Computer aided drug design (cadd): from ligand-based methods to structure-based approaches mithun ru

Page 1


ComputerAidedDrugDesign(CADD):FromLigandBasedMethodstoStructure-BasedApproachesMithun Rudrapal

https://ebookmass.com/product/computer-aided-drug-designcadd-from-ligand-based-methods-to-structure-basedapproaches-mithun-rudrapal/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Research Design: Quantitative, Qualitative, Mixed Methods, Arts Based, and Community Based Participatory Research Approaches 1st Edition, (Ebook PDF)

https://ebookmass.com/product/research-design-quantitativequalitative-mixed-methods-arts-based-and-community-basedparticipatory-research-approaches-1st-edition-ebook-pdf/ ebookmass.com

Benzodiazepine-Based Drug Discovery Farzad Zamani

https://ebookmass.com/product/benzodiazepine-based-drug-discoveryfarzad-zamani/

ebookmass.com

Piperidine-Based Drug Discovery Ruben Vardanyan

https://ebookmass.com/product/piperidine-based-drug-discovery-rubenvardanyan/

ebookmass.com

Introduction to Computing Using Python: An Application Development Focus, 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/introduction-to-computing-using-pythonan-application-development-focus-2nd-edition-ebook-pdf-version/

ebookmass.com

Cultivating Democracy: Politics and Citizenship in Agrarian India Mukulika Banerjee

https://ebookmass.com/product/cultivating-democracy-politics-andcitizenship-in-agrarian-india-mukulika-banerjee/

ebookmass.com

It Cannoli Be Murder Catherine Bruns [Bruns

https://ebookmass.com/product/it-cannoli-be-murder-catherine-brunsbruns/

ebookmass.com

Introduction to the Hebrew Bible: Third Edition

https://ebookmass.com/product/introduction-to-the-hebrew-bible-thirdedition/

ebookmass.com

Integration with Complex Numbers : A Primer on Complex Analysis Aisling Mccluskey

https://ebookmass.com/product/integration-with-complex-numbers-aprimer-on-complex-analysis-aisling-mccluskey/

ebookmass.com

Fire:

A Hutton Family Romance Brooks

https://ebookmass.com/product/fire-a-hutton-family-romance-brooks/

ebookmass.com

https://ebookmass.com/product/purchasing-and-supply-chain-managementseventh-edition-arjan-j-weele/

ebookmass.com

ComputerAidedDrug Design(CADD):From Ligand-BasedMethods toStructure-Based Approaches

MithunRudrapal

DepartmentofPharmaceuticalChemistry,RasiklalM.DhariwalInstituteof PharmaceuticalEducationandResearch,Pune,Maharashtra,India

ChukwuebukaEgbuna

NutritionalBiochemistryUnit,AfricaCentreofExcellenceinPublicHealth andToxicologicalResearch(ACE-PUTOR),UniversityofPort-Harcourt, PortHarcourt,RiversState;DepartmentofBiochemistry,Chukwuemeka OdumegwuOjukwuUniversity,Uli,Anambra,Nigeria

Elsevier

Radarweg29,POBox211,1000AEAmsterdam,Netherlands

TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates

Copyright©2022ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangements withorganizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,can befoundatourwebsite: www.elsevier.com/permissions

Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers, includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproducts liability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products, instructions,orideascontainedinthematerialherein.

ISBN:978-0-323-90608-1

ForinformationonallElsevierpublications visitourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: SusanDennis

EditorialProjectManager: KyleGravel

ProductionProjectManager: KumarAnbazhagan

CoverDesigner: GregHarris

TypesetbySTRAIVE,India

1.Introductiontodrugdesignanddiscovery

1Definitionandconceptofdrugdesignanddiscovery 1

2Historicalperspectivesofdrugdiscovery 2

3Process,strategies,andstagesofdrugdiscoveryand development 4

3.1Discoveryphase5

3.2Preclinicalphase5 3.3Clinicalphase6

3.4Approvalandpostapprovalphases7

4Traditionalandmodernapproachestodrugdiscoveryand development 7

4.1Virtualscreening7

4.2High-throughputscreening8

4.3Phenotypicscreening8

4.4Structure-baseddrugdesign8

4.5Fragment-baseddrugdesign8

4.6Ligand-baseddrugdesign9

5Rationaldrugdesign(RDD)andCADD 9

5.1Structure-baseddrugdesign(SBDD)10

5.2Ligand-baseddrugdesign(LBDD)11

2.Fundamentalconsiderationsindrugdesign

ManojKumarMahapatraandMuthukumarKaruppasamy

1Fundamentalsofrationaldrugdesign(RDD) 17

1.1Rationaldrugdesign17

1.2Structure-baseddrugdesign(SBDD)18

1.3Ligand-baseddrugdesign(LBDD)19

2Conceptsofphysicochemicalproperties 19

2.1Structuralpropertiesandstereochemistry20 2.2Drugreceptorsandreceptortheories21

2.3Pharmacokineticsandpharmacodynamics22

2.4SARsandQSARs23

2.5Prodrugsanddrugmetabolism23

2.6Metaboliteantagonismandenzymeinhibition24

2.7Nucleicacid-baseddrugdesign25

2.8Leadcompounds25

2.9Peptidomimeticsandanalogdesign26

2.10Reversepharmacologyanddrugrepurposing strategies26

3Fundamentalsofcomputer-aideddrugdesign(CADD) 27

3.1Structure-baseddrugdesign(SBDD)28

3.2Ligand-baseddrugdesign(LBDD)36

3.3Virtualscreeningtechniques39

3.4ADMEanalysisandmeasuresofdrug-likeness45

3.Ligand-baseddrugdesign(LBDD)

