Computational methods in organometallic catalysis: from elementary reactions to mechanisms yu lan -

Page 1


ComputationalMethodsinOrganometallicCatalysis: FromElementaryReactionstoMechanismsYuLan

https://ebookmass.com/product/computational-methods-inorganometallic-catalysis-from-elementary-reactions-tomechanisms-yu-lan/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Mechanisms in Heterogeneous Catalysis Van Santen R.A.

https://ebookmass.com/product/mechanisms-in-heterogeneous-catalysisvan-santen-r-a/

ebookmass.com

Computational Quantum Chemistry: Insights into Polymerization Reactions Masoud Soroush (Editor)

https://ebookmass.com/product/computational-quantum-chemistryinsights-into-polymerization-reactions-masoud-soroush-editor/

ebookmass.com

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 8th Edition Michael B. Smith

https://ebookmass.com/product/marchs-advanced-organic-chemistryreactions-mechanisms-and-structure-8th-edition-michael-b-smith/

ebookmass.com

Understanding Large Language Models Thimira Amaratunga

https://ebookmass.com/product/understanding-large-language-modelsthimira-amaratunga/

ebookmass.com

Video Basics 8th Edition Zettl

https://ebookmass.com/product/video-basics-8th-edition-zettl/

ebookmass.com

Cowboy Charming Dylann Crush

https://ebookmass.com/product/cowboy-charming-dylann-crush/

ebookmass.com

Instructor's Resource Manual to accompany Electronic Devices And Circuit Theory (10th Ed.) 10th Edition Robert L.Boylestead

https://ebookmass.com/product/instructors-resource-manual-toaccompany-electronic-devices-and-circuit-theory-10th-ed-10th-editionrobert-l-boylestead/ ebookmass.com

ISE Advanced Financial Accounting 13th Edition Theodore E. Christensen

https://ebookmass.com/product/ise-advanced-financial-accounting-13thedition-theodore-e-christensen/

ebookmass.com

Field Goal (Vegas Aces: The Playbook Book 5) Lisa Suzanne

https://ebookmass.com/product/field-goal-vegas-aces-the-playbookbook-5-lisa-suzanne/

ebookmass.com

Bible

https://ebookmass.com/product/bible-verse-coloring-book-coloring-bookcafe/

ebookmass.com

ComputationalMethodsinOrganometallicCatalysis

FromElementaryReactionstoMechanisms

YuLan

Author

Prof.YuLan ZhengzhouUniversity GreenCatalysisCenter,andCollegeofChemistry

450001Zhengzhou

China

CoverImage:©Vikks/Shutterstock

Allbookspublishedby Wiley-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained inthesebooks,includingthisbook,tobefreeof errors.Readersareadvisedtokeepinmindthat statements,data,illustrations,proceduraldetailsor otheritemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailablefromthe BritishLibrary.

BibliographicinformationpublishedbytheDeutsche Nationalbibliothek

TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetat<http://dnb.d-nb.de>.

©2021WILEY-VCHGmbH,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw.

PrintISBN: 978-3-527-34601-1

ePDFISBN: 978-3-527-34605-9

ePubISBN: 978-3-527-34603-5

oBookISBN: 978-3-527-34602-8

Typesetting SPiGlobal,Chennai,India

Printedonacid-freepaper

10987654321

Contents

Foreword xv Preface xvii

PartITheoreticalViewofOrganometallicCatalysis 1

1IntroductionofComputationalOrganometallicChemistry 3

1.1OverviewofOrganometallicChemistry 3

1.1.1GeneralViewofOrganometallicChemistry 3

1.1.2ABriefHistoryofOrganometallicChemistry 6

1.2UsingComputationalTooltoStudytheOrganometallicChemistry Mechanism 8

1.2.1MechanismofTransitionMetalCatalysis 8

1.2.2MechanisticStudyofTransitionMetalCatalysisbyTheoretical Methods 10 References 13

