Comprehensive energy systems, vol.5 - energy management 1st edition canan acar - Read the ebook now

Page 1


https://ebookmass.com/product/comprehensive-energy-systems-

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

A Comprehensive Guide to Solar Energy Systems: With Special Focus on Photovoltaic Systems 1st Edition Trevor M. Letcher

https://ebookmass.com/product/a-comprehensive-guide-to-solar-energysystems-with-special-focus-on-photovoltaic-systems-1st-edition-trevorm-letcher/ ebookmass.com

Tidal Energy Systems: Design, Optimization and Control 1st Edition

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-1st-edition/

ebookmass.com

Tidal Energy Systems: Design, Optimization and Control Vikas Khare

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-vikas-khare/

ebookmass.com

Manual Harriet Lane de Pediatría 21ª Edición 21st Edition Booksmedicos.Org

https://ebookmass.com/product/manual-harriet-lane-depediatria-21a-edicion-21st-edition-booksmedicos-org/

ebookmass.com

5.1 EnergyAuditing

AmineAllouhiandAliBoharb, SidiMohamedBenAbdellahUniversity,Fez,Morocco RahmanSaidur, SunwayUniversity,Selangor,MalaysiaandLancasterUniversity,Lancaster,UnitedKingdom TarikKousksou, UniversityofPauandPaysdel'Adour,Pau,France

AbdelmajidJamil, SidiMohamedBenAbdellahUniversity,Fez,Morocco r 2018ElsevierInc.Allrightsreserved.

5.1.1Introduction

5.1.2FundamentalsofEnergyAudit

5.1.2.1Definition3

5.1.2.2ClassificationofEnergyAudits3

5.1.2.2.1Industrialenergyaudits

5.1.2.2.2Commercialenergyaudits

5.1.2.2.3Residentialenergyaudits

5.1.2.3EnergyAuditLevels4

5.1.2.3.1ASHRAELevel1 –

5.1.2.3.3ASHRAELevel3

5.1.2.4EnergyAudit:GeneralProcedure5

5.1.2.4.1Preparationphase

5.1.2.4.2Executionphase

5.1.2.4.3Reportingphase

5.1.3.1MeasuringElectricalParameters7

5.1.3.1.1Electricenergymeters

5.1.3.1.2Electricalnetworkanalyzers

5.1.3.2.1Thermometers

5.1.3.2.2Infraredthermometers

5.1.3.2.3Anemometers

5.1.3.2.4Humiditymeasurements

5.1.3.2.5Carbondioxidemeter

5.1.3.2.6Lightinglevelmeasurements

5.1.3.2.7Heat fl uxmeter

5.1.3.2.8Blowerdoortest

5.1.3.3OtherMeasurements14

5.1.3.3.1Combustionanalyzers

5.1.3.3.2Speedmeasurements

5.1.3.3.3Leakdetectors

5.1.3.3.4Flowmeters

5.1.4EnergyEf

5.1.4.1BuildingEnvelope16

5.1.4.1.1Thermalinsulation

5.1.4.1.2Windows

5.1.4.1.3Externalshading

5.1.4.1.4Reductionofairinfiltration

5.1.4.2Heating,Ventilating,andAir-ConditioningSystems19

5.1.4.3ElectricalSystems20

5.1.4.3.1Transformers

5.1.4.3.2Qualityofelectricalenergy

5.1.4.3.3Electricalmotors

5.1.4.3.4Lightingsystems

5.1.4.4Compressed-AirInstallation24

5.1.4.5CombustionInstallations25

5.1.5CaseStudy:EnergyAuditing

5.1.5.1Introduction25

5.1.5.2 Methodology

5.1.5.2.1Manufacturingprocess

5.1.5.2.2Auditprocess

5.1.5.2.3Datacollectionandmeasurements

5.1.5.2.4Mathematicalformulations

5.1.5.3Analysis

5.1.5.3.1Profileofmonthlyelectricityuse

5.1.5.3.1.1Monthlyelectricityprice

5.1.5.3.1.2Subscribedpower

5.1.5.3.2Transformers

5.1.5.3.2.1Energylossesintransformers

5.1.5.3.2.2Analysisofenergyqualityintransformers

5.1.5.3.3Energy-intensivemotors

5.1.5.3.3.1Motorswithoutvariablefrequencydrive

5.1.5.3.3.2Motorsequippedwithvariablefrequencydrive

5.1.5.3.4Compressed-airinstallations

5.1.5.4ActionsPlanandAnalysis

5.1.5.4.1Action1:revisethesubscribedpowers

5.1.5.4.2Action2:adopthigh-efficiencytransformers

5.1.5.4.3Action3:improvingenergyefficiencyofelectricmotors

5.1.5.4.4Action4:installvariablefrequencydriveatlow-loadmotors

5.1.5.4.5Action5:installationofvariablefrequencydriveatthecompressedaircompressor

5.1.5.4.6Action6:treatmentofharmonicpollution

5.1.5.5Conclusions

5.1.6ClosingRemarks

Nomenclature

AEPAverageelectricityprice(excludingtaxes), MAD/kWh

AESAnnualenergysaving,MWh/year

APmax Monthlymaximalactivepower,MW CFConsumptionfee,MAD

ECEnergyconsumed,MWh

Eee Efficiencyratingofenergy-efficientmotor,%

EPx Electricitypricesforthetimeslice x,MAD/kWh

Esrd Standardmotorefficiencyrating,% FEPCFeeoftheexcessofsubscribedpower,MAD

Greekletters

Z Efficiency

ZREC Averageseasonalef ficiencyoftheheat recoveryunit

Abbreviations

CCompressor

CO Carbonmonoxide

CO2 Carbondioxide

SCSpecificconsumption

DPFDisplacementpowerfactor

hHours

HVHighvoltage HVACHeating,ventilationandairconditioning

IDPF Increaseduetoadisplacementpowerfactor below0.8,MAD

PBPaybackperiod,years PCPowercost,MAD PSPPriceofsubscribedpower,MAD/kW r Reductivecoefficient SPSubscribedpower,MVA TECTotalenergyconsumption,MWh THDITotalharmoniccurrentdistortion,% THDVTotalharmonicvoltagedistortion,% V Volumeofthespacetobeheated,m3

l Thermalconductivity,W/mK raca Volumetricheatcapacity,Wh/m3 K

LEDLight-emittingdiode MADMoroccandirham MotMotor Mot-VFDMotorwithVFD MVMediumvoltage RMSRootmeansquare TrTransformer VFDVariablefrequencydrive

definedthreeprogressivelevelsofaudits.Eachauditlevelreliesonthepreviouslevel.Obviously,thecomprehensivenessofthesite assessment,theamountofdatacollectedandthedetailprovidedinthe finalauditincreaseswiththeauditcomplexity,butthe potentialofenergysavingbecomeshigher.TheASHRAEenergyauditlevelsarediscussedbelow [10].

