchanges [19].Chargedpartialsurfaceslikehydrophilicandhydrophobic surfaceareahavetheirutilityinvariousphenomenonrelatedtoproteinadsorption.Usually, absorptionfromhydrophobicsurfacesismoreeffectivethanhydrophilicsurface.Notonly theadsorption,butalsosomeoftheproteinexchangeprocessesoccurswithmoreeaseover thehydrophobicsurfacesthanthatofhydrophilicsurfaces.Thereisastrongcorrelationof

targetselectivitywithphysicalandchemicalpropertiesofthesesurfaces [20].The modulationinhydrophobicsurfacecanbeachievedbysomeofthefactors,oneofthemis temperature.Temperature,asoneofthefactortoinduceexposureofhydrophobicsurface wasidentifiedbystudyingitseffectonthechaperoneactivityof α-crystallin [21].

1.6Workstations

Usuallyvectorsystemsarepreferredbymolecularmodelersbecauseoftheirspeedandhigh qualityoflinedrawing.Sincethesevectorsystemsusespecialpurposehardware,theyhave beenmoreexpensivethanrastersystemsandareusedasdisplaydevicesseparatefromthe hostcomputerwhichbeingusedtostoreandmodifymolecularcoordinates.However, nowadaysnewcomputergraphicworkstationshavebeenintroduced,whichincluderaster systemshavingacomputerwithfulloperatingsystemandmassstoragefacilityintegrated withthegraphicdisplay.

1.6.1GPUhardware

Thegeneralpurposegraphicsprocessingunit(GPU)computationalresourceisveryfastand hasalsobecomeverypopular.Itisstronglydependentonthehardware.Manycomputers haveGPUboardsthatareusedmainlyforgraphics.ToutilizetheGPUforanapplication program,wemustuninstalltheGPUgraphicsdriversoftwareandinstallCUDA,a computerlanguageforusewithGPU.MostoftheGPU-MDprogramsadoptCUDAfor

Figure1.8
Representationofmolecular/solvent-excludedsurface.

GPUcomputations.TheslotnumberofeachGPUboardinthecomputermustbeexplicitly indicatedinCUDA.Everyyear,newGPUhardwarehasappearinthemarketwithupdated CUDAversion.TheGPUprogramshouldbetunedupforeachGPU,sincetheperformance ofGPUprogramsdependsonthebalanceofthenumberofGPUcoresandmemory-band width.IncontrasttoCPUs,whichareusedforallapplicationprograms,theapplicationof GPUisquitelimited.ThismeansthattheGPUisusedonlywhentheGPUprogramsare available.

GPUcomputingisparticularlysuitabletorunmoleculardynamicssimulationprogramslike AMBER,Gromacs,NAMDandpsygene-G/myPresto.SomeoftheseGPUprogramsare freelyavailable.However,oneofthemostseriousproblemsforendusersishowtosetup theGPUmachinefortheseMDprograms.Theotherproblemisthatthesystemsizeforthe GPUcomputationmustbelargerthantheminimumsizethatisdeterminedbytheprogram. SincemostGPUprogramsadoptaspace-decompositionmethodforparallelcomputing,the systemmustbedecomposedintosubsystems.ThismeansthattheMDofasmallsystem (likeasinglemolecule)isnotsuitableforGPUcomputing.

1.7Principlesofmolecularmodeling

Modelingofmoleculesforunderstandingvarioustypesofmolecularphenomenonrelatedto chemistry,biochemistry,biophysics,molecularbiology,drugdiscoveryanddrugdesign, pharmacogenomics,pharmacologyetc.isbasedoncalculationofdifferentkindsofenergy associatedwithamolecularsystem.Amolecularsystemisassociatedwiththreetypesof energiesi.e.potentialenergy,kineticenergyandquantumenergy.Calculationand applicationoftheseenergiesdependuponthetypeofworktobeexecutedinproblems whichareunderconsideration.Differentfundamentalprincipleshavebeenemployedto calculatethesethreedifferentkindsofmolecularenergies.Potentialenergy,kineticenergy andquantumenergycanbecalculatedbyapplyingtheconceptsofmolecularmechanics (MM),MolecularDynamics(MD)andQuantumMechanics(QM)respectively.Nowbrief accountaboutthesethreeconceptsarediscussedinnextsections.

1.7.1Molecularmechanics

Molecularmechanicstreatsthemoleculeascollectionofatomsheldtogetherbyspring. ThisassumptionismadetoapplyNewtonian’smechanics(Huck’slawofmechanics)for calculatingpotentialenergyofmolecularsystembyconsideringatomsheldtogetherby elasticorharmonicforces.Theseforcescanbedescribedbypotentialenergyfunctionsof structuralfeatures(internalcoordinates)likebond-length,bond-anglestorsionalangleand non-bondedinteractionsofamolecule.Non-bondedatoms(greaterthantwobondsapart) interactthroughvanderWaalsattraction,stericrepulsion,andelectrostaticattraction/

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Concepts and experimental protocols of modelling and informatics in drug design om silakari - Downlo by Education Libraries - Issuu