2ComputationalMethodsinOrganometallicChemistry 19

2.1IntroductionofComputationalMethods 19

2.1.1TheHistoryofQuantumChemistryComputationalMethods 19

2.1.2Post-HFMethods 21

2.2DensityFunctionalTheory(DFT)Methods 23

2.2.1OverviewofDensityFunctionalTheoryMethods 23

2.2.2Jacob’sLadderofDensityFunctionals 25

2.2.3TheSecondRungin“Jacob’sLadder”ofDensityFunctionals 25

2.2.4TheThirdRungin“Jacob’sLadder”ofDensityFunctionals 26

2.2.5TheFourthRungin“Jacob’sLadder”ofDensityFunctionals 26

2.2.6TheFifthRungin“Jacob’sLadder”ofDensityFunctionals 26

2.2.7CorrectionofDispersionInteractioninOrganicSystems 27

2.3BasisSetandItsApplicationinMechanismStudies 29

2.3.1GeneralViewofBasisSet 29

2.3.2Pople’sBasisSets 30

2.3.3PolarizationFunctions 31

2.3.4DiffuseFunctions 31

2.3.5Correlation-ConsistentBasisSets 31

2.3.6PseudoPotentialBasisSets 32

2.4SolventEffect 33

2.5HowtoChooseaMethodinComputationalOrganometallic Chemistry 34

2.5.1WhyDFTMethodIsChosen 34

2.5.2HowtoChooseaDensityFunctional 34

2.5.3HowtoChooseaBasisSet 36

2.6RevealingaMechanismforAnOrganometallicReactionbyTheoretical Calculations 37

2.7OverviewofPopularComputationalPrograms 37

2.8TheLimitationofCurrentComputationalMethods 40

2.8.1TheAccuracyofDFTMethods 40

2.8.2ExactSolvationEffect 41

2.8.3EvaluationofEntropyEffect 41

2.8.4TheComputationofExcitedStateandHighSpinState 41

2.8.5SpeculationontheReactionMechanism 41 References 42

3ElementaryReactionsinOrganometallicChemistry 51

3.1GeneralViewofElementaryReactionsinOrganometallicChemistry 51

3.2CoordinationandDissociation 52

3.2.1CoordinationBondandCoordination 52

3.2.2Dissociation 55

3.2.3LigandExchange 57

3.3OxidativeAddition 59

3.3.1ConcertedOxidativeAddition 60

3.3.2Substitution-typeOxidativeAddition 62

3.3.3Radical-typeAddition 67

3.3.4OxidativeCyclization 68

3.4ReductiveElimination 70

3.4.1ConcertedReductiveElimination 71

3.4.2Substitution-typeReductiveElimination 73

3.4.3Radical-Substitution-typeReductiveElimination 74

3.4.4BimetallicReductiveElimination 75

3.4.5EliminativeReduction 78

3.5Insertion 78

3.5.11,2-Insertion 79

3.5.21,1-Insertion 80

3.5.3ConjugativeInsertion 83

3.5.4Outer-SphereInsertion 84

3.6Elimination 86

3.6.1 β-Elimination 86

3.6.2 α-Elimination 90

3.7Transmetallation 92

3.7.1ConcertedRing-TypeTransmetallation 92

3.7.2TransmetallationThroughElectrophilicSubstitution 98

3.7.3StepwiseTransmetallation 99

3.8Metathesis 100

3.8.1 σ-BondMetathesis 100

3.8.2OlefinMetathesis 102

3.8.3AlkyneMetathesis 106 References 106

PartIIOntheMechanismofTransition-metal-assisted Reactions 125

4TheoreticalStudyofNi-Catalysis 127

4.1Ni-MediatedC—HBondActivation 128

4.1.1Ni-MediatedAreneC—HActivation 128

4.1.2Ni-MediatedAldehydeC—HActivation 132

4.2Ni-MediatedC—HalogenBondCleavage 133

4.2.1ConcertedOxidativeAdditionofC—HalogenBond 133

4.2.2Radical-TypeSubstitutionofC—HalogenBond 135

4.2.3C—HalogenBondCleavageby β-HalideElimination 137

4.2.4NucleophilicSubstitutionofC—HalogenBond 139

4.3Ni-MediatedC—OBondActivation 140

4.3.1EtherC—OBondActivation 140

4.3.2EsterC—OBondActivation 142

4.4Ni-MediatedC—NBondCleavage 148

4.5Ni-MediatedC—CBondCleavage 151

4.5.1C—CSingleBondActivation 151

4.5.2C=CDoubleBondActivation 152

4.6Ni-MediatedUnsaturatedBondActivation 153

4.6.1OxidativeCyclizationwithUnsaturatedBonds 153

4.6.2ElectrophilicAdditionofUnsaturatedBonds 156

4.6.3UnsaturatedCompoundsInsertion 157

4.6.4NucleophilicAdditionofUnsaturatedBonds 159

4.7Ni-MediatedCyclization 160

4.7.1Ni-MediatedCycloadditions 161

4.7.2Ni-MediatedRingSubstitutions 163

4.7.3Ni-MediatedRingExtensions 166 References 168

5TheoreticalStudyofPd-Catalysis 181

5.1Pd-CatalyzedCross-couplingReactions 182

5.1.1Suzuki–MiyauraCoupling 183

5.1.2NegishiCoupling 186

5.1.3StilleCoupling 189

5.1.4HiyamaCoupling 190

5.1.5Heck–MizorokiReaction 192

5.2Pd-MediatedC—HeteroBondFormation 196

5.2.1C—BBondFormation 196

5.2.2C—SBondFormation 197

5.2.3C—IBondFormation 200

5.2.4C—SiBondFormation 201

5.3Pd-MediatedC—HActivationReactions 204

5.3.1Chelation-FreeC(sp3 )—HActivation 206

5.3.2Chelation-FreeC(sp2 )—HActivation 208

5.3.3CoordinativeChelation-Assisted ortho-C(aryl)—HActivation 210

5.3.4CovalentChelation-Assisted ortho-C(aryl)—HActivation 212

5.3.5Chelation-Assisted meta-C(aryl)—HActivation 214

5.3.6CoordinativeChelation-AssistedC(sp3 )—HActivation 216

5.3.7CovalentChelation-AssistedC(sp3 )—HActivation 216

5.3.8C—HBondActivationThroughElectrophilicDeprotonation 219

5.3.9C—HBondActivationThrough σ-Complex-AssistedMetathesis 221

5.3.10C—HBondActivationThroughOxidativeAddition 223

5.4Pd-MediatedActivationofUnsaturatedMolecules 224

5.4.1AlkeneActivation 225

5.4.2AlkyneActivation 225

5.4.3EnyneActivation 226

5.4.4ImineActivation 229

5.4.5COActivation 229

5.4.6IsocyanideActivation 231

5.4.7CarbeneActivation 231

5.5AllylicPdComplex 234

5.5.1FormationfromAllylicOxidativeAddition 235

5.5.2FormationfromAllylicNucleophilicSubstitution 236

5.5.3FormationfromtheNucleophilicAttackontoAllene 237

5.5.4FormationfromAllylicC—HActivation 237

5.5.5FormationfromAlleneInsertion 238

References 239

6TheoreticalStudyofPt-Catalysis 257

6.1MechanismofPt-CatalyzedC—HActivation 258

6.1.1OxidativeAdditionofC—HBond 259

6.1.2ElectrophilicDehydrogenation 259

6.1.3CarbeneInsertionintoC—HBonds 261

6.2MechanismofPt-CatalyzedAlkyneActivation 264

6.2.1NucleophilicAdditions 264

6.2.2Cyclopropanation 266

6.2.3OxidativeCycloaddition 268

6.3MechanismofPt-CatalyzedAlkeneActivation 270

6.3.1HydroaminationofAlkenes 270

6.3.2HydroformylationofAlkenes 272

6.3.3IsomerizationofCyclopropenes 273 References 274

7TheoreticalStudyofCo-Catalysis 289

7.1Co-MediatedC—HBondActivation 289

7.1.1HydroarylationofAlkenes 291

7.1.2HydroarylationofAllenes 293

7.1.3HydroarylationofAlkynes 294

7.1.4HydroarylationofNitrenoid 296

7.1.5OxidativeC—HAlkoxylation 297

7.2Co-MediatedCycloadditions 297

7.2.1Co-MediatedPauson–KhandReaction 298