VivekYadav,JurnalReang,Vinita,andRajivKumarTonk 1Introduction 58

2Randomandnonrandomscreening 58

2.1Drugmetabolismstudies59

2.2Serendipitymethod59

2.3Clinicalobservations60

3Drugdiscoveryprocess 60

3.1Ligand-baseddrugdesign(LBDD)61

3.2Structure-baseddrugdesign(SBDD)61

4Combinatorialchemistry 61

4.1Unbiasedlibrary62

4.2Biasedlibrary62

5Leadmodificationsandoptimizationapproaches 63

5.1Pharmacophore63

5.2Structure-activityrelationships(SARs)63

6Stereochemistryofdrugmolecules 64

6.1Importanceindrugaction65

6.2Stereoselectivityindrug-receptorinteraction66

6.3Stereospecificaspectsindrugdesign67

6.4Stereochemistryinbiologicalprocesses68

6.5Significanceofstereoselectivity69

7Bioisosterism 69

7.1Needanduseofbioisostericreplacements70

7.2Classificationofbioisosterism71

8Drugmetabolism 73

8.1Objectives74

8.2Prodrugs75

8.3Retrometabolism-baseddrugdesign(RMDD)80

9Virtualhigh-throughputscreening(vHTS) 85

9.1Toolsforvirtualhigh-throughputscreening(vHTS)85

9.2Techniquesforvirtualhigh-throughputscreening (vHTS)86

9.3Lipinski’srule88 9.4Veberrule88

9.5ADMETscreening89

9.6Toxicityprediction90

9.7Docking-basedvirtualscreening(DBVS)92

9.8Pharmacophore-basedvirtualscreening(PBVS)93

4.Quantitativestructure-activityrelationships(QSARs)

6.1Regardingthevariableselection111

6.2Regardingthevariablevalidation111

6.3Regardingthemodelvalidation111

6.4Regardingtheamountofvariables114

6.5Regardingthebiologicalvalidation114

5.Fundamentalsofmolecularmodelingindrugdesign

ManishKumarTripathi,ShabanAhmad,RashmiTyagi, VandanaDahiya,andManojKumarYadav

1Fundamentalsofcomputationalchemistry 125 2Basicconceptsofquantummechanics 126

3Sketchapproach,conversionof2Dstructuresin3Dform,and generationof3Dcoordinates 128

4Moleculardynamicssimulationanditscomponents 129 4.1Forcefields133

4.2Geometryoptimization134

4.3Energyminimization135

4.4Conformationalsearch135

4.5Geneticalgorithms136

4.6MonteCarlosimulation137

4.7Artificialintelligencemethods138

4.8Pharmacophoreidentificationandmolecularmodeling138

5Molecularrecognitionindrugdesign 140

6Thermodynamicconsiderationofdrugdesigning 141

6.1Methodsofthermodynamicmeasurementfor bimolecularinteractions142

6.2Physicalbasisofintermolecularinteraction143

6.Pharmacophoremodelingindrugdesign

SiddharthaMaji,SubratKumarPattanayak,AnikSen,and VishnuNayakBadavath

3.1Ligand-basedpharmacophore161

3.2Structure-basedpharmacophore(SBP)163

4Pharmacophoremodel-basedvirtualscreening(VS)

5Pharmacophoreelementsandrepresentation 166

6Generationofpharmacophoremodelsfromreceptor-ligand complex 168

7ApplicationsofpharmacophoresinADME-Tox 169

7.1Pharmacophore-guideddrugtargetidentification170

7.2Multitargetsbypharmacophore170

7.3Possibleapplicationsofmultitargetligands171

7.Structure-baseddrugdesign(SBDD)

GouravRakshit,SheikhMurtuja,BanothKaranKumar, SankaranarayananMurugesan,and VenkatesanJayaprakash

1Computer-aideddrugdesign 181

2Structure-baseddrugdesign(SBDD) 183

2.1Overviewoftheprocessesinvolvedinstructure-baseddrug design(SBDD)190

2.2ExamplesofSBDD190

2.3CasestudyofSBDD191

3Moleculardocking 195

3.1Variousmodelspertainingtomoleculardocking196

3.2Classificationofmoleculardockingsystems198

3.3Dockingbasedscreening198

3.4Moleculardockingstepsandprocedure/docking protocol200

4Moleculardynamics 209

4.1ApplicationsofMD210

4.2BindingfreeenergycalculationswithMMGBSA/PBSA212

4.3MoleculardynamicssimulationusingDESMOND215

4.4Casestudy217

5Conclusion 222 References 223

8.RecentadvancesinCADD

TriptiSharma,SujataMohapatra,RasmitaDash, BiswabhusanRath,andChitaRanjanSahoo

1Introduction 232

2Roleofinformaticsindrugdiscovery 232

2.1Chemoinformaticsindrugdiscovery232

3Databasesusedindrugdiscovery 239

3.1RecenttrendsofADMET239

3.2Predictionofphysicochemicalproperties240

3.3PredictionofADMETproperties242

4Fragment-baseddrugdesign 244

4.1LibrarydesignforFBDD244

4.2Strategiesinfragment-baseddrugdesign246

4.3Generalconsiderationonfragment-baseddrug design248

5Receptor-baseddenovodesign 251

5.1Methodsinvolvedindenovodrugdesign251

6Nucleicacid-baseddrugdesign(NABDD) 253

7Advancesindrugdesigning 257

7.1Similaritysearching257

7.2Artificialintelligence(AI)257

7.3Machinelearning(ML)258

7.4Datamining258

7.5Networkanalysisandsystembiologytools258

7.6Dataanalysistools259

8Insilicoapproachesindrugrepurposing 259

8.1Knowledge-basedapproach266

8.2Target/structure-basedapproach266

8.3Ligand-basedapproach266

8.4Pathway/network-basedapproach266

8.5Signature-basedapproach266

8.6Targetedmechanism-basedapproach267

8.7Examplesofsuccessfuldrugrepurposing267

9Designofbiologicsandproteindrugdesign 270

9.1Spaceforcomputationalbiologicsdesign270

9.2Insilicoproteindesigning270

9.3Boundarybetweenusandproteindesigning271

9.Limitationsandfuturechallengesofcomputer-aided drugdesignmethods

2Limitationsofcomputer-aideddrugdesignmethods (CADD)

2.1Limitationsofstructure-baseddrugdesign(SBDD)285

2.2Limitationsofligand-baseddrugdesign(LBDD) methods287

3Challengesincomputer-aideddrugdesignmethods 290

3.1ChallengesinSBDD291

3.2ChallengesinLBDD292

3.3Challengesassociatedwiththeforcefields292

3.4Challengesassociatedwiththescoringfunction292

3.5ChallengesinADME/Tprediction293

3.6Challengesinmoleculardynamics(MD)simulation293

4FuturedevelopmentinCADD 293

4.1Nature—Asourceoflearningindrugdiscovery293

4.2Precisionmedicine294

4.3CombiningCADDwithothertechniquesofdesign, synthesis,andtesting294

Contributors

Numbersinparenthesesindicatethepagesonwhichtheauthor’scontributionsbegin.