5.1.2.3.1ASHRAELevel1 – walk-throughanalysis/preliminaryaudit

TheLevel1audit,knownalsoas “walk-throughaudit,”“simpleaudit,” or “screeningaudit,” isthebasicstartingpointforenergy conservation.Itistypicallyusedincommercialbuildingsandsmallormediumindustrialsiteswheretheenergy-consuming systemsarequitesimpleandthelikelyareasofpotentialenergy-savingmeasuresareknowninadvance.

TheASHRAELevel1auditisgearedtowarddefiningthetypeandnatureofenergysystems,preliminarilyanalyzingthesite's energyconsumptionandidentifyingthesimplestandmostcost-effectiveenergyupgrademeasures.Onthisbasis,inthisaudit type,readilyavailabledataaremostlyusedfortheanalysisofenergyuseandperformanceofthestructure.Limitedmeasurements arecarriedoutandextensivedatacollectionisnotrequired.Ashortreportlistingthe findingsandabasiceconomicanalysisofthe improvementsis finallyelaboratedwithoutnecessarilyprovidingdetailedrecommendations,exceptforveryvisibleprojectsor operationalfaults.

Despitethedegreeofsimplicityofthistypeofaudit,itmustbeconductedbyanexperiencedauditor.Thecompletiontimeof the"walk-through"auditisverylimitedandthereforetheauditorhastomakequickandcorrectandprofitabledecisions.

5.1.2.3.2ASHRAELevel2 – energysurveyandanalysis

TheLevel2energyauditbeginswiththe findingsoftheLevel1audit,andevaluatestheenergysystemsoftheauditedstructurein moredetailtoproposeawiderangeofpotentialenergyefficiencyimprovements.Theapproachdiffersdependingonthestructure type(residential,commercial,orindustrialstructure),butinallcases,moredetaileddataandinformationareneeded.

Detailedmeasurementsanddatainventoryareusuallycarriedoutanddifferentenergysystemsareextensivelyexamined.

Theenergyefficiencymeasures(EEMs)forthisaudittypearenotdirectorobviousasinthecaseofLevel1auditandgenerally necessitatehigherinvestments.

Forresidentialbuildings,theEEMsincludetheassessmentofthebuildingenvelope,HVACsystems,lightingdevices,domestic hotwaterproductionsystemand “plugloads.” Intheindustrialsector,thefocusismainlygearedtowardtheassessmentofhighly specializedequipment,suchascompressedair,Mots,andprocessmachines.The firststepinthistypeofauditistodeeplyanalyze theenergyconsumption;quantifybaseloads;identifyenergy-intensiveapplications,usagepatterns,andseasonalvariation;and determineenergycosts.

Accordingtotheauditedstructure,duringtheauditprocess,thereshouldbedetaileddiscussionswiththebuildingownership orfacilitymanagerandfacilityoperationandmaintenancestafftoidentifypotentialproblemareas,andclarify financialand nonfinancialtargetsoftheprogram.

Aclearandconcisereport,includinganactionplantoimprovetheenergyefficiency,generalfutureperformances,and economicmetricsiswritten.Ameetingisthenplannedwiththeclienttoclarifytheauditresults,prioritizeEEMsandgivewaysto evaluateandimplementthem.Someoftheproposedmeasuresarelow-costorcanbeimplementedquickly,resultinginashort PB.Othermeasuresrequirehigherinvestmentsorconsiderablechanges.Here,theauditorshouldhelpinthedecision-making processanddefinethe firststepsoftheimplementationphase.

5.1.2.3.3ASHRAELevel3 – detailedanalysisofcapitalintensivemodi fications

SomeofthesystemupgradesoutlinedbytheLevel2energyauditmayrequiredetailedanalysisofpossiblecapital-intensive modifications,includingmodelingandsimulation [11]

This typeofaudit,whichissometimescalledaninvestmentgradeaudit(IGA),isintendedtoprovidesupplementaryengineeringaccuracyformorecostlycapitalprojectswhereuncertaintyislesspermittedsinceinvestorsoftendemandguaranteed savings.Therefore,theLevel3auditinvolvesacollectionofdataoveralongertimeperiod,anaccuratemodelingofEEMs,an estimationpower/energyresponse,detaileddesignofconstructiondocuments,anddetailedcostingestimates.Typically,ascopeof workandschematicsareprovidedsothatthecontractorsinstallingthemeasuresunderstandexactlywhatistobeinstalled. Investmentlevelscanvaryfromtensofthousandstotensofmillionsofdollars.

Dynamicsimulationsoftwarepackagesareoftenusedtoperformenergycalculationsinthisaudittype.Inthecaseofindustrial activities,dataloggerstypicallywillbeemployedtomonitoroperationmodesofpumpsandMots,hourlytemperaturesand humidityvariationofaffectedspaces,switchingbehavior,andotherparameters.Thesedataarethenusedtocalibratethecomputer modelofthestructureanditsvariousenergysystems.Futurechangescanbeaccuratelysimulatedandtheresultsarethoroughly validated,whichgiveastrongsupportduringthedecision-makingprocess.