7.2.2Co-Catalyzed[4+2]Cyclizations 299

7.2.3Co-Catalyzed[2+2+2]Cyclizations 299

7.2.4Co-Catalyzed[2+2]Cyclizations 300

7.3Co-CatalyzedHydrogenation 301

7.3.1HydrogenationofCarbonDioxide 301

7.3.2HydrogenationofAlkenes 304

7.3.3HydrogenationofAlkynes 306

7.4Co-CatalyzedHydroformylation 307

7.4.1DirectHydroformylationbyH2 andCO 308

7.4.2TransferHydroformylation 309

7.5Co-MediatedCarbeneActivation 310

7.5.1ArylationofCarbene 310

7.5.2CarboxylationofCarbene 312

7.6Co-MediatedNitreneActivation 313

7.6.1AziridinationofOlefins 314

7.6.2AminationofIsonitriles 314

7.6.3AminationofC—HBonds 315 References 317

8TheoreticalStudyofRh-Catalysis 329

8.1Rh-MediatedC—HActivationReactions 330

8.1.1Rh-CatalyzedArylationofC—HBond 330

8.1.2Rh-CatalyzedAlkylationofC—HBond 332

8.1.3Rh-CatalyzedAlkenylationofC—HBond 335

8.1.4Rh-CatalyzedAminationofC—HBond 338

8.1.5Rh-CatalyzedHalogenationofC—HBond 340

8.2Rh-CatalyzedC—CBondActivationsandTransformations 341

8.2.1Strain-drivenOxidativeAddition 341

8.2.2TheCarbon—CyanoBondActivation 342

8.2.3 β-CarbonElimination 343

8.3Rh-MediatedC—HeteroBondActivations 343

x Contents

8.3.1C—NBondActivation 344

8.3.2C—OBondActivation 345

8.4Rh-CatalyzedAlkeneFunctionalizations 345

8.4.1HydrogenationofAlkene 346

8.4.2DiborationofAlkene 347

8.5Rh-CatalyzedAlkyneFunctionalizations 349

8.5.1HydroacylationofAlkynes 349

8.5.2HydroaminationofAlkynes 349

8.5.3HydrothiolationofAlkynes 351

8.5.4HydroacetoxylationofAlkynes 351

8.6Rh-CatalyzedAdditionReactionsofCarbonylCompounds 352

8.6.1HydrogenationofKetones 352

8.6.2HydrogenationofCarbonDioxide 353

8.6.3HydroacylationofKetones 353

8.7Rh-CatalyzedCarbeneTransformations 354

8.7.1CarbeneInsertionintoC—HBonds 354

8.7.2ArylationofCarbenes 357

8.7.3CyclopropanationofCarbenes 358

8.7.4CyclopropenationofCarbenes 359

8.8Rh-CatalyzedNitreneTransformations 359

8.8.1NitreneInsertionintoC—HBonds 360

8.8.2AziridinationofNitrenes 361

8.9Rh-CatalyzedCycloadditions 362

8.9.1(3+2)Cycloadditions 365

8.9.2Pauson–Khand-type(2+2+1)Cycloadditions 367

8.9.3(5+2)Cycloadditions 367

8.9.4(5+2+1)Cycloadditions 369 References 369

9TheoreticalStudyofIr-Catalysis 387

9.1Ir-CatalyzedHydrogenations 387

9.1.1HydrogenationofAlkenes 388

9.1.2HydrogenationofCarbonylCompounds 391

9.1.3HydrogenationofImines 393

9.1.4HydrogenationofQuinolines 396

9.2Ir-CatalyzedHydrofunctionalizations 397

9.2.1Ir-CatalyzedHydroaminations 397

9.2.2Ir-CatalyzedHydroarylations 397

9.2.3Ir-CatalyzedHydrosilylations 399

9.3Ir-CatalyzedBorylations 401

9.3.1BorylationofAlkanes 402

9.3.2BorylationofArenes 403

9.4Ir-CatalyzedAminations 405

9.4.1AminationofAlcohols 405

9.4.2AminationofArenes 407

9.5Ir-CatalyzedC—CBondCouplingReactions 407 References 409

10TheoreticalStudyofFe-Catalysis 419

10.1Fe-MediatedOxidations 420

10.1.1AlkaneOxidations 420

10.1.2AreneOxidations 422

10.1.3AlkeneOxidations 423

10.1.4OxidativeCatecholRingCleavage 425

10.2Fe-MediatedHydrogenations 426

10.2.1HydrogenationofAlkenes 427

10.2.2HydrogenationofCarbonyls 429

10.2.3HydrogenationofImines 430

10.2.4HydrogenationofCarbonDioxide 430

10.3Fe-MediatedHydrofunctionalizations 431

10.3.1HydrosilylationofKetones 431

10.3.2HydroaminationofAllenes 432

10.4Fe-MediatedDehydrogenations 434

10.4.1DehydrogenationofAlcohols 434

10.4.2DehydrogenationofFormaldehyde 435

10.4.3DehydrogenationofFormicAcid 435

10.4.4DehydrogenationofAmmonia-Borane 437

10.5Fe-CatalyzedCouplingReactions 438

10.5.1C—CCross-CouplingswithArylHalide 438

10.5.2C—NCross-CouplingswithArylHalide 438

10.5.3C—CCross-CouplingswithAlkylHalide 441

10.5.4Iron-MediatedOxidativeCoupling 441 References 441

11TheoreticalStudyofRu-Catalysis 451

11.1Ru-MediatedC—HBondActivation 452

11.1.1MechanismoftheRu-MediatedC—HBondCleavage 452

11.1.2Ru-CatalyzedC—HBondArylation 456

11.1.3Ru-Catalyzed ortho-AlkylationofArenes 460

11.1.4Ru-Catalyzed ortho-AlkenylationofArenes 461

11.2Ru-CatalyzedHydrogenations 464

11.2.1HydrogenationofAlkenes 464

11.2.2HydrogenationofCarbonyls 465

11.2.3HydrogenationofEsters 466

11.2.4HydrodefluorinationofFluoroarenes 467

11.3Ru-CatalyzedHydrofunctionalizations 468

11.3.1Hydroacylations 469

11.3.2Hydrocarboxylations 470

11.3.3Hydroborations 471

11.4Ru-MediatedDehydrogenations 472

11.4.1DehydrogenationofAlcohols 473

11.4.2DehydrogenationofFormaldehyde 473

11.4.3DehydrogenationofFormicAcid 474

11.5Ru-CatalyzedCycloadditions 475

11.5.1Ru-Mediated(2+2+2)Cycloadditions 475

11.5.2Ru-MediatedPauson–KhandType(2+2+1)Cycloadditions 478

11.5.3Ru-MediatedClickReactions 478

11.6Ru-MediatedMetathesis 480

11.6.1Ru-MediatedIntermolecularOlefinMetathesis 482

11.6.2Ru-MediatedIntramolecularDieneMetathesis 484

11.6.3Ru-MediatedAlkyneMetathesis 484 References 485

12TheoreticalStudyofMn-Catalysis 499

12.1Mn-MediatedOxidationofAlkanes 500

12.1.1C—HHydroxylations 500

12.1.2C—HHalogenations 501

12.1.3C—HAzidations 501

12.1.4C—HIsocyanations 501

12.2Mn-MediatedC—HActivations 502

12.2.1ElectrophilicDeprotonation 503

12.2.2 σ-Complex-AssistedMetathesis 504

12.2.3ConcertedMetalation–Deprotonation 505

12.3Mn-MediatedHydrogenations 507

12.3.1HydrogenationofCarbonDioxide 507

12.3.2HydrogenationofCarbonates 508

12.4Mn-MediatedDehydrogenations 510

12.4.1DehydrogenationofAlcohols 510

12.4.2DehydrogenativeCouplings 511 References 512

13TheoreticalStudyofCu-Catalysis 517

13.1Cu-MediatedUllmannCondensations 518

13.1.1C—NBondCouplings 520

13.1.2C—OBondCouplings 522

13.1.3C—FBondCouplings 522

13.2Cu-MediatedTrifluoromethylations 524

13.2.1TrifluoromethylationsThroughCross-Coupling 524

13.2.2TrifluoromethylationsThroughOxidativeCoupling 524

13.2.3Radical-TypeTrifluoromethylations 525

13.3Cu-MediatedC—HActivations 527

13.3.1C—HArylations 527

13.3.2C—HAminations 529

13.3.3C—HHydroxylation 531

13.3.4C—HEtherifications 532

13.4Cu-MediatedAlkyneActivations 533

13.4.1Azide–AlkyneCycloadditions 533

13.4.2NucleophilicAttackontoAlkynes 535