ShabanAhmad (125),DepartmentofBiomedicalEngineering,SRMUniversity,DelhiNCR,Sonepat,Haryana,India

VishnuNayakBadavath (157),ChitkaraCollegeofPharmacy,ChitkaraUniversity, Rajpura,Punjab,India

VandanaDahiya (125),DepartmentofBiomedicalEngineering,SRMUniversity, Delhi-NCR,Sonepat,Haryana,India

RasmitaDash (231),DepartmentofPharmaceutics,SchoolofPharmaceuticalSciences, Siksha‘O’AnusandhanDeemedtobeUniversity,Bhubaneswar,Odisha,India

AndreM.deOliveira (1,101),DepartmentofEnvironmentStudies,FederalCentreof TechnologicalEducationofMinasGerais(CEFET-MG),Contagem,MG,Brazil

ManavJain (283),DepartmentofPharmacology,PostgraduateInstituteofMedical EducationandResearch,Chandigarh,Punjab,India

VenkatesanJayaprakash (181),DepartmentofPharmaceuticalSciencesand Technology,BirlaInstituteofTechnology,Mesra,Ranchi,Jharkhand,India

MuthukumarKaruppasamy (17),YaAnPharmaceuticalandMedical Communications,Sivakasi,TamilNadu,India

BanothKaranKumar (181),MedicinalChemistryResearchLaboratory,Departmentof Pharmacy,BirlaInstituteofTechnologyandSciencePilani,PilaniCampus,Pilani, Rajasthan,India

ManojKumarMahapatra (17),KanakManjariInstituteofPharmaceuticalSciences, Rourkela,Odisha,India

SiddharthaMaji (157),InstituteofPharmacy,Ram-EeshInstituteofVocational& TechnicalEducation,GreaterNoida,UttarPradesh,India

SujataMohapatra (231),DepartmentofPharmaceutics,SchoolofPharmaceutical Sciences,Siksha‘O’AnusandhanDeemedtobeUniversity,Bhubaneswar,Odisha, India

SheikhMurtuja (181),DepartmentofPharmaceuticalSciencesandTechnology, BirlaInstituteofTechnology,Mesra,Ranchi,Jharkhand;KIETSchoolofPharmacy, KIETGroupofInstitutions,Ghaziabad,UttarPradesh,India

SankaranarayananMurugesan (181),MedicinalChemistryResearchLaboratory, DepartmentofPharmacy,BirlaInstituteofTechnologyandSciencePilani,Pilani Campus,Pilani,Rajasthan,India

SubratKumarPattanayak (157),DepartmentofChemistry,NationalInstituteof TechnologyRaipur,Raipur,Chhattisgarh,India

GouravRakshit (181),DepartmentofPharmaceuticalSciencesandTechnology,Birla InstituteofTechnology,Mesra,Ranchi,Jharkhand,India

BiswabhusanRath (231),AirisPharmaPrivateLimited,Hyderabad,Telengana,India

JurnalReang (57),DepartmentofPharmaceuticalChemistry,SchoolofPharmaceutical Sciences,DelhiPharmaceuticalSciencesandResearchUniversity,NewDelhi,India

MithunRudrapal (1),DepartmentofPharmaceuticalChemistry,RasiklalM.Dhariwal InstituteofPharmaceuticalEducationandResearch,Chinchwad,Pune,India

ChitaRanjanSahoo (231),CentralResearchLaboratory,InstituteofMedicalSciences andSUMHospital,Siksha‘O’AnusandhanDeemedtobeUniversity,Bhubaneswar, Odisha,India

AnikSen (157),DepartmentofChemistry,InstituteofScience,GITAM(Deemedtobe University),Visakhapatnam,AndhraPradesh,India

AshishShah (283),DepartmentofPharmacy,SumandeepVidyapeeth,Vadodara, Gujarat,India

TriptiSharma (231),DepartmentofPharmaceuticalChemistry,SchoolofPharmaceutical Sciences,Siksha‘O’AnusandhanDeemedtobeUniversity,Bhubaneswar,Odisha,India

RajivKumarTonk (57),DepartmentofPharmaceuticalChemistry,Schoolof PharmaceuticalSciences,DelhiPharmaceuticalSciencesandResearchUniversity, NewDelhi,India

ManishKumarTripathi (125),DepartmentofPharmaceuticalEngineeringand Technology,IndianInstituteofTechnology,BanarasHinduUniversity,Varanasi, UttarPradesh;DepartmentofBiophysics,AllIndiaInstituteofMedicalSciences, NewDelhi,India

RashmiTyagi (125),DepartmentofBiomedicalEngineering,SRMUniversity,DelhiNCR,Sonepat,Haryana,India

Vinita (57),DepartmentofPharmaceuticalChemistry,SchoolofPharmaceutical Sciences,DelhiPharmaceuticalSciencesandResearchUniversity,NewDelhi,India

ManojKumarYadav (125),DepartmentofBiomedicalEngineering,SRMUniversity, Delhi-NCR,Sonepat,Haryana,India

VivekYadav (57),DepartmentofPharmaceuticalChemistry,SchoolofPharmaceutical Sciences,DelhiPharmaceuticalSciencesandResearchUniversity,NewDelhi,India

Chapter1

Introductiontodrugdesign anddiscovery

AndreM.deOliveiraa andMithunRudrapalb aDepartmentofEnvironmentStudies,FederalCentreofTechnologicalEducationofMinasGerais (CEFET-MG),Contagem,MG,Brazil, bDepartmentofPharmaceuticalChemistry,Rasiklal M.DhariwalInstituteofPharmaceuticalEducationandResearch,Chinchwad,Pune,India

Chapteroutline

1Definitionandconceptofdrugdesignanddiscovery

Daybyday,alongsidepopulationgrowthandenvironmentalproblems,newdiseasesariseandoldonesrespawn,anditdemandsnewandbettertreatments.The developmentofnewbioactivecompoundsisataskthathasbeenbenefitedby thevarioustechnologiescurrentlybeingdevelopedbythepharmaceutical industry,universities,andresearchcenters.Theimmediateeffectofthese advancesistheevidenceofanincreaseinlifeexpectancy,estimatedataround 2yearsmoreeachweek.1 Thebasisofmanynewdrugdevelopmentmethodsis thesearchforbiologicalreceptors,notablyproteins.Itisestimatedthatofthe approximately20,000typesofknownproteins,approximately500areeligible asbiologicaltargetsfordrugs.2 DatafromtheNationalCenterforHealthStatisticsindicatethat,consideringonlytheUnitedStates,themaincausesofdeath

Intentional self-harm (suicide)

Influenza and Pneumonia

Nephritis, nephrotic syndrome, and nephrosis

Alzheimer´s disease

Stroke (cerebrovascular diseases)

Chronic lower respiratory diseases

Accidents (unintentional injuries)

100200300400500600700

FIG.1.1 Numberofdeathsforleadingmortalitycauses. (https://www.cdc.gov/nchs/fastats/ deaths.htm (accessed15November2021).)

areassociatedwithcardiovascularandcerebrovasculardiseases,cancer, chroniclowerrespiratorydiseases,andkidneydiseases(Fig.1.1).