5.1.2.4EnergyAudit:GeneralProcedure

Toconductanenergyaudit,asystematicapproachisrequiredinwhichthedepthofthedatacollectionandanalysismightbe differentdependingonthelevel,scope,andobjectivesoftheaudit.Generally,therearefourmainphases,eachofwhichhas severalsteps.Thesephasesandstepsarereportedin Fig.1

(1) Audit preparation

Defining audit level, criteria and scope

Selection of audit team

Setting objectives

Planning the audit

Data collection

Preliminary analysis

(3) Audit reporting

Writing the energy audit report

Communicating with the client

Prioritizing and decision-making support

Fig.1 Energyauditprocedure.EEMs,energyefficiency measures.

5.1.2.4.1Preparationphase

(2) Audit execution

Data inventory and measurements

Analyzing energy use patterns

Diagnosing energy systems

Exploring and comparing opportunities

Identifying potential EEMs

Economical assessment

(4) Post-audit activities

Implementing EEMs

Checking performances

Maintaining measures

Beforestartingtheenergyaudit,thelevel,criteria,andscopeagainstwhichtheauditwillbeconductedshouldbedefined.An energyauditteamshouldbeestablishedtoorganizeandmanagetheauditprocess,especiallyatthefacilitylevelwhereaudit activitiesaremoreintenseandoftenrequirevariousskillsandcapabilities.Ifneeded,hiringoutsideexpertsisrecommended tocarryoutathoroughaudit.Inthisphase,itisalsoimportanttosetobjectivesinharmonywithsiteboundary,timeline, andstaffinvolvement.Astheauditprocessisgenerallycomplex,planningtheactivitiestooutlinestrategiesandproceduresis mandatory.Theauditormayusechecklistsinordertoconducttheworkinasystematicandconsistentway.Oncethesesteps areperformed,thedataandinformationcollectionprocesscanbegin.Presentandformerenergyusepattern,construction, andenergyutilizationofeverybuildingorunitshouldbecharacterized.Thesedataandinformationcanbefoundthankstoa well-structuredandaccuratequestionnaire,whichwillbeansweredduringthe firstmeetingbetweentheenergyauditorand theclient.

5.1.2.4.2Executionphase

Energyauditscantakefromfewweekstoseveralmonthstocomplete,dependingonthesitenatureandcomplexity.Theaudit processstartsattheutilitymeterswhereenergy flowsareidentifiedandsourcesofenergycomingintoabuildingorfacilityare measured.Datainventoryisestablishedtocharacterizetheuseandoccupancyoftheauditedstructure.Analysisofenergypatterns forspecificplantdepartmentsoritemsofprocessequipmentareinvestigated.Thediagnosisoperationsleadtoanidenti ficationof opportunitiesforenergyefficiencyimprovements.Theseopportunitiesmustbecarefullyassessedandcomparedtoidentifythe mostappropriateones.OncethepotentialEEMsareselected,auditorsconductacost–benefitanalysistoevaluatetheireconomic viability.

5.1.2.4.3Reportingphase

Inthe finalmeeting,theenergyauditor(orauditteam)presentshisorherconclusionsexplainedinawell-structuredformat throughanenergyauditreport.Thereportneedstobeclear,conciseandprecise,providingsuitableinformationtothepotential readers.Itstartswithanexplanationoftheauditobjectives,scope,andmethodologyandmovestowardanoverviewofthe auditedfacilityorbuilding.Thebodyofthereportincludesthemainaudit findings(energyuseandbudgetofthestructure,main identifiedanomaliesandcurrentperformances),adetaileddescriptionofrecommendedenergymeasuresclassi fiedintermsofno cost/lowcost,mediumcost,andhighinvestmentcostalongwiththeimplementationcosts,savings,andeconomicindicators. Duringthe finalmeeting,anactionplanfortheimplementationoftheretainedEEMsisproposed.Generally,theauditor prioritizesthepotential,direct,andlow-costopportunitiesandprovidessupportinthedecision-makingprocess.

5.1.2.4.4Postauditphase

Inpractice,theimplementationofrecommendedimprovementsencountersseveralbarriers.Hence,establishingaclearprocedure toguaranteeafavorablerealizationoftheseimprovementsisrequired.Thisprocedureshouldclearlyoutlinegoals,savingtargets, andresponsibilitiesfortheimplementation.Theimplementationphaseshouldbeachievedinaparticipativecontextwiththe focusonasmoothcommunication,anincreasedawareness,andaprofoundmotivation.Auditedstructurescanassessthebenefits oftheimplementedactivitiesbycomparingactualperformancesandconsumptionstotheestablishedgoalsusingenergydataand measurements.Theauditprocessiscompletedbysuggestionstomaintaintheauditresultsandensurethesustainabilityofenergy efficiencyimprovement.

5.1.3InstrumentationforEnergyAuditing

Theenergyauditofenergyusenecessitatesmeasurements;thesemeasurementsrequiretheuseofaccurate,reliable,durable,easy touse,andrelativelyinexpensiveinstruments.Formeasuringandestimatingtherequiredparameters,itisimperativetoutilize accurateandcompletedatamonitoredforarepresentativeduration.Inpractice,however,completedataarerarelyavailable.The auditorhastocontrolperiodicallytheoperationalandmaintenancestatusoftheinstrumentsandassesstheirprobablemeasuring errortoensuretrustworthinessofmeasurements.Themeasuringactivityusingbothportableandinstalledinstrumentsgenerally occursduringtheexecutingphase,providinginstantaneousorshort-termrecordsofperformanceoverashorttimeinterval.Special careshouldbeconsideredwhenextrapolatingshort-termmeasurementstolonger-termresults.Inthiscase,itisadvisedtoperform measurementsduringperiodsthatarerepresentativeforeachequipmentoperation.

Theparametersusuallymonitoredduringanenergyauditmaycoverthefollowing [12–14]:

● electrical measurementsincluding:voltage(V),currentintensity(A),powerfactor,activepower(kW),apparentpower(kVA), reactivepower(kVAr),energyconsumption(kWh),frequency(Hz),andharmonics;

● temperature,pressure,relativehumidity,radiation,heat flow,airvelocity,andluminancelevel;

● exhaustgazesemissionsandcontentsinCO2,O2,CO,SOx,andNOx;

● liquidandgasfuel flows;and

● others,suchaspH,noiseandvibration,totaldissolvedsolids(TDS),revolutionsperminute(RPM).