13.4.3AlkynylCuTransformations 536

13.5Cu-MediatedCarbeneTransformations 539

13.5.1[2+1]CycloadditionswithAlkenes 539

13.5.2CarbeneInsertions 541

13.5.3RearrangementofCarbenes 542

13.6Cu-MediatedNitreneTransformations 542

13.6.1[2+1]CycloadditionswithAlkenes 543

13.6.2AminationofNitrenes 543

13.6.3NitreneInsertions 544

13.7Cu-CatalyzedHydrofunctionalizations 545

13.7.1Hydroborylations 547

13.7.2Hydrosilylation 547

13.7.3Hydrocarboxylations 548

13.8Cu-CatalyzedBorylations 549

13.8.1BorylationofAlkenes 551

13.8.2BorylationofAlkynes 552

13.8.3BorylationofCarbonyls 553

References 554

14TheoreticalStudyofAg-Catalysis 567

14.1Ag-MediatedCarbeneComplexTransformations 568

14.1.1Silver–CarbeneFormation 568

14.1.2CarbeneInsertionintoC—ClBond 572

14.1.3CarbeneInsertionintoO—HBond 573

14.1.4NucleophilicAttackbyCarbonylGroups 573

14.1.5CarbeneInsertionintoC—HBond 574

14.2Ag-MediatedNitreneTransformations 576

14.2.1Silver–NitreneComplexFormation 577

14.2.2NucleophilicAttackbyUnsaturatedBonds 580

14.2.3NucleophilicAttackbyAmines 582

14.3Ag-MediatedSilyleneTransformations 583

14.4Ag-MediatedAlkyneActivations 585

14.4.1 π-ActivationofAlkynes 586

14.4.2C—HActivationofAlkynes 587

References 588

15TheoreticalStudyofAu-Catalysis 597

15.1Au-MediatedAlkyneActivations 598

15.1.1IsomerizationofAlkynes 599

15.1.2NucleophilicAttackbyOxygen-InvolvedNucleophiles 599

15.1.3NucleophilicAttackbyNitrogen-InvolvedNucleophiles 602

15.1.4NucleophilicAttackbyArenes 606

15.2Au-mediatedAlkeneActivations 607

15.2.1NucleophilicAdditionofAlkenes 607

15.2.2AllylicSubstitutions 608

15.3Au-mediatedAlleneActivations 609

15.3.1HydroaminationofAllenes 610

15.3.2HydroalkoxylationofAllenes 610

15.3.3CycloisomerizationofAllenylKetones 613

15.4Au-mediatedEnyneTransformations 613

15.4.11,5-EnyneCycloisomerizations 614

15.4.21,6-EnyneCycloisomerizations 615

15.4.3AllenyneCycloisomerizations 617

15.4.4ConjugativeEnyneCycloisomerizations 617

References 618

Index 629

Foreword

Computationalchemistrybeganinthe1940swiththeearliestelectroniccomputers anddrasticapproximationstotheSchrödingerequation,suchasHückelmolecular orbitaltheory.Sincethe1960s,thepossibilitiesofdoingquantummechanicscalculationsonlargesystemscontainingmetals,indeedtostudytheheartoforganometallicchemistry,beganwiththeMulliken–Wolfsberg–Helmholtzapproachandthen RoaldHoffmann’sExtendedHückelTheory(EHT)inthe1950sand1960s.Whilean amazinglyusefulmethod,EHTisreallyonlyofqualitativevalue.Butactuallywhat weneedisaconceptualframeworkthatisusefuleventoday.

The1960ssawremarkableadvancesinmethods,approximations,andthe beginningsofthefloweringofcomputersforchemicalcalculations.Thedawnof themodernhybriddensityfunctionaltheoryinthemid-1990s,borrowingexact exchangefromwavefunctiontheory,madeitpossibletobeginthequantitativecalculationsofstructure,mechanics,andmechanisms,includingtheincrediblyuseful organometallicreactions.BothRuandMocatalystsforolefinmetathesis,andPd catalysisforcross-couplingreactions,haveledtoNobelprizesfortheirdiscoverers.

YuLanhasnowwrittenanintroduction,aguide,amasterworkaboutquantum mechanicalstudiesoforganometallicreactionmechanisms.Heisideallyequipped towritesuchabook,alreadydoingoutstandingworkinthefieldasastudentand postdoc,andbecomingaleaderinthefieldinhisindependentcareer.Hehasalso trainedmanyyoungexpertsinthefield,andhisinfluencewillspreadfurtherfrom theirachievementsandthroughthisbook.

Thebookincludesahistoricalintroductiontoorganometallicchemistry,asurvey ofmechanisms,andanextensiveintroductiontoquantummechanicalcomputationalmethods,especiallydensityfunctionaltheory,aswellasprogramsforquantumchemicalcalculations.

Thedescriptionoforganometallicstructuresandmechanismsispepperedwith numerouscalculationsfromtheLangroupwithrelativelyaccuratedensityfunctionals.Part2,thebulkofthisbook,isorganizedwithachapterforeachofthemost importantmetalsusedinorganometallicchemistry:Ni,Pd,Pt,Co,Rh,Ir,Fe,Ru,Mn, Cu,Ag,andAu.Thecomputationalstudiesofthereactionsofcomplexesofeachof thesemetalsarereviewedwithgreatinsightsintomechanismsusingcomputations.

Foreword

Thebookwillbeaboontoorganometallicchemistsandcomputationalchemists involvedinthestudyoforganometallicreactions.Whileanumberofbookson organometallicchemistrymechanismsareavailable,thisisTHEbookdescribing themethodsforcomputationandanalysisoforganometallicreactionsusing modernquantummechanicalmethods.

29August2020

Preface

Alongtimeago,whenIfirstcameintocontactwithscience,Iwasfascinatedbythe uniquecharmoforganicchemistry.Thetetravalentcarbonatomsandtheirtetrahedralstructuresimpressedmewithelegantsimplicity.Throughthebrokenand formationofcovalentbonds,variousnewmoleculesthatpossessuniqueproperties couldbegenerated.Bymanipulatingthereactionconditions,catalysts,andligands inorganicreactions,chemistscaneffectivelysynthesizeplentyofcomplexnaturalproductmoleculesandpharmaceuticalmoleculesinhighregioselectivityand enantioselectivity.WhenIwasateenager,Itookeveryorganicchemicalreaction asapuzzle,andthereactionmechanismisliketheanswertothepuzzle.Inthis way,Ifoundgreatpleasureinthinkingaboutthemechanismoforganicreactions. Thedevelopmentoforganicchemistryalsorequiresacomprehensivemechanisticunderstanding.Generally,asignificantamountofinformationaboutreaction mechanismscouldbeobtainedbyexperimentaltechniques.However,theexperimentalmechanisticstudymainlyfocusesonthemacroscopicallyobservedexperimentalphenomena.Therefore,inmanycases,pureexperimentalobservationis notsufficientforrevealingthecompletereactionpathwayandclarifyingtheoriginofselectivity.DuringmydoctoralstudyatPekingUniversity,Iwasfortunate toworkwithmysupervisorProfessorYun-DongWu,fromwhomIlearnedhowto usecomputationalchemistrytoinvestigatetheorganicreactionmechanisms.Theoreticalcalculationsbasedonquantummechanics,especiallythedensityfunctional theorycalculation,haveconstitutedthemostpowerfultoolformechanisticstudy duetothedevelopmentofsupercomputer,computationaltheory,andcorresponding software.