Theconceptsofdrugdiscoveryanddrugdesigncanoccasionallybeconfused.Drugdiscoveryinvolvesseveralpaths,rangingfromchancetosystematic search,usingexperimentalandcomputationalresources.Thedesignofdrugs,in turn,referstotheuseofasystematicmethod,usuallybasedonthestructureofthe biologicaltargetandonpreviousknowledgeaboutthebiochemistryofthedisease,tofindpromisingcompounds.3 Itisalsopossibletosearchfornewdrugs basedonthestructureofdrugsalreadyknownandtested,whichsupposedly inhibitcertainenzymes.Thisapproachisknownasligand-baseddrugdesign.

Anoffshootofthedrugdesignconceptiscomputer-aideddrugdesign(CADD), whichemployscomputationalmethodsasmolecularmodelingtostudydrugreceptorinteractionatamicroscopiclevel.Thetraditional(notmediatedbya computer)processofdevelopinganewdrugcantake,accordingtoestimates,about 10–14years,atanaveragecostofmorethan $1billion,withtheexclusionofabout 10,000candidates.TheCADDapproachcanreducethiscostbyupto50%.4

2Historicalperspectivesofdrugdiscovery

Althoughtheuseofmedicinalplantsisreportedevenintheoldestsources,the systematicdevelopmentofnewdrugsisarelativelyrecentscience.Between 1872and1874,theanatomistWilhelmWaldeyer,whoworkedinthelaboratory ofPaulEhrlich(whostudiedtheaffinityofdyesforbiologicaltissues),

proposedtheconceptof“chemoreceptors.”Ehrlichproposedthatthedifferencesinaffinityofthechemoreceptorsofparasites,microorganisms,andtumor cellsagainststructurallyanalogoussubstanceswerethebasisfortheemergence ofchemotherapy.5

Thefirststepstakenbymedicinalchemistryinthenineteenthcenturyowe itsprogresstothemethodsofanalyticalchemistry,whichenabledtheisolation ofnaturalproductssuchasmorphine(isolatedfromopiumbyF.W.Serturnerin 1815)andnumerousaromaticcompoundsobtainedfromcoaltar.6 ThefoundationsofpharmacologywerelaidbyOswaldSchmiedebergbetween1871and 1918,7 certainlysupportedbytheexperimentsinphysiologybyFrancois MagendieandClaudeBernard.Thedyeindustryalsocontributedtothedevelopmentofsulfadrugs,whichwerefundamentalinfightinginfectionsuntilthey weresupplantedbythediscoveryofpenicillinbyAlexanderFlemingin1928 (firstusedasanantibioticin1940).Thesuccessofpenicillinledtothesearch forotherantimicrobialcompounds,leadingtothediscoveryoflovastatin,ivermectin,cyclosporins,amongothers.

Thedevelopmentofbiochemistryledtothestudyofmetabolicpathways andmacromolecularreceptors,whichservedasthebasisfortheproposition ofenzymeinhibitors,agonists,andantagonists.Thediscoveryofthetwotypes ofadrenergicreceptorsbyR.P.Ahlquist8 wasanimportantstepintothis approach.

TheuseofthemostdiversemoleculartargetshasgrownduetotheinvaluablecontributionsofX-raydiffractiontechniquesandtheconstructionofcrystallographicdatabasessuchastheProteinDatabase(PDB).9 Asurvey conductedintheUSFDA’sOrangeBookbyOveringtonandcolleaguesin 20062 drawsascenarioofthenatureandnumberofmoleculartargetscurrently availablefornewdrugdevelopment(Table1.1).

Themostrecentphaseinthehistoricalprocessofdevelopingnewdrugs involvescomputer-aidedmoleculardesign(CAMD),whichusescomputational resourcestostudydrug-targetmolecularinteractions.Thistypeofstrategy accompaniesthedevelopmentofnewsoftwareandhardwareresources,which allowworkingwithincreasinglychallengingsystemsintermsofsizeandcomplexity.1 Computationalmethodsapplicabletopharmaceuticalplanning include:semiempiricalmethods,whichmakeitpossibletocalculateelectronic properties,energies,andmolecularconformations10–14;empiricalmethods, suchasmolecularmechanics,whichareusedtodealwithlargestructuressuch asproteins,ionchannels,membranereceptors,nucleicacids,amongothers, obtainingenthalpicinteractionenergies,interactionfreeenergies,andinhibitionconstants,15–18 andpursuingmoleculardynamicsanddockingstudies19–21;statisticalmethods,withquantitativestructure-activityrelationships,22–26 whichallowestablishingcorrelationsbetweenthepropertiesofcompounds andtheirbiologicalactivityandtoxicity.27,28

TABLE1.1 MoleculartargetsofFDA-approveddrugs.

ClassofdrugtargetSpecies

Numberofmolecular targets

TargetsofapproveddrugsPathogenand human 324

Humangenometargetsofapproved drugs Human266

Targetsofapprovedsmall-molecule drugs Pathogenand human 248

Targetsofapprovedsmall-molecule drugs Human207

Targetsofapprovedoralsmallmoleculedrugs Pathogenand human 227

Targetsofapprovedoralsmallmoleculedrugs Human186

Targetsofapprovedtherapeutic antibodies Human15

TargetsofapprovedbiologicalsPathogenand human 76

(AdaptedfromreferenceOveringtonJP,Al-LazikaniB,HopkinsAL.Howmanydrugtargetsarethere? NatRevDrugDiscov2006;5(12):993–996. https://doi.org/10.1038/nrd2199.)