Auditorsshouldalwaysundertakemeasurementsoftheseparameterswithdueregardforsafetyrules,especiallywhendealing withspecificequipmentorprocesses.

5.1.3.1MeasuringElectricalParameters

Formeasuringtheelectricalparametersthefollowinginstrumentationisused.

5.1.3.1.1Electricenergymeters

Thesemeasuringdevicesforelectricenergyareportable,quitesimple,anddonotrequireanyspecialskills.Thedisplay,with whichitispossibletointeractbymeansofbuttons,canprovidethefollowingvalues:

● instantaneousvoltage;

● currentintensity;

● instantaneouspowerabsorbedbytheequipment;

● powerfactor;

● energyconsumed(EC)duringacertainperiod;and

● resultingeconomicvalueoftheEC.

Themarketproposesawiderangeofthesedevicesataccessibleprices.Thelatestmodelsaresmartenergymetersthatprovide morepreciseandexactmeasureswithsupplementaryfunctionality,suchasreal-timereads,poweroutagenotices,andpower qualitysupervision(Fig.2).

Fig.2 Energymetermanufacturedbycurrentcost.ReproducedfromCurrentcost.Availablefrom: www.currentcost.com [accessed18.08.16].

Fig.3 Electricalnetworkanalyzerconnectedtothemainbreaker.ReproducedfromTechni-Too.Availablefrom: www.techni-tool.com [accessed20.08.16].

5.1.3.1.2Electricalnetworkanalyzers

Electricalnetworkanalyzersmeasuresimultaneouslytheinstantaneousvoltage,current,andpowerfactor.Theirutilization requiresspecificskillsinelectricalengineering.Thenetworkanalyzerisequippedwithacommunicationcableconnectedtoa computertotransferthedatarecorded(Fig.3).Thestoreddataareprocessedandanalyzedbyasoftwarepackage.Afteraproper

Fig.6 TwotypesofanemometersmanufacturedbyTesto.ReproducedfromTequipment.Availablefrom: www.tequipment.net/Testo_0560-4170. html [accessed20.08.16].

Fig.7 Aslingpsychrometerwithdirectreadingofrelativehumidity.ReproducedfromForestry-Suppliers.Availablefrom: www.forestry-suppliers. com [accessed05.09.16].

psychometricchartortablenormallysuppliedwiththeinstrument.Sometypesofthisinstrumentallowadirectreadingof humidity(Fig.7). Whenairtemperatureisbelow01C,thisinstrumentcannotbeused.Moreover,itrequiresfrequentcleaning andcotton-clothreplacement.

● Electronic hygrometer(orathermohygrometer),isaportabledevicethatsimultaneouslymeasuresairtemperatureandrelative humidity.Advanceddevices,withbetteraccuracy,containdataloggingcapacityanduniversalserialbus(USB)cableandUSB driverdisk(Fig.8).

Moderndevicesbasedonvariousprinciplesarealsopresentlyavailableandincludecapacitive,resistive,thermalandgravimetric hygrometers.

5.1.3.2.5Carbondioxidemeter

Monitoringcarbondioxidelevelsisrequiredinmanyapplicationsincludingpublicareas,suchasof fices,classrooms,factories, hospitals,andhotels,andforindustrialhygieneinsomecountries.Carbondioxidemetersareprincipallyusefultogetinformation forknowingiftheventilationsystemoperatesproperly.Then,itwillbepossibletoadequatelyadjusttheairventilation flowto meettherealneeds.Acarbondioxidemeterofferingthepossibilityofmeasuringaswellambienttemperatureandrelative humidityandwithauser-programmableaudiblealarmisshownin Fig.9.

5.1.3.2.6Lightinglevelmeasurements

Thepurposeofthelightingistoensurevisualcomfort.Theauditorneedstomonitorlightlevelsinordertochecktheadaptabilityof thelightingsystemtostandardsandtoevidenceopportunitiesofenergyefficiencyimprovements.Illuminanceisameasureindicatinghowmuchluminous fluxisspreadoveragivenarea.Alightmeterorluxmeteristheinstrumentusedforthispurpose.It operatesbyusingasensitivephotocellthatcapturesluminousenergy(photons),whichisconvertedintoelectricalenergy.Oncethis currentisknownitispossibletodeterminetheluxvalueofthelightcaptured.Certaincolorsoflightaremoreeffectiveatproducing

ElectronichygrometermanufacturedbyTecpel.ReproducedfromTecpel.Availablefrom: www.tecpel.com [accessed05.09.16].

CarbondioxidemetermanufacturedbyExtech.ReproducedfromExtech.Availablefrom: www.extech.com [accessed05.09.16].

electronsfromtheenergyreceivedbythephotons.Thelightmetersarethereforeusuallyequippedwithspectrumcorrection filters. Portableandinexpensivelightmetersarecurrentlyavailableinavarietyofluxrangeswithatypicalaccuracyof 715%(Fig.10).

5.1.3.2.7Heat fl uxmeter

Itisusualthatthebuildingauditorneedstodeterminethe U-valueofopaqueenvelopesofwhichthethermophysicalproperties arenotknown.Aheat fluxmetercanbeusedtoeasilymeasurethe U coefficient.Threetemperaturevaluesareneeded:theoutside temperature,thesurfacetemperatureofthewallface,andtheambientairtemperature.Anaccurateestimationofthe U-valueis quitecomplexsincetheboundaryconditionsarenotstationarybutvarycontinuously.Becauseofthistransientbehavior,the

Fig.8
Fig.9

LightmetermanufacturedbyDigiSense.ReproducedfromCole-Parmer.Availablefrom: www.coleparmer.com [accessed07.09.16].

Utilizationoftheheat flux meter.ReproducedfromTesto.Availablefrom: www.testo.org [accessed07.09.16].

measurementisnotinstantaneousandmustbecarriedoutduringanappropriateperiodofobservationofaminimumof72hand whenthetemperaturegradientbetweenouterandinnersurfacesissigni ficantlyimportant(notlessthan101C).Asaconsequence, suchmeasurementissuitabletobeperformedduringwintermonths.