Inthepastseveraldecades,oneofthemostimportantadvancesinorganicchemistryhasbeentheintroductionoftransitionmetalcatalyststoorganicsynthesis. Transitionmetalspeciescanreactwithorganiccompoundstogenerateintermediatesthatcontaincarbon–metalbonds.Subsequentconversionoftheseorganometallicintermediatescouldenrichthesyntheticapproachtowardnewmolecules.Differentfromorganocatalysis,theorganometalliccatalysisusuallygoesthroughmultiple stepsandcomplicatedcatalyticcycles,whichoriginatedfromthecomplexbonding patternoforganometalliccatalystsandthevariationofvalancestateofthecentral metalspecies.Thus,theutilizationoftheoreticalcalculationforunderstandingthe reactionmechanismisimperativeforthedevelopmentoforganicchemistry.My

post-doctoralresearchwithProfessorK.N.Houkwasworkingwithexperimental chemiststoexplorethemechanismoforganometallicreactionsthroughthecollaborationoftheoreticalcalculationwithexperimentalstudy.Thepromotionoftheoreticalstudyonexperimentaldevelopmentcouldbesummarizedinto“3D,”i.e. description,design,anddirection.Basedonthedataobtainedfromexperimental study,detaileddescriptionsoftheorganometallicreactionmechanismscouldbe fulfilledusingtheoreticalcalculation.Themechanisticstudythenprovidesfurther theoreticalguidancefortherationaldesignofnewreactions,whichpointsoutthe directionofexperimentaldevelopment.

Overrecentdecades,massiveexperimentalandtheoreticalinvestigationson organometalliccatalysishavebeenreported.Inthoseworks,theoreticalstudies havebeenprovedtobeanindispensabletechniqueformodernorganicchemistry. Consequently,thisbookiswrittentosummarizeandgeneralizethetheoretical advancesinthemechanisticstudyoforganometalliccatalysis.Thisbookcomprises twoparts,whicharethegeneraloverviewoforganometalliccatalysisandthe computationalstudiesofreactionmechanismsclassifiedbytransitionmetals.I hopethisbookcouldinspirethemechanisticstudiesofcomplexreactionsfor theoreticalchemists,andenableabetterunderstandingofreactionmechanismsfor experimentalchemists.

29July2020

YuLan

Zhengzhou,P.R.China

TheoreticalViewofOrganometallicCatalysis

Itistimetowriteabookoncomputationalorganometallicchemistry.

Thefirstpartofthisbookcanbeconsideredastheintroductiontocomputational organometallicchemistry.Itisalonghistorysinceorganometalliccatalysishasbeen appliedinorganicsynthesis;however,themechanismofthosereactionsistoocomplicatedtounderstand.Indeed,computationalchemistryprovidedapowerfultool torevealthemechanismoforganometallicreactions.Duringrecenttwodecades,the combinationofcomputationalchemistryandorganometallicchemistryhasmadea seriesofprogressinmechanisticstudies,whichhasledtoanewdiscipline,computationalorganometallicchemistry.

Thefirstpartwouldbecomposedofthreechapters.InChapter1,abriefhistoryoforganometallicsisgiventorevealthesignificanceofthischemistry.Computationalchemistry,especiallycomputationalmethods,isdiscussedinChapter2, whichwouldbeusedinmechanismstudyoforganometalliccatalysis.Detailedprocessesforthefamiliarelementaryreactionsinorganometalliccatalysisdiscovered bytheoreticalcalculationsaresummarizedinChapter3. ComputationalMethodsinOrganometallicCatalysis:FromElementaryReactionstoMechanisms, FirstEdition.YuLan. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

IntroductionofComputationalOrganometallicChemistry

Thischapterprovidesabriefintroductionofcomputationalorganometallic chemistry,whichusuallyfocusesonthereactionmechanismofhomogeneous organometalliccatalysis.

1.1OverviewofOrganometallicChemistry

Inthissection,thehistoricalfootprintoforganometallicchemistryisconcisely given,whichwouldhelpthereadersbetterunderstandtheroleofcomputationin themechanisticstudyoforganometallicchemistry.

1.1.1GeneralViewofOrganometallicChemistry

Creatingnewmaterialisalwaysentrustedwiththeimportantresponsibilityforthe developmentofhumancivilization[1–3].Inparticular,syntheticchemistrybecomes apowerfultoolforchemists,asitexhibitsgreatvaluefortheselectiveconstructionof newcompounds[4–8].Varioususefulmoleculescouldbepreparedbythestrategies ofsyntheticchemistry,whichprovidesmaterialfoundation,technologicalsupport, anddriveforceforscience[9–20].Syntheticchemistryisalsothemotivatingforce fortheprogressofmaterialscience,pharmaceuticalscience,energyengineering, agriculture,andelectronicsindustry[21–41].Inthisarea,organicsynthesisreveals broadinterestsfromaseriesofresearchfields,whichcouldtargetsupplytomultifariousfunctionalmolecules.

Thesyntheticorganicchemistryusuallyfocuseson“carbon”towidenrelated research,whichcouldaffordvariousstrategiesforthebuildingofmolecular framework,functionalgrouptransformations,andcontrollingstereochemistry inmoresophisticatedmolecules[9,22,42–50].Therefore,selectiveformationof newcovalentbondbetweencarbonatomandsomeotheratominvolvingnitrogen, oxygen,sulfur,halogen,boron,andphosphorusbecomesoneofthemostimportant aimsforsyntheticorganicchemistry.Inparticular,nucleophilesandelectrophiles areimportantfortheconstructionofnewcovalentbonds.

ComputationalMethodsinOrganometallicCatalysis:FromElementaryReactionstoMechanisms, FirstEdition.YuLan. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

1IntroductionofComputationalOrganometallicChemistry

Anucleophile,whichisamoleculewithformallone-pairelectrophiles,candonate twoelectronstoitsreactionpartnerfortheformationofnewcovalentbond.Alternatively,anelectrophile,whichisamoleculewithformalunoccupiedorbitals,can accepttwoelectronsfromitspartnerfortheformationofnewcovalentbond.Thereinto,couplingreactionscouldbecategorizedasredox-neutralcross-couplingwith anelectrophileandanucleophile,oxidativecouplingwithtwonucleophiles,and reductivecouplingwithtwoelectrophiles(Scheme1.1).