3Process,strategies,andstagesofdrugdiscovery anddevelopment

Theprocessofgeneratinganewdrugislongandcostly.Itisestimatedthatit takes10to15yearsandfiguresashighasUSD985millionfromconceptionto commercializationofanewdrug.29 Aconsiderablenumberofclinicallytested candidatesareexcludedduetotheirtoxicityandlowbioavailability.Itisestimatedthatonly1outof10newdrugsthatpassclinicaltrialswillreachthemarket.Tounderstandthereasonsbehindthishighcost,wemustrememberthe stagesorphasesinvolvedindevelopinganewdrug.30 Thefollowingphases areconsideredindrugdevelopment:discoveryphase,preclinicalphase,Phase I,PhaseII,PhaseIII,andtheapprovalandpostapprovalphases(Fig.1.2). Despitethesewell-definedphasesonthepathtofindinganewdrug,thisdoes notmeanthatthesestepsdonotreverseorintermingleeventually,withcharacteristicstudiesofone-stepsupportingstudiesofanother.

FIG.1.2 Drugdiscoveryanddevelopmentphases. (Nopermissionrequired.)

3.1Discoveryphase

Themainsourceofbioactivecompoundsthatcanbecomedrugcandidatesis nature,throughitsnaturalproducts.31,32 Manyofthesecompoundsareisolated fromterrestrialplants33–35 andanimals,36 andthereisalsoanimportantandunexploredsourceofnewcompoundsinmarineorganisms.10,37,38 Thediscoveryofa newdrugcanoccurindifferentways.Therearedrugsthatweretheworkofserendipity,suchaspenicillin,discoveredbyAlexanderFleming.WorkingatSt. Mary’sHospital,London,in1928,hewasstudyingthebacteria Staphylococcus aureus,responsibleforabscessesinopenwoundscausedbyfirearms.Whenhe wentonvacation,heleftthelaboratory’sglasscontainers,withthebacteriaculturesexposedandcontaminatedwiththemoldfromtheatmosphereitself.Ashe wasabouttodiscardallthematerial,henoticedthatwheremoldhadformed, therewasnoactive Staphylococcus:Themold,originatingfromthe Penicillium fungus,actedbysecretingasubstancethatdestroyedthebacteria.In1940,penicillinwasused,inEngland,inthefirsthumanpatient,apoliceman,avictimofa seriousbloodinfection.Thediscoveryofthisantibioticchangedthecourseof WorldWarIIandthefateofrecenthistory.

Despitetheimportanceofserendipity,whichbequeathedusalsootherrugs, suchassulfadrugs,37 andnewusesforalreadyknowndrugs,suchassildenafil,39 moresystematicandmethodicalpathshavebeenfollowedinthesearchfor thesesubstances.Thesemethodshavebeentraditionallyclassifiedintothefollowingcategories:virtualscreening,high-throughputscreening,phenotypic screening,structure-baseddrugdesign,fragment-baseddrugdesign,and ligand-baseddrugdesign.Wewillfurtherdiscussthenatureandextentofthese methodsinthenextsection.

3.2Preclinicalphase

Onceasetofleadcompoundsisavailable,preclinicaltestinghelpstoguidethe studybyexcludingcompoundswithlittleornopharmacologicalpotential.This phaseincludes:invitrotestswithcellandtissuecultures,measurementsof interactionwithproteinsandotherbiologicaltargets,whichcanbeperformed bymeansofisothermaltitrationmicrocalorimetry40;invivotestswithanimals, chosenaccordingtotheirphysiologicalandbiochemicalcharacteristicsthatcan resemblehumans(Fig.1.3).Thepreclinicalphaseallowsforthepromotionof leadcompoundstocandidatestatus,whichwillbesubmittedtothesubsequent phasesofthesearchfornewdrugs. Discovery Pre-clinical Phase I

3.3Clinicalphase

PhaseI. PhaseIbeginswiththefirsttestsinhumans,healthyvolunteerswithout cytotoxicproblems(suchascancerpatients),toassesssafety,tolerance,pharmacodynamics,pharmacokinetics,andtoxiceffectsthatdonotdependon populationeffects.PhaseIstudiesrequireapprovalfromaresearchethicscommitteeandregulatoryagencies.Otherstudieslikedrug-druginteraction,the effectoffoodonabsorption,age,andgeneticinfluencesarealsoconducted.30

PhaseII. ThemainobjectiveofPhaseIIistodeterminethedrug’sefficacy andsafetyinatargetpopulation.Groupswithcommonandcontrolledpathologies(suchashypertension)arechosentotrythedrug,andtheresultsarecomparedwithcontrolgroups,whichweregivenaplacebo.PhaseIIisusually dividedintoPhaseIIaandPhaseIIb.InPhaseIIa(calledthe“proofofconcept”),thedrugistestedinasubgroupofpatients(namely12–100individuals); PhaseIIbisperformedwithseveraldoseleveltestsinthetargetpopulation (dose-rangingstudies).Thistaskaimstodefinetheminimallyeffectiveorineffectivedoseandtofindtheoptimaldose(Fig.1.4).

PhaseIII. Thelastphaseofthedevelopmentofanewdrugbeforeitscommercializationaimstodetermineitsclinicaldosage,prescription,andfrequency ofuse.Thisstudycouldinvolvethousandsofpatientsandshedsnewlightonthe drug’sefficacyandsafetyinlargepopulations.Thisphasecantakeseveral years,withmonitoringofmortalityandcomorbidityrates,anditsdetailsvary fromcountrytocountry.Inpopulations,geneticissuesareveryrelevantand accountfordifferencesineffectivenessbetweendifferentcommunities.Itis

Cow Monkey
Guineapig Rat
BirdRabbit
SheepPigDog
Fish
Amphibian
Mouse Bat
FIG.1.3 Animalsusedinpreclinicaltests. (Nopermissionrequired.)

FIG.1.4 OptimaldosepursuitinPhaseIIdrugdevelopment. (Reproduced,bypermission,from OptimizingNutrition(2021).)

estimatedthattheoverallsuccessrateofPhaseIIIisaround70%andcancostup toUSD100million.

3.4Approvalandpostapprovalphases

Thelegalissuesrelatedtopublichealthineachregionoftheworldwillguide thisadditionalphaseofthebirthofanewdrug,anditinvolvesgovernment agenciesthatworkinareasasdiverseas:economy,sanitation,hospitaladministration,healthsurveillance,andmanufacturingrights.Patentissuesareraised andmanagedbyregularintra-andinternationalagencies.Dependingonthe performanceofthenewdrug,itsusemaybereconsidered,limitedorregulated. Fromthispointonwards,repositioningstudies,whichaimtofindnewapplicationsforit,canbeundertaken.