Someoftheavailableheat fluxmetershaveanintegratedreadingmemoryinwhichthemeasureddatacanbestoredand subsequentlyevaluatedonaPCusingtheappropriatesoftware(Fig.11).

5.1.3.2.8Blowerdoortest

Theblowerdoortestshownin Fig.12 permitsthemeasurementofairtightnessofbuildingenvelopes.Duetounsealedwindows, uncontrolled air flowsresultingfromthepressuredifferencebetweeninternalandexternalenvironmentscanincreasebuilding’ s

Fig.10
Fig.11

Fig.15 UltrasonicleakdetectormanufacturedbyMitchellInstrument.ReproducedfromMitchelLinstrument.Availablefrom: www. mitchellinstrument.com [accessed12.09.16].

Fig.16 Ultrasonic flow meter.Reproducedfrombpress.cn.Availablefrom: www.bpress.cn [accessed12.09.16].

goodchoice(see Fig.16).Thedeviceclampsontotheoutsideofapipeandensuresnoncontactanddirectmeasurementsof flow rate.

5.1.4EnergyEfficiencyMeasures

5.1.4.1BuildingEnvelope

Abuildingenvelopehastheroleofphysicallyisolatingtheinsideofthebuildingfromtheoutsideenvironment.Itservesasan externalprotectiontoenhancethequalityandcontroltheindoorconditionsirrespectiveoftransientoutdoorconditions [16].The building envelopeconsistsofopaqueandtransparentparts.Theopaqueenvelopecoverswalls,roofs, floors,andinsulationand transparentenvelopeincludewindows,skylights,andglassdoors.

Theeffectivenessofthethermalenvelopedependsonthefollowingpoints [17]:

● the insulationlevelsinthewalls,ceiling,andground,includingfactors,suchasmoisturecondensationandthermalbridges thatimpactinsulationperformance;

● thethermalpropertiesofwindowsanddoors;and

● therateofexchangeofinternalandexternalair,thatinturnreliesontheairtightnessoftheenvelopeanddrivingforces,suchas wind,inside/outsidetemperaturedifferences,andairpressuredifferencesresultingfrommechanicalventilationorairdistributionsystems.

5.1.4.1.1Thermalinsulation

Applyingthermalinsulationappropriatelyinthebuildingenvelopeisthemosteffectivemethodtoincreasethethermalresistance anddecreaseenergyconsumptionforthecoolingandheatingoftheinternalspace [18].Insulationtypescanbecategorizedinto four familiesdependingontheirmaterialtypeasshownin Fig.17 [19]

andoutofabuildingcanreduceheatingandcoolingcosts,increasecomfort,andimprovedurability.Inordertoamelioratethe airtightnessofthebuildingenvelope,varioustechniquescanbeappliedincluding [30]:

● Calking: thereisamultitudeofproductsonthemarket(urethane,latex,andpolyvinyl)thatcanbeappliedtosealvariousleaks by fillinggapsinallkindsofstructures.Calkingcanalsopreventwaterdamageinsideandoutsideofthebuildingwhenused aroundfaucets,ceiling fixtures,waterpipes,drains,andplumbing fixtures.

● Weatherstripping:foamrubberwithadhesivebackingcanbeusedtosealairleaksaroundmovablebuildingcomponents,such asdoorsoroperablewindows.

● Airretarders:thesesystemsconsistofoneormoreair-impermeablecomponentsthatcanbeusedtosealairleakagepathways inroofandfoundationjunctions,windowanddooropenings,controlandexpansionjoints,masonryties,piping,andother infiltrationsthroughthewallbody.Manyapproachesincludingself-adheredmodifiedbituminoussheets,polyethylenesheets, andliquid-appliedrubbercanbeapplied.However,thesetechniquesarenoteconomicallyviablewhenappliedtoexisting buildings.

Generally,toinsuretheairchangesinaccordancewithairqualityrequirements,thesetechniquesshouldbeperformedtogether withtheinstallationofacontrolledmechanicalventilationsystem.

Toassessapproximatelytheenergysavingsresultingfromareductioninairinfiltration,thefollowingrelationshipcanbe used:

wherethe raca productisthevolumetricheatcapacityoftheair(equalto0.34Wh/m3 K), V thenetvolumeofthespaceto beheated, nE and nR are,respectively,themeasuredairchangesduetoinfiltrationandtheairchangesgeneratedbythe installationofmechanicalventilationsystem,expressedinvol/h,and ZREC istheaverageseasonalefficiencyoftheheat recoveryunit(ifapplicable).

5.1.4.2Heating,Ventilating,andAir-ConditioningSystems

TheHVACsystemscontrolairtemperature, flow,andhumiditylevelstoallowasuitableindoorenvironmentforhumanactivity. HVACsystemsaccountforagreatpartoftheenergyconsumptioninresidential,commercial,andindustrialstructures [31] Therefore, appropriateactionstoincreaseheatingandcoolingefficiencywillhaveanexcellentimpactonenergysavings.Many parametersaffecttheenergyuse,ef ficiency,andcostofoperationofanyHVACsystem.Theseparametersincludethebuilding design,itsdutycycle,thetypeofoccupancy,thetypeofHVACequipmentinstalled,and finally,climaticconditionstowhichthe buildingisexposed.

Generally,theoverallefficiencyofHVACsystemsisobtainedbymultiplyingtheef ficienciesofitsvariouspartsincludingthe emission,regulation,distribution,andproductionsystems.AnexhaustivelistofEEMsthattheauditorcanadopttoachieveenergy savingsinHVACsystemsisgivenbelow:

● Systemmaintenanceisasimplebutoftenneglectedenergy-savingopportunity.Dirtyheatexchangesurfaces,clogged filters,andinoperableormalfunctioningdampersareresponsibleforinappropriateoperationofHVACsystemsand theirdecreasingefficiency.Themaintenancerequirementsmustbeexecutedannuallyfollowingthemanufacturer recommendations.