Cross-coupling:

Oxidative cross-coupling:

Reductive cross-coupling: +2e

E + EE

Scheme1.1 Cross-couplingreactionswithnucleophilesandelectrophiles.

Inorganicchemistry,thenucleophileisanelectron-richmoleculethatcontainsa lonepairofelectronsorapolarizedbond,theheterolysisofwhichalsocouldyield alonepairofelectrons(Scheme1.2).Accordingtothisconcept,organometallic compounds,alcohols,halides,amines,andphosphineswithalonepairofelectrons arenucleophiles.Somenonpolar π bonds,includingolefinsandacetylenes,which coulddonatethe π-bondingelectrons,areoftenconsideredtobenucleophiles. Moreover,theC—Hbondsofhydrocarbonscanbeconsideredtobenucleophiles becausetheelectronegativityofcarbonishigherthanthatofhydrogen,which coulddeliveraprotontoformaformalcarbonanion.Correspondingly,theelectrophileisanelectron-deficientmoleculethatcontainsunoccupiedorbitalsor

Lone-pair of electrons:

Unsaturated Bonds: ��

Organometallic complexes:

C H bonds:

Scheme1.2 Someselectedexamplesofnucleophiles.

1.1OverviewofOrganometallicChemistry 5

low-energyantibondingmolecularorbital,whichcouldaccepttheelectronsfrom nucleophiles.Inthischemistry,cationiccarbons,whichusuallycomefromthe heterolysisofcarbon—halogenbonds,areelectrophile.Polar π bonds,including carbonylcompoundsandimines,alsocouldbeconsideredtobeelectrophile, whichinvolvealow-energy π antibond.Interestingly,Fisher-typesingletcarbene hasanelectronpairfillingonesp2 hybridorbitalandanunoccupiedporbital, whichcouldbeconsideredtobeeithernucleophileorelectrophileincoupling reactions.

Superficially,atleast,thereactionbetweennucleophileandelectrophilecould constructacovalentbondundoubtedly.However,thefamiliarnucleophilesand electrophiles,usedincross-couplingreactions,areusuallyinactive,whichcould notreactwitheachotherrapidly.Moreover,whenmoreactivenucleophilesand electrophilesareusedincouplingreactions,itwouldbecomeoutofcontrol,which wouldnotselectivelyaffordtargetproducts.Ineffect,introducingtransitionmetal catalysiscanperfectlysolvethisproblem.Theappropriatetransitionmetalcanbe employedtoselectivelyactivatethenucleophilesandelectrophilesandstabilize someothers,whichledtoaspeciallyappointedcross-couplingreaction.

High-valencetransitionmetalcanobtainelectronsfromnucleophile,whichled tothetransformationofnucleophileintoelectrophile.Thenewlygeneratedelectrophilecancouplewithothernucleophilestoformcovalentbond,whichisnamed oxidativecouplingreaction[51–53].Meanwhile,thereducedtransitionmetalcan beoxidizedbyexogenousoxidantforregeneration.Correspondingly,low-valence transitionmetalcandonateelectronstoelectrophileleadingtothetransformation ofelectrophileintonucleophile,whichcanreactwithanotherelectrophiletoform covalentbond.Accordingly,itisnamedreductivecouplingreaction.Theoxidized transitionmetalalsocanbereducedbyexogenousreductant.

Thedorbitalofsometransitionmetalscouldbefilledbyunpairedelectrons,which ledtoauniquecatalyticactivityinradical-involvedreactions.Thehomolyticcleavageoftransitionmetal–carbon(orsomeotheratoms)bondisanefficientwayforthe generationofaradicalspecies,whichcanpromotefurthertransformations.Onthe otherhand,freeradicalcanreactwithsometransitionmetalleadingtothestabilizationofradical,whichcancausefurtherradicaltransformations[54–57].Moreover, nucleophilesandelectrophiles,activatedbytransitionmetals,alsocanreactwith radicaltoformnewcovalentbonds.

Althoughthereisnoelectronbarrierduetotheappropriatesymmetryoffrontiermolecularorbitals,agreatdealofuncatalyzedpericyclicreactionswouldoccur underharshreactionconditions,whichcouldbeoftenattributedtothelow-energy levelofhighestoccupiedmolecularorbitals(HOMOs)andhigh-energyleveloflowestunoccupiedmolecularorbitals(LUMOs)inreactingpartners.Transitionmetals canplayasaLewisacid,whichcouldsignificantlyreducetheLUMOofcoordinatedorganicmoiety.Therefore,ithasbeenwidelyadoptedtocatalyzepericyclic reactions,whichleadstomoderatereactionconditionsandadjustableselectivity [58–62].Moreover,thenodeofdorbitalcanchangethesymmetryofaconjugative compound,whichinvolvesatransitionmetal.Therefore,transitionmetalitselfalso couldparticipateinapericyclicreactiontorevealuniquecatalyticactivity.

1IntroductionofComputationalOrganometallicChemistry

Asanoverviewoforganometallicchemistry,thecoreistheformationofa metal–carbonbondanditsfurthertransformation.Differentfromorganocatalysis, organometalliccatalysisprocessusuallygoesthroughmultiplestepsaswellas complicatedcatalyticcycles,whichoriginatedfromthecomplexbondingpattern ofmetalliccatalystandthevariationofvalencestateforthecentralmetalelement. Consequently,improvingthereactionefficiencyandyieldfororganometallic catalysisencounteredmoredifficultythanconventionalorganocatalysis.Moreover, thedesignofcatalysisandligandfortransitionmetal-catalyzedreactionisstill facingbothopportunitiesandchallenges.Tosolvetheabove-mentionedissues, theunderstandingofreactionmechanismisimperative,whichcouldgivemore informationforthedetailedreactionprocess,andhelptoimprovethereaction efficiencyandyield.

1.1.2ABriefHistoryofOrganometallicChemistry

Asaninterdisciplineoforganicandinorganicchemistry,organometallicchemistry hasahistoryofalmost200yearssincethefirstcomplexK[(C2 H4 )PtCl3 ]⋅H2 O wasreportedbyZeisewhenheheatedethanolsolutionofPtCl4 /KCl[62].The historyoforganometallicchemistrycanberoughlydividedintofourstages.The chemistsmajorlyfocusedonmaingrouporganometalliccompoundsinthenineteenthcentury.Laterinthefirsthalfofthetwentiethcentury,chemistspaidmore attentiontounderstandingthestructuresoforganometalliccompoundsinvolving transitionmetals.Theninthelatterhalfofthetwentiethcentury,varioustransition metal-catalyzedreactionshadbeenwidelyreported.Sincethiscentury,chemists havebeenkeenonusingtransitionmetalcatalysistoselectivelyconstructmore complexorganiccompounds.Theoutlinedhistoryoforganometallicchemistry couldbeconcludedinScheme1.3[63].