4Traditionalandmodernapproachestodrugdiscovery anddevelopment

Thediscoveryofanewdrugcanoccuralongverydifferentpaths.Verybriefly, themethodscanbeclassifiedintothefollowingcategories:

4.1Virtualscreening

Thevirtualscreeningmethodisbasedonacomparativeanalysisbetweendifferentleads(candidatesfornewdrugcandidates),usingcomputationalresources, generallybasedonthecorollarythatthedrug’sactionisdirectlyrelatedtoits affinityforabiologicaltarget.Inthiscontext,dockingisthemostusedtechnique, whichconsistsoftheinteractionbetweenamoleculeandabiologicaltarget,calculatingtheinteractionenergybetweenthem.Thecalculationsgenerallyemploy

moleculardynamics,makingitpossibletoobtaininteractionfreeenergiesand, fromthere,theinhibitionconstants(anexperimentalparameterthatcanbeverified).Thereareonlineresourcesthatenablevirtualscreening,oftencomparing interactionenergieswithbiologicalactivitydata.41 Theuseofartificialintelligencetechniqueshasbeenfundamentalinthesystematizationofthesestudies.42–44 Virtualtissueandorganmodelsareanelegantsolutiontothis approach,beingabletoanticipateevenphysiologicalandneuralphenomena.45

4.2High-throughputscreening

High-throughputscreening(HTS)isanunfoldingofvirtualscreening,withthe dockingofthousandsofmoleculescontainedinthestructuredatabase,using statisticalclusteringtechniquestochoosethebestcandidates.Fromanexperimentalpointofview,combinatorialchemistrymakesitpossibletotestnumerouscompoundsinanautomatedway.Anexampleofthisapproachisthe automaticsynthesisofoligopeptidesandthesubsequentbiologicaltestingof eachofthem.18

4.3Phenotypicscreening

Accordingtothisstrategy,compoundsarescreenedincellularoranimaldisease modelstoidentifycompoundsthatcauseadesirablechangeinphenotype.43 Whenanewtargetissearchedforsomepropertiesthatareimportanttothedisease,wecallittargetdeconvolution.Manyresearchstudiesusingphenotypic screeninghavebeendescribed,appliedtoinfectiousdiseases,46–48 contraceptivetreatments,49 childhooddiarrhea,50,51 amongothers.

4.4Structure-baseddrugdesign

TheavailabilityofnumerousbiologicaltargetbankssuchasPDB,ZINC,and TTD52 hasservedthestructure-basedstudyofnewdrugs.Themaindifference betweenthisapproachandphenotypicscreeningisthatthesearchfornewcompoundsisbasedonthecrystallographicstructuresoftargetsandcompoundsand theirinteractions,andnotnecessarilyonpharmacologicalproperties,although informationfrombothcanbesharedandcompared.

4.5Fragment-baseddrugdesign

Since1981,whenJencksintroducedtheideathatanentiremoleculecanbe interpretedasacombinationoffragmentsthatindividuallycontributetothe interaction,thefragmentscreeningstrategyhasbeendeveloped.53 GRIDprogramcreatedbyGoodford54 employedprobes(molecularfragments)tomap ontoaproteinstructureandyieldaninteractionsurfacearoundsomehotspots. Thisstrategywasfundamentalforthedevelopmentofcomparativemolecular

fieldanalysis(CoMFA)method55 thatappliesapartialleastsquare(PLS)multipleregressionwiththeinteractionenergiesofthehotspotandstericandelectrostaticfactors.Fragmentlibrariesbecamepopular56 andservedasabasisfor thediscoveryofnewcompoundswithoutanysimilarityorkinshipwithtraditionalnaturalproducts.Animportantadditiontothesemethodswastheinclusionofsyntheticpenalties,thatis,factorsthatpotentiallyhinderedthesynthesis oftheproposedcompounds(suchasthepresenceofchiralcenters,fusedrings, etc.)andthatmadeitpossibletolimittheproposalstocompoundswithbetter accessibility.

4.6Ligand-baseddrugdesign

Theproposalofnewdrugsbasedonasetofstructurallysimilarcompoundsof recognizedbiologicalactivityisthebasisofquantitativestructure-activityrelationships(QSARs).Sinceitispossibletobuildpharmacophoricmodelsofa receptorevenwithoutknowingitsstructure,basedsolelyonthestructureactivityrelationshipsofthecompoundswithwhichitinteracts,thisisa ligand-basedstrategy.Molecularmodelingtechniquescanalsobebasedon theligand,withthepredictionofelectronic,topological,andsoon,properties thatbytheirturnshallbeusedinQSARmodels.57,58

5Rationaldrugdesign(RDD)andCADD

Thecentralideaaroundmoderndrugdesignisrationalityandmethod.Despite thesuccessfulexperiencesofdrugdiscoverybychanceortheisolationofnaturalproducts,whosestructuralcharacteristicsfollowthepatternsdeterminedby thebiochemistryoftheorganismthatsynthesizedthem,thepharmaceutical industryislookingformorecontroltechniquestoproposenewstructures. Therationaldrugdesign(RDD)usesthetechniquesmentionedaboveona semanticbasisaimingtoimprovethepharmacologicalpropertiesanddecrease thetoxicityofthecandidates.

Mandalandcollaborators59,60 divideRDDintotwocategories:

1. Developmentofsmallmoleculeswithdesiredpropertiesfortargets,and biomolecules(proteinsornucleicacids),whosefunctionalrolesincellular processesand3Dstructuralinformationareknown.

2. Developmentofsmallmoleculeswithpredefinedpropertiesfortargets, whosecellularfunctionsandtheirstructuralinformationmaybeknown orunknown.Knowledgeofunknowntargets(genesandproteins)canbe obtainedbyanalyzingglobalgeneexpressiondataofsamplesuntreated andtreatedwithadrugusingadvancedcomputationaltools.

Thefirstcategoryisthemostusedbythepharmaceuticalindustry,andthesecondoneismoreusedforacademicpurposes,althoughtheconstantcooperation betweenthetwosegmentsallowsbothcategoriestodialoguewitheachother.

Computer-aideddrugdesign(CADD)isthenamegiventothesetofcomputationaltechniquesthatusethestateoftheartofRDDtobuildaninventoryof bioactivesubstances.Inthiscontext,bioinformaticstechniques(includingproteomics,metabolomics,andgenomics)arefundamental.Asurveyofthemain CADDtechniquesismadebyMacalinoandcoworkers,59 andalthoughthey havealreadybeendescribedinourshortessay,itisusefultomakeadigest:

5.1Structure-baseddrugdesign(SBDD)

Theknowledgeacquiredfromthebindingsiteofa3Dmacromoleculestructure isusedtodesignandevaluateligandsbasedontheirpredictedinteractionswith theproteinbindingsite,bymeansofstructuraltechniqueslikeX-raycrystallography,nuclearmagneticresonance(NMR),cryo-electronmicroscopy(EM), homologymodeling,andmoleculardynamic(MD)simulations.