● Thermostatcalibrationandsetback:calibrationofthethermostatshouldbeexaminedbecauseofthehighinaccuracyofthese devices.Currently,thereare “smart” thermostatsequippedwithmicroprocessorsthatcanbemanagedtosetbackorsetforward thetemperatureaccordingtothetimeofdayanddayofweek.BasedontheresultsgiveninRef. [32], itisshownthatforevery 11Fofthermostatsetback(heating)orsetforward(cooling)duringan8-hperiod,thereisanopportunitytosaveabout1%in annualheatingorcoolingenergycosts.

● Equipment modification:incommercialbuildings,therearesomemodifications,includingthecontrol,retrofit,and adoptingofnewdesignsthatcanbemadetoimproveenergyefficiencyofHVACsystems [32] Theequipmentconcerned arefans,pumps,air-conditioningunits,chillers,ducts,anddampers.Themainenergysavingstrategiesaresummarizedin Table2

● Economizer systemsandenthalpycontrollers:theeconomizercontrolstheamountofoutsideairtothemixedairductto upholdapresettemperatureinthemixedairplenum.Iftemperatureisslightlyabovethissetpoint,thecompressorisshutoff andthecoolingdemandistotallyensuredbytheoutsideair.Whentheairtemperatureissignificantlyhigh,minimumoutside airwillbeintroducedtothesystem.Forbetterresults,asecondcontrolcalledtheenthalpycontrolcanbeadded.Inharmony withtheoutdoorthermostat,theoutdoorairhumidityisalsomeasured.However,thecostofsuchsystemsishigh.

● Heatrecoverytechniques:severaltechniquescanbeemployedtorecoverheatfromexhausts.Themostimportantonesare rotarywheel,air-to-airheatexchanger,heatpipe,andcoilrun-aroundcycle.Mardiana-IdayuandRiffat [33] reported the efficiencyrangesofthesedevicesalongwiththeiradvantagesaspresentedin Table3

• Voltagedips:avoltagedipisasuddendropinthevoltageatapointoftheelectricalnetworktoavalue(conventionally) between90and10%withrespecttothereferencevoltagefollowedbyarestorationofthisvoltageafterashortperiodoftime. Themaincausesofvoltagedipsareshortcircuitsaffectingtheelectricalnetworkorconnectedinstallationsandthestartingof high-powerMots.

• Voltageunbalance:thethree-phasevoltagesystemmustbethree-phaseandbalanced:thethreevoltageshavethesame amplitudeandareoutofphaseby 7120degree.Whenthesequantitiesdonotsatisfyoneoftheseconditionsthatconcernsthe phaseandtheamplitude,onespeaksofanunbalancedthree-phasesystem.Voltageimbalancehasnegativeeffectsonthe operationofequipment,especiallyforMots.Itgeneratesreversecurrentcomponentsthatcausemainlyparasiticbraking torquesandoverheating.

• Harmonicpollution:harmonicpollutionisaseriousdisruptivephenomenaofelectricalenergyqualitythatmostindustries andelectricityaroundtheworldaresufferingfrom [39] Harmoniccurrentsareadditionalandunnecessarycurrentscausedby nonlinearloads,suchasvariablespeeddrives.Theseharmoniccurrentscauseanonsinusoidalperiodicformofthetotal current,whichdisruptsthewaveformofthevoltageandgeneratestechnicalproblems,overconsumption,anddegradationof networkequipment [40].ThenegativeeffectsofharmonicpollutiononelectricMotsinclude(1)thecreationofharmonic torques,whicharesuperimposedonthefundamentaltorqueandincreasethemechanicalvibrationsoftheMot,whichwill increaseitsmechanicalfatiguerapidly [41];and(2)increaseinoperatingtemperatureandenginelosses [42,43]

Thetreatmentofthisharmonicpollutioncanbeeffectuatedbytheinstallationofantiharmonic filters (passive,active,or hybrid filters).The filteringmustbecarriedoutatthelevelofthepollutantloadsinordertoprotecttheothersensitiveequipment. Harmonictreatmenthastheadvantageofreducingthedistortionoftheinternalelectricalnetwork,protectionofequipment againsttheharmfuleffectsofharmonicpollution,improvingthepowerfactoroftheload,andextensionoftheequipmentlife service.

5.1.4.3.3Electricalmotors

ElectricMotsconsumebetween30and70%ofthetotalECbyanindustry [8].Themostcommonpracticestoimproveenergy efficiency ofMotsarelistedbelow:

• Theuseofhigh-efficiencyMots:comparedtostandard-ef ficiencyMots,theygeneratelessheat,requirelesscooling,and consumelessenergy.ThisisanewgenerationofelectricMotsthatismanufacturedprimarilyintheUnitedStatesandEurope [8] Theannualenergysaving(AES)resultingfromthereplacementofastandard-ef ficiencyMotwithahigh-ef ficiencyMotcan beestimatedusing [44]:

whereAESistheannualenergysaving(kWh/year),ECmot istheannualECbytheMot(kWh), Esrd representsthestandardMot efficiencyrating(%),while Eee istheenergy-ef ficientMotefficiencyrating(%).

• Theuseofvariablefrequencydrive(VFD):aVFDisusedtoregulatethespeedandtorqueoftheMotaccordingtothevariation oftheloadinordertoimprovetheMotenergyefficiency.Infact,areductioninthenominalspeedviatheVFDcanleadto reducedenergyconsumption [5] TheuseofVFDsalsoguaranteesaprogressivestartoftheMotwithaclearimprovementofits powerfactorandanextensionofitslifeservice [5,45]

• Reactiveenergycompensation:Motsarelargeconsumersofreactiveenergyandespeciallywhenoperatingatalowloadingorat no-loadingmodes.Thus,itwillnecessarytocompensatethisreactivepowerandcorrectthepowerfactorbyabatteryof capacitors.Thisactionisreservedonlyforenergy-intensiveindustrialMots [46]

• Motresizing:electricMotsareoftenoversizedandrarelyoperateatfullload.Fieldstudiesindicatethat,onaverage,Mots operateatabout60%oftheirnominalcapacity [45] TheefficiencyofinductionMotsisusuallyatitsmaximumaround75%of thefullloadandremainsrelatively flatupto50%load.Atlessthan40%ofthefullload,anelectricMotdoesnotoperate underoptimizedconditionsandtheefficiencydropsveryrapidly.AcorrectresizingofMotswillenhancetheefficiencyand reduceslinelossesduetolowpowerfactor.