Structural theory of organometallic complexes (1913)

Zeise salt

ZnMe2 (1827)(1849)

Al2Et3I3 (1859)

Ni(CO)4 (1890)

Grignard reagent (1901)

Main group organometallic chemistry

Cr(C6H6)2 (1919)

Ziegler–Nata catalyst (1953) -allylmetal (1959)

Fe(C5H5)2 (1951)

Structures of organometallic compounds

Asymmetric synthesis (2010 NP) Crosscoupling π

Metal–carbene complexes (1964)

β-hydride elimination (1970) Heck reaction (1971) Metathesis (2005 NP) (2001 NP)

Organometallic catalysis

Precise synthesis through organometallic catalysis

Scheme1.3 Abriefhistoryoforganometallicchemistry.Source:BasedonDidier[63].

Thenineteenthcenturycouldbeconsideredastheenlightenmenteraof organometallicchemistry.Franklandfirstsystemicallyinvestigatedorganometallic chemistryandpreparedaseriesofalkylmetalcompoundsin1850s.Inthelate nineteenthcentury,ZnMe2 (in1849byE.Frankland),Sn(C2 H5 )4 (in1859byE. Frankland),PbEt4 (in1853byC.Löwig),Al2 Et3 I3 (in1859byW.Hallwachsand

A.Schafarik),andRMgX(in1900byV.Grignard)hadbeenprepared,andthe chemicalpropertyofthosecompoundsalsohadbeenstudied[64–68].

In1890,Ni(CO)4 wasfoundasthefirstmetalcarbonylcomplexbyL.Mondetal. inthestudyofthecorrosionofstainlesssteelvalvesbyCO[69].Nextyear,Fe(CO)5 wasalsofoundbythesamegroup[70].Itcouldbeconsideredasthebeginningof thestructuralstudyoforganometalliccomplexes.Twoyearslater,Wernerproposed structuraltheoryoforganometalliccomplexesinvolvingthetetrahedral,octahedral, squareplanar,etc.whichwonhimtheNobelprizeinchemistryin1913[71].In1919, Cr(C6 H6 )2 waspreparedbyHeinusingMgPhBrtoreactwithCrCl3 [72].However, thesandwich-likestructureofthiscomplexwasprovedbyFischer36yearslater. In1951,Fe(C5 H5 )2 hadbeensynthesizedbyKealyandPausonindividually[73]. Thesandwich-likestructureofthatcomplexwasconfirmedbyG.Wilkinsonthefollowingyear,whicharousedchemists’enthusiasmforthestudyoftransitionmetal organiccompounds.In1964,tungstencarbenecomplexwasreportedbyFischer, whoshared1973NobelprizeinchemistrywithG.Wilkinson[74].Bythe1950s, withtheappearanceofrepresentationalmethods,involvingX-raycrystallography, infraredspectrum,andnuclearmagneticresonancespectrum,meansofcharacterizingtransitionmetalcompoundswerebecomingmoreandmoremature.Therefore, organometallicchemistrybecameanindependentdiscipline.

Fromthemiddleofthetwentiethcentury,organometalliccompoundswere graduallyconsideredasacatalystinorganicreactions.In1953,ZieglerandNatta foundthatTiCl4 /AlEt3 couldpromoteatmosphericpolymerizationofolefins, whichhelpedthemshare1963Nobelprizeinchemistry[75,76].In1959,allylic palladiumwaspreparedbySmidtandHafner,whichwasthebeginningof π-allyl metalchemistry[77].Thesameyear,ShawandRuddickreportedanelementary reactionofoxidativeaddition[78].In1974,Wilkinsonreportedanotherelementary reactionof β-hydrideelimination[79].Thoseworksledtoaseriesoffollowing mechanisticstudiesfororganometallicreactions.In1972,HeckandNolley reportedapalladium-catalyzedcouplingreactionbetweenarylhalidesandolefins, whichwasnamedHeckreaction[80].Meanwhile,aseriesofpalladium-catalyzed cross-couplingreaction,includingKumadacouplingwithGrignardreagent[81], Suzukicouplingwitharylborane[82],Negishicouplingwithorganozinc[83],Stille couplingwitharyltin[84],andSonogashiracouplingwithalkynylcopper[85], werereported.Thosereactionsmadetransitionmetal-catalyzedcross-coupling reactionsoneofthemostimportantwaystoconstructnewC—Ccovalentbondsin syntheticchemistry.Therefore,R.F.Heck,E.Negishi,andA.Suzukiwonthe2010 Nobelprizeinchemistry.Alsoin1971,W.S.Knowlesappliedchiralbisphosphine ligandsasligandinrhodium-catalyzedhydrogenationreactions,whichhadopened upawholenewfieldofasymmetriccatalysiswithtransitionmetals[86].W.S. Knowlesshared2001NobelprizeinchemistrywithK.B.SharplesandR.Noyori, whopromotedtheresearchupsurgeofasymmetriccatalysis.Moreover,Chauvin, Grubbs,andSchrockwonthe2005Nobelprizeinrecognitionoftheiroutstanding contributionsintransitionmetal-mediatedmetathesisofolefins.

Basedontheadvancesofmethodologystudyandliganddesign,transition metalcatalysishasbecomeoneoftheimportantmeansforsyntheticchemiststo

1IntroductionofComputationalOrganometallicChemistry constructmorecomplexnewsubstancesinthiscentury.Thecurrentpursuitis toselectivelyconstructmultiplecovalentbondsinonereactionsynchronously bytransitionmetalcatalysis.Toachievethisgoal,transitionmetalcatalysthas beenemployedtoselectivelyactivatesomeinertcovalentbonds.Themostfamous example–transitionmetal-mediatedC—Hbondactivation–becamethefocusof chemists.Thisprocesscouldaffordacarbon–metalbonddirectly,whichcouldbe usedasapowerfulnucleophileinfurthertransformations.Inmodernorganometallicchemistry,multistepelementaryreactionsinserieshavebeenextensively studied,whichcouldaffordabatteryofnewcovalentbondsthroughonecatalytic cycle.Syntheticefficiencyinorganometallicchemistryhasbecomethefocusof attention.Hereon,transitionmetalcatalysiswithhigherturnovernumberswas pursuedtofurtherimprovetheeconomyandenvironmentalprotection.Current researchontransitionmetalcatalysisisalsodevotedtoimprovingtheaccuracyof synthesis,aimingatachievingspecificfunctionalgrouptransformationintheexact location.Toachievethesegoals,thedesignoftransitionmetalcatalysisbecomes morecomplex,andtherequirementsforsuitableligandsarehigher.Itisnecessary todesignthecorrespondingligandsmanuallyaccordingtoaspectsofstructure, electronicproperties,stericeffect,andcoordinationability.Theseauxiliarydesigns alsomakethecatalyticcyclewithtransitionmetallengthier;meanwhile,the possibilityofsidereactionsincreases.Therefore,mechanisticstudiesfortransition metalcatalysisbecamemoreandmoreimportant,whichwerehelpfulfordesign ofnewcatalysis,enhancedefficiency,increasedselectivity,improvedturnover number,andaccuratesynthesis.