5.1.1Moleculardocking

Itstartswithbindingsitepredictionoridentification.Thebindingsiteisusually aconcaveregionontheperipheryoftheproteinwhereinteractionwiththe ligandoccurs.Topologicalmethodsforidentifyingactivesites,suchas CASTp,60 allowustostudythesuitablesitesforthisinteraction.Dockinguses knowledgeofproteinbindingsitestotestforinteractionswithsmallmolecules. Numerouspositionsaretestedandthenclassifiedaccordingtoscoringcriteria. Thisscoringfollowsamathematicalfunctionthatvariesdependingontheprogramandthatdistinguishesthedifferentdockingmethodsintheirapplicability. Theinteractionenergyisobtainedthroughanempiricalexpressionthat involvesenthalpic,entropic,andhydrophobiccontributions,inadditiontosolvationeffects.Dockingcanberigid,whichisusefulwhenscanninglargedatabasesofstructures,orflexible,whenwewanttodrawamoredetailedprofileof theligand-receptorinteraction.Theeffectsofthesolventontheinteractioncan besimulatedindirectly,throughtheintroductionofacorrectionintheexpressionoftheinteractionenergy,orexplicitly,throughtheuseofsolventboxes.

5.1.2Moleculardynamics

Moleculardynamicscanbedefinedasthesetofexperimentalprotocolsthat simulatetheconformationalvariationsexperiencedbythemoleculebythe actionofforcesactingonthemedium.ThisprocedureappliesNewton’sequationstotheinternalcoordinatesofthemolecule,withinagiventimeframe,in ordertofollowthevariationsintheinternaldegreesoffreedomofthemolecule. ThedifferentialformofNewton’sclassicalequationFi ¼ mi ai.Anerrorinherenttothemethodwillbemorepronouncedthelongerthetimestepused,which istypicallyontheorderof0.5to1femtosecond(1fs ¼ 10 15 s).Ingeneral,we startwithaminimizedstructureandprocessthedynamics,recordingthe

resultingstructurefromtimetotimeandminimizingeachoftheseconformationsagain,sothat,intheend,weproceedtoselecttheconformationwhose energynolongervaries.

5.2Ligand-baseddrugdesign(LBDD)

Inthelackofthetargetstructureandtheavailabilityofasetofsimilarcompounds,onecanmaketheassumptionthatstructurallysimilarcompoundsdisplaysimilarbiologicalresponseandinteractionwiththetarget.

5.2.1Quantitativestructure-activityrelationship(QSAR)

Fromasetofsimilarmolecules,physicochemicaldescriptors(electronic, hydrophobic,steric),topological,amongothers,areobtained.Amultivariate regressionanalysisisperformedbetweenthesedescriptorsandbiologicalactivity,resultinginanequationthatrepresentsamodelofthesysteminvestigated. The3D-QSARapproachusesthethree-dimensionalstructuresofcompounds, properlyaligned,onwhichaprobe(forexample,apositivecarbon)isplaced aroundagridofpoints,calculatingthestericandelectrostaticenergy.Each valueoftheseenergiesbecomesaphysicochemicaldescriptorinthemodelthat usesbiologicalactivitydataasadependentvariable.Thepointsofinteraction favorableorunfavorabletobiologicalactivityareconvertedintoathreedimensionalmapshowingregionsfavoredbylargegroupsandregionsfavored bysmallgroups,andregionsfavoredbypositivegroupsandthosefavoredby thesegroups.

5.2.2Pharmacophoremodelingandsimilaritysearch

Throughpharmacophorescreening,itispossibletoidentifycompoundscontainingdifferentscaffolds,butwithasimilar3Darrangementofkeyinteractingfunctionalgroups,ontowhichbindingsiteinformationcanbeincorporated.61–63

5.2.3Absorption,distribution,metabolism,excretion,andtoxicity (ADMET)prediction

Thedeterminationofpharmacodynamic,pharmacokinetic,andtoxicological propertiesisessentialforobtainingrelevantbioactivecompounds.Lipinski’s rules64 (amoleculewithamolecularmasslessthan500Da,nomorethan5 hydrogenbonddonors,nomorethan10hydrogenbondacceptors,andan octanol-waterpartitioncoefficientlogPnotgreaterthan5)allowdetermining whetherthecompoundhaspotentialasadrugwithoutpresentingtoxicological characteristicsthatmakeitsuseunfeasible.ManytoolsforADMETareavailable,suchasQikProp.65

12

6Conclusion

Populationgrowthandenvironmentalproblemshaveledtotheemergenceor worseningofmanydiseases.Inthisscenario,thechallengeofdiscovering newdrugscapableofalleviatinghumansufferingandprovidingabetterquality oflifeisimposed.Universitiesandresearchcentershaveagreatopportunityto partnerwithgovernmentsandcompaniesinthesearchformoreaccessibleand efficienttherapeuticmethods.Strategiesfordiscoveringnewbioactiveagents willbeofgreatimportanceinthefuture,especiallyinaglobalizedeconomy, whichhasproventruewiththerecentSARS-CoV-2pandemic.Remediation techniques,combinedwithimmunology,weredecisiveincombatingitsworldwideconsequences.Drugrepositioningandmolecularmodelingtechniques haveonceagainprovedtheirworthinacontextofmanyuncertainties.

References

1.SeddonG,LounnasV,McGuireR,etal.Drugdesignforever,fromhypetohope.JComput AidedMolDes2012;26(1):137–50. https://doi.org/10.1007/s10822-011-9519-9.

2.OveringtonJP,Al-LazikaniB,HopkinsAL.Howmanydrugtargetsarethere?NatRevDrug Discov2006;5(12):993–6. https://doi.org/10.1038/nrd2199.