5.1.4.3.4Lightingsystems

Lightingsystemsareresponsibleforanimportantpartofenergyconsumptioninresidential,commercial,andindustrialstructures. Forexample,of ficebuildingsconsumeabout30–50%oftotalenergytoprovidelighting.Inindustries,around15%ofenergyis consumedbylightingsystemsinproductionunitsandadministrativeareas [47].Severalstrategiescanbeemployedtoreduce energy consumptioncausedbylightingsystems.Themostimportantonesarethefollowing:

● Useefficientlamps:replacingtheexistinglampswithequivalentlampswithbetterenergyefficiencyisoneofthemainactions thatcanbeproposedintheauditreporttoreducethelightingenergyconsumption [48] Upto94,90,and40%ofelectrical energycanbesavedbychangingthelightingdevicesfromincandescenttolight-emittingdiode(LED),fromhalogentoLED, andfromincandescenttohalogen,respectively(Fig.20).

Otheropportunitiestoreduceenergyconsumptionofcompressorsaretheoptimizationofthepressureleveltoaminimum operationalvalue [60,61],theuseofcompressedairstoragetominimizethecompressoroperationduringpeakhoursand maximize itduringoff-peakhours,andthereductionpressurelossesthroughouttheaircircuit.

5.1.4.5CombustionInstallations

Combustionplantsareheatingequipmentorinstallationsusingthecombustionofafuel(includingwaste)toproducehotwater orsteam(boiler)ortoheatupmaterialstoveryhightemperaturesallowingchemicaltransformations(furnace).Heatlossesin suchequipmentgenerallyoriginatefrom(1)weakinsulationcausingconductionandradiationheattransfers,(2)stackgas,(3) presenceofmoistureinfuel,(4)incompletecombustion,and(5)thepurgesofboilers.

Energyefficiencyimprovementofcombustionplantsmusttakeintoaccountboththeparametersoftheprocessinvolvedand theparametersofthecombustion.Theoptimalenergymanagementstrategiesforboilersandfurnaceslargelydifferaccordingto theindustrialprocesstheyserve.Thus,eveniftheyarenumerous,techniquesforsavingenergyareveryspeci fictoeachmajor industrialsector.Themostcommonlyusedpracticesbyauditorstoreduceenergyuseincombustionplantsarethefollowing:

● Reducingcombustiongastemperature:thelowerthecombustiontemperatureis,thebettertheenergyefficiency.However,itis necessaryto findacompromisewithotherrequirements,suchasoperationabovethedewpointandtemperaturerangesfor effective fluegaspurification.

● Preheatingthecombustionairgoingtotheburner:theairsupplyingtheburnercanbepreheatedusingtheexhaustgasstream viaaheatexchangerplacedintheexhauststack [62] Thisimprovesthecombustionandtheorganicfuelsarebetterdried.The boilerenergyef ficiencycanthusincreaseby3–5%.Recuperativeandregenerativeburnersoptimizethispreheatingbydirectly recoveringthewasteheat.

● Controlling excessair:effectivecontrolofexcesscombustionair(alsoknownasO2 control)meansadjustingburnerairflowto meetfuel flow.Thisactionisoneofthemostimportantwaysformanagingtheenergyefficiencyandatmosphericemissionsof aboilersystem.Technically,severalcontrolswithvariouslevelsofcostsandsophisticationcanbeused,suchason/offand high/lowcontrols,parallelcontrols,mechanicaljackshaftcontrols,cross-limitingcontrol,andautomaticcontrol [63]

● Fuel selection:takingintoaccountinparticularthecalorificvalueandthelevelofpollutantsduringthecombustionofthefuels envisaged,awell-chosenchoicemakesitpossibletoreducetheexcessairandtoincreasetheenergyef ficiencyofthecombustionprocess.

● Boilersizingandoperation:theboilerefficiencydropssharplyatlowload(i.e.,runningsofarfromtheratedcapacity).Itis thereforerecommendedtoselectboilersizestomatchvaryingdemand.Itisgenerallysuitabletoworkwithtwosmallboilers insteadofalargerone.Atlowloads,oneboilerissufficient.Whentheloadsareatthehighestvalues,twoboilersmustoperate.

● Usecombinedheatandpowergeneration:acombinedheatandpower(CHP)unitconsistsofprimemover,generallyagas turbineorpistonenginedrivinganelectricgeneratorandaheatrecoverysteamgenerator.Themainbene fitofCHPunitsisthe electricenergyproducedathighthermalef ficiency.

● Maintainingthecleaning:mostofthefuelsleaveacertainquantityofdepositonthe firesideofthetubes(fouling).Thisdeposit reducesheattransfersignificantly,whichimpactnegativelytheequipmentefficiency.Regularcheckingandcleaningisgenerally sufficientforsmallsizeboilerswhilesootblowersystems(thatcleantheboilerduringoperation)arepreferableforlargersizes.

● Otheroptions:theseincludethefollowing:improvingtheinsulationandavoidingleakages,testingtheboilerwaterperiodicallyforthelevelofdissolvedsolids,reducingtheboiler’ssteamoperatingtemperatureandpressureattheminimum requiredandrecoveringheatlossesthroughheatexchangers.