1.2UsingComputationalTooltoStudy theOrganometallicChemistryMechanism

Transitionmetalcatalysisisoneofthemostpowerfultoolsfortheconstruction ofneworganicmaterials,whosedevelopmenttrendismoreefficientaswellas morecomplex.Therefore,studyingthemechanismoforganometalliccatalysishas becomeevenmoreessential,andhasprovedtobethebasisforthedesignofnew ligands,catalysts,andreactions.

1.2.1MechanismofTransitionMetalCatalysis

Generally,reactionmechanismcouldbeconsideredtobeallelementaryreactions usedtodescribeachemicalchangepassinginareaction.Itistodecomposeacomplexreactionintoseveralelementaryreactionsandthencombinethemaccording tocertainrules,soastoexpoundtheinternalrelationsofcomplexreactionsand theinternalrelationsbetweentotalreactionsandelementaryreactions.Therate ofchemicalreactioniscloselyrelatedtothespecificpathwaysthroughwhichthe reactiontakesplace.

Tostudythelawofchemicalreactionrateandfindouttheintrinsiccauses ofvariouschemicalreactionrates,syntheticchemistsmustexplorethereaction

1.2UsingComputationalTooltoStudytheOrganometallicChemistryMechanism 9 mechanismandfindoutthekeytodeterminethereactionrate,soastocontrol thechemicalreactionratemoreeffectively.AsshowninScheme1.4,traditional researchmethodsforreactionmechanisminclude:(i)determiningtheimportant intermediateordecisivestepofareactionbyisotopetracing,(ii)determiningthe effectofdifferentfactors(e.g.reactiontemperature,solvent,substituenteffect,etc.) onreactionrateandselectivitybycompetitivetest,(iii)studyingtherelationship betweenthereactionrateandtheconcentrationofreactantsandcatalystsobtaining bykineticexperiments,and(iv)characterizingandtrackingintermediatesby instrumentalanalysis.However,thesemethodsareoftenmacroscopicobservation oftheaveragestateofmanymolecules,whichcannotwatchaprocessofthe transformationforonemoleculefromamicro-perspective.Fortunately,theoretical calculationsbasedonfirstprincipleshavebecomeoneoftheimportantmeans tostudythereactionmechanismwiththedevelopmentofsoftwareandthe improvementofhardwarecomputingcapabilityinrecentseveraldecades.Through theoreticalcalculationandsimulation,thetransformationofonemoleculein reactionprocesscanbe“watched”moreclearlyfromthemicroscopicpointofview. Actually,theoreticalcalculationcanbeconsideredtobeaspecialkindofmicroscope,whichcanseethegeometricalstructure,electronicstructure,spectrum,and dynamicprocessatatomiclevel,andishelpfulforchemiststounderstandthereal reactionmechanism.

Control reactions

Isotope tracing

Tracking intermediates

Kinetic experiments

Reaction mechanism of organometallic catalysis

Theoretical calculations

Scheme1.4 Revealingthereactionmechanismoforganometalliccatalysis.

Thecombinationoftheoreticalandexperimentaltechniquescouldnotonly greatlyimprovetheefficiencyofreactionandyieldofproduct,butalsouncover thefactorsthatcontroltheselectivityofproductmoreclearly.Thepromotionof theoreticalstudytoexperimentalinvestigationcouldbesummarizedinto“3D,”i.e. description,design,anddirection.Basedonthedataobtainedfromexperimental technique,detaileddescriptionforthemechanismoforganometalliccatalysis couldbefulfilledusingtheoreticalcalculations.Basedontheresultsofcomputations,themechanismscouldbeverifiedbythedesignedexperiment.Toputin anutshell,theoreticalcalculationscouldplayacriticalroleinthedirectionof transition-metal-organicsynthesis.

1.2.2MechanisticStudyofTransitionMetalCatalysisbyTheoretical Methods

Quantumchemicalcomputationbasedonfirstprincipleprovidesapowerfultool forthemechanisticstudyoftransitionmetalcatalysis.Sincethewholecontentof thisbookistodiscussthetheoreticalcalculation-basedstudyforthemechanismof transitionmetalcatalysis,wewillgiveonlyafewexamplestoshowhowtostudythe reactionmechanismbytheoreticalcalculations.

Generally,mechanismresearchoftransitionmetalcatalysisinitiallyfacesaseries ofstudiesinvolvingthemolecularstructureandelectronicstates.Asanexample, (Xantphos)Pd(CH2 NBn2 )+ isanimportantprecursorforaminomethylationreactions,thegeometricstructureofwhichhasbeenconfirmedbyX-rayanalysis[87]. However,whythiscomplexcouldbeformedandtheelectronicpropertiesofthis complexstillremainedunclear.AsshowninScheme1.5,inresonancestructure 1-1,thePd—Cbondisanormalsinglebond,andPd—Nisacoordinationbond. Theformalpositivechargeislocalizedonpalladium,andtheformaloxidationstate ofpalladiumis +2.Alternatively,theiminiummoietyactsasamonodentateligand coordinatedwithPd(0)inresonancestructure 1-2,andtheformalpositivechargeis mainlylocalizedontheiminiummoiety.Therealstructureofthiscomplexwouldbe amixtureofresonancestructures 1-1 and 1-2.Ontheotherhand,thebondordersof Pd—C,Pd—N,andC—Naredeterminedtobe0.322,0.135,and0.965,respectively, whichindicatethatthePd—CandPd—Nbondsareveryweak.Moreimportantly, thesedatasupportthattheC—Nisadoublebondand 1-2 ismostlikelytobethe mainstructureofthiscomplex.Furtherfrontiermolecularorbitalstudiesalsosupportedthispoint.

Tosummarize,computationalorganometallicchemistryfocusesonsomeofthe stationarypointsonpotentialenergysurfaceforthecorrespondingreactions,which couldbeusedtocomparethepossibleelementaryreactions.Thelowestenergy reactionpathwaycouldbefoundbytheoreticalcalculations,whichishelpfulfor chemiststounderstandthereactionmechanismanddesignnewreactions.

Asanexample,computationalmethodwasusedtostudythemechanismof rhodium-catalyzedcouplingreactionofquinoline N -oxideandacetylenes.As showninScheme1.6,fourpossiblepathwaysweretakenintoaccount(i.e.paths A–D)[88].Allthesefourpathwaysbeginwiththecoordinationofquinoline N -oxide toRh(III)precursor 1-6,whichisfollowedbyan N -oxide-directedelectrophilic deprotonationbyacetateandcoordinationofacetylenesubstratetogiverhodacycle 1-7.ThesubsequentinsertionoftheacetylenesubstrateintotheRh—Cbond ofintermediate 1-7 givesintermediate 1-8,whichisacommonintermediatefor

Scheme1.5 Theresonancestructuresof(Xantphos)Pd(CH2 NBn2 )+ .

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Computational methods in organometallic catalysis: from elementary reactions to mechanisms yu lan - by Education Libraries - Issuu