3.AndersonAC.Theprocessofstructure-baseddrugdesign.ChemBiol2003;10(9):787–97. https://doi.org/10.1016/j.chembiol.2003.09.002

4.SurabhiS,SinghB.Computeraideddrugdesign:anoverview.JDrugDelivTher2018;8 (5):504–9. https://doi.org/10.22270/jddt.v8i5.1894

5.DrewsJ.Drugdiscovery:ahistoricalperspective.Science2000;287(5460):1960–4. https://doi. org/10.1126/science.287.5460.1960

6. FarberE.Theevolutionofchemistry:ahistoryofitsideas.In:Methods,andmaterials.New York:RolandPress;1952.

7.Koch-WeserJ,SchechterPJ.SchmiedeberginStrassburg1872-1918:themakingofmodern pharmacology.LifeSci1978;22(13–15):1361–71. https://doi.org/10.1016/0024-3205(78) 90099-1.

8.AhlquistRP.Astudyoftheadrenotropicreceptors.AmJPhysiol1948;153(3):586–600. https:// doi.org/10.1152/ajplegacy.1948.153.3.586

9.BermanHM,WestbrookJ,FengZ,etal.Theproteindatabank.NucleicAcidsRes2000;28 (1):235–42. https://doi.org/10.1093/nar/28.1.235

10.KaramanR,FattashB,QtaitA.Thefutureofprodrugs-designbyquantummechanicsmethods. ExpertOpinDrugDeliv2013;10(5):713–29. https://doi.org/10.1517/17425247.2013.786699

11.KromannJC,LarsenF,MoustafaH,JensenJH.PredictionofpKavaluesusingthePM6semiempiricalmethod.PeerJ2016;2016(8). https://doi.org/10.7717/peerj.2335.

12.Krı ´ z ˇ K, Řeza ´ cJ.Benchmarkingofsemiempiricalquantum-mechanicalmethodsonsystemsrelevanttocomputer-aideddrugdesign.JChemInfModel2020;60(3):1453–60. https://doi.org/ 10.1021/acs.jcim.9b01171.

13.Leps ˇ ı ´kM, Řeza ´ cJ,Kola ´ rM,PecinaA,HobzaP,Fanfrlı´kJ.Thesemiempiricalquantum mechanicalscoringfunctionforinsilicodrugdesign.ChemPlusChem2013;78(9):921–31. https://doi.org/10.1002/cplu.201300199

14.ShivakumarD,WilliamsJ,WuY,DammW,ShelleyJ,ShermanW.Predictionofabsolute solvationfreeenergiesusingmoleculardynamicsfreeenergyperturbationandtheoplsforce field.JChemTheoryComput2010;6(5):1509–19. https://doi.org/10.1021/ct900587b.

15.BekonoBD,SonaAN,EniDB,OwonoLCO,MegnassanE,Ntie-KangF.Molecularmechanics approachesforrationaldrugdesign:forcefieldsandsolvationmodels.PhysSciRev2021. https://doi.org/10.1515/psr-2019-0128

16.ErenD,Yalc ¸ in _ I.Theaimofimplementationofthemolecularmechanicandthemolecular dynamicmethodsinrationaldrugdesign.AnkaraUnivEczacilikFakDerg2020;44(2): 334–55. https://doi.org/10.33483/jfpau.688351

17.PissurlenkarRRS,ShaikhMS,IyerRP,CoutinhoEC.Molecularmechanicsforcefieldsand theirapplicationsindrugdesign.Anti-InfectAgentsMedChem2009;8(2):128–50. https:// doi.org/10.2174/187152109787846088

18.WangJ,LiH,PanJ,etal.Oligopeptidetargetingsortaseaaspotentialanti-infectivetherapyfor Staphylococcusaureus.FrontMicrobiol2018;9. https://doi.org/10.3389/fmicb.2018.00245.

19.FerreiraLG,DosSantosRN,OlivaG,AndricopuloAD.Moleculardockingandstructurebaseddrugdesignstrategies.Molecules2015;20(7):13384–421. https://doi.org/10.3390/ molecules200713384

20.TorresPHM,SoderoACR,JofilyP,Silva-JrFP.Keytopicsinmoleculardockingfordrug design.IntJMolSci2019;20(18). https://doi.org/10.3390/ijms20184574

21.ZoeteV,GrosdidierA,MichielinO.Docking,virtualhighthroughputscreeningandinsilico fragment-baseddrugdesign.JCellMolMed2009;13(2):238–48. https://doi.org/10.1111/ j.1582-4934.2008.00665.x

22.BradshawJ.3DQSARindrugdesign.TrendsPharmacolSci1994;15(12):469–70. https://doi. org/10.1016/0165-6147(94)90062-0.

23.DanishuddinKAU.DescriptorsandtheirselectionmethodsinQSARanalysis:paradigmfor drugdesign.DrugDiscovToday2016;21(8):1291–302. https://doi.org/10.1016/j.drudis.2016. 06.013.

24.TandonH,ChakrabortyT,SuhagV.AconcisereviewonthesignificanceofQSARindrug design.ChemBiomolEng2019;4(4):45. https://doi.org/10.11648/j.cbe.20190404.11

25.VermaJ,KhedkarVM,CoutinhoEC.3D-QSARindrugdesign—areview.CurrTopMed Chem2010;10(1):95–115. https://doi.org/10.2174/156802610790232260

26.S ´ ledz´P,CaflischA.Proteinstructure-baseddrugdesign:fromdockingtomoleculardynamics. CurrOpinStructBiol2018;48:93–102. https://doi.org/10.1016/j.sbi.2017.10.010

27.DeardenJC.Predictionofenvironmentaltoxicityandfateusingquantitativestructure-activity relationships(QSARs).JBrazChemSoc2002;13(6):754–62. https://doi.org/10.1590/S010350532002000600005.

28.SchultzTW,HewittM,NetzevaTI,CroninMTD.AssessingapplicabilitydomainsoftoxicologicalQSARs:definition,confidenceinpredictedvalues,andtheroleofmechanismsof action.QSARCombSci2007;26(2):238–54. https://doi.org/10.1002/qsar.200630020

29.WoutersOJ,McKeeM,LuytenJ.Estimatedresearchanddevelopmentinvestmentneededto bringanewmedicinetomarket,2009-2018.JAMA2020;323(9):844–53. https://doi.org/ 10.1001/jama.2020.1166

30.TamimiNAM,EllisP.Drugdevelopment:fromconcepttomarketing!NephronClinPract 2009;113(3):c125–31. https://doi.org/10.1159/000232592

31.AtanasovAG,ZotchevSB,DirschVM,etal.Naturalproductsindrugdiscovery:advancesand opportunities.NatRevDrugDiscov2021;20(3):200–16. https://doi.org/10.1038/s41573-02000114-z.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.