5.1.5CaseStudy:EnergyAuditing

5.1.5.1Introduction

Thecementmanufacturingindustryisoneoftheworld’smostenergy-intensiveprocesseswithhighlevelsofanthropogenic climatechangeemissions [64].In2012,thecementindustryconsumedabout8.5%oftotalindustrialenergyconsumptionand caused around34%oftheindustrialdirectCO2 emissions [65].Energyconsumptionandrelatedemissionforthecementindustry are projectedtoincreaseproportionallywiththecementproductionthatisinturnexpectedtoincreaseby0.8–1.2%peryearasa consequenceofincreasingurbanizationandexplosiongrowthespeciallyinthedevelopingworld [66].Cementplantsconsume both electricalandthermalenergyanduseavarietyofenergyresources.Themainfuelusediscoal,althoughmanyotherpossible fuelsareused,suchasshreddedmunicipalwaste,industrialwaste,andsomebiomass [67].Theamountofthermalandelectrical energy useddependsontheprocesstype.Thedryprocessconsumesmoreelectricalbutmuchlessthermalenergythanthewet process.Inindustrializedcountries,theprimaryenergyconsumptioninatypicalcementplantisabout75%fossilfuelandaround 25%electricalenergyusingadryprocess [45].Toincreasetheireconomicperformanceandreducetheirenvironmentalimpact, cement plantsshouldimprovetheirenergyefficiency.Severalworksintheliteraturehavefocusedontheenergyefficiency improvementswithinthecementindustry.Hasanbeigi etal. [68] identified andanalyzed23energyefficiencytechnologiesand measuresapplicabletotheprocessesinChina’scementindustry.Estimationshaveshownthatthetotal finalenergysaving potentialresultingfromtheseEEMsover20isequalto30%ofthetotalprimaryenergysupplyofLatinAmericaorMiddleEastor

around71%ofprimaryenergysupplyofBrazilin2007.Theresultsofathermalenergyauditanalysisinvestigatedonthe pyroprocessingunitacementplantwerereportedbyKabir etal. [69].Theexhaustgasesandkilnshellheatenergylosseswerethe major causesofhighenergyconsumption.Wasteheatrecoverysteamgenerator(WHRSG)andsecondarykilnshellwerestudied. Annualthermalenergysavingsandgreenhousegases(GHGs)emissionsreductionof42.88MWhand14.10%wereachieved, respectively.EnginandAri [70] presentedtheenergyauditanalysisofadrytyperotarykilnsystemworkinginacementplantin Turkey. Itwasshownthatupto40%ofthetotalinputenergywasbeinglostasaresultofhot fluegas,coolerstackandkilnshell. Heatlossesrecoveringwereintroducedshowingapproximately15.6%ofthermalenergyconservation.

InMorocco,theobligationofenergyauditsinindustriesexceedingacertainlimitofannualenergyconsumptionhasbeen recentlylegislatedintheframeoftheMoroccanenergyefficiencylaw.Thecementindustryisthesecondmostenergy-intensive sector,whichpointsuptheneedtounderstanditspotentialforenergyefficiencyimprovement.Thiscasestudypresentsthe methodologyfollowedandthepredictedenergyefficiencyimprovementthroughadetailedenergyauditcarriedoutinacement plantlocatedinMorocco.

5.1.5.2Methodology

Thissectionexplainsthegeneralframeworkoftheconductedenergyauditanditsprocess,instrumentsused,datacollectionand analysis,approachesusedtoestimateenergyconsumption,energysavingpotential,andPBswhenapplyingoneoftheproposed conservationenergymeasures.

5.1.5.2.1Manufacturingprocess

TheauditedcementfactoryislocatedinMoroccoandbelongstolarge-sizeindustries.Itwasbuiltin1988andproducesclinker andcementfromlimestonebasedonadryprocess.Threemajorstagescanbedistinguishedinthecementmanufacturingprocess. Theyarediscussedbrieflyinwhatfollows.

• Stage1:extractionandcrushingofrawmaterials:therawmaterialsusedinthemanufactureofcement(calciumcarbonate, silica,alumina,andironore)areinmostcasesextractedfromlimestonerock,chalk,shale,orclay.Theserawmaterialsare removedbyextractionofquarriesandblasting.Thesenaturalmineralsarethenmechanicallycrushed.Atthispoint,other mineralsareaddedtocorrectthechemicalcompositionofcement.Thesemineralsarewasteorby-productsofotherindustries, suchaspaperash.Thegrindingproducesa finepowder,called"rawconcrete,"whichisthenpreheatedandplacedinafurnace whereitissubjectedtootheroperations.

• Stage2:heatingandgrindingofcementraw:thekilnistheheartofthecementmanufacturingprocess.Onceintherotarykiln, thecementrawmealisheatedtoabout15001C,whichcorrespondsapproximatelytothetemperatureofmoltenlava.Atthis temperature,chemicalreactionsoccurandresultintheformationoftheclinker,asubstancecontaininghydrauliccalcium silicates.Toheatthematerialtoahightemperature,itisnecessarytoproducea flameat20001Cmainlyusingfossilfuels.The kilnistiltedbythreedegreeswithrespecttothehorizontal,allowingthematerialtopassthroughitover20–30min.On leavingthekiln,theclinkeriscooledandstored,beforebeinggroundtoproducecement.

• Step3:cementgrindingandexpedition:asmallamountofgypsum(3–5%)isaddedtotheclinkertocontrolthe hardeningofthecement.Thismixtureisthenvery finelygroundtoobtain"purecement."Duringthisphase,other mineralscouldbeaddedinadditiontotheplaster.Thesenaturalorindustrialadditivesaredosedtoprovidethecement specificproperties.Attheend,thecementisstoredinsilosbeforebeingshippedinbulkorinbagstothesiteswhereit willbeused.

Thesemachinesconsumedifferentformsofenergyduringthecementmanufacturingprocess. Theplantusestwoformsofenergysources:

• Electricalenergysuppliedbytheelectricitynetwork.ItisusedtodriveelectricalMots,pumps,compressor,fans,blowers, conveyors,air-conditioningchillers,andlighting.

• Thermalenergyundertheformofgroundedcoalcokethatispreparedatthefactoryandaverysmallamountofheavyfueloil no.2storedintanks,whichisusedforrestartingtherotarykilnafterstops.Thermalenergyismostlyusedinthekilnand preheatingsystems.

Basedonapreliminaryassessment,anestimationofthespecificenergyconsumption(SEC)pertonofproducedcementfor thisindustryhasshownthatthereisaconsiderablepotentialofreducingenergyconsumptionsincewhencomparedtoother typicalcementindustries,theSECissignificantlyhigh(Table4).

Table4 Specific energyconsumptionoftypicalcementplants

EnergysourceCurrentplantTypicalplantsReference

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.